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Abstract

Previous studies using an affective priming paradigm have shown that valenced chords (e.g.,

consonant-positive; dissonant-negative) facilitate the evaluation of similarly valenced target

words. The role of numerosity (the total number of pitches in a chord) and timbre have not

yet been systematically investigated in previous priming studies using consonant/dissonant

chords.

An empirical experiment was conducted where forty participants evaluated positive

and negative target words with consonant/dissonant chords used as affective primes. Eight

distinct chords (four consonant and four dissonant) were used as primes; the consonant and

dissonant chords were equally divided to comprise either two (i.e., interval) or four (i.e.,

tetrad) pitches. The chords were played with two distinct timbres, the piano and the

harmonium respectively, resulting in a total of 16 chords.

The results show that congruent chord-word pairings result in faster reaction times,

and this finding is in line with previous research using consonant/dissonant chords as primes

(Sollberger et al., 2003; Steinbeis & Koelsch, 2011). However, this effect was present only

with tetrad chords, suggesting that numerosity influences affective priming done with chords.

The role of timbre did not prove to be significant, nor the musical sophistication of the

participants. Arguments are made on why higher pitch numerosity (resulting in acoustic

complexity) in chords might influence the evaluation of valenced target words.

Keywords: affective priming, chord, consonance, dissonance, interval, numerosity,

roughness
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Affective Priming With Musical Chords is Influenced by Pitch Numerosity

Introduction

The contrast between consonance and dissonance is a crucial feature of Western music.

While the exact acoustic and cultural components of consonance and their order of

importance is notoriously contentious (see e.g., Harrison & Pearce, 2019), there is agreement

over the notion that consonant typically means harmonious, agreeable, and stable, while

dissonant, in contrast, means disagreeable, unpleasant, and in need of resolution (see Tramo,

Cariani, Delgutte, & Braida, 2001). The current study is concerned with the perception of

isolated vertical intervals (two concurrent pitches) and chords (three or more concurrent

pitches). The term “chord” will be used as a broad category comprising both intervals and

actual chords for ease of communication, as this is a common procedure in studies dealing

with the perception of simultaneous pitch combinations (see e.g., Bowling, Purves, & Gill,

2018). On an affective level, many self-report studies have demonstrated that dissonant

chords are perceived as more negative and unpleasant than their consonant counterparts (see

e.g., Arthurs, Beeston, & Timmers, 2018; Costa, Ricci Bitti, & Bonfiglioli, 2000; Maher,

1980). Zentner & Kagan (1996) suggest that the preference for consonance over dissonance is

present already in infants, implying that humans might at least to some extent be

biologically prepared to prefer consonance over harsh dissonance.

As a research method, the affective priming paradigm consists of two stimuli (the

prime and the target) presented in succession. Participants then evaluate the target stimulus

according to a binary division such as “positive” and “negative”. The experimental

manipulation is whether or not the prime and target share an affective property such as

valence. Although scholars disagree on the exact mechanism responsible (for a review, see

e.g., Herring et al., 2013), target stimuli are typically evaluated faster when preceded by a

prime of the same affective category compared to one of the opposite category. Affective
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priming paradigms have consistently been found to be a robust measure of attitudes to

prime stimuli (see Fazio, 2001) and avoid many of the limitations of self-report measures as

outlined by for example Zentner & Eerola (2010).

Only a handful of affective priming studies have investigated the effect of

consonance/dissonance on the evaluation of valenced target words. Sollberger, Rebe, &

Eckstein (2003) and Steinbeis & Koelsch (2011) found that participants evaluated target

words faster if the words were preceded by a similarly valenced chord (e.g.,

consonant-positive) compared to affectively incongruent chord-word pairs (e.g.,

dissonant-positive), and this finding was independent of musical training. Costa (2013) later

tested the chord stimuli of Sollberger et al. (2003) using emotional pictures instead of words

as the targets, and curiously in this setting the priming with consonant/dissonant chords was

not effective.

These previous studies using consonant/dissonant chords as primes have not yet been

systematic in identifying what aspects of the chords lead to priming effects. None of them

have directly explored the role of numerosity (the total number of pitches in a chord) and

timbre in consonant/dissonant chords used as affective primes. It has been theorised that

numerosity affects the perceived consonance of chords; the addition of pitches to a chord

typically increases its acoustic roughness (Bowling & Purves, 2015), an acoustic component

which is seen as prevalent in dissonant, but not in consonant musical chords (see e.g.,

Hutchinson & Knopoff, 1979; Plomp & Levelt, 1965). This would imply that dissonant

chords with higher numerosity and hence higher roughness could be more congruent with

negative target words compared to dissonant but less rough intervals. Also, on a cognitive

level it has been suggested that stimuli that are easier to process result in more positive

affective reactions (e.g., Winkielman & Cacioppo, 2001); according to this logic a consonant

interval consisting of only two pitches might result in an easier processing than a consonant

tetrad consisting of four pitches, ensuing higher congruency with positive target words. In
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the previous affective priming studies using consonant/dissonant chords Sollberger et al.

(2003) tested three- and four-pitch chords for dissonance, but only three-pitch chords for

consonance. The results showed no difference in congruency effects according to pitch

numerosity. Steinbeis & Koelsch (2011), in turn, used exclusively four-pitch chords for both

consonance and dissonance. Costa (2013) later used the same three-pitch chords as

Sollberger et al. (2003). Consequently, two-pitch chords (intervals) have never been tested in

an affective priming setting to investigate whether chord numerosity plays a role in the

evaluation of valenced target words. Also, previous affective priming studies with

consonant/dissonant chords have used exclusively the piano timbre, and this can be seen as a

possible limitation. Timbre has been shown to strongly affect the perception of single chords

in self-report studies (see Arthurs et al., 2018; Lahdelma & Eerola, 2016b) where the piano

timbre was rated more positive than for example the strings or the organ. Moreover, the

timbre of isolated musical instrument sounds has been demonstrated to convey distinct

emotions in an affective priming setting (Liu, Xu, Alter, & Tuomainen, 2018).

Methods

Participants

The participants for the experiment were recruited through Prolific Academic

(https://prolific.ac), an online crowdsourcing platform targeted especially for research

purposes. Previous research suggests that Prolific participants consistently complete

questionnaires carefully and the platform has high reliability (see Palan & Schitter, 2018;

Peer, Brandimarte, Samat, & Acquisti, 2017). Written informed consent was obtained from

all participants before the start of the experiment, and the study was approved by the

institutional ethics committee.

https://prolific.ac
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Materials

The stimuli were chosen on the basis of an empirical rank ordering of

consonance/dissonance ratings of intervals and tetrads conducted by Bowling et al. (2018);

the two most consonant/dissonant intervals and tetrads were chosen to represent each

category (e.g., consonant interval), resulting in a total of eight distinct chords (Table 1). As

per the procedure by Bowling et al. (2018), the fundamental frequencies (f0) of the pitches

in each chord were adjusted so that the mean f0 of all pitches was 263 Hz (middle C). The

chords were played with both the piano and the harmonium timbre, resulting in 16 chords

altogether. All chords were played in equal temperament. The piano timbre was chosen as it

is a common and highly familiar instrument; also, it has been used in the three previous

affective priming studies applying consonant/dissonant chords. The harmonium was chosen

to represent a categorically different and less familiar timbre compared to the piano, as it has

a slow attack and a sustained sound as opposed to the piano’s sharp attack and fast decay.

No a priori hypotheses was put forward with regard to their possible valence differences.

Consonance Numerosity Name Integer Notation

Consonant Interval 1 Perfect fifth (P5) {0 7}

Consonant Interval 2 Perfect octave (P8) {0 12}

Dissonant Interval 1 Minor second (m2) {0 1}

Dissonant Interval 2 Major seventh (M7) {0 11}

Consonant Tetrad 1 Major chord (2nd inversion w/doubled 5th) {0 5 9 12}

Consonant Tetrad 2 Major chord (root position + octave) {0 4 7 12}

Dissonant Tetrad 1 Chromatic cluster {0 1 2 12}

Dissonant Tetrad 2 Chromatic cluster {0 1 2 11}

Table 1: The chord stimuli.
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The chords were exactly 800 ms in length including a 75 ms fadeout. The chords were

generated with Ableton Live 9 (a music sequencer software). The piano chords were created

using the Synthogy Ivory Grand Pianos II plug-in with Steinway D Concert Grand as the

applied sound font. The harmonium chords were created with Noiiz Player (a sampler

instrument plug-in) using the Harmonium sound library with Harmonium II as the applied

sound font. No reverb was used, and a fixed velocity was applied. All stimuli were

normalised to -3db with Adobe Audition CC 2019 (a digital audio workstation) in order to

control for any amplitude differences due to numerosity and timbre dissimilarities. The

chords were rendered as 44.1 kHz, 32 bits per sample waveform audio files and were then

converted to constant bit rate 320kbps high quality stereo mp3 files for compatibility with

the survey design used in the experiment (see Procedure). The stimuli can be found online

at https://anonymised.for.review. The positive/negative target words were taken from

Warriner, Kuperman, & Brysbaert (2013). Altogether 16 words were chosen according to

valence (positive vs. negative). The words were all similar in length, consisting of two

syllables, with the exception of one word (rest) consisting of one syllable. The positive words

were climax, lively, gentle, rest, excite, payday, comfy, relax ; the negative words were rabid,

hijack, coma, saggy, arrest, fatal, dismal, and morgue.

Numerosity and Roughness. As pitch numerosity is closely linked to the question

of acoustic roughness (see Bowling & Purves, 2015), roughness calculations were conducted

on the chord stimuli. Figure 1 shows the theoretical roughness values of the eight different

chords (collapsed across timbre) assessed with the model of Hutchinson & Knopoff (1978);

this model has recently been demonstrated to be the most reliable predictor of

consonance/dissonance ratings among several roughness models (see Harrison & Pearce,

2019). As can be seen from Figure 1, both the consonant and dissonant tetrads are more

rough than their interval counterparts, and this difference is especially prominent with the

dissonant chords.

https://anonymised.for.review
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Figure 1: Theoretical roughness values across the eight chords (C=Consonant,

D=Dissonant, I=Interval, T=Tetrad, see Table 1 for full details).

Procedure

The experiment was programmed and conducted on PsyToolkit, a web-based service

designed for setting up, running, and analysing online questionnaires and reaction-time

experiments (see Stoet, 2017). The web-based reaction time approach has been validated to

generate data that is comparable to lab-based data (Hilbig, 2016). Before the experimental

task, participants were asked to provide information about their demographic background

(age, gender, and musical sophistication). For the priming task, participants were presented

with a series of words, which had to be classified as positive (by pressing the “m” key) or

negative (by pressing the “z”) key. Each word was preceded by a chord. The task comprised

a ten-item practice block followed by an experimental block of 256 items (16 primes × 16

targets) presented in a random order. Participants received feedback during the practice

block to indicate whether or not their responses were correct; no feedback was provided

during the experimental block. For each item, the screen initially contained a fixation cross
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for 500 ms; at 500 ms, the fixation cross disappeared and the auditory prime (duration 800

ms) sounded. 200 ms after the onset of the auditory prime, the target word appeared in the

centre of the screen and remained for 2000 ms, during which time participants were able to

respond. Responses slower than 2000 ms were classed as “timeouts”. Following the

experiment, participants were presented with an online debriefing screen and issued with an

anonymous participant code.

Figure 2: Schematic diagram of the experiment procedure.

Results

Reaction Time
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Data Pre-Treatment. Reaction times shorter than 250 ms were deleted (Hermans,

De Houwer, & Eelen, 2001). To calculate upper outliers, each participant’s data was fitted to

an exponentially modified Gaussian (ExGaussian) distribution (Ratcliff, 1993); responses

slower than the 95th percentile of this distribution were deleted as were incorrect responses.

Finally, as is common practice (Whelan, 2008), reaction times were log transformed prior to

analysis.

Analysis of Reaction Time Data. The data were subjected to 2

(consonance-dissonance) × 2 (timbre) × 2 (numerosity) repeated-measures linear mixed

effects anova. Several authors suggest avoiding standardised effect sizes with linear mixed

effect models, advocating instead for simple effect sizes, which are reported here (Baguley,

2009; Rights & Sterba, 2019; Wilkinson, 1999). The analysis revealed no significant main

effects of consonance-dissonance, timbre, or numerosity. However, as predicted, there was a

significant interaction of Consonance × Target Valence, F(1,272) = 12.97, p < .001,

revealing clear congruency effects. Post hoc tests confirmed that reaction times to positive

words were faster when preceded by consonant chords (mean RT = 586 ms, SD = 117 ms)

than by dissonant chords (mean RT = 594 ms, SD = 112 ms), t(34) = 2.28, p = .03;

similarly, reaction times to negative words were marginally faster when preceded by dissonant

chords (mean RT = 588 ms, SD = 116 ms) than by consonant chords (mean RT = 595 , SD

= 113 ms), t(34) = 1.87, p = .06. This interaction was further qualified by a significant

three-way interaction Numerosity × Consonance × Target Valence, F(1,272) = 4.42, p = .03.

Post hoc tests indicated that the interaction Consonance × Target Valence was present in

the case of tetrads, F(1,68) = 11.44, p = .001, but that this interaction was not present in

the case of intervals, F(1,68) = 0.88, p = .35. Considering tetrads only, positive targets were

evaluated significantly more quickly following a consonant prime compared to a dissonant

prime, t(136) = 2.58, p = .01, difference in means = 15 ms; the effect was marginal in the

case of negative targets - there was a non-significant trend for targets to be evaluated more

quickly following a dissonant prime compared to a consonant prime, t(136) = 1.78, p = .08
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difference in means = 11 ms). These differences were not present in the case of intervals,

where the difference in mean reaction times for positive targets was 0.4 ms and the mean RT

for negative targets was 4 ms. Figure 3 demonstrates graphically the presence of the effect in

the case of tetrads, but not in intervals. The interaction Timbre × Target Valence did not

prove to be significant. All other two, three, and four-way interactions proved to be

non-significant. In order to test for group differences between musicians and non-musicians,

we calculated a priming index, defined as difference in mean response times for incongruent

minus congruent conditions (see e.g. Blair et al., 2006). There was no significant difference

in priming index between musicians and non-musicians, t(18.2) = 0.37, p > .05 (see Delacre,

Lakens, & Leys, 2017 for Welch’s t-test for groups with unequal variances).
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Accuracy Rates

Results for accuracy rates (AR) broadly mirrored those for RT. There was a significant

main effect of target valence F(1,272) = 8.97, p = .003. Post hoc tests suggested that

negative targets were evaluated more accurately (mean AR = 95.3%) than positive targets

(mean AR = 93.4%), t(34) = 3.53, p = .001. All other main effects were non-significant. The

two-way interaction Consonance × Target Valence proved marginally significant, F(1,272) =

3.26, p=. 07. Post hoc testing indicated that Positive targets were evaluated marginally

more accurately following a consonant prime (90.3%) compared to a dissonant prime (88.9%)

t(34) = 1.7, p = .09; there was no significant difference in AR to negative targets when

following consonant (80.7%) vs. negative primes (81.5%). Furthermore, the three-way

interaction Numerosity × Consonance × Target Valence was highly significant, F(1,272) =

9.99, p = .002. As with RT, the interaction Consonance × Target Valence was present in the

case of tetrads, F(1,68) = 8.71, p = .004, but not in the case of intervals, F(1,68) = 0.38, p

= .58. Considering tetrads alone, ARs for positive words were significantly higher when

preceded by consonant tetrads (mean AR = 90.5%) compared to dissonant tetrads (mean

AR = 79.7%), t(34) = 2.12, p = .04; however, negative words were classified more accurately

when preceded by consonant tetrads (mean AR = 87.7% ) than dissonant tetrads (mean AR

= 82.5%), t(34) = 2.77, p = .048. No such interaction was present in the case of intervals.

Rather than presenting congruency effects as is the case with RT, the effect in AR seems to

be to reduce the influence of an over-riding main effect of Target Valence, F(1,272) = 195, p

< .001: post hoc testing suggested that positive words (AR = 89.6%) were classified more

accurately than negative words (AR = 81.1%), t(34) = 7.5, p < .001.

Discussion

The current study has demonstrated for the first time that pitch numerosity plays a

role in consonant/dissonant chords when used as primes for valenced target words. This
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finding has a plausible explanation in the case of dissonant chords: it has been suggested

that the addition of pitches to a chord typically increases its acoustic roughness (Bowling &

Purves, 2015) which results in more perceived dissonance. It is likely that this high amount

of roughness makes the dissonant tetrads effective primes for valenced target words.

Interestingly, numerosity plays an equally important role in the case of consonant chords

where also only the tetrads were effective primes: consonant chords with a smaller number of

pitches (intervals) did not create more congruency with positive words (cf. Winkielman &

Cacioppo, 2001) even though they contain less roughness than the consonant tetrads. As the

consonant intervals represented pure consonance (the perfect fifth, the perfect octave) they

were possibly less loaded in terms of positive valence than the major chord tetrads: major

chords have been demonstrated to contain a high amount of positive valence in self-report

studies (see e.g., Lahdelma & Eerola, 2016a). However, in the previous affective priming

studies with consonant/dissonant chords Sollberger et al. (2003) used a perfect fifth + octave

sonority as the consonant chord (three pitches) which was not a major chord, while Steinbeis

& Koelsch (2011) used major chords with pitch doublings (four pitches). Both of these

studies demonstrated a congruency effect for consonant chords presented with positive target

words implying that it is not necessarily the major chord driving this congruency effect.

The finding that intervals are not effective primes compared to tetrads is striking in

the light that certain intervals have been demonstrated to convey distinct affective

connotations to Western listeners in self-report studies (see e.g., Oelmann & Laeng, 2009;

Krantz, Merker, & Madison, 2004). The dissonant intervals used in the current experiment

(the minor second and the major seventh) have consistently been demonstrated to be among

the most dissonant intervals (see e.g., Malmberg, 1918; Hutchinson & Knopoff, 1979;

Kameoka & Kuriyagawa, 1969). The dissonance in these intervals is mirrored in their

perceived affective connotations on the basis of self-report studies: Maher (1980) found that

the minor second interval was perceived as more unstable, displeasing, and restless when

compared to the consonant perfect fifth and the perfect octave. Interestingly, in Maher’s



AFFECTIVE PRIMING WITH CHORDS 14

study the participants failed to discriminate any of the 14 presented intervals (all the

intervals ranging from the unison to the octave + the minor ninth) on the How-do-you-feel

scale. Maher (1980) concludes that the various intervals do not give rise to differential

degrees of felt activation and liveliness, a notion that is line with the current experiment’s

findings that intervals are not as effective primes as tetrads. On the basis of the current

findings, intervals are possibly not acoustically complex enough to elicit congruency effects in

a reaction time setting when used as primes, at least when in a context of being presented

alongside more complex chords (in this case, tetrads).

Based on these results, more research is suggested on specifically the effect of culturally

loaded intervals in terms of valence (e.g., the positive major third and the negative minor

third and the tritone) to see if intervals by themselves can act as affective primes due to

their conventional affective connotations despite lesser acoustic complexity. Although the

role of timbre proved non-significant in the current study, timbre offers multiple options (e.g.,

harmonics, envelope, spectral shape) that might contribute to affective priming done with

chords. Hence, more diverse timbres should be explored to see if they interact with

consonant/dissonant chords when used as primes in an affective priming paradigm.
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