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Abstract
In clinical applications, it is important to compare and study the ability of diagnostic 
tests to discriminate between individuals with and without the disease. In this paper, 
comparison of two diagnostic tests is presented and discussed using nonparamet‑
ric predictive inference (NPI). We compare the two tests by considering the total 
numbers of correct diagnoses for specific numbers of future healthy individuals and 
future patients. This NPI approach for comparison of diagnostic tests is also general‑
ized by the use of weighted sums for the healthy and patients groups, reflecting pos‑
sibly different importance of correct diagnoses. Examples are provided to illustrate 
the new method.

Keywords Comparison of diagnostic tests · Lower and upper probabilities · 
Nonparametric predictive inference

1 Introduction

Developing and improving diagnostic tests to detect the presence or absence of a 
particular disease are important in medical applications. Often, researchers are asked 
to confirm the superiority of a new diagnostic test to an existing test. In practice, 
diagnostic tests are not perfect. The tests can have two types of errors, namely false 
negative (FN) and false positive (FP) errors. This raises the question how one can 

 * Frank P. A. Coolen 
 frank.coolen@durham.ac.uk

 Manal H. Alabdulhadi 
 manalhamd@hotmail.com

 Tahani Coolen‑Maturi 
 tahani.maturi@durham.ac.uk

1 Department of Mathematics, Qassim University, Buraydah, Saudi Arabia
2 Department of Mathematical Sciences, Durham University, Durham, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42519-019-0039-6&domain=pdf


 Journal of Statistical Theory and Practice           (2019) 13:38 

1 3

   38  Page 2 of 17

compare the qualities of different diagnostic tests. Various methods to compare two 
diagnostic tests have been presented in the literature [26, 28]. The performance of a 
diagnostic test can be evaluated by indicators such as sensitivity, specificity, positive 
and negative likelihood ratio, or positive and negative predictive values. Using these 
indicators for comparison of two tests may not be straightforward; typically, one test 
may have higher specificity, while the other test may have higher sensitivity.

Measures, such as the Youden index, have been suggested as global measures 
of diagnostic accuracy [28]. However, the Youden index can be misleading when 
comparing two diagnostic tests. The Youden index is not taking into account the 
differences in the specificity and sensitivity of the diagnostic test, and it treats the 
FN and FP errors as equally undesirable. The area under the receiver operating char‑
acteristic (ROC) curve (AUC) also provides a summary measure of the diagnostic 
test ability [28]. Although the AUC has been used to compare different diagnostic 
tests, it has some limitations. For example, the areas under the ROC curves of two 
diagnostic tests can be equal, yet the shapes of the two ROC curves can be different 
over the part of the ROC curves of main clinical relevance. According to Dodd and 
Pepe [21], the area under the ROC curve might summarize the performance of a 
diagnostic test over regions of the curve of no clinical and practical interest. Alterna‑
tively, the partial area under the ROC curve can provide more information for some 
diagnostic tests which require false positive rates to be within a specific range of 
medical interest [21, 25]. Researchers have also presented the use of hypothesis test‑
ing to compare sensitivities, specificities or the areas under the ROC curves of two 
diagnostic tests [28].

As an alternative to the methods for comparison of two diagnostic tests mentioned 
above, we present a nonparametric predictive inference (NPI) method for such com‑
parisons [6–8]. NPI is a frequentist statistical method which is explicitly aimed at using 
few modelling assumptions, enabled through the use of lower and upper probabili‑
ties to quantify uncertainty [4, 5, 27]. NPI has been introduced for many application 
areas where the predictive nature of this method is attractive, including reliability, sur‑
vival analysis, operations research and finance (see www.npi‑statistics.com for more 
information). Restricting attention to one future observation, NPI has been developed 
for diagnostic test accuracy considering different types of data. Coolen‑Maturi et  al. 
[18] introduced NPI for diagnostic test accuracy with binary data, while Elkhafifi and 
Coolen [22] presented NPI for diagnostic tests with ordinal data. Coolen‑Maturi et al. 
[17, 19] proposed NPI for two‑ and three‑group ROC analysis with continuous data. 
The results by Elkhafifi and Coolen [22] have been generalized by Coolen‑Maturi [14] 
for three‑group ROC analysis with ordinal data. Coolen‑Maturi [15] considered NPI 
for scenarios where two or more diagnostic tests are combined in order to improve the 
overall accuracy. Recently, we have presented NPI methods for determining an opti‑
mal test threshold for diagnostic tests with real‑valued outcomes, explicitly considering 
given numbers of future individuals from the healthy and disease groups [1, 16]. As 
an alternative to the approach in this paper, we have also presented comparison of two 
diagnostic tests with real‑valued outcomes for diagnostic tests with two or three groups 
of individuals, where the comparisons consider the NPI lower and upper probabilities 
of the events that at least a specified proportion of future individuals, for each of the 
groups, will be correctly classified [2]. This differs from the method presented in this 
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paper in two ways, namely the use of different events of interest as we consider the 
(possibly weighted) total number of correctly diagnosed individuals in this paper, and 
the NPI methods used in the two papers differ. In Alabdulhadi et al. [2], NPI for future 
order statistics [3, 12] was used, while in this paper the problem formulation requires 
the use NPI for Bernoulli quantities [6], for which also new results are presented.

Classical methods often focus on estimation rather than prediction. The end goal of 
studying the accuracy of diagnostic tests is to apply these tests to future individuals. 
Thus, it is of interest to consider the use of a frequentist predictive inference method for 
comparison of diagnostic tests as an alternative to the classical methods that have been 
presented in the literature. It will be useful to apply the NPI approach together with 
some other approaches, to see if they provide similar conclusions about the different 
tests. If the NPI approach comes to quite a different conclusion than classical methods, 
then it is likely due to the model assumptions underlying the other methods, as only few 
assumptions are made in the NPI method.

In this paper, we present NPI for comparing two diagnostic tests, assuming that the 
tests are applied on the same individuals from two groups, namely, healthy and dis‑
eased individuals. In Sect. 2, we provide a brief review of NPI for Bernoulli quantities 
[6]. Section 3 presents the main method for comparison of two diagnostic tests by con‑
sidering the total sum of correctly classified individuals from both the healthy and dis‑
ease groups. We also show how this method can be generalized to include weights for 
the two different groups, to express possibly different importance of getting the diag‑
nosis right for either healthy or diseased individuals. This section contains some new 
results for NPI for Bernoulli quantities which can also be applied to different problems 
than the comparison of diagnostic tests. Section 4 presents some examples to illustrate 
and discuss the new method. Finally, some concluding remarks are made in Sect. 5.

2  NPI for Bernoulli Quantities

Coolen [6] presented NPI for Bernoulli quantities, which is based on Hill’s assump‑
tion A(n) [23, 24], sequentially applied to derive at inference for m ≥ 1 future observa‑
tions given n observed values, together with a latent variable representation of Ber‑
noulli quantities represented as observations on the real line, with a threshold such that 
observations to one side are successes and to the other side failures. Suppose that there 
is a sequence of n + m exchangeable Bernoulli trials, each with success and failure 
as possible outcomes, and data consisting of s successes in n trials. Let Yn

1
 denote the 

random number of successes in trials 1 to n; then, a sufficient representation of the 
data for NPI is Yn

1
= s , due to assumed exchangeability of all trials. Let Yn+m

n+1
 denote 

the random number of successes in trials n + 1 to n + m . Based on the basic method 
presented by Coolen [6], Coolen and Coolen‑Schrijner [13] introduced the NPI lower 
and upper probabilities for events Yn+m

n+1
≥ y and Yn+m

n+1
< y , these are the only lower and 

upper probabilities needed in this paper. The upper probabilities for these events are as 
follows: For y ∈ {0, 1,… ,m} and 0 < s < n,



 Journal of Statistical Theory and Practice           (2019) 13:38 

1 3

   38  Page 4 of 17

and for y ∈ {1,… ,m + 1} and 0 < s < n,

The corresponding NPI lower probabilities can be derived via the conjugacy prop‑
erty P(A) = 1 − P(Ac) , for any event A and its complementary event Ac , which holds 
generally in imprecise probability theory and also in NPI for Bernoulli quantity [5, 
6].

For m = 1 , the two non‑trivial values of these upper probabilities are 
P(Yn+1

n+1
≥ 1|Yn

1
= s) = (s + 1)∕(n + 1) and P(Yn+1

n+1
< 1|Yn

1
= s) = (n − s + 1)∕(n + 1) . 

If the observed data are all successes, so s = n , or all failures, so s = 0 , then these 
upper probabilities are, for all y ∈ {0, 1,… ,m} , P(Yn+m

n+1
≥ y|Yn

1
= n) = 1 and 

P(Yn+m
n+1

≥ y�Yn
1
= 0) =

⎛⎜⎜⎝
n + m − y

n

⎞⎟⎟⎠
⎛⎜⎜⎝
n + m

n

⎞⎟⎟⎠

 , and for all y ∈ {0, 1,… ,m + 1} , 

P(Yn+m
n+1

< y�Yn
1
= n) =

⎛⎜⎜⎝
n + y − 1

n

⎞⎟⎟⎠
⎛⎜⎜⎝
n + m

n

⎞
⎟⎟⎠

 and P(Yn+m
n+1

< y|Yn
1
= 0) = 1.

3  Comparison of Tests Using NPI for Bernoulli Quantities

In this section, we compare the accuracy of two diagnostic tests to classify indi‑
viduals into one of two groups, which we indicate as ‘healthy group’ X and ‘disease 
group’ Y. Throughout this paper, we use either subscripts x and y or superscripts X 
and Y to refer to groups X and Y, respectively. We explicitly consider multiple future 
individuals from each group, with the inference based on observed data for individu‑
als known to belong to either the healthy group or the disease group. Throughout 

P(Yn+m
n+1

≥ y|Yn
1
= s) =

(
n + m

n

)−1[(
s + y

s

)(
n − s + m − y

n − s

)

+

m∑
l=y+1

(
s + l − 1

s − 1

)(
n − s + m − l

n − s

)]

P
(
Yn+m
n+1

< y|Yn
1
= s

)

=

(
n + m

n

)−1
[(

n − s + m

n − s

)
+

y−1∑
l=1

(
s + l − 1

s − 1

)(
n − s + m − l

n − s

)]
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this paper, we assume that the two groups are fully independent in the sense that 
any information about one group does not provide any information about the other 
group.

We compare the two tests by considering the total number of correct diagno‑
ses for mx future healthy individuals and my future patients for one test with those 
for the other test, using NPI for Bernoulli quantities for each group separately. In 
this paper, it does not matter what kind of measurements are actually used in the 
diagnostic tests, the only relevant aspect is whether or not the diagnosis is correct. 
However, the model underlying NPI for Bernoulli quantities [6] assumes a latent 
variable representation for successes and failures using real‑valued observations and 
a threshold, such that an observation to one side of the threshold is a success and 
to the other side is a failure. This provides a natural link to diagnostic tests which 
provide real‑valued outcomes, with an optimal threshold determined on the basis 
of the data and some optimality criterion. We have recently presented NPI methods 
for determination of an optimal diagnostic threshold for such a scenario [1, 16], and 
this motivated us to develop the method presented in this paper. We also considered 
comparison of two diagnostic tests which are restricted to the real‑valued case, and 
with criterion to maximize the NPI lower or upper probability of correctly classify‑
ing at least two specified proportions of the future individuals from the healthy and 
diseased group [2]. That work uses NPI for future order statistics [12] and cannot be 
used for the criterion on (possibly weighted) total number of correct future diagno‑
ses considered in this paper. The method presented in the current paper can also be 
applied in different diagnostic scenarios as long as one can identify whether or not a 
diagnosis is correct.

The number of correct diagnoses by test t, for t = 1, 2 , in nx and ny data observa‑
tions from groups X and Y, is denoted by st

x
 and st

y
 , respectively. Let CXt

mx
 denote the 

random number of successful diagnoses for mx healthy future individuals according 
to test t, and let CYt

my
 denote the random number of successful diagnoses for my dis‑

eased future individuals for test t. We compare the two tests by considering the ran‑
dom total number of correct diagnoses for the mx + my future individuals, when each 
test would be applied to them. Hence, we consider the event CX1

mx
+ CY1

my
> CX2

mx
+ CY2

my
 

and develop the NPI lower and upper probabilities for this event. These results have 
not been presented before for such quantities, and of course these NPI lower and 
upper probabilities can also be useful for scenarios other than comparison of diag‑
nostic tests. For CX1

mx
,CX2

mx
∈ {0,… ,mx} and CY1

my
,CY2

my
∈ {0,… ,my} , and based on 

data (nx, s1x), (ny, s
1
y
) and (nx, s2x), (ny, s

2
y
) , the NPI upper probability for this event is 

derived as follows
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The first equation in this derivation follows from the fact that P(CX2

mx
+ CY2

my
< k) is 

increasing in k. Hence, to derive the NPI upper probability for the event of interest, 
we put the maximum possible probability mass for CX1

mx
+ CY1

my
 at the event 

CX1

mx
+ CY1

my
≥ mx + my , followed by assigning the maximum possible remaining prob‑

ability mass for CX1

mx
+ CY1

my
 at the event CX1

mx
+ CY1

my
≥ mx + my − 1 , etc [13]. We can 

interpret Eq. (1) as if we are optimistic for Test 1 by putting the maximum possible 
probability masses for this test at the larger values of CX1

mx
 and CY1

my
 , while we are pes‑

simistic for Test 2, we put the maximum possible probability masses for this test at 
the smaller values of CX2

mx
 and CY2

my
 . The NPI lower and upper probabilities for the 

individual sums of Bernoulli quantities in the final formula above are as given in 
Sect. 2.

We also consider the event CX1

mx
+ CY1

my
≥ CX2

mx
+ CY2

my
 , for which the NPI upper 

probability is derived as above, with just the first term P(CX2

mx
< k − v) on the right‑

hand side after the final equality in Eq. (1) replaced by P(CX2

mx
≤ k − v) . The corre‑

sponding NPI lower probabilities for these two events can be derived via the conju‑
gacy property P(A) = 1 − P(Ac) , together with the obvious swapping of the Test 1 
and Test 2 indicators in the respective formulae.

It is important to note that the NPI method presented in this paper, where the 
predictive inferences are done separately for the future individuals from group X and 

(1)

P
(
CX1

mx
+ CY1

my
> CX2

mx
+ CY2

my

)

=

mx+my∑
k=0

P
(
CX2

mx
+ CY2

my
< k

)
×
[
P
(
CX1

mx
+ CY1

my
≥ k

)
− P

(
CX1

mx
+ CY1

my
≥ k + 1

)]

=

mx+my∑
k=0

[
my∑
v=0

P
(
CX2

mx
< k − v

)
×
[
P
(
CY2

my
≤ v

)
− P

(
CY2

my
≤ v − 1

)]]

×

[
my∑
v=0

P
(
CX1

mx
≥ k − v

)
× [P

(
CY1

my
≥ v

)
− P

(
CY1

my
≥ v + 1

)]

−

my∑
v=0

P
(
CX1

mx
≥ k + 1 − v

)
×
[
P
(
CY1

my
≥ v

)
− P

(
CY1

my
≥ v + 1

)
]
]

=

mx+my∑
k=0

[
my∑
v=0

P
(
CX2

mx
< k − v

)
×
[
P
(
CY2

my
≤ v

)
− P

(
CY2

my
≤ v − 1

)]]

×

[ my∑
v=0

[
P
(
CX1

mx
≥ k − v

)
− P

(
CX1

mx
≥ k + 1 − v

)]

×
[
P
(
CY1

my
≥ v

)
− P

(
CY1

my
≥ v + 1

)]]
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group Y, following which we consider the sum of numbers of correct diagnoses, dif‑
fers from the possible simpler approach to only count the total number of successful 
diagnoses, both in the data and for future individuals, without taking the different 
groups into account. The latter approach would straightforwardly use the NPI for 
Bernoulli data method for comparison of different groups [13] and would lead to 
less imprecision that is corresponding NPI lower and upper probabilities would dif‑
fer less. Particularly, in situations where the sample sizes for the two groups differ 
substantially, one could get quite different results if one neglects the fact that there 
are two groups. In addition, our approach can be generalized to reflect that correct 
diagnoses may be more important for one group than for the other group.

We can take different importance of correct diagnosis for the two groups into 
account by using weighted totals of correctly diagnosed individuals. As we will con‑
sider the same weighted total for both tests, the weights used can be scaled to any 
total. For ease of presentation, we will use positive integer‑valued weights wx for 
group X and wy for group Y. We now compare the two diagnostic tests by consider‑
ing the event wxC

X1

mx
+ wyC

Y1

my
> wxC

X2

mx
+ wyC

Y2

my
 . The NPI upper probability for this 

event, which also has not been presented elsewhere and may have applications to a 
wider range of statistical problems, is derived as follows:

The NPI upper probability for the event wxC
X1

mx
+ wyC

Y1

my
≥ wxC

X2

mx
+ wyC

Y2

my
 is 

again derived by replacing the first term after the final equality in Eq. (2), 
P(CX2

mx
< (k − wyv)∕wx) , by P(CX2

mx
≤ (k − wyv)∕wx) , and the corresponding lower 

probabilities can again be derived via the conjugacy property.

(2)

P
(
wxC

X1

mx
+ wyC

Y1

my
> wxC

X2

mx
+ wyC

Y2

my

)

=

wxmx+wymy∑
k=0

P
(
wxC

X2

mx
+ wyC

Y2

my
< k

)
×
[
P
(
wxC

X1

mx
+ wyC

Y1

my
≥ k

)

− P
(
wxC

X1

mx
+ wyC

Y1

my
≥ k + 1

)]

=

wxmx+wymy∑
k=0

[ my∑
v=0

P

(
CX2

mx
<

k − wyv

wx

)
×
[
P
(
CY2

my
≤ v

)
− P

(
CY2

my
≤ v − 1

)]]

×

[ my∑
v=0

P

(
CX1

mx
≥

k − wyv

wx

)
×
[
P
(
CY1

my
≥ v

)
− P

(
CY1

my
≥ v + 1

)]

−

my∑
v=0

P

(
CX1

mx
≥

k + 1 − wyv

wx

)
×
[
P
(
CY1

my
≥ v

)
− P

(
CY1

my
≥ v + 1

)]]

=

wxmx+wymy∑
K=0

[ my∑
v=0

P

(
CX2

mx
<

k − wyv

wx

)
×
[
P
(
CY2

my
≤ v

)
− P

(
CY2

my
≤ v − 1

)]]

×

[ my∑
v=0

[
P

(
CX1

mx
≥

k − wyv

wx

)
− P

(
CX1

mx
≥

k + 1 − wyv

wx

)]
×
[
P
(
CY1

my
≥ v

)
− P

(
CY1

my
≥ v + 1

)]]
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4   Examples

In this section, we illustrate the NPI method for comparison of two diagnostic tests 
introduced in Sect. 3. A special feature of our method is that the number of future 
individuals from both the healthy and disease groups must be specified for the event 
of interest in the comparison. We therefore consider the application of the method 
for different values of mx and my , which we mostly assume to be equal, but we also 
consider what happens when they are not equal. The first two examples use made‑up 
data in order to illustrate the approach and discuss its important features. Example 3 
uses data from the literature and is linked to an application of our recently presented 
NPI method to determine the optimal diagnostic threshold for real‑valued data [1, 
16].

Example 1 Tables  1 and 2 present the NPI lower and upper probabilities for the 
events T1 > T2 , T1 ≥ T2 , T2 > T1 and T2 ≥ T1 for different values of mx and my , 
which are set equal in Table 1 but differ in Table 2. It is obvious from the data that 
Test 1 has performed better for the observed individuals than Test 2, for both healthy 
and diseased groups. The aim of this example is to show how such a better perfor‑
mance is reflected by the predictive inferences to compare the two tests if they are 
applied to mx and my future individuals from the groups X and Y.

Assume that two diagnostic tests have been applied to the same nx = 10 individu‑
als from healthy group X and ny = 10 individuals from disease group Y. The num‑
bers of correctly diagnosed individuals when Test 1 is used are s1

x
= s1

y
= 8 from 

both groups, while for Test 2, these numbers are s2
x
= s2

y
= 6 for both groups. To 

Table 1  NPI lower and upper probabilities for comparison of two tests with m
x
= m

y
= m

m [P,P](T1
> T

2
) [P,P](T1 ≥ T

2
) [P,P](T2

> T
1
) [P,P](T2 ≥ T

1
)

1 [0.3672, 0.5317] [0.7748, 0.8853] [0.1147, 0.2252] [0.4683, 0.6328]
3 [0.5133, 0.7564] [0.7286, 0.8996] [0.1004, 0.2714] [0.2436, 0.4867]
5 [0.5702, 0.8342] [0.7232, 0.9179] [0.0821, 0.2768] [0.1658, 0.4298]
15 [0.6644, 0.9321] [0.7298, 0.9535] [0.0465, 0.2702] [0.0679, 0.3356]
30 [0.7019, 0.9578] [0.7374, 0.9664] [0.0336, 0.2626] [0.0422, 0.2981]
50 [0.7199, 0.9675] [0.7421, 0.9721] [0.0279, 0.2579] [0.0325, 0.2801]
100 [0.7350, 0.9743] [0.7464, 0.9764] [0.0236, 0.2536] [0.0257, 0.2650]

Table 2  NPI lower and upper probabilities for comparison of two tests with m
x
≠ m

y

m
x

m
y [P,P](T1

> T
2
) [P,P](T1 ≥ T

2
) [P,P](T2

> T
1
) [P,P](T2 ≥ T

1
)

3 5 [0.5459, 0.8008] [0.7230, 0.9078] [0.0922, 0.2770] [0.1992, 0.4541]
5 3 [0.5459, 0.8008] [0.7230, 0.9078] [0.0922, 0.2770] [0.1992, 0.4541]
30 15 [0.6823, 0.9430] [0.7272, 0.9564] [0.0436, 0.2728] [0.0570, 0.3177]
50 70 [0.7225, 0.9683] [0.7410, 0.9720] [0.0280, 0.2590] [0.0317, 0.2775]
100 80 [0.7322, 0.9729] [0.7447, 0.9752] [0.0248, 0.2553] [0.0271, 0.2678]
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denote the events of interest concisely, we introduce notation T1 = CX1

mx
+ CY1

my
 and 

T2 = CX2

mx
+ CY2

my
 , where the values mx and my will be clear from the tables or the 

context.
The first thing to note from Table 1 is that the entries in the last two columns, 

that is, the NPI lower and upper probabilities for the events T2 > T1 and T2 ≥ T1 
could have been deleted as they follow from the entries for the events T1 ≥ T2 and 
T1 > T2 , respectively, by use of the conjugacy property. However, we have included 
them because it simplifies comparison of the NPI lower and upper probabilities for 
all these events. The better performance of Test 1 than of Test 2 is reflected by larger 
values of the lower and upper probabilities for the event T1 > T2 than for the event 
T2 > T1 , and larger values for T1 ≥ T2 than for T2 ≥ T1.

Comparing the lower and upper probabilities for the events T1 > T2 and T1 ≥ T2 , 
for the same value of m = mx = my shows that these differ a lot for small m yet the 
differences decrease for increasing m, to become very small for m = 100 . This is of 
course due to the fact that, for small m, it is quite likely that one gets T1 = T2 , yet for 
larger m, this becomes unlikely. Due to this effect, it is the easiest to study the effect 
of different choices for the value m by looking at the event T1 ≥ T2 . We note that 
the lower and upper probabilities for this event vary with m, the upper probability 
increases while the lower probability first decreases and then increases slightly. This 
is not a pattern observed in all such examples, it varies from case to case. But overall 
the imprecision, that is, the difference between corresponding upper and lower prob‑
abilities tends to increase for larger values of m, unless a lower probability gets close 
to 1 (or an upper probability close to 0), which forces imprecision to become small 
as the corresponding upper probability cannot exceed 1 (and the lower probability 
cannot be less than 0). This example shows that for the predictive criterion chosen 
in this paper to compare two diagnostic tests, the actual choice of the numbers of 
future individuals considered has some influence on the results.

In Table 2, the NPI lower and upper probabilities for the comparison of these two 
diagnostic tests are given for some cases with mx ≠ my . Of course, due to the data 
for groups X and Y being the same for both tests, the first two reported cases lead to 
the same results. We furthermore see similar aspects as discussed above for the situ‑
ation with equal numbers of future individuals for both groups.

Example 2 In this example, we consider two tests that have similar total numbers 
of correct diagnoses for the groups X and Y. As in the previous example, we set 
nx = ny = 10 and the observed numbers of correct diagnoses for Test 1 are s1

x
= 7 for 

group X and s1
y
= 9 for group Y, while for Test 2, the numbers are s2

x
= 9 and s2

y
= 6 , 

respectively.
Tables 3 and 4 present the NPI lower and upper probabilities for the same four 

events for comparison of these two tests as in the previous example, with Table 3 
presenting results for mx = my = m and Table 4 presenting some cases with mx ≠ my . 
The values of the lower and upper probabilities for the event T1 > T2 are a bit higher 
than for the event T2 > T1 , for the same value of m, and similar for the events includ‑
ing equality of T1 and T2 , reflecting the slightly better performance of Test 1 on the 
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20 data observations than Test 2. Of course, the differences here are much smaller 
than in Example 1, as the tests have performed very similarly here, but Test 1 had 
performed quite a bit better than Test 2 in Example 1. For larger values of m, where 
T1 = T2 becomes unlikely, all intervals created by the lower and upper probabilities 
in this example contain the value 0.5, which one could interpret as there not being a 
strong indication that either test is better than the other. Note that there is substantial 
imprecision in this example, in particular for the larger values of m. If we had larger 
data sets with similarly close performance, the imprecision would be less.

The results in Table 4 are quite different to those for the case with unequal values 
for mx and my in Example 1. Since Test 1 is better for diagnoses for group Y, while 
Test 2 is better for diagnoses for group X, this is reflected in the predictive infer‑
ence for the future performance if one considers different numbers of individuals 
from these groups. For relatively small numbers, one of mx and my equal to 15 and 
the other equal to 30, we see that for more future individuals from group Y, Test 1 
performs better than Test 2, while for more future individuals from group X, Test 2 
performs better. The differences between the entries in the first two rows of this table 
are large, which shows the influence that different choices of mx and my can have, 
while there is also much imprecision, due to the small samples. However, once we 
consider larger numbers of future individuals, namely 50 and 70, Test 1 remains bet‑
ter than Test 2 if there are more future individuals from group Y, but even with more 
individuals from group X, Test 1 is still marginally better than Test 2. This reflects 
that Test 1 was overall a little better for the observed data, while the values of mx and 
my are relatively close. Note that there is again quite much imprecision, so with NPI 
lower and upper probabilities as presented here for the case mx = 70 and my = 50 
one would reach the conclusion that there is very little evidence that one test would 
be better than the other.

Table 3  NPI lower and upper probabilities for comparison of two tests with m
x
= m

y
= m

m [P,P](T1
> T

2
) [P,P](T1 ≥ T

2
) [P,P](T2

> T
1
) [P,P](T2 ≥ T

1
)

1 [0.2331, 0.3920] [0.6970, 0.8371] [0.1629, 0.3030] [0.6080, 0.7669]
5 [0.3294, 0.6610] [0.5109, 0.8121] [0.1879, 0.4891] [0.3390, 0.6706]
6 [0.3344, 0.6851] [0.4948, 0.8153] [0.1847, 0.5052] [0.3149, 0.6656]
10 [0.3442, 0.7432] [0.4552, 0.8269] [0.1731, 0.5448] [0.2568, 0.6558]
50 [0.3534, 0.8420] [0.3819, 0.8595] [0.1405, 0.6181] [0.1580, 0.6466]
100 [0.3540, 0.8577] [0.3688, 0.8664] [0.1336, 0.6312] [0.1423, 0.6460]

Table 4  NPI lower and upper probabilities for comparison of two tests with m
x
≠ m

y

m
x

m
y [P,P](T1

> T
2
) [P,P](T1 ≥ T

2
) [P,P](T2

> T
1
) [P,P](T2 ≥ T

1
)

15 30 [0.5510, 0.9101] [0.6069, 0.9315] [0.0685, 0.3931] [0.0899, 0.4490]
30 15 [0.1850, 0.6315] [0.2286, 0.6856] [0.3144, 0.7714] [0.3685, 0.8150]
50 70 [0.4670, 0.9034] [0.4918, 0.9137] [0.0863, 0.5082] [0.0966, 0.5330]
70 50 [0.2515, 0.7658] [0.2726, 0.7847] [0.2153, 0.7274] [0.2342, 0.7485]
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To illustrate the use of weights for the different groups, as also presented in 
Sect. 3, Table 5 presents the NPI lower and upper probabilities for comparison of 
the two diagnostic tests in this example, using weights to let successful diagnoses for 
one group be twice as important as for the other group. We restrict attention here to 
equal numbers of future individuals, mx = my = m , to ensure that the effects illus‑
trated are resulting from the use of the weights. Using weights wx = 2 and wy = 1, 
Test 2 is better than Test 1 for all considered values of m, albeit only marginally so 
for small m. This reflects that Test 2 had a better performance than Test 1 for indi‑
viduals from group X in the data. For wx = 1 and wy = 2 , Test 1 compares favour‑
ably to Test 2 for all considered values of m, also reflecting that Test 1 had per‑
formed better than Test 2 for group Y in the data. Note that for the latter case, Test 
1 is quite a bit stronger than Test 2, while the difference was not so large in the first 
case with the weights the other way around. This reflects that Test 1 had performed 
slightly better overall in the observed data. Also these lower and upper probabilities 
have quite some imprecision, which suggests that larger data samples may be needed 
before a final decision can be made on the choice of the diagnostic test for the future 
individuals.

Example 3 In this example, we use a data set from a study to develop screening 
methods to detect carriers of a rare genetic disorder. The data were discussed by Cox 
et al. [20] (available from http://lib.stat.cmu.edu/datas ets/). Four tests are applied on 
the same blood samples, each taking a real‑valued measurement. The tests are indi‑
cated by M1, M2, M3 and M4. For some patients, there were several measurements 
for the same test; in such cases, the average is taken, and five patients with some 
missing values are excluded from the analysis. The remaining sample, which is used 
in this example, consists of 120 individuals, 38 carriers of the rare genetic disorder, 
which we call group X, and 82 non‑carriers, group Y.

Table 5  NPI lower and upper probabilities for comparison of two tests for m
x
= m

y
= m , using different 

weights

m [P,P](T1
> T

2
) [P,P](T1 ≥ T

2
) [P,P](T2

> T
1
) [P,P](T2 ≥ T

1
)

w
x
= 2,w

y
= 1

 1 [0.2398, 0.3986] ]0.5987, 0.7449] [0.2551, 0.4013] [0.6014, 0.7602]
 5 [0.2418, 0.5521] [0.3490, 0.6666] [0.3334, 0.6510] [0.4479, 0.7582]
 15 [0.2063, 0.6207] [0.2487, 0.6707] [0.3293, 0.7513] [0.3793, 0.7937]
 50 [0.1785, 0.6629] [0.1919, 0.6803] [0.3197, 0.8081] [0.3371, 0.8215]
 100 [0.1702, 0.6747] [0.1770, 0.6837] [0.3163, 0.8230] [0.3253, 0.8298]
w
x
= 1,w

y
= 2

 1 [0.3315, 0.4843] [0.6903, 0.8305] [0.1695, 0.3097] [0.5157, 0.6685]
 5 [0.4954, 0.7880] [0.6097, 0.8650] [0.1350, 0.3903] [0.2120, 0.5046]
 15 [0.5464, 0.8896] [0.5974, 0.9128] [0.0872, 0.4026] [0.1104, 0.4536]
 50 [0.5764, 0.9346] [0.5944, 0.9404] [0.0596, 0.4056] [0.0654, 0.4236]
 100 [0.5847, 0.9446] [0.5941, 0.9473] [0.0527, 0.4059] [0.0554, 0.4153]

http://lib.stat.cmu.edu/datasets/
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To illustrate our method for comparison of two diagnostic tests, we first decided 
on the optimal diagnostic threshold for each test. To stay within the NPI framework, 
we applied the recently presented method [1, 16] where we choose the threshold 
which maximizes the NPI lower probability that at least half of the mx future individ‑
uals from group X will be correctly diagnosed, and also at least half of the my future 
individuals from group Y. Throughout this example, we set mx = my = m . How the 
specific thresholds are chosen is in itself not important for the illustration of our 
method for comparison of the tests, but by choosing this NPI method we will see an 
important feature of such comparisons that may otherwise have gone unnoticed.

First, we applied the above‑mentioned method to find the optimal diagnostic 
thresholds for the four tests and for different values of m. It is important here to 
note that the threshold, using the NPI method to determine it, can vary for differ‑
ent values of m. We only need the numbers of correctly diagnosed individuals from 
both groups X and Y for our comparison method, we denote the numbers by sMt

x
 

and sMt
y

 , respectively, for t = 1, 2, 3, 4 . We further denote the random number of cor‑
rectly diagnosed future individuals for Test Mt for group X by CXt

m
 , and for group Y 

by CYt

m
 . We base our predictive comparison of the tests on the random total numbers 

TMt = CXt

m
+ CYt

m
 for the four tests.

Table 6 shows the number of successful diagnoses in the data from healthy and 
diseased groups for each test, for different values of m. Test M1 performs best over‑
all for the data observations, if we consider the total observed correct diagnoses. 
Test M4 is second best, and both these tests had the same optimal threshold for all 
the considered values of m. For Tests M2 and M3, the situation is less clear, and the 
optimal threshold is not the same for all m. For Test M2, the optimal threshold is 
slightly different for m = 1 than for the larger values of m considered, but for Test 
M3, the optimal threshold differs much more, leading to substantially different num‑
bers of correctly diagnosed individuals from both groups for small m compared to 
larger values of m. It should be noted here that this is due to the multi‑modal shape 
of our criterion function for specific values of m, as function of the threshold, while 
also our criterion changes with m. This multi‑modality also happens for other meth‑
ods to determine the optimal threshold, so it is not a peculiarity of the NPI approach, 
although of course other methods presented in the literature are not predictive, hence 
do not depend on m, and hence they tend not to show this feature. The criterion func‑
tions have very similar values at several modes, but picking the threshold by overall 
optimization of the functions, for different m, can lead to quite different thresholds 
and hence quite different numbers of correctly diagnosed individuals from the two 

Table 6  The number of correct 
diagnoses in the data from 
groups X and Y for Tests M1, 
M2, M3 and M4

m  1 5 10 30 100

s
M1
x

, sM1
y

70, 32 70, 32 70, 32 70, 32 70, 32

s
M2
x

, sM2
y

56, 28 58, 27 58, 27 58, 27 58, 27

s
M3
x

, sM3
y

74, 24 70, 25 70, 25 57, 27 57, 27

s
M4
x

, sM4
y

67, 31 67, 31 67, 31 67, 31 67, 31
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groups in the data set. We will see that this feature can substantially impact on the 
comparison of the diagnostic tests.

We present the pairwise comparisons for all pairs of these tests, by considering 
the NPI lower and upper probabilities, as presented in Sect. 3, for different values of 
m in Table 7. Test M1 was the best for the data, and this shows in the comparisons 
of this test with each of the other tests. For small m, there is again a considerable 
possibility that any two tests considered lead to the same total number of correct 
future diagnoses, as can be seen from the differences in the first and second, and 
third and fourth, columns with lower and upper probabilities in this table. This effect 
decreases for larger m, and Test M1 has high lower and upper probabilities to be 
better than Tests M2 and M3 for m = 100 , while it is also quite likely to be better in 
this case than Test M4. Test M4 is also likely to perform better than M2 and M3, so 
this is all in line with the conclusions drawn from the observed data, although these 
predictive inferences provide far more detailed information, and they provide much 
insight into the role of m for the predictions. Note further here that imprecision is far 
smaller than in Examples 1 and 2, reflecting that there is considerably more infor‑
mation from the data in this example.

The most interesting pairwise comparison here is between Tests M2 and M3, 
mainly due to the changes of optimal thresholds as discussed above, and the cor‑
responding changes in numbers of correctly diagnosed individuals from groups X 
and Y. For smaller values of m, here m = 1, 5, 10 , the future performance of Test M3 
is likely to be slightly better than that of Test M2, but for larger values of m, here 
m = 30, 100 , it is the other way around, with only a very small difference. The latter 
reflects that for these larger m, Test M2 has one more correct diagnosis for group X 
in the data than Test M3, with the same number of correct diagnoses for group Y. 
For the smaller values of m, it is quite different as Test M3 then performed consid‑
erably better on the data for group X but worse for group Y. It turns out, however, 
that using these data for predictive inference, with mx = my = m , indicates a better 
performance to be likely for Test M3 than for Test M2 for these smaller values of m, 
something which would have been quite impossible to foresee without this formal 
predictive inference method being used.

More aspects of this example are considered in the PhD thesis of the first‑named 
author [1], including a comparison of Tests M2 and M3 under the assumption that 
the thresholds used do not vary with m, but are the ones used for m = 100 in the 
analysis above. As that led to Test M2 diagnosing one more individual correctly, 
this test is then of course slightly better than Test M3 for all choices of m in our 
comparison. Finally, it is worth to mention that the empirical areas under the ROC 
curves (AUC) for these four tests are equal to ÂUCM1 = 0.9034 , ÂUCM2 = 0.7526 , 
ÂUCM3 = 0.8232 and ÂUCM4 = 0.8798 . This is often considered to be a useful 
measure to distinguish between diagnostic accuracy of tests. An NPI method for 
diagnostic accuracy leading to lower and upper AUCs, which always bound the 
empirical AUC, has also been presented in [17]. While these results also indicate 
that Tests M1 and M4 are the two best tests; they do not show any possible fur‑
ther aspects of comparison for Tests M2 and M3, and it is also unclear what these 
quantities actually mean for future application of the tests. We should emphasize 
here that we are not advocating the use of our proposed method on its own, as there 
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Table 7  Lower and upper probabilities for pairwise comparisons of Tests M1, M2, M3 and M4

m [P,P](TM1
> T

M2
) [P,P](TM1 ≥ T

M2
) [P,P](TM2

> T
M1

) [P,P](TM2 ≥ T
M1

)

1 [0.3611, 0.3965] [0.8312, 0.8568] [0.1432, 0.1688] [0.6035, 0.6389]
5 [0.6392, 0.7119] [0.8115, 0.8621] [0.1379, 0.1885] [0.2881, 0.3608]
10 [0.7448, 0.8245] [0.8445, 0.9014] [0.0986, 0.1555] [0.1755, 0.2552]
30 [0.8783, 0.9428] [0.9104, 0.9605] [0.0395, 0.0896] [0.0572, 0.1217]
100 [0.9502, 0.9860] [0.9571, 0.9883] [0.0117, 0.0429] [0.0140, 0.0498]

[P,P](TM1
> T

M3
) [P,P](TM1 ≥ T

M3
) [P,P](TM3

> T
M1

) [P,P](TM3 ≥ T
M1

)

1 [0.3008, 0.3373] [0.8107, 0.8394] [0.1606, 0.1893] [0.6627, 0.6992]
5 [0.5473, 0.6290] [0.7490, 0.8120] [0.1880, 0.2510] [0.3710, 0.4527]
10 [0.6345, 0.7350] [0.7625, 0.8415] [0.1585, 0.2375] [0.2650, 0.3655]
30 [0.8900, 0.9492] [0.9197, 0.9652] [0.0348, 0.0803] [0.0508, 0.1100]
100 [0.9580, 0.9886] [0.9639, 0.9905] [0.0095, 0.0361] [0.0114, 0.0420]

[P,P](TM1
> T

M4
) [P,P](TM1 ≥ T

M4
) [P,P](TM4

> T
M1

) [P,P](TM4 ≥ T
M1

)

1 [0.2359, 0.2694] [0.7847, 0.8157] [0.1843, 0.2153] [0.7306, 0.7641]
5 [0.4114, 0.4975] [0.6418, 0.7199] [0.2801, 0.3582] [0.5025, 0.5886]
10 [0.4592, 0.5760] [0.6142, 0.7209] [0.2791, 0.3858] [0.4240, 0.5408]
30 [0.5173, 0.6865] [0.5946, 0.7525] [0.2475, 0.4054] [0.3135, 0.4827]
100 [0.5598, 0.7719] [0.5907, 0.7950] [0.2050, 0.4093] [0.2281, 0.4402]

[P,P](TM2
> T

M3
) [P,P](TM2 ≥ T

M3
) [P,P](TM3

> T
M2

) [P,P](TM3 ≥ T
M2

)

1 [0.2185, 0.2475] [0.6659, 0.6986] [0.3014, 0.3341] [0.7525, 0.7815]
5 [0.2846, 0.3515] [0.4700, 0.5448] [0.4552, 0.5300] [0.6485, 0.7154]
10 [0.2733, 0.3633] [0.3939, 0.4935] [0.5065, 0.6061] [0.6367, 0.7267]
30 [0.4188, 0.5638] [0.4825, 0.6262] [0.3738, 0.5175] [0.4362, 0.5812]
100 [0.4208, 0.6148] [0.4464, 0.6394] [0.3606, 0.5536] [0.3852, 0.5792]

[P,P](TM2
> T

M4
) [P,P](TM2 ≥ T

M4
) [P,P](TM4

> T
M2

) [P,P](TM4 ≥ T
M2

)

1 [0.1725, 0.1992] [0.6263, 0.6604] [0.3396, 0.3737] [0.8008, 0.8275]
5 [0.1848, 0.2420] [0.3505, 0.4251] [0.5749, 0.6495] [0.7580, 0.8152]
10 [0.1499, 0.2201] [0.2448, 0.3347] [0.6653, 0.7552] [0.7799, 0.8501]
30 [0.0831, 0.1618] [0.1129, 0.2077] [0.7923, 0.8871] [0.8382, 0.9169]
100 [0.0379, 0.1067] [0.0440, 0.1201] [0.8799, 0.9560] [0.8933, 0.9621]

[P,P](TM3
> T

M4
) [P,P](TM3 ≥ T

M4
) [P,P](TM4

> T
M3

) [P,P](TM4 ≥ T
M3

)

1 [0.1931, 0.2228] [0.6843, 0.7190] [0.2810, 0.3157] [0.7772, 0.8069]
5 [0.2451, 0.3137] [0.4389, 0.5196] [0.4804, 0.5611] [0.6863, 0.7549]
10 [0.2279, 0.3188] [0.3500, 0.4556] [0.5444, 0.6500] [0.6812, 0.7721]
30 [0.0746, 0.1477] [0.1020, 0.1910] [0.8090, 0.8980] [0.8523, 0.9254]
100 [0.0318, 0.0927] [0.0371, 0.1048] [0.8952, 0.9629] [0.9073, 0.9682]
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is certainly value in measures such as the empirical AUC, but considering several 
methods, including ours, and studying the results carefully can provide interesting 
insights for important applications.

5  Concluding Remarks

This paper introduces a new method for comparison of two diagnostic tests to distin‑
guish between two groups, based on the numbers of correctly diagnosed individuals 
from both groups in a data set. The method uses NPI for Bernoulli quantities and 
leads to lower and upper probabilities for the event that the total number of cor‑
rectly diagnosed future individuals from both groups is greater for one test than for 
the other, if we consider mx future individuals from group X and my from group Y. 
We believe that such predictive inferences provide valuable insights and can be used 
together with more traditional ways for comparison of tests. The explicitly predictive 
nature can be natural when one considers that any decisions with regard to choice of 
test will be relevant for future individuals.

We have not discussed how to choose mx and my , this is not a trivial issue and 
we mainly wish to emphasize in this paper that the actual values of these quantities 
can make a difference to the overall conclusion on which test is best. If the results 
clearly indicate that one test is better than another one for some values of mx and my , 
and the test is applied sequentially but one needs to select a single test to be used for 
multiple future individuals, then one could for example safely choose the better test 
for a number of future diagnoses that is equal to the minimum of these two numbers. 
This is because one would of course not know whether the future individuals are 
from group X or group Y. Similar reasoning was used by Coolen [9] to determine the 
maximum group size for simultaneous testing in high potential risk scenarios. It is 
also possible that a practitioner may have a fair idea about the proportion of future 
individuals from either group, this could be used in our analysis by considering the 
mx and my in similar proportion.

Another possible choice for these numbers of future individuals would be mx = nx 
and my = ny . This could be of particular interest for studying reproducibility charac‑
teristics of the tests, a topic that recently has received increasing interest as there is 
much confusion about it, and for which NPI methods have proven to be attractive 
due to their explicitly predictive nature [10, 11].
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