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Abstract

We investigate a problem of convection in local thermal non - equilib-
rium (LTNE) porous media. This is where the solid skeleton and the fluid
may have different temperatures. However, due to increasing interest in
thermal wave motion, especially at micro - nano - scales and particularly
in solids, we analyse a model for thermal convection in a fluid saturated
Darcy porous medium allowing the solid and fluid parts to be at different
temperatures. This theory employs thermodynamics for the fluid based
on Fourier’s law of heat conduction, whereas for the solid skeleton heat
is transferred by means of the Cattaneo heat flux theory. Under appro-
priate conditions oscillatory convection is found whereas for the standard
LTNE Darcy model this does not exist. In this article we concentrate on
a transition which is found when the heat transfer interaction coefficient
reaches a critical level and this leads to an exchange of stability for a
certain porosity level.

1 Introduction

Thermal convection in a saturated porous medium is a subject of immense
current interest. In recent work particular interest has focussed attention on
thermal convection in a porous medium where the fluid temperature, Tf , may
be different from the solid skeleton temperature, Ts. The phenomenon where
the two temperatures may be different is usually referred to as local thermal
non-equilibrium, usually abbreviated to LTNE. Perhaps the main reason for the
increased attention of LTNE flows in porous media is due to the large number
of applications of this area in real life. As Straughan [24], section 1.1.1 and
Straughan [23] cites, there are applications to tube refrigerators in space, to
nanofluid flows, in fuel cells, in resin flow in composite materials production,
in nuclear reactor maintenance, in heat exchangers, in flows in microchannels,
in flow in porous metallic foams, in textile transport, in convection in stellar
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atmospheres, and in many other areas. References to this work may be found
in Straughan [24], section 1.1.1 and Straughan [23].

Continuum theories for local thermal non-equilibrium effects on flow in
porous materials appear to have been introduced in the late 1990’s, cf. the work
of Nield [14], Minkowycz et al. [13], and Petit et al. [16]. Instability giving rise
to thermal convective motion involving LTNE effects was analysed by Banu &
Rees [4], by Malashetty et al. [12], and by Straughan [21]. Straughan [23] cou-
pled LTNE theory together with hyperbolic heat flow in the solid skeleton and
developed a theory for thermal convection in a porous medium. We believe this
is important because modern technology is leading to the creation of smaller
and smaller devices, and then the phenomenon of temperature travelling as a
wave becomes increasingly important, especially in metallic like solids. In par-
ticular, Pilgrim et al. [17] note that, ... the “hyperbolic description will become
increasingly important as device dimensions move even further into the deep
sub-micron regime”. Many further articles emphasizing the need to consider
hyperbolic heat transport in nanowires and in thin films are cited in Straughan
[22] and in Straughan [24], and further recent relevant work with finite prop-
agation speed heat waves may be found in Christov & Jordan [6], Fabrizio &
Lazzari [8], Franchi et al. [9, 10], Papanicolaou et al. [15]. The model of
Straughan [23] utilized Darcy’s law to describe flow in the porous medium and
a very interesting extension to use Brinkman theory is by Shivakumara et al.

[20]. This paper includes a detailed analysis of instability using their Brinkman
- Cattaneo - LTNE theory.

The goal of this work is to extend the instability analysis of Straughan
[23] and Straughan [24], section 15.4. In particular we note that Straughan
[24], section 15.4, employs various materials for the solid skeleton and observes
that the type of instability which may instigate thermal convection, stationary
or oscillatory convection, may depend on the porosity of the porous medium.
In fact, in Straughan [24], figures 15.7, 15.10 and 15.12, he notes that for a
porosity ǫ “small” stationary convection may dominate with small convection
cells for a thermal interaction coefficient H below a threshold, whilst for ǫ larger
oscillatory convection will ensue with small convection cells. The numerical
work of Straughan [24], section 15.4, chooses only two porosity values and in
this paper we investigate in detail the cell behaviour as the porosity changes.
To investigate variation of porosity is not artificial since today porous foams
are routinely manufactured and thus one may design a porous medium with a
specified porosity.

2 Local thermal non-equilibrium model

The model is derived by Straughan [23] and combines the basic equations for
thermal convection in a porous medium with LTNE effects together with a
modification of the equation for the solid temperature to allow the heat flux to
satisfy a Cattaneo law. The basic system of equations derived by Straughan
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[23] (see also section 15.4 of Straughan [24]) is

vi = −K

µ

∂p

∂xi

+
ρfgαK

µ
Tfki,

∂vi
∂xi

= 0,

(1− ǫ)(ρc)s
∂T s

∂t
= −∂Qi

∂xi

(1− ǫ)− h(Ts − Tf),

τs
∂Qi

∂t
= −Qi − ks

∂T

∂xi

,

ǫ(ρc)f
∂T f

∂t
+ (ρc)f vi

∂T f

∂xi

= ǫkf∆T f + h(Ts − Tf) .

(1)

In these equations xi and t denote space and time, vi, p, T
s, Qi, T

f denote fluid
(pore averaged) velocity, pressure, solid temperature, heat flux in the solid,
and fluid temperature, respectively. The terms K,µ, g, α, ǫ, ρ, c, h, ks, kf , τs de-
note permeability, fluid dynamic viscosity, gravity, fluid expansion coefficient,
porosity, density, specific heat at constant pressure, a thermal interaction coef-
ficient, thermal conductivity of the solid, thermal conductivity of the fluid, and
solid thermal relaxation time, respectively. The notation sub or superscript s
or f refers to solid or fluid and ∆ is the Laplace operator in 3 - dimensions.
Throughout we use standard indicial notation together with the Einstein sum-
mation convention, and k is the vector k = (0, 0, 1).

Equation (1)1 is Darcy’s law, while (1)2 represents conservation of mass.
Equation (1)3 is the energy balance equation in the solid, and equation (1)4
represents Cattaneo’s law for the solid heat flux. Finally, equation (1)5 is the
energy balance equation for the fluid.

The system of equations (1) hold in the layer R2 × {z ∈ (0, d)} with gravity
acting in the negative z−direction. Due to the fact that Darcy’s law is employed
the boundary conditions considered are

v3 = 0 on z = 0, d and

Tf = Ts = TL , z = 0; Tf = Ts = TU , z = d;
(2)

where Tl, TU are constants with TL > TU . The steady solution in whose stability
we are interested is

v̄i ≡ 0, T̄f = T̄s = −βz + TL , Q̄ = (0, 0, ksβ). (3)

Here β is the temperature gradient, namely

β =
TL − TU

d
,

and the steady pressure field, p̄(z), may be found from (1)1.
To study instability of solution (3) Straughan [23] introduces perturbations

(ui, π, θ, q
s
i , φ) to the steady state (v̄i, p̄, T̄

f , Q̄i, T̄
s), and non-dimensionalizes
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with the length, time, velocity, pressure, and heat scales L = d, T = (ρc)fd
2/kf , U =

ǫkf/(ρc)fd, P = µdU/K, and Qs = ksT
♯/d. Here T ♯ is the temperature scale,

T ♯ = U
√

cfβd2µ/ǫkfgαK. Straughan [23] introduces the Rayleigh number
Ra = R2, and the non-dimensional coefficients H,A, γ and τ̂ by

Ra = R2 =
ρ2fcfβd

2Kgα

µǫkf
, H =

hd2

ǫkf
,

A =
(ρc)s
(ρc)f

, γ =
ǫ

1− ǫ
, τ̂ =

τsκf

d2

where κf = kf/ρfd
2. The non-dimensional nonlinear system of perturbation

equations derived by Straughan [23] is

ui = − ∂π

∂xi

+Rθ ki,

∂ui

∂xi

= 0,

∂θ

∂t
+ ui

∂θ

∂xi

= Rw +∆θ +H(φ− θ),

A
∂φ

∂t
= −∂qsi

∂xi

− γH(φ− θ),

τ̂
∂qsi
∂t

= −qsi −
∂φ

∂xi

.

(4)

In equation (4)3 w is defined by w = u3.
Equations (4) hold on the domain {(x, y) ∈ R

2} × {z ∈ (0, 1)} × {t > 0}.
The perturbation boundary conditions are

w = 0, θ = 0, φ = 0, z = 0, 1, (5)

and (ui, π, θ, φ, q
s
i ) satisfy a plane tiling periodicity in the (x, y) plane.

3 Linear instability

To investigate instability Straughan [23] discards the nonlinear term in equation
(4)3, takes curlcurl of equation (4)1 and retains the third component. He then
seeks a time dependence like eσt and then using the boundary conditions (5)
he develops a sinnπz series solution. He shows that the stationary convection
boundary is found from the equation

R2

stat =
Λ3 + Λ2(1 + γ)H

a2(Λ + γH)
, (6)

where a is a wavenumber and Λ = n2π2 + a2. In fact, the stationary convection
boundary is found for fixed γ and H by minimizing R2

stat in a2 with n = 1.
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The oscillatory convection boundary arises from the two equations

− τ̂AΛσ2

1 + Λ[γH + ΛA+HA+ τ̂ γHΛ+ Λ] = R2a2(τ̂ γH + A),

− Λ
[

τ̂ (γH + ΛA+HA) +A
]

σ2

1
+ Λ2[γH + Λ+H ]

= R2a2[−τ̂Aσ2

1
+ Λ+ γH ],

(7)

where σ1 is the imaginary part of the growth rate σ. Straughan [23] shows that
the oscillatory convection boundary is determined from the expression

R2

osc =
1

a2

(

b−
√
b2 − 4Xc

2X

)

. (8)

In addition, σ2
1 is given by

σ2

1
=

H

τ̂

( γ

A
+ 1

)

+
Λ

Aτ̂
(1 + k1)−R2a2

k1
Aτ̂Λ

. (9)

In equations (8) and (9) the relevant terms are given by

X =
k1
Λ

, b = 2k1Λ + k2 ,

c = k1Λ
3 +

(

k2 +
k1
Aτ̂

)

Λ2 + ΛH

[

2γH +
γ2H

A
+AH +

(γ +A)

τ̂

]

,

with k1 and k2 given by

k1 = A+ τ̂ γH, k2 =
k21
τ̂A

+ k1H +HA.

The oscillatory convection threshold is found by minimizing R2

osc in a2, com-
paring with the minimum of R2

stat, and checking with (9) whether σ2
1 > 0 or

not.
Numerical results are reported in section 4 where we concentrate on a tran-

sition, in the wave number, which is strongly porosity dependent.

4 Numerical results and conclusions

To find the individual terms comprising the coefficient A we employ values
from Abid et al. [1], Accuratus [2], Aegis Ceramics [3], Boomsma et al. [5],
Engineering Toolbox [7], and Huisseune et al. [11] to calculate values of A. We
employ three different types of porous materials and these are Sander sandstone,
Abid et al. [1], Aluminium Oxide, Al2O3, Accuratus [2], and a porous metallic
foam, AL1050, Huisseune et al. [11], and each is saturated with water. The
values of τ̂ are chosen as 0.1 and 1. Values for the thermal interaction coefficient
are somewhat elusive to obtain, but two excellent papers of Rees [18, 19] indicate
how to obtain suitable values for a variety of porous skeleton geometries.

Following Straughan [23], Straughan [24], section 15.4, we find that sta-
tionary convection occurs after a transition, the actual transition value of H
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depending on the porosity value, for a given porous material and saturating
fluid. This behaviour is seen in figures 1 - 4 for a porous skeleton of AL1050
saturated with water. Table 4 gives numerical values for the transitions seen
in figures 1 - 8. Further detail for AL1050 may be found in table 1 and tables
2 and 3 give details for Sander sandstone and aluminium oxide, respectively.
The same pattern of transition is observed for all three of the porous materials
employed here.

Our main interest is in the wavenumber transitions which may be seen in
figures 5 - 8. For example, in figure 5 we observe that when ǫ = 0.4, for H less
than the transition value Htrans = 6.89, instability is by stationary convection
whereas it changes to oscillatory convection for H > Htrans. Just before the
transition value ofH the wavenumber for stationary convection is larger than the
wavenumber for oscillatory convection just after the transition. This means that
the cell aspect ratio with H < Htrans is smaller than that for H > Htrans (both
very close to transition). Thus the cell changes from being narrower to wider
as oscillatory convection commences. When we examine figure 8 exactly the
opposite effect is true. With ǫ = 0.95 the stationary convection cells are wider
before Htrans and oscillatory convection takes over after Htrans with narrower
cells.

Since one may produce a particular porosity for many modern materials it is
of interest to analyse what happens as H changes from a relatively small value
through the transition to a relatively large value, with variation of porosity ǫ.
In fact, figure 6 shows that as ǫ increases there is a point at which the stationary
convection wavenumber exactly matches the oscillatory convection wavenumber.
Details of the behaviour of Ra, a2 and σ2

1
(where σ1 is the imaginary part of

the growth rate σ) are given in tables 1 - 3 for three types of saturated porous
materials. Each shows the same trend. One begins with a situation like figure 5
in which a2stat > a2osc for ǫ below a transition value and then there is a transition
value in ǫ at which a2stat = a2osc. Once ǫ exceeds this value a2stat < a2osc, with
H close to its transition value. Once ǫ increases a little further beyond its
transition value we reach a minimum value for Htrans. Figure 7 depicts this for
AL1050 - water, to 2 decimal places in ǫ.

Tables 1 - 3 all indicate that as ǫ approaches its transition value, σ2

1
→ 0.

This is in complete agreement with the theory. To see this note that at criticality
from equation (6) we have

R2a2(Λ + γH) = Λ3 + Λ2(1 + γ)H.

If we substitute this equation into equation (7)2 then σ2
1 = 0 is absolutely

consistent.
Another noteable fact we found numerically is that when ǫ becomes close

to 1 stationary convection appears to occur always, no matter how large H
is. For example, for the AL1050 - water material, table 1, we found that with
ǫ = 0.96, Rastat < Raosc. We allowed H to reach 106 and Rastat and Raosc
appear to asymptote to constant values with stationary convection dominant.
For Sander sandstone, table 2, with ǫ = 0.8 we found the same effect, that
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stationary convection dominates. When Al2O3 - water is used we found that
with ǫ = 0.96 stationary convection is always observed.

We have found that for a local thermal non-equilibrium porous convection
model with Cattaneo effects in the skeleton there is an interesting dependence
on porosity regarding cell sizes and stationary or oscillatory convection. For
smaller porosities the switch from stationary to oscillatory convection is accom-
panied by a transition from narrow stationary convection to wider oscillatory
convection cells. As the porosity increases the difference between cell sizes de-
creases until at a critical value of the porosity the stationary convection and
oscillatory convection cells have the same size. Thereafter, as the porosity is
increased the transition is such that it is from wider stationary convection cells
to narrower oscillatory convection cells. The value of the thermal interaction
coefficient H decreases as the porosity is increased but it does not achieve a
minimum when Rastat = Raosc and astat = aosc. The minimum in H is for a
porosity slightly greater then the H value when the Rayleigh and wave numbers
are equal.
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ǫ Htrans a2stat a2osc σ2
1 Ra

0.2 10.00 13.222 8.176 6.367 56.09
0.4 6.89 11.906 9.730 0.9747 50.233
0.6 5.17 11.106 10.267 0.1095 46.74
0.8 4.16 10.451 10.373 0.5344×10−2 43.95
0.82 4.122 10.3843 10.3752 0.6184×10−3 43.675
0.822279 4.1193 10.3766 10.3753 0.3336×10−6 43.643221
0.83 4.116 10.3505 10.3757 0.3650×10−3 43.533
0.84 4.121 10.3163 10.3761 0.7884×10−3 43.389
0.85 4.14 10.281 10.376 0.1640×10−2 43.244
0.9 4.72 10.096 10.375 0.5703×10−2 42.468
0.95 95.4 9.875 10.372 0.1260×10−1 41.534

Table 1: Transition critical values of H together with Ra for various values of
ǫ. Porous material AL1050 saturated with water. Here A = 0.568407543 and
τ̂ = 1.

ǫ Htrans a2stat a2osc σ2
1 Ra

0.15 57.9 17.670 14.210 8.625 108.76
0.2 52.6 15.930 14.490 1.608 98.21
0.24 50.04 14.889 14.615 0.6927×10−1 91.96
0.245 49.80 14.774 14.627 0.2498×10−1 91.28
0.250 49.576 14.661 14.638 0.4989×10−2 90.606
0.251 49.5327 14.6392 14.6397 0.3834×10−5 90.474148
0.252 49.410 14.617 14.642 0.5293×10−2 90.343
0.26 49.18 14.444 14.657 0.7967×10−1 89.32
0.3 48.1 13.670 14.710 0.3845 84.71
0.32 47.969 13.325 14.724 1.314 82.690
0.33 47.962 13.164 14.729 1.633 81.733
0.34 48.012 13.008 14.733 1.967 80.810
0.5 61.6 11.070 14.730 7.875 69.17
0.6 147 10.192 14.740 11.21 63.61

Table 2: Transition critical values of H together with Ra for various values of
ǫ. Porous material Sander sandstone saturated with water. Here A = 0.395585
and τ̂ = 0.1.
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ǫ Htrans a2stat a2osc σ2

1
Ra

0.3 8.19 12.461 8.929 2.571 52.700
0.5 5.97 11.748 10.049 0.3180 48.385
0.7 4.61 10.777 10.365 0.1897×10−1 45.362
0.8 4.205 10.451 10.394 0.3874×10−3 43.984
0.81 4.1853 10.418 10.395 0.2398×10−4 43.844
0.81676471 4.1759 10.395 10.395 0.3074×10−5 43.74816
0.82 4.1727 10.384 10.395 0.6159×10−4 43.702
0.83 4.169 10.350 10.395 0.5354×10−3 43.559
0.84 4.175 10.316 10.394 0.1586×10−3 43.414
0.9 4.81 10.095 10.387 0.4632×10−2 42.486
0.95 231.970 9.872 10.378 0.1282×10−1 41.547

Table 3: Transition critical values of H together with Ra for various values of
ǫ. Porous material Aluminium Oxide saturated with water. Here A = 0.818530
and τ̂ = 1.

ǫ Htrans Ra a2stat a2osc
0.4 6.89 50.233 11.906 9.730
0.822279 4.1193 43.643221 10.3766 10.3753
0.83 4.116 43.533 10.3505 10.3757
0.95 95.4 41.534 9.875 10.372

Table 4: Transition critical values for the porous material AL1050 saturated
with water. The coefficients have values A = 0.568407543 and τ̂ = 1. These are
the transition values occurring in figures 1 - 8.
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Figure 1: Critical Rayleigh number Ra against H , ǫ has value 0.4. Porous
material AL1050 saturated with water. Here A = 0.568407543 and τ̂ = 1.
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Figure 2: Critical Rayleigh number Ra against H , ǫ has value 0.822279. Porous
material AL1050 saturated with water. Here A = 0.568407543 and τ̂ = 1.
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Figure 3: Critical Rayleigh number Ra against H , ǫ has value 0.83. Porous
material AL1050 saturated with water. Here A = 0.568407543 and τ̂ = 1.
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Figure 4: Critical Rayleigh number Ra against H , ǫ has value 0.95. Porous
material AL1050 saturated with water. Here A = 0.568407543 and τ̂ = 1.
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Figure 5: Critical wave number squared a2 against H , ǫ has value 0.4. Porous
material AL1050 saturated with water. Here A = 0.568407543 and τ̂ = 1.
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Figure 6: Critical wave number squared a2 against H , ǫ has value 0.822279.
Porous material AL1050 saturated with water. Here A = 0.568407543 and
τ̂ = 1.
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Figure 7: Critical wave number squared a2 against H , ǫ has value 0.83. Porous
material AL1050 saturated with water. Here A = 0.568407543 and τ̂ = 1.
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Figure 8: Critical wave number squared a2 against H , ǫ has value 0.95. Porous
material AL1050 saturated with water. Here A = 0.568407543 and τ̂ = 1.
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