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Mechanical behaviour of fluid-lubricated faults

C. Cornelio', E. Spagnuolo 2 G. Di Toro® 3, S. Nielsen® 4 & M. Violay 1

Fluids are pervasive in fault zones cutting the Earth's crust; however, the effect of fluid
viscosity on fault mechanics is mainly conjectured by theoretical models. We present friction
experiments performed on both dry and fluid-permeated silicate and carbonate bearing-
rocks, at normal effective stresses up to 20 MPa, with a slip-rate ranging between 10 um/s
and 1m/s. Four different fluid viscosities were tested. We show that both static and dynamic
friction coefficients decrease with viscosity and that dynamic friction depends on the
dimensionless Sommerfeld number (S) as predicted by the elastohydrodynamic-lubrication
theory (EHD).Under favourable conditions (depending on the fluid viscosity (1), co-seismic
slip-rate (V), fault geometry (L/Ho?2) and earthquake nucleation depth (xoe)), EHD might be
an effective weakening mechanism during natural and induced earthquakes. However, at
seismic slip-rate, the slip weakening distance (D.) increases markedly for a range of fluid
viscosities expected in the Earth, potentially favouring slow-slip rather than rupture propa-
gation for small to moderate earthquakes.
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luids with variable composition (gas, water, brine, hydro-

carbon seepage, wet gouge and frictional melt), rheology and

physical state are pervasive within active tectonic faults. The
viscosity of such fluids may vary over seven orders of magnitude,
from 10~4 Pa s for liquid water to 103 Pa s for silicic melts at high
temperature!=3. Elastohydrodynamic lubrication (EHD), or the
weakening induced by overpressure generated by the shearing of
a thin viscous fluid between two subparallel and rough surfaces?,
has been recognised for a long time in industrial processes>®.
EHD has also been invoked to explain the dramatic reduction of
friction during earthquake slip in the presence of fluids”S.
However, up to date, the possible triggering of EHD in natural
faults relies on theoretical models only, and was not tested at
deformation conditions typical of seismic faulting. Furthermore,
the experimental studies investigating fluid-rock interaction
almost exclusively considered water’~ !l as the fluid at both
subseismic and seismic slip-rates!2.

For sake of simplicity, tectonic faults can be described at seis-
mogenic depths as rough surfaces separating two solids, which are in
contact at a number of asperities!3, which represent only a fraction
of the total fault area, and can be filled by fluids and gouges. During
fault sliding and depending on how the normal stress is partitioned
between the asperities and the fluid, three different regimes can been
distinguished®14: the boundary lubrication regime (BL), where the
normal stress is supported by solid-solid contacts; the fully lubri-
cated regime (EHD), where the normal stress is supported by
interstitial fluid; and the mixed lubrication regime (ML), where the
normal stress is supported both by the solid-solid contacts and the
fluid. The transition between these three regimes is controlled by
the Sommerfeld number* § = %, where V is the slip-rate, 7 is
the lubricant dynamic viscosity at the estimated mean temperature!4
of the slipping zone (defined as the zone where deformation is
highly localised), L is the characteristic length over which the fluid
pressure changes (related to the wavelength of the asperities), Hy is
the initial average gap between the asperities (related to the height of
the asperities) and o is the effective normal stress (oer= 0, — P
where 0,, is the normal stress and Py is the fluid pressure).

Recently, Bayart et al.!>1° provided evidence of the influence of
fluid viscosity by performing laboratory stick-slip experiments as
an analogue of seismic events!”. The setup consisted of poly-
methylmethacrylate (PMMA) slabs lubricated by a film of viscous
fluid (silicone and hydrocarbon oils). The presence of the fluid
resulted in a smaller static friction with respect to that under
room-humidity conditions. However, the fracture energy (i.e., the
energy dissipated by crack propagation) increased in the presence
of the fluid and was independent of the lubricant viscosity but
dependent of the lubricant composition.

Here, based on experimental and geological evidence, we discuss
the effect of the viscosity of a fluid sandwiched between two rock slip
surfaces at slip-rates characteristic of either earthquake nucleation
(slip-rate from pm/s to mm/s)!8 and propagation (mm/s to m/s)!%20
and, in general, at slip-rates at which the ML and the EHD regimes
might be activated.

Results

Experimental protocol. We performed 36 experiments with the
rotary machine SHIVA2! (INGV, Rome) on full cylinders (dia-
meter D=50mm) of Westerly Granite and Carrara Marble
either in the presence of a liquid lubricant or under room-
humidity conditions. Pore fluid experiments were performed
under drained conditions (a membrane pump maintained a
constant fluid pressure of Py= 3 MPa), preventing macroscopic
fluid pressurisation inside the vessel®. The experiments were
performed by imposing a slip acceleration of 6.5ms™2 to the
samples up to a target slip-rate (V), followed by deceleration to

V=0m/s. The target V ranged from 0.01 to 1000 mm/s, slip
distance (U) from 0.1 to 4 m and imposed (o,,) were up to 23 MPa
(Supplementary Table 1). Westerly Granite and Carrara Marble
were selected because (1) of their low porosity (<2% measured
using the triple-weighing method?2), which limited fluid diffusion
through the rock matrix out of the sliding surface during the
experiments, (2) of their very small grain size and homogeneity
and (3) because typical rocks of the seismogenic continental
crust?3.

The sliding surfaces of all the samples were roughened by using
120 SiC abrasive paper (Hy~ RMS = 7-13 um, for Carrara Marble
and Westerly Granite, respectively, measured with optical 3D
profilometer, Contour GT-I 3D-Optical Microscope, Bruker). We
consider the perimeter of our sample (0.157 m) as the maximum
characteristic wavelength (i.e., the largest possible wavelength), due
to the periodicity of rotation of the rock cylinders.

Fluids viscosity. Various viscosities of the lubricant were
obtained by mixing different volume proportions of distilled
water to 99.9% glycerol. Glycerol (1, 2, 3-propanetriol) is a
Newtonian, water-soluble, colourless fluid, which is stable under
most conditions due to its high flash and fire points (177 and 207
°C, respectively), which prevents phase changes and fire hazards
when exposed to high temperatures due to frictional heating. The
viscosities at room temperature were 1.002 mPas (pure distilled
water), 10.8 mPas (60 wt% glycerol), 109.2 mPas (85wt% gly-
cerol), and 1226.6 mPas (99.9% pure glycerol). The temperature
increase with increasing slip due to frictional heating during the
experiments is expected to lower the lubricant viscosity. The
increase in the bulk temperature on the shearing surfaces was
estimated by using a 2D time-dependent model for heat diffusion.
We assumed that all the mechanical energy was converted into
heat (because wear products were almost negligible in the
fluid lubricated regime) and we neglected heat losses by radiation
and fluid convection (the liquid was inside a vessel). As a con-
sequence,  half  the  instantaneous  heat  flow-rate
Q(r,t) = 0.5 x 7(t) x V(r, t), where r is the radial distance from
the centre of the sample, 7 is the shear stress, was applied as a
Neumann boundary condition?* to the edge of the model, which
simulates the slip surface. Then, the estimated temperature at r =
2/3 R where R =25 mm is the external radius of the sample, was
used to correct the fluid viscosity following the empirical formula
proposed by Cheng? and to compute S (Supplementary Figure 8
and Supplementary Table 5 for detail on the thermal model).

Mechanical results. The apparent friction coefficient (¢) is the
ratio of the shear stress to the effective normal stress. For both
rock types, at the beginning of the experiments, the shear stress
acting on the fault increased until the static friction coefficient
Ustatic was overcome and slip initiated (Fig. 1). Immediately after
slip initiation, a further increase in ¢ was observed (indicating
slip-strengthening behaviour) until a peak friction ppeac Was
achieved at V'~ 1 mm/s when the target V was higher than 1 mm/
s. Subsequently, y decreased with slip to a minimum and
approximately steady-state dynamic friction coefficient (ugyy)
during a transient slip weakening phase over a slip distance (D,)%°
(Fig. 1a). In our experiments, the achievement of this so called
steady-state dynamic friction coefficient condition requires slips
of several millimetres to tens of centimetres depending on the
applied effective normal stress?, though steady-state conditions
might not ever be achieved in nature?’. Under the same accel-
eration conditions, the magnitude of the friction drop (upeax —
fhayn) increased with V. We studied the dependency of pgisic and
Hpeak With 17 and S, respectively, for all the experiments (Fig. 1).
Independently of the rock type, psasic slightly decreased from
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Fig. 1 Apparent friction coefficient vs. slip, friction coefficients vs. viscosity, and Sommerfeld number. Experiments were performed at an acceleration of
6.5ms—2 and effective normal stress oo up to 20 MPa, under the following environmental and hydraulic conditions: 100% water (H,O, blue in colour
dots), 60% glycerol/40% water (orange diamonds), 85% glycerol/15% water (yellow triangles), and pure glycerol (99% glycerol, purple squares).
a Apparent friction coefficient vs. slip for experiment $1315 performed at o.s =10 MPa in the presence of mixture 60% glycerol/40% water. pgiatic, fpeaks
payn: G, and D, are represented. The apparent friction coefficient is fitted following the exponential decay function proposed by Mizoguchi et al.26;

H = Hayn + Hpeak — Audyn)eln(

0.05)U/D: (red line). The G, is define as G, = D Tdu where the weakening distance D, is the displacement over which pgy, is

95% of (ipeak — Hayn) (Mizoguchi et al.26). b Static friction coefficient vs.oviscosity n. The error bar indicate the standard deviation from the reported
average values. In the semi-logarithmic diagram, the static friction coefficient slightly decreases linearly with increasing 5 (all values are reported in

Supplementary Table 1). ¢ Peak friction coefficients vs. Sommerfeld number

~0.55 at 7o =10.8 mPas to ~0.33 at o= 1226 mPa s (Fig. 1b).
Instead, the ppe.c was 0.651+0.222 (highly scattered) over the
entire range of S (Fig. 1c), had no significant correlation with
either V (Supplementary Figure 5) or 7, and its average value was
similar to the ppe, obtained under room-humidity conditions?S.

The gy varied with S (Fig. 2): for § < 1073, gy, was ~0.70 £ 0.05
and nearly independent of S (velocity neutral, or BL regime); at
1072 < S <1, pgyn decayed with S from ~0.7(S=1073) to ~0.2 (S=
1) (ML regime); at S > 1, paym slightly increased with increasing slip-
rate (EHD regime). This Stribeck-type behaviour was similar for
both water and water/glycerol mixtures but shifted to greater S
values for the latter (Supplementary Figure 6). Importantly, the
behaviour is similar for the two rock types suggesting that the
obtained Stribeck curve relates to the rheology of the fluid mixtures
rather than to the peculiar dynamic weakening mechanism of
granite (flash and bulk melting?) or Carrara Marble (temperature
and grain-size dependent?®). Note that g4y, slightly decreased with
increasing V as proposed by Di Toro et al.2, but was high scattered
(Supplementary Figure 5).

Following the Stribeck model proposed by Canudas de Wit
et al.>0 and based on the solution on motion at so-called steady

state conditions for metallic frictional interfaces, our friction data
can be described by:

(1)

where pgic (=0.7) is the Coulomb friction coefficient corre-
sponding to pYgae under dry conditions (i.e., without fluid
lubrication), y. (=0.1) is the friction coefficient at the full film
lubrication condition (~ggy, during EHD), and B and y are
empirically determined linear coefficients. The second and the
third right-hand terms of Eq. (1) depict, respectively, the Stribeck
effect (the decrease in the friction coefficient due to an increase in
V) and the viscous friction (the increase in the friction coefficient
due to the presence of viscous fluids). We used a linear regression
procedure to estimate the coefficients § and y for the for the
original experimental dataset presented here (Supplementary
Table 2), plus published experimental and field data (from Eq.
(1), coefficient of determination R?>=0.90, $=28.03, and y=
0.004) (Fig. 2). In fact, this relation holds for other silicate-bearing
rocks (gabbro, peridotite, etc.!%31-33) tested at seismic slip
conditions, and where frictional melting occurred, highlighting

ydyn = U + (Austatic - xuc) : eiﬂ\/g +y: S’
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Fig. 2 Dynamic friction coefficient vs. Sommerfeld number. Experiments performed in water and glycerol presented in this study are compared with previous
experiments with evidence of frictional melting performed on peridotite3, tonalite32, gabbro33, and microgabbro'© (see symbols in the figure with WG for
Westerly Granite and CM for Carrara Marble, see Supplementary Material Table 5). The viscosity of the melt for the room-humidity experiments were computed
using the formulas proposed by Giordano et al.>9. The H, values were considered constant for the experiments performed in presence of melt and equal to 13
pum. The two black points with large error bars refer to field estimation of S from pseudotachylyte-bearing faults (Gole Larghe fault zone in Adamello (ltaly) and
Bear Creek fault zone in Mount Abbot Quadrangle (USA)), see Supplementary Note 1. For S <1073, boundary lubrication regime, the dynamic friction coefficient
is almost independent of S. For 10~3 < S<1, mixed lubrication regime, the dynamic friction coefficient decreases drastically with increasing S. For S>1,
elastohydrodynamic lubrication regime, the dynamic friction increases slightly with S. The best-fit curves are obtained using Eq. (1) (main text) with coefficients of
determination of R2 = 0.90. The scattering in Ugyn for S>1is attributable to the viscosity of the fluid given that 7z ocnV

the universality of EHD mechanism when fluids are present in the
fault slipping zone (Fig. 2).

Microstructural investigation of the slipping zones (Supplemen-
tary Figure 2) recovered after the experiments performed on
Westerly Granite at V=1 m/s under room-humidity and water
conditions (corresponding to S< 1), showed evidence of frictional
melting3*. Instead, there was no evidence of frictional melting in the
slipping zones recovered from the experiments conducted on 85 and
99% of glycerol where the fully lubricated regime (S>1) was
achieved (Supplementary Figure 2). Moreover, for S>1 the
roughness of the slip surfaces at the end of the experiments was
comparable to the initial roughness (Supplementary Figure 3). In the
case of Carrara marble, the slipping zone after the experiments
conducted at V>0.1 m/s under either room humidity’ or water-
flooded conditions when S < 1, was made of submicrometre in size
(recrystallised) grains. Instead, there were no slipping zones made of
submicrometre in size grains after the experiments conducted with
99% glycerol and at high slip-rate where the fully lubricated regime
(§>1) was achieved (Supplementary Figure 4). As was the case for
the experiments performed on Westerly Granite, the sheared
samples had a surface roughness very similar to the initial
nonsheared one. In conclusion, microstructural observation and
surface roughness measurements suggest that for $>1 most of the
shearing was accomodated within the glycerine-rich fluid, confirm-
ing the activation and effectiveness of EHD lubrication.

Rupture propagation criteria and extrapolation to natural case.
We now briefly discuss to what degree the lubrication processes
measured here may promote rupture propagation and earthquake
slip in a faulting scenario. Increasing S reduced the dynamic friction
coefficient (pgy) (Fig. 2); however, this will come at the cost of
increasing the fracture energy (G.), at least in the BL and ML
regimes (S > 1) (Fig. 3). Indeed, G, increased exponentially with S in
BL and ML regime, ie, S<1 up to 9MJm~2. Instead, at the

boundary between the ML and the EHD regimes, G. dropped
sharply back to values of ~1 MJm™2, evidencing the transition
between ML and EHD regimes. Therefore, lubrication affects two
competing mechanisms and does not necessarily promote dynamic
earthquake rupture propagation.

To illustrate this, we may write a simplified rupture propaga-
tion criterion as

1

> (0= 74n(9)) U = G(S), 2)
where 7, is the initial shear stress on the fault (whose upper
bound is Tstatic — Mstatic aeff)) Tdyn = Hdyn aeff)) and where the S
dependence of 74y,(S) and G.(S) is made explicit. As seen in the
left-hand term, the effectiveness of lubrication increases with
the amount of fault slip U. A large value of G, may prevent the
dynamic propagation of smaller earthquakes, but as U increases
the lubrication effect will become dominant. Because fracture
energy will remain constant after the critical slip distance U= D,
(Fig. 1a), but the left-hand side of Eq. (2) will continue to increase
with slip, the indicative value U= D, will mark the watershed
between rupture-hindering and rupture-promotion by lubrication
under intermediate S values. Note that when S> 1, both G. and
fhayn are small, favouring earthquake propagation.

While our experimental protocol allows us to impose and
estimate the parameters (1, V, 0. L/Hp) which control S, the
same parameters are poorly known in nature. Here, below we
attempt an estimate of the possible ranges of (, V, o, L/H)) for
natural faults. Water is pervasive in the Earth's crust33°-37: the
viscosity of water ranges from ~1 mPas at subsurface conditions
(~1km depth) to ~0.1 mPas at a depth of 10 km (considering a
thermal gradient of 30 °C/km and a linear increase in . with
depth; Supplementary Figure 9). Alternatively, viscous fluids
along faults may be produced by frictional melting during seismic
slipZ; a minimum value of 10Pas has been estimated for
frictional melt viscosity. Moreover, especially in the shallower
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Fig. 3 Fracture energy and D, vs. Sommerfeld number. The three lubrication
regimes (BL, ML, and EHD) are delimited by vertical black dashed lines.
Experiments were performed at acceleration of 6.5 m s—2, effective normal
stress oo Up to 20 MPa in the presence of water, mixtures of glycerol, and
water and pure glycerol (see symbols in the figure where WG is Westerly
Granite and CM is Carrara Marble. a Fracture energy vs. Sommerfeld
number. b Slip weakening distance D, vs. Sommerfeld number

section (<5km) of the seismogenic continental faults, fine grain
gouge material mixed with water may also act as lubricant whose
viscosity depends on the gouge grain size and the solid volume
fraction. Viscosities of ~10Pas have been estimated for such
fluid-saturated gouges38-40. Moreover, fluids commonly used in
hydraulic fracturing operations in engineering reservoirs have
viscosities ranging between 1 mPas and 1Pas. As a result, the
viscosity of fluids in the upper crust is estimated to range from
0.1 mPa s to more than 10 Pas.

A value of 1 m/s is widely accepted?” as indicative of fault seismic
slip-rate. The L parameter in S under EHD conditions corresponds
to the longest (and dominant) wavelength in the mismatch between
two rough sliding surfaces. In natural faults, L corresponds to the
asperity wavelength, the longest of which is proportional to slip*
(and the magnitude) during a given earthquake. For earthquakes of
magnitude ranging between 1 and 8, the average seismic slip and
thus L =1 mm-4 m#!, Natural faults' surface roughness is almost

self-similar?? with a ratio - ~ 1000: H, is ranging between 0.001 to

0
4mm for a M1 earthquake and M8 earthquake respectively. The
lithostatic stress o = p,gz (with p, =2700kg/m3 rock density, z
depth and g gravity) minus the hydrostatic water pressure (with
pw=1000kg/m3) at the earthquake hypocentral depth yields as an
R0
angle ¢ = arctan(u), p = 0.75, acting on the fault; this results in o
ranging from ~50 MPa (at z=3km) to ~170 MPa (at z=10 km).

The above hypothesis for the range of parameters (V=4 m/s,
L =1mm-4m, Hy~0.001-4 mm, 0.4 < 170 Mpa, (P, T) ofwater)
would results in S values ranging from 5.0 x 1073 to 1.0 x 10° at
z=10km for Mw =1 to Mw = 8 and from 70 to 0.07 at z~ 0 km
for Mw =1 to Mw = 8 (Supplementary Figure 9). These ranges
for S are comparable to the S value obtained in our experiments,
implying that BL, ML and EHD regimes can occur in the Earth's
crust, depending on fluid viscosity, slip-rate and earthquake
nucleation depth (Supplementary Figure 10), While the Somer-
field number remains undetermined in most natural faults, few of
well-exposed seismogenic fault zones (Gole Larghe and Bear
Creek fault zones, Supplementary Note 1 and Supplementary
Table 3 for details) where large scale roughness, nucleation depth
and co-seismic velocity have been estimated and the occurrence
of co-seismic fluids is attested by the presence of pseudotachylytes
(solidified friction melts produced during seismic slip) support
the trend of dynamic friction indicated by our laboratory tests
(Fig. 2). This geological evidence support the hypothesis that
EHD can operate in some natural earthquakes.

We have experimentally demonstrated that fluid pressure and 7
are critical parameters that control slip dynamics in experimental
faults and we suggest that similar effects should be expected in the
case of both man-induced and natural earthquakes. In particular,
highly viscous fluids (1) slightly reduce the static friction coefficient
fostering fault reactivation and (2) trigger EHD lubrication during
seismic slip. However, in our experimental results, for a large range
of possible viscosity values of fault-permeating fluids, typical seismic
slip-rates would result in intermediate values of the Sommerfeld
number (1073<S<1) and relatively large D, values. As a
consequence the fracture energy during seismic propagation of
small events (U< D,) is relatively large, inhibiting seismic rupture
propagation in favour of slow strain energy relaxation by stable creep
(S and D, would both decrease at low slip-rate). In contrast, the
presence of increasingly viscous fluids decreases the fracture energy
dissipated for large events, making the fault weaker. Therefore, our
results suggest that in the presence of highly viscous fluids, rupture is
expected to grow quasi-statically on the fault until the slip of the
order of tens of cm is attained (until the distance D, is overcome).
While the effect of fluid pressure in earthquake rupture has been
previously explored mostly in terms of thermal pressurisation and
effective stress, we argue that the role of fluid viscosity is also
important in understanding the dynamics of a lubricated fault
system, with implications for rupture energy budget and dynamic
weakening of both natural and man-induced earthquakes.

indicative value of o= (p, — py)g z/K, with K = , friction

Methods

Experimental procedure. The experiments were performed with SHIVA (slow to
high velocity apparatus)?!, a rotary shear machines installed in Rome, on full cylinder
samples of Westerly granite and Carrara marble. Target slip-rates (V) ranged from
10 um/s up to 3 m/s, acceleration and deceleration ramps were imposed to 6.5 m/s?
and normal stresses were up to 0, = 22.6 MPa. Mechanical data (axial load, torque,
axial displacement and angular rotation) were acquired at a frequency between 250 Hz
and 25 kHz, depending on the target slip-rate. Slip, slip-rate and shear stress were
determined using the method outlined in Niemeijer et a3 and Tsutsumi and Shi-
mamoto*%. All the experiments (Supplementary Table 1) with fluids were performed
under drained condition (i.e., pore pressure remained constant during the experi-
ments), following the procedure described by Violay et al.”. The pressurising system
consisted of a pore fluid vessel and a membrane pump with a 30 cm? fluid capacity, a
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pressure multiplier which imposes up to 15 MPa of fluid pressure, a pressure regulator
and valves and pipes.

In Supplementary Figure 1 we show the evolution of the apparent friction
coefficient y vs. displacement for four different experiments performed with SHIVA
under 10 MPa of effective normal stress (0.g), in presence of different mixtures of
distilled water and glycerol in order to have an initial viscosity #o increasing of a factor
ca. 10, with a fluid pressure P= 2.7 MPa. In the figure, the apparent friction coefficient

is fitted following the exponential decay function proposed by Mizoguchi et al.26 y =
Hayn + (Hpeak - ydyn> ¢ 7 and allow us to calculate the weakening distance D..
Surface roughness measurements. The 3D arithmetic surface roughness was
determined on the sliding surface of 20 or 25 mm in diameter cores of the starting
samples and post-mortem samples of Westerly granite and Carrara Marble using
an optical profilometer ContourGT-I 3D Optical Microscope, Bruker Nano sur-
faces Division. The scan of the surfaces was performed imposing an overlap of 20%
between two adjacent areas. RMS (root-mean-square) and the stitched images of
the samples surface of Westerly Granite after the experiments performed under
room humidity condition and in presence of the four different fluids at slip-rate of
1 m/s are shown in the Supplementary Figure 2. The RMS of the starting sample of
Westerly Granite was around 13 pm. Measurement of roughness of Carrara Marble
starting sample had an RMS = 7.05 um (Supplementary Figure 4a).

The scan of postmortem surfaces for experiments performed in presence of the
same lubricant (glycerol 99), but slided at different slip-rate, had roughness of the
same order of magnitude when $> 1 (Supplementary Figure 4c, Supplementary
Figure 4d), and roughness of two order of magnitude higher for S<1
(Supplementary Figure 4b).

When the Sommerfeld number S was higher than 1, the RMS of the samples at
the end of the experiments was of the same order of magnitude of the initial RMS.
In the experiments performed at high slip-rate the presence of high-viscous
lubricants prevented the formation of melt and debris on the surfaces of Westerly
Granite and Carrara Marble samples.

LuGre dynamic friction model. The LuGre dynamic friction model was proposed
by Canudas de Wit et al.3 to describe friction forces as a function of slip-rate in the
three lubrication regimes (boundary, mixed and elasto-hydrodynamic lubrication)
in presence of viscous fluids. In this model, the behaviour of the asperities and/or
the fluid during shearing is assimilated to the behaviour of some bristles whose
deflection can be described as

dz [v|

A Y S R 3

A ®3)
where z is the deflection of the bristles, v is the slip rate and at steady state z,s = g(v)
sgn(z). The friction generated from the bending of the bristles is

dz
F:%ZJFUIEJHTZV’ (4)

where o is the stiffness, 0; a damping coefficient and o, a viscous coefficient.
According to the model, in mixed and hydrodynamic regimes, the friction force
for constant slip-rate at steady state is given by:

Fy, = g(v)sgn(v) +f(v), (5)
where g(v) seizes Coulomb friction and the Stribeck effect and it can be written as

g(v) = F. + (F, — F.)e Is| , where F; corresponds to the stiction force (i.e., the
force necessary to start the motion), and F, is the Coulomb friction force, i.e., the
force necessary to continue sliding in absence of lubricants, v is the relative slip-rate
between the moving solid bodies. The characteristic slip-rate of the Stribeck
function v determines how quickly g(v) approaches F, and depends on fluid
viscosity and loading conditions. As suggested by Bo and Pavalescu®’, the «
parameter ranges between 0.5 and 1. Instead, f(v) is the viscous friction4® and
typically is given in the form f{v) = g, - %47, In this work, we found v, oc

(0 -H3)/nL and 0, < nL/ (o - H).

We adopted the LuGre model to fit our experimental data of y4y,, defined as the
shear stress divided by the effective normal stress oe¢ (Supplementary Figure 6),
following the Eq. (1) where the coefficients 8 and y are a function of the interaction
between the rock-solid material and the molecules of the viscous fluid*s.

All the parameters of the model are reported in Supplementary Table 2 and
result in the best fit curves of Supplementary Figure 6.

X
Vs

Thermal model and viscosity correction with temperature. The increase of
temperature in the slip zone and wall rocks of the sheared bulk samples during fric-
tional sliding weas estimated using a 2D FEA time dependent model for heat diffusion.
The model reproduced the sizes of the experimental sample, (i.e., 50 X 55 mm or
diameter vs. height of the sample) with 1464 triangular mesh elements. Two different
materials were used to simulate the slip zone and the bulk material. The slip zone was
represented as a 13 pm-thick highly porous media. In agreement with the roughness
measurements reported in Supplementary Figure 2 and Supplementary Figure 4, we
considered ¢ =1 — A,/A = 0.95 where A, is the real contact area and A is the nominal
area. The bulk material was regarded as a very low porous media (3% porosity,

measured with the helium pycnometer). We assumed that all the mechanical energy is
converted into heat and no heat is lost by radiation, so the heat flux Q(r, £) =0.5-7
()-V(r, t) is function of time ¢ and the the radial distance r from the centre of the
sample. A Neumann boundary condition was applied to the bottom external edge of
the model (i.e., slip zone Supplementary Figure 5a). On the other three external
boundaries, a constant temperature T'= 293.15 K was imposed as the initial
temperature of the two materials (energy dissipated by the steal of the pressure vessel).
At the inner boundary between the slip zone and the wall-rock, the continuity of the
solution was granted. The thermal properties of the slip zone were defined as a linear
combination of the thermal properties of the fluid and of the rock which are reported
in Supplementary Table 4. The thermal diffusivity of the slip zone:

o = Kegt/(p - C)egr- (6)
With K = (1 — ¢)-K; + ¢ - Krand (p-C)egr = ((1 — ¢)-p-C,) + (¢-prC) where r and f
are related to the rock and fluid properties, respectively.
The diffusion of the heat is:

T
(P Cetr 'agt =V. (Keff,i T)7 (7)

where i identified the two materials. The temperature in the slip zone was taken
when the y4y, was reached (Supplementary Figure 7b).

Using the average estimated temperature in the slip zone at 2/3 R (R =25 mm is
the external radius of the sample, Supplementary Figure 7c), we corrected the
initial viscosities (at 20 °C) of the fluids exploting the empirical law proposed by
Cheng® for water/glycerol mixtures.

The dynamic viscosity # of the mixture is:

=1 gy (8)
Where « is weighting factor, function of the concentration of glycerol C,, and of
two empirical factors a and b which are dependent of the temperature T
a(T) - b(T) - (1-C,) o)
(T)-C,+bT)-(1-C,)

Supplementary Figure 8 shows the decrease of the initial fluids viscosities with
increasing temperatures associated to frictional sliding.

a:17Cm+a

Rupture propagation criterion. The energy change dW [J/m] for an advancement
dL of a crack of length L (if homogeneous conditions are assumed and radiated energy
is neglected, which is a realistic assumption for the early phase of nucleation with slow
rupture velocity) can be written as:

1
dW = ~dLG, + ArLdU, (10)

where dU = CAt/y'dL is the slip increment, ' shear stiffness, A7 the stress drop and
G, the fracture energy.
Therefore we may write the energy delivery rate in a simplified form:
aw 1CAT?
dr 2 w
with C a geometrical dimensionless constant.
For the crack to propagate the requirement is that ‘ii—‘f > 0, therefore

1, (a0
2

—Ge + L, (11)

L> G, (12)

substituting L with U by using L = u'/(CA7)U we obtain 1/2At U 2= C G, where the
stress drop is AT = 7o— 74y, Therefore we obtain:

1
D) (To - Tdyn) U2>G..

’

(13)

Data availability
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