Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. Sc1. COMPUT. (© 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. C69-C96

ENCLAVE TASKING FOR DG METHODS ON DYNAMICALLY
ADAPTIVE MESHES*

DOMINIC ETIENNE CHARRIER!, BENJAMIN HAZELWOOD, AND
TOBIAS WEINZIERL

Abstract. High-order discontinuous Galerkin (DG) methods promise to be an excellent dis-
cretization paradigm for hyperbolic differential equation solvers running on supercomputers, since
they combine high arithmetic intensity with localized data access, since they straightforwardly trans-
late into nonoverlapping domain decomposition, and since they facilitate dynamic adaptivity without
the need for conformal meshes. An efficient parallel evaluation of DG weak formulation in an MPI4+X
setting, however, remains nontrivial as dependency graphs over dynamically adaptive meshes change
with each mesh refinement or coarsening, as resolution transitions yield nontrivial data flow de-
pendencies, and as data sent along domain boundaries through message passing (MPI) have to be
triggered in the correct order. Domain decomposition with MPI alone starts to become insufficient if
the mesh changes very frequently, if mesh changes cannot be predicted, and if limiters and nonlinear
per-cell solves yield unpredictable costs per cell. We introduce enclave tasking as a task invocation
technique for shared memory and MPI+X: It does not assemble any task graph; instead the mesh
traversal spawns ready tasks directly. A marker-and-cell approach ensures that tasks feeding into
MPI or triggering mesh modifications as well as latency-sensitive or bandwidth-demanding tasks
are processed with high priority. The remaining cell tasks form enclaves, i.e., groups of tasks that
can be processed in the background. Enclave tasking introduces high concurrency which is homoge-
neously distributed over the mesh traversal, it mixes memory-intensive volumetric DG calculations
with compute-bound Riemann solves, and it helps to overlap communication with computations.
Our work focuses on ADER-DG and patch-based finite volumes. Yet, we discuss how the paradigm
can be generalized to the whole DG family and finite volume stand-alone solvers.

Key words. MPI+X, communication-hiding, ADER-DG, discontinuous Galerkin, patch-based
finite volumes, dynamical AMR

AMS subject classifications. 68W40, 65Y20, 68W10

DOI. 10.1137/19M1276194

1. Introduction. Higher-order discontinuous Galerkin (DG) techniques con-
tribute towards the success story of many solvers for hyperbolic partial differential
equations (PDEs) on supercomputers. DG methods are considered to be guaran-
tors for computational efficiency. While they fit to dynamically adaptive (block-
structured) grids [12]—no conformity constraints are imposed conceptually—DG meth-
ods’ high-performance computing (HPC) selling point is that they combine high arith-
metic intensity with localized data access. Its computations per mesh cell are arith-
metically intense, which is a property they share with many higher-order methods
[25]. At the same time, DG’s data access pattern however is very localized [11]—this
helps to reduce the memory access stress [8, 17, 20, 24, 27]—and its exchange between
cells along their connecting faces is conceptually simple. A combination of these two
properties—high intensity to exploit vector units and dynamic adaptive mesh refine-
ment (AMR) to invest where it pays off most—is a fit to predictions of what exascale
software will have to look like [10].

*Submitted to the journal’s Software and High-Performance Computing section September 4,
2019; accepted for publication (in revised form) February 25, 2020; published electronically May 5,
2020.

https://doi.org/10.1137/19M 1276194
Funding: This work was supported by the European Unions Horizon 2020 research and inno-
vation programme under grant 671698 (ExaHyPE).

tDepartment of Computer Science, Durham University, Durham DH1 3LE, UK (DominicEti-
enne.Charrier@amd.com, ben.hazelwood@featurespace.co.uk, tobias.weinzierl@durham.ac.uk).

C69

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/19M1276194
mailto:DominicEtienne.Charrier@amd.com
mailto:DominicEtienne.Charrier@amd.com
mailto:ben.hazelwood@featurespace.co.uk
mailto:tobias.weinzierl@durham.ac.uk

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C70 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

DG’s localized data exchange is a fit to distributed memory, message-based (MPI)
parallelization as it is predominant in supercomputing. Delivering scaling algorithm
implementations per node as well as upscaling MPI4+X yet remain far from triv-
ial. DG traverses the grid to evaluate its algorithmic steps. Such traversals can be
read as task graph traversals: The computational grid spans the graph, whereas the
particular DG scheme defines the task type per mesh entity. DG in its basic form
distinguishes two tasks: tasks working on cells and tasks working on faces (Riemann
solves) [9, 24]. Mapping the task types onto separate mesh traversals makes steps
piping data through the cores (Riemann) take turns with the computationally de-
manding volumetric evaluations. While the latter scale, the other steps tend to be
bandwidth- or latency-bound. Furthermore, they couple cells and thus the demand
for data exchange. They are thus typically incapable of exploiting all cores, they hinge
on interconnect capabilities, and their scalability potential is limited. High polyno-
mial degrees and static adaptivity with a volumetric coupling of cells allow the cost
of the cell operations to marginalize the cost of data exchange, Riemann solves, and
so forth [9, 19]. Overlapping domain decomposition with volumetric coupling is not
studied here. Nevertheless, cheap task phases continue to introduce a low concurrency
workload fraction in an Amdahl sense and thus constrain the scalability.

Most codes that achieve high performance focus on particular DG subcategories
and master the challenges above by exploiting the subcategories’ particular charac-
teristics: If we study classic finite volume (FV) schemes, the Riemann solve and the
volume integral can be run in parallel [17, 24], i.e., we can hide the former behind the
expensive volumetric computation. If we study linear PDEs, the cost per cell is known
a priori, as all cell and face operators are small matrices [19, 24, 43]. This simplifies
the decomposition and scheduling of operations [7]. From a task point of view, static
on-node scheduling then is sufficient. If we study static adaptive meshes, we know
prior to each time step where computationally intense interpolations and restrictions
arise that feed into other tasks. We in particular know which face data are to be
exchanged via MPI which enables us to prioritize the handling of the underlying com-
putations appropriately such that they are sent out while we continue to work locally
[16, 17, 19, 20, 25, 32]. We can even design hardware topology-aware domain splits
[40]. If we furthermore stick to conformal meshes plus global time stepping or even
regular grids, such operations disappear completely [13, 19, 43]. These success stories
show that DG has great upscaling potential. They also show that it is reasonable to
reorder and intermix the tasks to obtain high performance.

Any rearrangement or parallelization of the task execution requires care as inter-
grid transfer operations along mesh resolution boundaries have to be performed in
the correct order. We typically interpolate the coarser data representation, then solve
Riemann problems, and finally restrict the outcome. Furthermore, tasks sending
and receiving MPI messages have to stick to a specific order. The fact that there are
“cheap” tasks, i.e., tasks with low arithmetic intensity, further implies that MPI sends
have to be issued early to allow the message transfer to hide behind the expensive
tasks or many cheap ones. Finally, memory-intense tasks such as mesh refinement or
the Riemann solves shall continuously trickle through the system to avoid memory
access bursts. Assembling the whole task graph or fractions of it and then deriving a
tailored /optimized schedule without assembly penalty is difficult if totally dynamic;
unconstrained AMR may change the graph in each and every time step and (almost)
any location in the computational domain. The above paragraph gives examples of
successful strategies if we constrain the AMR. Some sophisticated DG variants further-
more employ techniques such as (a posteriori) limiting [15], optimistic time stepping

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C71

with on-the-fly CFL analysis which occasionally requires roll-backs, or solving non-
linear equation systems locally with a dynamic termination criterion controlling the
nonlinear solve. The cost per volume is not known a priori. Local time stepping is
beyond the scope of the present work yet can be seen as a technique which amplifies
all task balancing and scheduling difficulties.

We propose a grid traversal and task invocation scheme called enclave tasking. It
works without any task graph assembly, and it makes no assumption about the grid
topology. We introduce it by means of dynamically adaptive meshes as they result
from octrees as well as generalizations—we call them spacetrees—of those [45, 46], and
by means of ADER-DG [13], an explicit time stepping scheme for hyperbolic equation
systems. The spacetree is traversed cellwisely. This allows for many efficient storage
and traversal schemes [12, 18, 46, 45]. Enclave tasking maps each DG time step onto
a pair of mesh traversals. The primary mesh traversal runs over all mesh cells and
spawns one task per cell. Work stealing then distributes these computationally intense
tasks among idle threads. We realize a producer-consumer pattern. Additionally, the
traversal launches the computationally cheap Riemann solves ad hoc, i.e., per face
read: it waits for the tasks of the adjacent cells to terminate, and then it immediately
runs the bandwidth-demanding computations. Where required, the primary mesh
traversal processes a temporarily shifted task graph [9]: It runs the Riemann solves,
and then immediately issues the cell tasks of the subsequent time step. Cell tasks
update the solution within their cell, which implies a change of the solution represen-
tation along the cell faces. In our nonoverlapping domain decomposition, these face
data have to be sent out in a deterministic, consistent order to neighboring ranks, as
the subsequent primary mesh traversal on the neighboring rank feeds its local data
plus the remote counterpart data as input to the Riemann solves. We thus classify
the aforementioned cell tasks into high priority and background tasks, and we intro-
duce a secondary (partial) mesh traversal. It takes turns with the primary traversal.
Whenever the secondary traversal accesses a cell along a domain boundary, it waits
for its local adjacent task to complete and then passes the outcome immediately to
MPI. Tasks of cells adjacent to MPI boundaries are issued with high priority. Fur-
thermore, we assume that dynamic adaptivity spreads along existing grid transitions
most of the time. It tends to evolve smoothly in space and time. Therefore, we also
make cell tasks along refinement transitions have high priority if they feed into a
mesh interpolation. Their outcome is processed by the secondary mesh traversal, too.
This means that information from interpolation along resolution boundaries becomes
available early. Other cells are skipped by the secondary traversal. As our mesh
traversals itself are parallelized, too, we end up with three different types of tasks
spread over two different types of mesh traversals: Memory-intense tasks tied to the
(parallel) mesh traversals, high priority cell tasks, and background cell tasks. The
high priority tasks stem from cells adjacent to MPI boundaries and adaptivity. They
form skeletons. The remainder cells form enclaves. They are tasks that are handled
in the background of all communication- and bandwidth-critical operations. They
deliver the scalability.

The whole paper describes a geometrically inspired multitasking scheme which ex-
ploits mesh regularity and the fact that meshes typically do not change dramatically
all over the domain within a short time interval. The idea to process “communicat-
ing cells” prior to others is, notably in the context of DG and accelerators, not new
[2, 20, 25, 40], and many of the present ideas, per se, are well known. To the best of
our knowledge, however, there is no work that combines all of the following features
into one formalism. Our work (i) derives and updates regularity information—the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C72 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

skeletons—on-the-fly, and thus imposes no constraints on the dynamic adaptivity; in
our code, the adaptivity along subdomain boundaries can change in each and every
grid sweep; (ii) does not make any assumptions about the grid structure/topology
or restricts itself to particular subgrid regions/enclaves [25, 38, 40]; (iil) works with-
out any assembly of a task graph which becomes expensive if dynamic adaptivity
makes this graph change in each and every grid sweep [26, 27, 38] and yet supports
very inhomogeneous, unpredictable cost-per-cell distributions; (iv) mixes tasks with
different compute characteristics and thus avoids memory access bursts; (v) is MPI-
oblivious: As MPI data aligns along the mesh skeleton, MPI data is sent out while
prediction tasks still might queue in the background. Therefore, sends are overlapped
with computation. Notably, enclave tasking does not have to know the MPI com-
munication pattern a priori, which would be a showstopper for totally free dynamic
adaptivity. While our discussion focuses on ADER-DG, a particular flavor of explicit
time stepping DG schemes, we sketch that our techniques impact many matrix-free
DG methods and notably all FV schemes, too. While our discussion focuses on space-
trees, the extensions to forests [3, 23, 37] is straightforward if we classify all tree,
i.e., interforest, boundaries as skeletons.

The remainder of the paper is organized as follows: We sketch ADER-DG and
the operators, i.e., tasks of interest (section 2), before we introduce enclave tasking in
section 3. Section 4 next describes how we tailor the tasking runtime and use MPI.
In section 5, we generalize all patterns to other DG approaches and finite volumes
(FVs) and then provide measurements (section 6) that demonstrate the potential of
our ideas. A conclusion summarizes the main findings and sketches future work as
well as shortcomings.

2. ADER-DG on Cartesian meshes. We study first-order hyperbolic systems

(1) %%JFV.F(Q)ZS(QHZ(; with @ : R — R™.d € {2,3}.

F' is a conservative flux, S is a volumetric source term, and ¢ denotes the impact of
point sources. S and ¢ usually depend on time and space. @ is the solution over a
d-dimensional computational domain. It has m components and changes over time.
The system is complemented by well-suited initial and boundary conditions.

Among DG techniques for (1), ADER-DG [14, 15] has grown into a popular
approach. ADER-DG relies on particularly expensive volumetric cell operators, as it
solves the PDE per mesh cell per time step through a weak space-time formulation.
For nonlinear PDEs, this even requires a nonlinear equation system solve. Space-time
solves are computationally feasible as the mesh cells are handled independently of
each other. The solve, however, is only a space-time predictor which feeds into a
follow-up, explicit-in-time Riemann phase. It solves the Riemann problems arising
from the discontinuous, predicted solution along the mesh faces. Eventually, both
solve outcomes are merged into the next time step’s solution. This step is labeled the
corrector. ADER-DG exhibits high-order behavior in both space and time, and it is
arithmetically intense per cell, although it requires only one data exchange between
adjacent cells per time step.

2.1. ADER-DG sketch. We study (1) over a computational domain €2}, dis-
cretized by a mesh that consists of cuboid cells c. Each cell carries a () approxima-
tion Qp(z,t) as a linear combination of Lagrangian polynomial shape functions over
Gaufl-Legendre points. The polynomials are continuous inside the cells, but they
induce jumps along the faces between cells. Our derivation of the algorithmic steps

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C73

and computational tasks—each step consists of tasks which are atomic work units
independent of all other tasks—derives from [13].

ADER-DG starts from a weak formulation of (1) both in space and in time. Let
(T, T + AT) span one time step. We obtain a continuous, weak formulation

o9 ' vd(z,t) = od(z
? /QX(T»TJrAT) <E)t o F(Q>> A0 /§2><(T,T+AT) <S(Q)+-..> A1)

where we replace Q(-,T) by the linear combination of shape functions @y, and where
we vary a space-time test polynomial v. To develop @, in time, we multiply it with
a polynomial in time [14]. The same Lagrangian polynomial order as for the spatial
representation is used. With cubes as mesh cells, this is a tensor product approach
for the space-time solution. It describes a space-time polynomial Qn approximating
the development of the real solution @) over time and space. ¥ uses the same ansatz,
i.e., we express Qp(z,t) or Q;L(x,t), respectively, from (2) by a weak, discretized
space-time Ritz—Galerkin problem with space-time test functions vy,.

Following [13], we separate the time derivative from the remainder integrals in (2).
Partial integration in time for the term comprising %—?, and partial integration in space
for all other terms, gives us two computational/implementational advantages. (i) It
injects the known solution Qp(-,T') into the system and yields an explicit expression
for Qn(-,T + AT), as we roll over the time derivative to the test function. (ii) It
removes the divergence operator V- from F' as it transfers to the test function. F
evaluations for applications are straightforward—they typically describe the physics
directly—while a derivative computation can be tedious. The two advantages are
accompanied by two disadvantages: (i) The overall scheme is high-order in time but
describes a globally implicit setup which is usually infeasible to solve. (ii) We inherit
jump terms from the partial integration in space. ADER-DG addresses these two
disadvantages numerically.

The first step of ADER-DG is the space-time predictor (STP). It develops Qp, (, t)
by solving the weak, discretized space-time Ritz—Galerkin problem. Yet, it drops all
jump terms when it integrates

oQn \ . .) B
/CX(T7T+AT) <m>vd(x7t) - /cx(T,T+AT) (V F(Qh)>“d(xvt) =...

by parts. With |Je =), tessellating the computational domain, the arising STP
decouples the individual cells from each other. We ignore the neighbors of any cell c.
For a given Qp(-,T), this yields a space-time QZ through Picard iterations.

As Qp, Qh, Q; are all represented by polynomials with compact support that are
allowed to be discontinuous along cell faces, no continuity constraints between cells
are built into Q; Jumps arise if we extrapolate the STP Q;; from left and right to
the faces between neighboring cells. Such projections are labeled Q;‘Li in DG—one
projection from the right and one from the left along a coordinate axis. As in is
a space-time polynomial, the extrapolation is a space-time expression, too. To make
ADER-DG an explicit time stepping scheme, we replace all Qh entries in the “jump”
terms arising from partial spatial integration of (2) with our predicted QZ These face
interface states then are plugged into a Riemann solver. This is the second step of
the ADER-DG scheme. We solve the Riemann problems.

In the third and final step of ADER-DG, we plug both Q7 (-, T + AT) and the
time integral over the Riemann solution into (2), integrate in time, and solve the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

Cr4 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

remaining weak formulation. It degenerates to a spatial problem over ;. This step
can be read as a correction to the predicted Qj (-, T+ AT). It is thus called corrector.

2.2. A task language. Let CsTp denote
(3) Q; = Cstp Qu (-, T).

In (3), we use the symbol Csrp as a global operator applied to the solution over the
whole computational domain. However, the STP’s construction implies that Cgrp
decomposes over the cells. Consequently, we use Cstp synonymously for a computa-
tional task which advances the solution over one cell: Qf|. = Csrp - Q(-,T)|.. We
omit |. henceforth. As a result, the global Csrp evaluation results from the appli-
cation of a set of cellwise Cstp tasks to all ¢ € Q5. Though Cstp formally spawns
the whole STP, follow-up steps use solely Q} (-, 7 + AT) = id|par - QZ and the two
projections id|s. - QZ of the STP onto each face between any two cells. It is conve-
nient only to store these results [9], i.e., to extrapolate—if we employ Gauss—Legendre
points, no sample points coincide directly with the faces—and to integrate over time
immediately.

Let Fr denote the operator that runs over all faces. It represents the Riemann
solves. For global time stepping, where all cells advance in time with the same time
step size AT, it is convenient to make it comprise the time integral over the result,
too. Along the lines of (3), we observe that Fr decomposes over the mesh faces. Fr
consequently describes a set of compute tasks over all faces. They accept input from
the Cstp tasks.

The corrector finally yields a set of cellwise Coory tasks. We end up with

Qh('a T+ AT) = CvCorr o FR © id'ac . Q;; + id|T+AT . QZ
= (Ccorr © Fg 0 id|pc + id|r4aT) © Cs1r - Qi (-, T)

for one ADER-DG time step. Alternatively, we may distinguish the data stored inside
the cell from the data held for the faces by writing them as entries of a vector:

(*)avan= (3 %) (5 R)

corrector (cellwise) Riemann (facewise)

(4) (id|T+AT) Csrp (1 0) (Qh) (7).

Z‘d|3(1

STP (cellwise)

Face data here is used as temporary data storage and thus does not determine the
solution at particular time stamps. Once we are given a mesh, (4) describes the arising
ADER-DG task graph. Alternatively, this ADER-DG blueprint maps onto a plain
realization employing three loops (Algorithm 1), each issuing independent tasks.

2.3. Dynamic adaptivity. While adaptive mesh refinement (AMR) minimizes
computational work, it adds complexity to the task graph. For ADER-DG, we are
however able to exploit the discontinuities built inherently into the numerical scheme
to bring down AMR implementation complexity from a parallelization point of view.
We do not impose any balancing conditions [41]. Yet, we do assume that we have a
grid topology which is common to many software packages.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C75

Algorithm 1 Pseudocode of ADER-DG split up into three phases. We highlight
what we refer to as C' and F tasks. Some technical details (projections and temporary
variables) from this algorithm are omitted in the text for clarity. Without local time
stepping, time integration and Riemann solve Fr can be switched, i.e., we can collapse
Riemann solves over time into one spatial Riemann problem.

1: function ADERDGTIMESTEP(AT)

2: for all cells ¢ € ©;, do > Space-time predictor phase
3: STARTTASK
4: Cstp(c) > Run predictor on cell. Cgrp is parameterized with AT
5: idge(c) > Project result to 2d faces of ¢, keep outcome at T+ AT,
6: > too, but throw away intermediate time solutions
7 ENDTASK
8: end for
9: for all faces f € O} do > Riemann phase
10: STARTTASK
11: Read id|s. outcome from f’s adjacent cells > in in DG literature
12: Fr(f) > Riemann solves over the whole (T, T + AT) time span
13: Integrate Riemann outcome in time
14: ENDTASK
15: end for
16: for all cells ¢ €), do > Correction phase
17: STARTTASK
18: Read Fgr outcome of 2d adjacent cells > Project Riemann solve
19: Ceorr(€) > outcomes back to cell, and fuse with predicted data
20: ENDTASK
21: end for

22: end function

ASSUMPTION 1. Let our grids result from a conformal grid. We assign this grid
the level Ui, From L on, we construct a finer, adaptive grid by subdividing each
cell that we want to refine a fized number of times such that the subdivisions along two
adjacent cells that are refined match. This new grid has level £y, + 1. We continue
recursively but independently for each cell. When the recursion has terminated, all
cells that are not subdivided further form an adaptive mesh Qn. Each cell ¢ € Qp
belongs to a unique level.

The purest grids of this type are quadtrees and octrees. They start from one
square or cube, i.e., a trivial ¢,,;, mesh, and subdivide this base cell along each
coordinate axis once per refinement step. They eventually yield an adaptive Cartesian
mesh where all cuboids of one level have exactly the same size. Our grid assumption
includes a forest of trees where we start from a conformal mesh and embed octrees into
its cells. The extension to more sophisticated subdivision or boundary-fitted meshes
is straightforward. The hyperbolic ecosystem around [4] imposes a grid topology
suiting our assumption, too. For our experiments, we stick to sole trees. Unlike the
traditional bipartitioning, we use three-partitioning [45, 46].

Along each resolution transition of the resulting fine grid €25, we can uniquely
identify cells of the coarse and the fine resolutions. AMR now becomes a strict
extension not altering any building blocks introduced so far: As the STP and the
correction are tied to cells, they are agnostic of AMR. For the Riemann problems, we

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C76 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

first introduce wvirtual cells. Virtual cells are subcells of real cells which have the same
size, i.e., face lengths, as their adjacent real cells. No virtual cell overlaps two real cells
by construction. To obtain the Riemann preimage for the child face, we interpolate
QZ from the coarser cell into its virtual cells. The virtual cell then extrapolates its
“inherited” STP through id|s. onto the face, where it complements the data from
the real cell. Interpolation is realized from coarse to fine cell resolutions, prior to
the respective Riemann solves. The concept of using virtual cells to remove hanging
faces temporarily, i.e., from a solver’s point of view, is well established in the (block-)
structured world, where it is also known under the term ghost cells [5, 29] or halo
layer [37].

The Riemann outcome along the interface of a coarse cell and a fine cell affects the
coarse cell’s corrector. Here, we switch from a compute-Riemann to an accumulate-
Riemann approach. Let a face along a resolution transition be a parent face; it belongs
to the coarser fine grid level. Let the term child face refer to a segment of this parent
face which coincides with the face of one adjacent finer cell. Where a face is parent to
other faces, no Riemann solve is applied to the parent, i.e., the coarse face. Instead,
Riemann solves along resolution transitions are always computed along their finest
resolution. Every time we determine the Riemann outcome along a child face, we
accumulate it back into the parent face. This is a restriction (the transpose of the
interpolation). For it, we traverse the adaptive mesh starting from the finest cells.

Adaptive meshes require us to introduce two additional tasks to (4): Interpo-
lation and restriction. The volumetric interpolation of Q",; can be the subject of
optimization—only the projections onto the virtual cells’ faces are required. The im-
portant observation, however, is that the interpolation is a pure preprocessing step to
the Riemann solves that squeeze in-between Cstp and Fr. Interpolation incorporates
resolution logic, but it does not impose additional partial order constraints on either
the STP or the Riemann solves. An analogous observation is to be made for the
restriction of the Riemann solves’ outcome.

Dynamic adaptivity adds further tasks. We focus on feature-based refinement
criteria and assume that codes decide cellwisely whether to refine or coarsen. They
read the solution Qp (-, T + AT) and study the solution’s character. They thus intro-
duce an epilogue to Ccoyp- If the criterion triggers a refinement, new cells are created,
i.e., volumetric data are interpolated, and the algorithm updates the virtual cells.
This has to complete prior to any STP task in the affected part of the computational
domain. If the coarsen criterion identifies a cluster of cells which can be coarsened
into one bigger cell, we trigger an analogous workflow. Since the analysis of the cell-
wise refinement/coarsening criterion is strictly elementwise, all tasks thus can run in
parallel. The update of the virtual cells and the merger of small cells into a bigger
one induce causal dependencies which however are localized and simple to integrate
into the task graph.

2.4. Computational character. As both correction and Riemann tasks in (4)
rely on the same PDE terms—through the partial integration on (2) the lion’s share of
the compute load results from F evaluations in (1)—their abstract arithmetic intensity
[47], i.e., their sole computations-per-double ratio, is comparable. This statement
holds if the employed Riemann solver—we use Rusanov here—only requires F' and a
few additional data such as an estimate of the biggest eigenvalue.

Cstp, however, integrates over polynomials in space and time. They are typically
stored in small continuous array blocks per cell. If the STP is an iterative solve, this
solve plus the time integration lead to a high intensity relative to the caches [22]: The

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING Cc77

arithmetic intensity given as ratio of operations to loads from the main memory into
the registers or a reasonably close cache is expected to be relatively high. If we study
a linear variant of (1), we integrate the cell with the Cauchy—Kowalesvki procedure
[14]. Here, the STP is significantly cheaper, though it still yields localized data access
[8]. The time integration following the STP allows us to reuse the outcome data
structure for all intermediate-in-time results.

In contrast, the Riemann solves are cheap and explicit. With the volumetric
terms in (1), i.e., sources and point terms, disappearing, a Riemann task loads in the
predicted solution and writes back its result to the respective face. The corrector
finally is of similar simplicity, as it takes two input data streams and yields Qp (T +
AT). The remaining volumetric integration is simplistic. Also interpolation and
restriction tasks are neither sophisticated nor computationally demanding as they are
based upon the polynomials.

Finally, all refinement criteria we encounter in our code base are conceptually
simple. We study the first or second order derivatives of the solution and make our
refinement or coarsening decision from there. With an explicit polynomial represen-
tation of @)y, being available, these tasks therefore are of low computational intensity.
They however have to read the whole volumetric data, and the subsequent refinement
or coarsening might induce further memory accesses and allocations.

ASSUMPTION 2. We assume that the STP, i.e., the volumetric task, is computa-
tionally heavier than all other tasks. In particular, the face task (the Riemann solve)
tends to be memory bandwidth- and latency-bound. It brings together data from ad-
jacent cells scattered in memory but does not yield a high number of floating point
operations (flops).

Fic. 1. Left: Schematic illustration of task graph with some dependencies for two-dimensional
setup: Cells within a regular grid region (filled) combine the local DG solution with the result of 2d
Riemann solves. Cells adjacent to grid refinement (empty) require input from more or fewer Rie-
mann solves if they run the corrector. Middle: Schematic illustration of various spacetree (quadtree)
nodes when a tree is used to host an enclave/skeleton mesh. Dark tree nodes are fine grid nodes.
They can be refined (¢ = 0) or unrefined (¢ € {1,2}). Nodes with hatching are (unrefined) virtual
nodes. White nodes are supplemental. They complete the tree, but they do not carry data. Right:
Sketch of the LOH.1 benchmark: It is a simplified earthquake setup, where the cubic domain consists
of two types of material (layers) and a point source stimulus induces the elastic wave propagation.

2.5. Task graph structure. ADER-DG’s task graphs are conceptually simple
(Figure 1): There are cell tasks, face tasks, and AMR tasks. For simplicity, we omit
an explicit discussion of tasks tied to dynamic and static adaptivity for the remainder
of this section where appropriate. We note the following: (i) The STP decomposes
into one task per cell. (ii) The individual Cstp tasks are independent of each other.
Operator Fr decomposes into one task per grid face. (iii) Finally, the individual Fr
tasks are independent of each other. While each Fg task requires input from the Cstp
tasks from its adjacent cells, each C'qopy task requires input from the 2d Fy tasks of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C78 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

the adjacent faces.

Our task types translate into two grid traversal types: One over cells, and one over
faces. Per type, all task evaluations are independent of each other. Task assembly-free
processing thus is possible if we run over the grid three times. A first traversal issues
all Csrp tasks and eventually waits for them to complete before a second traversal
issues all F tasks. A final sweep corrects the solution and thus yields the subsequent
time step’s solution. Such an assembly-free approach describes a producer-consumer
pattern: One or a few main threads traverse the grid and produce tasks; all other
threads consume these.

We assume that our grid changes frequently. A naive realization with grid sweeps
exhibits disadvantageous properties:

1. We employ a nonoverlapping domain decomposition and solve the Riemann
problems redundantly on both adjacent ranks. An STP adjacent to an MPI
domain boundary thus has to send its face data over to neighboring ranks,
such that all ranks can run their Fg tasks autonomously. Data exchange in
MPT has to be deterministic. We may not simply spawn Cstp tasks and make
them send their outcome.

2. Modern multicore chips are equipped with memory controllers that cannot
keep all cores busy. Algorithms have to avoid that all tasks access the
main memory controllers concurrently and thus become bandwidth-bound
[31, 47]. Fire-and-forget of Fg tasks by the sweeps however yields a large set
of memory-sensitive tasks in one rush.

3. Cache-efficient codes perform as many operations as possible on data before
these are moved out into the main memory again. With one sweep per phase,
we have to assume that the outcome of a Riemann solve does not reside inside
the cache long enough for the next corrector. A similar consideration holds
for the outcomes of the STP.

4. Adaptive grids require us to project the solution along resolution transitions
onto the finest grid, to solve the formulation there, and finally to restrict
the Riemann solve’s outcome again [4]. AMR injects dependencies into the
Riemann solve phase.

5. For high flop/s rates, it is important that no phase of the solve exhibits
low concurrency, has high bandwidth demands, or synchronizes the other
tasks. Mesh cells that dynamically refine run the risk of doing so: If they are
processed late throughout the sweep, they allocate memory, initialize data
structures, and then invoke the actual computations, while the other threads
might already have run out of tasks.

3. Enclave tasking. Our solution to the aforementioned challenges is a tech-
nique we label as enclave tasking. It relies on our topological assumption on the DG
grid plus one assumption on typical refinement patterns.

AssUMPTION 3. We assume that mesh refinement criteria typically refine and
coarsen the mesh along resolution transitions: A cell belonging to grid level £ might be
refined if at least one adjacent cell has a level 0> L, i.e., is finer. A cell belonging to
a grid level £ might be coarsened if at least one adjacent cell has a level /< L, i.e., is
coarser. Cells surrounded by cells of the same grid level are typically neither refined
nor coarsened.

Explicit time stepping schemes for hyperbolic equation systems render our as-
sumptions on refinement and coarsening reasonable as the CFL condition ensures

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C79

~ 1 ‘4‘1 9‘4‘4

{‘7;]‘*“ O‘V‘V

F1G. 2. Left: An adaptive Cartesian mesh where the Riemann solves along adaptivity boundaries
are denoted by arrows. Cells adjacent to cells of a finer resolution describe a skeleton while the filled
cells form enclaves. Right: Simulation snapshot of an Euler simulation. The code uses patch-based
FV along the shock (colored areas) and ADER-DG with order p = 7 everywhere else. The gaps in
the visualization are a direct result of the discontinuous shape functions.

that information does not propagate more than one cell at a time. The assumption
does not hold globally for strongly nonlinear equations where areas of interest for a
refinement criterion can “pop up” as shocks develop out of smooth solutions. It fur-
thermore breaks down for setups with time-dependent boundary conditions or source
terms that stimulate a wave throughout the simulation. Finally, it does not anticipate
that wave spreading can yield large regularly refined regions which eventually should
make the mesh thin out, i.e., coarsen over a whole subdomain.

Yet, it seems that this happens rarely or locally. In the following, we do not
make any semantic modifications to the cell treatment. We only optimize using the
assumption. Whenever and where it does not hold, our code does not benefit from
the optimizations as proposed.

Let a skeleton grid of a given adaptive mesh comprise those mesh cells that are
either adjacent to a domain decomposition boundary or are adjacent to at least one
cell of a finer level. The remaining cells form cell enclaves (Figure 2).

3.1. Algorithmic blueprint. Enclave tasking maps each ADER-DG time step
onto two types of mesh traversals. We refer to them as primary mesh traversal and
secondary mesh traversal. They take turns. Furthermore, enclave tasking assigns
each cell in the mesh a boolean marker STP.ompiete € {L, T} At construction
STPcomplete (C) =T Ve e Q.

Primary mesh traversal. The primary mesh traversal runs through the mesh. It
satisfies the following properties:

P.1 All primary mesh traversals on the parallel computer are deterministically

reading the faces along MPI boundaries.

P.2 A primary mesh traversal reads all 2d adjacent faces to any cell before it reads

the cell itself.

P.3 A virtual cell is read before the spatially overlapping real cell is read.

The primary mesh traversal for ADER-DG triggers the following steps:

1. Whenever the traversal reads a face for the first time that is adjacent to an
MPI boundary, we receive Riemann solver input data from the neighboring
rank. As a result, all data feeding into a Riemann solve is available locally.

2. For each face read, we check that ST Peompiete = T for all adjacent real cells
of the same resolution that are held on the same rank. If one flag is not set,
i.e., equals L, the traversal is suspended. We yield. The runtime thus gets the
opportunity to process other tasks. Upon return, we recheck the condition.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C80 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

3. For each face that is not subdivided further, the traversal computes Fgy.
4. For each child face, the Riemann result is immediately restricted.
5. For each cell ¢ that we read,
(a) we run the corrector,

) we evaluate the dynamic adaptivity plus limiter criteria [15],
(c) we reset the completion flag ST P,ompiete(c) < L, and

) we spawn a new STP task Csrp if the subsequent time step size is known
already [9].

The traversal studies the cell’s adjacent faces upon its load. If the cell is adjacent
to a resolution transition or adjacent to the MPI domain boundary, the cell is a
skeleton cell. Otherwise, it is an enclave cell. For enclaves, the spawned Cstp task
goes to a standard task queue. We prioritize this queue lower than the actual tree
traversal and label it a background queue. Conversely, the task goes into a high
priority queue for skeletons.

The primary mesh traversal is a task producer that supplies the task runtime with
ready tasks. The traversal itself can run in parallel. Semaphores on the faces—which
we did not discuss explicitly—ensure that no race conditions arise from Step 4. If
we know all admissible time step sizes and hence can implement Step (5d), enclave
tasking logically shifts compute steps, i.e., brings some tasks forward [9]: The primary
traversal runs the Riemann solve plus the two subsequent volumetric tasks. The STP
among them logically belongs in the next time step. If this is not possible, we have
to run through the grid once more after each primary sweep and issue the follow-up
STPs. This is an “unproblematic” activity from a performance point of view, as STPs
are arithmetically intense. All Csrp tasks are straightforward realizations of Cstp
from (4). Upon a task’s termination, it sets its marker ST Peompiete(c) < T.

Secondary mesh traversal. The secondary mesh traversal runs through the mesh.
It satisfies the following properties:

S.1 All secondary mesh traversals on the parallel computer are deterministically

reading the faces along MPI boundaries. If a face separates domain Q4 from
Qy, both ranks ry and r; owning the respective domains hold a copy.

S.2 A secondary mesh traversal reads a cell before it reads/studies any of its 2d

adjacent faces.

S.3 A virtual cell is loaded after the spatially overlapping real cell has been read.
The secondary mesh traversal for ADER-DG triggers the following steps:

1. For each cell read that belongs to the skeleton, we check whether ST Pyompiete =
T. If not, we yield before we check again.
2. For each virtual cell that is loaded, we interpolate from its parent and we
project the interpolated data onto the virtual cell’s faces.
3. If a face coincides with the MPI domain boundary, we send the @Q; projection
from the local adjacent cell to the neighboring rank.
The secondary grid sweep is a degenerated grid traversal traversing only the skeleton.

3.2. Relation to trees and forests as well as space-filling curves. Tree
discretizations and traversals fit seamlessly to enclave tasking and its traversal. Any
coarse to fine traversal [45] allows us to realize it. If the traversal is realized through
a (depth-first) push-back automaton, i.e., a recursive function, we embed all routines
from the secondary traversal into the recursive function’s preamble before we recurse
further (pre-order), while we realize the primary traversal’s steps in the post-order,
i.e., when we backtrack. For breadth-first, enclave tasking’s primary traversal runs
through the grids from fine to coarse. The secondary traversal starts with the coarsest

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C81

resolution.

In a tree world, it is convenient to make the spacetree accommodate both real cells
and virtual cells. For this, the nodes of the tree are classified as follows: Inner nodes
are refined tree nodes which do not carry an ADER-DG discretization but parent
further inner or fine grid nodes. An unrefined fine grid node carries a polynomial from
@y, but is not refined further. This is a node that spans a cell of the ADER-DG mesh.
A refined find grid node carries a polynomial, too, but is refined. It parents virtual
or supplemental nodes but hosts a cell of the ADER-DG mesh, too, even though it is
refined. A virtual node is unrefined and supports our AMR implementation. It does
not carry a real solution but temporarily is subject to Q;ﬁ writes. Supplemental nodes
can be refined—along their descendant and then are solely supplemental or virtual
nodes—or unrefined. Their purpose is to complete the tree language (Figure 1).

In our nonoverlapping domain decomposition, ranks compute the Riemann so-
lutions redundantly. If a face separates domain §2; from domain 29, both rank rq
and 79 owning the respective domains have a copy of this face. Our scheme assumes
that the secondary traversal sends out data. These data thus become available in
the subsequent primary sweep on the destination rank. To avoid resorting boundary
data, it is convenient to make both r; and 7y traverse their shared faces in the same
order or in reverse order after each sweep [45]. In these cases, queues or stacks can
be used for all boundary data exchange.

3.3. Properties. With enclave tasking, the individual ADER-DG steps are not
synchronized among different cells: Some might still “wait” for their Riemann solves
and correctors

(id|7+ar o Cstp - Qu(T), id|ge o Cstp Qu(T))",

while others have already issued Cstp Qp(T + AT). The producer-consumer pattern
of our traversal ejects ready tasks which can be run immediately once cores become
available. The task markers resolve task dependencies. This is the reason we can
work completely task graph assembly free.

A high prioritization of the skeleton STPs implies that tasks that yield MPI
messages are processed early. The secondary mesh traversal then can issue MPI
sends, while many remaining enclave STPs still linger in the ready queue. We thus
give MPI the opportunity to overlap computation and communication and reduce the
risk of a late sender pattern [30].

Expensive inter-resolution transfer operators (restriction and prolongation) are
either explicitly hidden behind enclave STPs, too, or intermixed into the primary mesh
traversal where we may assume that many STP spawns prelude the first interpolations.
We thus hide their memory-intense operations behind computations. Also bandwidth-
demanding Riemann solves and correctors mix with computationally heavy STPs.

Neither the MPI-oblivious behavior nor the orchestration of tasks with different
characteristics are constrained by dynamic AMR. Grids can change in each and every
primary sweep. All skeleton markers are computed on-the-fly. As mesh refinement is
only one substep of the primary traversal, and as the primary traversal both produces
new STP tasks and does not wait for all STP tasks from the previous time step to
complete before it kicks off, it is fair to assume that expensive memory allocations,
which furthermore typically struggle to run in parallel, hide behind computations of
further STPs.

The advantageous AMR-agnostic characteristics of enclave tasking require two
assumptions to hold: On the one hand, the runtime has to get the prioritization right.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C82 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

If the secondary mesh traversal waits for STPs too long and too many noncritical
(enclave) tasks are processed instead, then we will run into close-to-serial phases in
the subsequent primary sweep. On the other hand, the individual STPs have to be
expensive relative to other algorithmic steps as well as the task production.

4. Tailoring the task runtime system. Modern task systems are designed
to handle millions of small tasks with dependencies. For enclave tasking, the latter
feature is not required. On the contrary, constructing a dependency graph on-the-fly—
the grid might change every time step—would induce algorithmic overhead/latency
that postpones the processing of the first task. The spawned STP tasks are ready
by construction. If the grid traversal is deterministic and, besides the AMR grid
alterations, always the same, first-in, first-out (FIFO) task processing delivers an
optimal task execution order as long as all skeleton tasks are run prior to the enclaves.

Algorithm 2 Blueprint of the consumer task. It accepts the queue ¢ filled with STPs.
These are logical tasks not queued into the actual runtime, while the consumer task
itself is a real task in a multithreading/-tasking sense.

1: function RUNCONSUMERTASK (task queue q)
2: C < FETCH AND DECREMENT(#consumer tasks)

3: if C < size(q)/Nmin then

4: #consumer tasks <~ FETCH AND INCREMENT(#consumer tasks)

5: SPAWN NEW CONSUMER TASK(q)

6: reenqueue <— 1

7: else if (C' < 1) V not empty(q) then

8: reenqueue — T

9: else

10: reenqueue — L

11: end if

12: PROCESS UP TO Nyax TASKS(q)

13: if reenqueue then

14: #consumer tasks <~ FETCH AND INCREMENT(#consumer tasks)

15: SPAWN NEW CONSUMER TASK(g) © requeue/respawn of the present task
16: else

17: TERMINATETASK > starve one consumer
18: end if

19: end function

Our realization wraps around Intel’s Threading Building Blocks (TBB) [34]. We
modify this tasking runtime to accommodate our needs. Three variants are available.
Our basic variant maps both enclave and skeleton tasks onto native TBB tasks. The
second variant puts the logical tasks into a queue. It then spawns a number of con-
sumer tasks which dequeue these (logical) tasks and process them. In our realization,
consumer tasks are the real tasks in the TBB sense. Enclave and skeleton tasks are
the work items processed by these consumers (Algorithm 2). A third variant switches
from a plain FIFO queue to a priority queue as provided by the TBB library. The high
priority /low priority concept of skeletons versus enclaves is realized through priorities
(integers) attached to the enqueued items.

4.1. Task prioritization and orchestration. The efficiency of the task run-
time for enclave’s producer-consumer pattern depends on the balancing of task pro-
duction and task processing. If the traversal fails to produce enough tasks to keep

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C83

other cores busy, performance decreases. If the processing of heavy STP tasks con-
strains the traversal, it runs the risk of decreasing the performance, too, as the system
might run out of ready tasks later down the line.

Our code thus is parameterized through an Ny;,. Unless we wait for a termination
flag of an STP to be set, the grid traversal issues at most one consumer task. Consumer
tasks in turn fork into more consumer tasks if the ready queue is reasonably big, i.e., if
each consumer will have at least Ny,;, work items. If the ready queue starts to empty,
the consumers starve. Besides ensuring that there are always enough cores for the
tree traversal, such an approach also spawns new consumer tasks in a binary tree
fashion. The task creation is done by the master thread only for the first consumer.
The counterpart parameter Ny, .y ensures that no consumer grabs too many tasks in
a row before it re-evaluates the starvation/forking criteria again.

Algorithm 3 The subroutine used to wait for a predictor task to finish.
1: function WAITFORSTP (x)

2 while x not set do

3 if MPI_Probe(any message) then > MPI progression
4: MPI _RECV > Only one/few messages at a time
5: end if
6

7
8:

PROCESS UP TO Ny.x TASKS(task queue gq)
end while
end function

4.2. MPI progression and MPI buffer layout. Overlapping communication
and computations is important to ensure scalability. MPI provides nonblocking rou-
tines to this end. Our secondary grid sweep can trigger nonblocking sends. The
symmetry of the communication—every send out of a face is matched by a receive—
implies that the communication scheme is conceptually simple. MPI implementations
nevertheless struggle to make the data transfer, the data progression, run in the back-
ground [21, 39], and instead require the user code to poll the MPI subsystem regularly.
This gives MPI a hook in point to manage the actual data transfer. There are two
solutions to realize this polling: Either a dedicated progress thread (PT) is deployed,
or the user code itself calls MPI routines. The latter has to compromise between
frequent calls and call overhead, while most applications do not want to sacrifice a
whole thread for MPI progression only. With enclave tasking, we can plug into the
ST Peompiete = 1 checks to facilitate MPI progression. Our main task acts as progres-
sion tasks when it runs into a semaphore (Algorithm 3). Besides the MPI progression,
it also processes some tasks, i.e., helps out on the consumer side. It inherently overlaps
data exchange and computations.

Many MPI codes aggregate MPI data in dedicated buffers before they send them
out. Each send induces some overhead. Message aggregation reduces this overhead.
With enclaves, we however benefit from small messages: Enclave partitioning ensures
that partition domain boundary data are sent out early compared to work done in
the interior. Throughout waits for STP results, we receive Riemann input data chunk
by chunk. Exchanging small chunks of nonaggregated per-face data ensures that no
single receive of a very large message delays the simulation progress. As we ensure
that all MPI data are received in the right order [6, 45], we avoid both resorting
overhead and too many unexpected messages.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C84 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

5. Generalization of enclave tasking. ADER-DG is a peculiar explicit time
stepping scheme. We use it as a showcase for enclave tasking. However, the enclave
concept applies to a variety of DG approaches for a variety of problems.

5.1. Explicit Runge—Kutta DG schemes. For traditional explicit DG schemes
including Runge-Kutta, the weak formulation of (1) yields operations where the vol-
umetric integrals (tasks) do not feed into the Riemann solves—nor does the opposite
happen. We however have to bring together the Riemann and volume integrals out-
comes to construct a subsequent time step Qp (-, T + AT) = (Fr + Cpe) Qn(-,T) or
an intermediate step in the Runge-Kutta tableau. We therefore propose making the
Riemann solves feed logically into the volumetric kernels: A volumetric kernel com-
putes the weak formulation over the cell, but it also accepts the outcome of the 2d
adjacent Riemann solves and immediately merges them into the result.

In such a setup, enclave tasking requires two grid sweeps: A primary traversal
computes all Riemann problems. It also issues all cell tasks, bringing the ingredients
together. As a cell is read after its 2d adjacent faces have been read, all cell tasks
are by definition ready. The secondary traversal degenerates. It does not compute
anything anymore, but projects all updated solutions onto the faces immediately such
that they are sent out to adjacent ranks and available there in the next primary sweep.

5.2. Finite volumes. FVs for explicit time stepping schemes choose piecewise
constant shape functions for Qj,. They thus can be read as an ADER-DG scheme with
a degenerated STP. Solely the Riemann outcome determines a subsequent time step
Qr(-, T+ AT) = (Fr +id) Qn(-,T). Enclave tasking relies on reasonably expensive
STPs such that grid traversal and Riemann solves disappear behind all the volumetric
tasks. Straightforward FVs are a bad fit to enclave tasking.

Yet, all depends on the realization of the Riemann solve. Many advanced FV
solvers rely on a sophisticated reconstruction of the solution that they feed into the
Riemann solver. If such a construction decomposes into a “left” contribution and
a “right” contribution that we can compute independently of each other, these re-
construction steps can be outsourced as volumetric kernels: Each cell task computes
the respective reconstructions for 2d Riemann solves on its adjacent faces. If such
outsourcing is possible, enclave tasking can help: A primary sweep triggers all re-
constructions, a secondary sweep ensures that reconstructed data is sent over the
network and AMR is handled properly, and the subsequent final primary sweep—
which we might combine with the next time step [9]—then issues the actual Riemann
solve.

5.3. Block-structured methods. It is this discussion of volumetric cost ver-
sus face tasks that implies that block-structured AMR [12] and enclave tasking fit
together. In block-structured AMR, blocks or patches—typically regular Cartesian
grids—are embedded into the cells. They communicate with their neighbors through
halo layers. In such a scheme, the Riemann task Fr becomes a halo layer exchange
task and we end up with the situation described before where the face tasks feed into
the volumetric updates. As long as the halo updates are cheap compared to the patch
updates, enclave tasking is of value.

We use block-structured FV in our own ADER-DG code as a limiter [15]: Our
code determines the solution update through ADER-DG. If the resulting solution
is physically wrong—if it yields negative densities, e.g.—or if the solution exhibits
oscillations, we roll back ADER-DG on the respective cell and replace the time step
for this particular cell with an FV scheme. To match the ADER-DG time step for

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C85

a polynomial ansatz p with the FV time steps, the patches per cell have dimension
(2p + 1)?. Though this solver hybrid validates the claim that (block-structured)
FV benefits from enclave tasks, another pro-enclave argument has to be read with
care: Enclave tasking for DG ensures that the bandwidth- and latency-sensitive face
tasks dribble through the system and that the runtime orchestrates compute-heavy
volumetric tasks around them. In an FV world, patch updates tend to be bandwidth-
bound. The orchestration argument collapses for a pure F'V approach. It continues
to hold for ADER-DG where the FV is an a posteriori limiter. Here, we may assume
that only a few cells from the domain are limited, i.e., classic ADER-DG cells remain
and their volumetric kernels now mix with Riemann solves, traversal tasks, and the
patch-based FV updates.

5.4. Implicit schemes and linear equation system solves. Iterative linear
equation system solves for DG as they arise for elliptic problems and implicit time
stepping schemes typically rely on matrix-vector products over (1). They thus resem-
ble the situation of Runge—Kutta schemes from section 5.1. Enclave tasking thus can
be of value if we work matrix-free [44]. Particularly appealing is the combination with
multiplicative hp-multigrid. Here, the fine grid smoothing, and, hence, residual com-
putation, is the dominant step. If we run multiple smoothing steps in a row which are
followed by a final residual computation that feeds into a restriction, enclave tasking
unfolds its full potential to hide the Riemann solves behind the volumetric kernels.

For many elliptic (sub)problems, codes start with initial meshes that resolve
sources of interesting behavior—typically material transitions or complex boundaries—
accurately right from the start. The areas of interest are known, and the code develops
the AMR mesh from there. Errors from “problematic” regions decay from there ac-
cording to their fundamental solution, i.e., the finer grids of an appropriate mesh
follow this decay. They spread from the problematic region. Refinement criteria can
be throttled to refine at most one additional layer around a given region of interest
per iterate. This makes a dynamic refinement pattern fit to our AMR assumption.

5.5. 2:1 balancing and k-partitioning. Many codes or numerical implemen-
tations require 2:1 balancing [41], while many refinement criteria yield reasonably
balanced grids automatically. Our definition of enclaves and skeletons does not rely
on a 2:1 balancing property. It is agnostic of resolution balancing.

If grids are balanced plus feature large resolution transitions, we observe a higher
skeleton-to-enclave cell ratio than for a mesh with the same resolution difference yet no
balancing at all. In balanced meshes, refined regions spread out gradually—they “rip-
ple” through the domain—where other codes would feature massive resolution jumps
over A/ grid levels. Where the latter exhibit one fine—coarse transition manifold, a
balanced grid features Af of these transitions hosting skeleton cells. Bipartitioning
amplifies this skeleton impact. With bipartitioning, whole transition regions can be-
come skeletons. For grids featuring & > 3-subdivision [46, 45], transition skeletons
are always interrupted by enclaves.

We hence may assume that bipartitioning and balancing diminish the performance
gain through enclave tasking. Unbalanced grids with k& > 3-subdivision benefit more
from it. The analysis and validation of this hypothesis is however out of scope here.

6. Experimental results. We benchmark our algorithm and our code on Super-
MUC-NG at the Leibniz Supercomputing Centre (LRZ). Its nodes are two-socket
systems, i.e., each node hosts two 24-core Intel Xeon 8174 (Skylake) CPUs. They
have been clocked at 2.3 GHz and are connected through Intel Omni-Path. We have

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C86 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

96 GB main memory available on each node.

Enclave tasking is a generic concept within the ADER-DG mindset but applies to
FV as a special case of DG schemes, too. We integrated our ideas into the ExaHyPE
[1, 33] engine where they support ADER-DG for orders p € [3,...,9] but also a patch-
based FV scheme which is used by ExaHyPE! for a posteriori limiting [15]. All results
are thus obtained with applications built upon ExaHyPE.

We study the enclave impact for two applications with different character. One
application is a seismic wave code that solves the LOH.1 benchmark. The cuboid
domain used in this benchmark consists of two material layers. Wave propagation
is initiated by a point source that is placed just below the upper layer. Due to the
material transition, an interesting wave pattern emerges (Figure 1).

This well-known benchmark is governed by a linear variant of (1). However, we
translate it into a nonlinear variant where the material enters the equation as an
additional scalar PDE over «(t) following the trivial rule d;ox = 0. It does not move.
Such an immersed boundary approach allows us to handle a material transition which
is not grid aligned [42]: Wherever the code encounters a transition, we cover it with
an FV patch. Some distance away from the boundary, these FV patches are coupled
with ADER-DG cells. In the majority of the domain, we thus use ADER-DG. Though
phrased overall as nonlinear PDE—the « term injects this nonlinearity—the code’s
high-order ADER-DG degenerates to a linear case within the majority of the domain.
The STP thus is directly solved through Cauchy—Kowalevski. Only on the FV patches
along the material transition, we solve the original nonlinear PDE. The material plus
the nonlinear PDE require us to store 13 doubles per degree of freedom.

Our second benchmark is prescribed by the compressible Euler equations [28].
Compared to the seismic setups, this setup has only five unknowns (a scalar material
density and a scalar energy which closes the system plus the vector of velocities).
However, it is a nonlinear variant of (1), which generally does not degenerate to a
linear case and thus requires an expensive nonlinear STP where we do not know
the number of internal Picard iterations a priori. This solver switches to FV as an
a posteriori limiter if shocks are encountered: the solver uses ADER-DG with high
order in the majority of the domain but employs a patch-based FV scheme along
discontinuities [15]. Unlike in our immersed boundary setup, the FV regions travel
this time. We always refine the DG solution down to the FV level close to the
shocks and then glue ADER-DG and FV together volumetrically. This implies that
no adaptivity cuts through the FV subdomains, and FV cells by definition thus are
enclave cells.

We ran all experiments in 3D. The timings are given per time step, i.e., we freeze
particular adaptivity patterns throughout the measurements. Efficient variants of tree
modifications including fast balancing—if required—are known [23, 41] and suggest
that the total time-to-solution character of a simulation does not change dramatically.
Alternatively, any remeshing as well as propagation of the limiter within the mesh
can be integrated into the actual time stepping along the lines of [9, 44]. With
dedicated remeshing phases, enclave tasking does not impact these phases’ runtime,
while Assumption 3 holds in a hard sense, i.e., we can omit the phrases typically:
Throughout the time steps, the skeleton labels never change. We can determine the
skeleton versus enclave classification once throughout the mesh adaption and then
keep them until the mesh changes again. With a merger of time stepping and AMR,
enclave tasking might deteriorate locally, and we have to update the markers on-the-

Lwww.exahype.org [1].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

www.exahype.org

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C87

TABLE 1
Serial runtime in seconds per ADER-DG solution degree of freedom per time step per task type
for polynomial orders p € {3,5,7}.

Seismic Euler
ADER-DG FV ADER-DG FV
p=3,Cgqrp | 1.22-107F — | 2721077 -
p=3, Fr 2.42.10~8 — | 3.59-1079 -
p=3,Ccorr | 6.98-1078 6.89-107° | 2.74-10~7 2.76-10°°
p=25, Csgtp | 1.75-107F — | 3.42.1077 —
p=25, FR 1.76 - 108 — | 2.04-107° -
p=25, Ccorr | 806-10"8 6.48-1075 | 1.63-107 2.70-10°°
p=7,Cgrp | 2.79-10°F — | 6.07-1077 -
p="1T, Fr 1.20-10~8 — | 1.29-1079 -
p="17, Ccorr | 880-10"8 6.23-107° | 1.70-10~7 2.65-10°

fly for each and every time step.

6.1. Computational characteristics. Prior to algorithmic studies, we bench-
mark how much time we have to invest into one degree of freedom update per time
step. This cost is broken down into the ADER-DG or FV cost (Table 1). For our
hybrid codes combining ADER-DG and FV, the solver in practice will yield a mixture
of the two characteristics as both codes run concurrently. We furthermore empha-
size that the total runtime cost of a simulation will comprise grid management and
parallelization overhead as well as adaptive meshing cost. The latter comprises the
evaluation of refinement and coarsening criteria, interpolation and restriction. Re-
finement criteria evaluation and inter-resolution transfer operators are fused with the
correction steps in our code. The remaining overheads are negligible.

We clearly see that the two ADER-DG solvers have different solver characteristics:
The ratio between STP and Riemann solve is comparable, but the dynamic AMR is
expensive. As we merge the latter into the STP in our code, Euler’s cell tasks are
significantly more expensive relative to the Riemann solves than the seismic cell tasks.
In contrast, the FV patch updates are by magnitudes more expensive than all the
ADER-DG cells. For all setups, the ratio of the STP cost to the remaining tasks shifts
towards the STP with rising p. We conclude the data interpretation with a remark
that our ADER-DG scheme is aggressively optimized towards Intel architectures,
whereas the F'V scheme is relatively straightforward. For many applications, it might
be possible to reduce its cost per degree of freedom. This fact is beyond our scope
here.

With these results, we expect the genuine nonlinear PDE (Euler) to benefit more
significantly from enclave tasking than the seismological application which is effec-
tively linear in the majority of the domain. In general, we expect the impact of
enclave tasking to become more significant as we increase the polynomial order. It is
clear that enclave tasking should notably become very important once we have very
expensive enclave tasks. This is the case for our FV cells. It is however not clear how
their nonpredictability (we do not know a priori where limiting is required) affects
the runtime and performance of the scheme.

Our code employs relatively simple Riemann solvers. More expensive solvers
shift the emphasis away from the STPs and thus diminish the impact of enclave
tasking, unless the Riemann solve is thinned out: For many solver variants, only the
reconstruction step bringing data from the adjacent cells together has to be realized
within the face-associated compute kernels, while the actual Riemann solve can be

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C88 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

1077 10-7
3 3
. = TBB -
I [priorities + process same priority b,
[} [0 priorities + process any priority o)
k] k]
R 20 | R 20 |
=) =)
TN w
o o
a [a)
g 1f] g 1p]
) o
E E
[[
0 0
Al =0 Al =1 AL =2 Al =3 Al =0 Al =1 Al =2 Al =3

Fic. 3. Impact of different task processing strategies for p =5 (left) and p = 9. All strategies
except TBB use Npin = Nmaz = 8. Al = 0 denotes a regular grid; AL otherwise denotes the
mazimum number of added AMR mesh levels. One socket is used.

outsourced to the corrector. Such an implementation breaks the logical face operation
up into a face part and a volumetric computation. The latter can be merged into the
corrector (see the discussion on lifting [24] in the FV context). It is an open question
to which degree the arising increase of compute load—in many cases computations of
the volumetric part of the Riemann solve will run redundantly on both adjacent cells
of a face—is compensated by an increase of the efficiency of the enclave tasking as well
as by the increase of data access locality due to the merger of Riemann operations
and correction.

6.2. Impact of the task runtime parameters. A second assessment studies
the behavior of our tasking system, i.e., it benchmarks the tasking runtime’s tailoring
against native TBB. All tests are run for the two-dimensional Euler equations simu-
lating a circular explosion. We employ a 729 x 729 base grid. If we activate dynamic
AMR, this setup yields rather aggressive, time-dependent mesh adoptions.

Our first test setup fixes the quantities Nyin = Nmax = 8, i.e., whenever a thread
processes STP tasks, it tries to process eight tasks in a row. The experiments use one
socket of the two-socket system to exclude NUMA phenomena. They start from a
regular grid and add up to three levels of dynamic AMR. We benchmark native TBB
where every STP task is spawned as a real TBB task against implementations that
put these STPs into a priority queue and create TBB (consumer) tasks which grab
them from there. Skeleton tasks have higher priority than enclave tasks.

Our data (Figure 3) suggest that the queue wrap-around induces a nonnegligible
overhead. Plain TBB is thus faster than any modifications if the computational load
per STP is sufficiently low. However, aggressive AMR or high relative STP cost
imply that an anarchic spawning of native TBB tasks leads to situations where either
the main thread becomes idle as it waits for an STP to finish, or the tasking system
unfortunately processes the wrong enclave or tasks, or where the main traversals tasks
yield, their threads pick up other enclave tasks, and eventually return too late to the
actual traversal such that we face delays or work starvation later down the line. The
grid traversal threads should process STPs themselves whenever they wait for an STP
outcome. If they do so, they naturally prioritize skeleton tasks. If no more skeleton
tasks are ready and the STPs are heavy, it is advantageous to switch to enclave tasks.
This happens if all skeleton tasks are currently processed. If the STPs are not that
heavy, it is however better to make a thread wait for STP outcomes, i.e., to actively
poll the completion, whenever no enclave tasks are remaining. Again, actively joining
the STP computations for enclaves introduces delays down the line.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C89

Further experiments (not shown) demonstrate that a switch to three dimensions,
other polynomial orders, or other applications does not alter our observations qual-
itatively; it is the presence of dynamic AMR and the relative cost of the STPs that
determine which task processing strategy is the fastest. Yet, switching to three di-
mensions or the activation of a limiter increases this relative cost and thus moves
the turnover points. Experiments with various Ny.x and Ny, values support the
statements on the overhead. With the best-case processing strategy from above, the
two magic parameters make a difference for relatively cheap STPs—that is, low poly-
nomial order p for Euler. Here, it is advantageous to choose reasonably big Ny, = 8.
A value of 8 logically fuses tasks and thus reduces overhead. Np.x plays no major
role for regular meshes. Yet if we tackle a rather adaptive mesh, it is better to have
an Npax close to Npiy to allow the task processing to re-evaluate the queue often.
For high relative STP cost, Npax and Ny, seem to play no role.

Our data suggest that fine-granular prioritization is an important feature of (fu-
ture) task systems and that this prioritization—different from our manual approach—
should come along with low overhead. It is obvious that the impact of prioritization
depends on the relative cost of tasks: It is this cost that might render nonpriori-
tized, i.e., less sophisticated, scheduling superior. Future task systems will have to
investigate a balancing of overhead versus optimality. The other interesting balancing
observation is that the best-case scheduling seems to depend on the grid regularity. A
homogeneous task spawn pattern asks for a different task processing than a strongly
irregular pattern resulting from dynamic AMR. This effect is also worth studying from
a task system’s point of view. As high-order, three-dimensional setups that utilize
AMR are of primary interest to us in this study, we stick to our custom-made task-
ing with prioritization and process-tasks-if-you-wait strategy from here on. Low-order
schemes are typically only used in our setups when we strive for very aggressive AMR.
We thus set Npax = Nmin = 8.

6.3. Shared memory scaling. Enclave tasking can be read as on-the-fly sort-
ing of tasks while they drop in, where the sort heuristic is guided by the grid adaptivity
pattern and the parallelization. It brings time-critical tasks forward.

We benchmark our code first on a regular grid in shared memory mode (Figure 4).
Our baseline is compiled without TBB. For Euler, we distinguish between smooth and
nonsmooth initial conditions, and we benchmark ADER-DG and limiting ADER-DG
against patch-based FV. It is only for nonsmooth initial conditions (with shocks) that
ADER-DG for Euler uses FV as a limiter. In this case, the scheme becomes a hybrid
of both solvers. With smooth initial conditions, no limiter is required. It remains sole
ADER-DG. Whenever FV is used, our patch size is chosen as (2p + 1)? relative to
the corresponding ADER-DG scheme. This guarantees that the CFL condition yields
time step sizes of matching magnitude. Different from Euler, the immersed boundary
approach uses a limiter always, yet only along the immersed boundary. Its limited
region stays in place, while the Euler equations move the limited regions along the
shock. For all tests, a regular grid allows us to compare our enclave implementation
to a straightforward implementation with parallel fors. The latter realizes ADER-DG
as a sequence of three loops triggering STP, Riemann solve, and corrector.

All setups besides the one with the very low relative STP cost scale reasonably if
we use parallel for loops (pfors). We omit two-core results for TBB’s parallel for, as
TBB sacrifices one hyperthread for the scheduling of the loop. This kick-off penalty
plays no major role for higher core counts. One-to-two overheads do not arise for
enclave tasking.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C90 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

48 || —@—p = 3, priorities o 48
—A—p = 5, priorities Y
o4 | |~ p =7, priorities .
21| _g—p=3 pfors U
- - - linear
A 12 N 12
))
A g 6
w0 w0
3 3
2 2
1 1
1 2 3 6 12 24 48 1 2 3 6 12 24 48
Cores Cores
48 48
24 24
s 12 o 12
g =
g E-
26 26
w0 w0
3 3
2 2
1 1
1 2 3 6 12 24 48 1 2 3 6 12 24 48
Cores Cores

Fic. 4. Shared memory scaling for regular mesh, i.e., without any adaptivity (strong scaling).
Top row: We compare ADER-DG Euler with smooth initial conditions (left) against FV (right).
Bottom row: ADER-DG with an FV limiter simulating Euler with shocks (left) against the immersed
boundary method of the seismic simulation (right). All plots study three different polynomial orders
p (circle, triangle, square) and benchmark classic parallel for-based parallelism against our enclave
tasking with priorities (red versus blue). (Color available online.)

Enclave tasking is robustly faster than loop-based parallelism. This difference is
more significant if the limited region changes over time. If we use high orders, which
implies that the limited region within the grid changes infrequently relative to the
time steps, or if we use expensive cell updates (FV or high orders), both parallel for
and enclave tasking play in the same league.

On a regular grid, the loop-based parallelism scales excellently for the STPs. The
arithmetic intensity for the two subsequent steps however is not high. It diminishes
the overall scalability. If we run high orders, the runtime of the STP becomes so
dominant that the impact of these other steps disappears. For smaller orders, it is
significant. With enclave tasking, this effect however is hidden behind the STPs; our
approach to orchestrating the tasks such that Riemann solves and STPs overlap and
the Riemann solves dribble through the system with restricted concurrency pays off.

We continue with adaptive meshes (Figure 5). The adaptivity for the immersed
boundary method is static, while the adaptive pattern moves along the waves for
FEuler. Our adaptivity thus is twofold: there is adaptivity in space and adaptivity in
the solver. Since a loop-based parallelization of dynamically adaptive meshes is not
trivial, we omit comparisons to parallel loops.

The seismic setup’s static adaptivity does not pose any problems to enclave task-
ing. In line with the regular grid tests, the p = 3 tests with only one adaptivity level
are the only ones which fail to yield an arithmetic intensity that leads to close-to-
linear speedups. Experiments with p > 3 plus more than one level of adaptivity are
impossible due to memory restrictions, but all remaining data are more or less AMR-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C9a1

48

I
3
=
3]

24

[
=

12

—
)

Speedup
Speedup
Speedup

Cores Cores Cores

FiG. 5. Shared memory scaling with dynamically adaptive meshes. We present data for Euler
with smooth initial conditions (left) and Euler with shocks and, hence, limiting (middle) as well
as immersed boundary data for the seismic setup (right). Different symbols are used for different
polynomial orders p. The smaller symbol size represents a “more adaptive” mesh featuring resolution
transitions of AL = 2 levels. All three diagrams follow the same symbol semantics.

agnostic. For a sole ADER-DG run, i.e., Euler without any limiter, the scalability
curve exhibits classic strong scaling behavior. Low core counts yield speedups, but
the performance stagnates for bigger counts. The lower the polynomial order, i.e., the
cheaper the tasks, the earlier we enter the stagnation regime. Our adaptivity crite-
rion dynamically refines towards the shock or wave gradient. This induces a critical
path along the refinement fronts which consists of inter-grid transfer operators and
the actual refinement criterion. If the STP tasks are heavy, we succeed in hiding all
of this path. Limiting ADER-DG cures this strong order-dependence as the FV cells
yield very heavy tasks.

6.4. MPI+X scaling. We close this section with MPI4+X scaling tests. To
obtain unbiased comparisons, we benchmark against shared-memory parallelization
only as long as we stay on one compute node. Shared-memory experiments lack MPI
overhead. Furthermore, we disable all dynamic load balancing, i.e., we determine a
reasonable domain decomposition pattern prior to the measurements’ start and stick
to this splitting from thereon. The splitting uses a uniform cost model, i.e., cost per
cell, which does not account for imbalances that arise when we solve nonlinear PDEs
such as the Euler equations with ADER-DG or when we apply a localized limiter
in the immersed boundary tests. It is a sole geometric decomposition following the
Peano space-filling curve [6, 45].

The data in Table 1 highlight that a uniform cost model is a particular crude
approximation for the limited ADER-DG setup, i.e., the immersed boundary case,
since the limiter’s FV scheme is by at least one order of magnitude more expensive
than sole ADER-DG. Consequently, we may assume that the load decomposition here
is unbalanced. Our results however do not suffer qualitatively from this, as we use, per
experiment, a fixed number of up to 82 MPI ranks, determine a reasonably balanced
static domain decomposition first, and then increase the number of cores per rank
to increase the total core count. Furthermore, we only benchmark across a few time
steps, i.e., the load distribution does not shift drastically. The limiter however does
stress enclave tasking, as almost all runtime is spent on the FV cells. They cover
only a small subset of the domain. Enclave tasking thus has only limited freedom to
exploit and hide enclave work.

Both the seismic and the Euler (Figure 6) runtimes suffer from the switch from
a shared memory experiment to an MPI+X run. Each individual problem size yields

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C92 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

a strong scaling curve, i.e., a curve that starts to stagnate or even deteriorate from a
certain core count on, while we cannot really make a statement like “AMR scales less
reasonably than its regular counterpart.” For all solvers, the switch to a finer mesh
improves the throughput. Though higher-order computations yield more science per
degree of freedom, the rough cost per degree of freedom update is indistinguishable
from a low-order counterpart.

The MPI4+X executable suffers from overhead, such as MPI polling cost or global
time step synchronization, compared to its single-node cousin. We consequently see
a performance drop once we leave the single node. It is difficult to reconstruct where
the other nonsmooth effects come from, but it is reasonable to assume that it stems
partially from ill-balancing. This comprises not only ill-balancing as discussed above
but also certain core/node counts that do not map perfectly to a given mesh. The
deterioration for too-high core counts and the otherwise good scaling highlight that
enclave tasking automatically hides the communication behind computation. If the
amount of work on a node becomes too small, hiding fails. The break-even point is
reached quickly: Cells adjacent to the MPI boundary are skeletons, and the enclave
size thus tends to shrink drastically relative to the skeleton cardinality once we make
the subdomains smaller. Besides standard overhead arguments—we obviously also
have to invest compute resources into the mesh management and traversal—this rel-
ative growth of skeleton versus enclave size explains why the throughput improves
drastically whenever we increase the mesh resolution. If we compare a regular mesh
to an AMR mesh, our AMR results are qualitatively similar to the regular mesh
data in most cases. This emphasizes that we hide both data exchange and AMR
inter-resolution projections successfully behind the enclave work. Overall, we have
successfully transferred the advantageous characteristics of enclave tasking from the
shared-memory domain into the MPI+X domain.

10° 10°

108 108
® ®
— —
g 107 g 107
5 5
e 106 e 106
o S
a a

10° 105

104 10* - -

1 3 10* 100 10t 10% 10% 10*
10'0 10%0
S-25% (Ar=1) el

100 || 25 (Ar=2) ..}/" 10°
w /l w
z a9t (Ar=1) W z
£ 108 —-243° LA £ 108
E,' = == linear trend E
5 5
= 107 e 107
))
a a

106 106

10° - 10°

10° 10! 102 103 10* 10° 10* 10% 10% 10*
Cores Cores

Fic. 6. MPI+X scaling for the seismic setup (top) and the Euler ADER-DG solver without
limiter. We study p = 5 (left) and p = 7 (right). Each individual connected line represents one
strong scaling experiment.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENCLAVE TASKING C93

7. Conclusion. Enclave tasking is a powerful technique to equip DG codes with
high concurrency and advantageous communication characteristics. It removes multi-
core synchronization points, overlaps computation and communication, and implicitly
orchestrates a well-blended mix of compute-intense and memory-intense tasks. This
makes it a powerful tool in particular in the context of dynamic AMR. Here, it provides
an orthogonal technology to domain decomposition that increases the parallelism in
an MPI4+X environment.

There are conceptual and implementation shortcomings of the present approach.
First, it performs best in cases where the adaptivity is localized and the regular
subdomains host a sufficient number of cells. For extremely high-order codes which
often host only a few cells per node, this might not hold. Second, our data showcases
that it relies on a code where cell tasks are significantly more expensive than all
other tasks. For some setups, this is only the case for large polynomial orders, for
nonlinear solves within the ADER-DG cells, and for simplistic Riemann solves. Third,
our “fire-and-forget” strategy for skeleton and enclave STP tasks is appropriate for
explicit time stepping where the admissible time step size is well known or can be
estimated. An extension to local time stepping, implicit time stepping, or elliptic
problems where equation systems are solved is beyond scope here. It certainly requires
further work. Fourth, our case studies do not invest in performance engineering or load
balancing. Proper application of these techniques certainly will change all outcomes
quantitatively.

Enclave tasking’s success hinges on the task system. Our realization manually
adds priorities to Intel’s TBB as we found TBB’s native priority scheduling insuffi-
cient. It also manually polls MPI—to allow the message exchange to make progress—
and it throttles the number of background tasks. The processing of enclaves thus
never grabs too many cores from the actual main traversal unless there is an enor-
mous number of STP tasks ready. We expect the next generation of task runtimes
to provide appropriate support for priorities. This flavor of our wrapper thus will
become obsolete. All other features are, to the best of our knowledge, not yet on
any task runtime’s roadmap. Moreover, our experience suggests that it might be
reasonable to equip tasks with meta-flags indicating whether they are bandwidth or
compute intense. A good runtime then can ensure that the bandwidth-intense tasks
dribble through the system yet that too many of these bandwidth-demanding tasks
are never executed at the same time. We have had good experience with fusing our
cheap Riemann solves with the traversal. Memory-expensive inter-grid transfer tasks
along resolution boundaries however do not yet benefit from parallelization—we man-
gle them into the traversal, too—even though we have learned that they tend to align
along the critical path.

There are natural follow-up steps and follow-up questions worth further investi-
gation: First, enclave tasking is a promising candidate to be used in connection with
accelerators [11, 16, 17, 19, 25, 32, 24]. Our terminology is inspired by the work of
Sundar and Ghattas [40], who use enclaves to ensure that accelerators processing an
enclave do not have to communicate with other accelerators directly. The enclaves
are separated by skeleton cells. Our background tasks are perfect candidates to be
deployed to accelerators, too. Their data transfers can be hidden behind computa-
tion, and the construction of the skeleton mesh ensures that no accelerator has to
exchange DG jumps with another enclave. Second, enclave tasking alters the scaling
behavior of the code base and makes it depend on the grid topology. Future work will
have to study whether grid refinement criteria should anticipate this scaling behavior.
It is reasonable to assume that sophisticated criteria optimize both towards an as

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

C94 D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

small as possible grid and a scaling grid topology. Their interaction with dynamic
load balancing beyond the simple space-filling curve cuts employed here [6] however
is not obvious. It is also not clear to which degree generic load balancing strategies
can succeed or whether good strategies have to incorporate application specifics and
knowledge. Finally, enclave tasking has to be studied in the context of single-sided
MPIT or distributed shared memory systems where much of the MPI progression pain
fades away. It is a particularly fascinating idea to study the deployment of enclave
tasks to remote nodes rather than only local cores. As enclave tasking adds an addi-
tional dimension of concurrency to classic domain decomposition, this idea adds an
orthogonal dimension to classic load balancing. First studies along these lines are
promising [35, 36].

Acknowledgments. Our development made use of the facilities of the Hamilton
HPC Service of Durham University. Thanks are due to all members of the ExaHyPE
consortium. All underlying software is open source [1].

REFERENCES

[1] M. BADER, M. DUMBSER, A.-A. GABRIEL, H. IGEL, L. REzZzoLLA, AND T. WEINZIERL,
EzaHyPE—An Ezascale Hyperbolic PDE Solver Engine, 2019, http://www.exahype.org.

[2] A. Bacacag, H. Atkins, C. OzTURAN, AND D. KEYES, Parallelization of an object-oriented
unstructured aeroacoustics solver, in Proceedings of the 9th STAM Conference on Parallel
Processing for Scientific Computing, STAM, Philadelphia, 1999, pp. 22—24.

[3] W. BaNGERTH, C. BURSTEDDE, T. HEISTER, AND M. KRONBICHLER, Algorithms and data
structures for massively parallel generic adaptive finite element codes, ACM Trans. Math.
Softw., 38 (2011), 14.

[4] M. BERGER AND P. COLELLA, Local adaptive mesh refinement for shock hydrodynamics, J.
Comput. Phys., 82 (1989), pp. 64-84.

[5] M. J. BERGER AND R. J. LEVEQUE, Adaptive mesh refinement using wave-propagation al-
gorithms for hyperbolic systems, SIAM J. Numer. Anal., 35 (1998), pp. 2298-2316,
https://doi.org/10.1137/S0036142997315974.

[6] H.-J. BUNGARTZ, M. MEHL, AND T. WEINZIERL, A parallel adaptive Cartesian PDE solver using
space—filling curves, in Euro-Par 2006, W. E. Nagel, W. V. Walter, and W. Lehner, eds.,
Lecture Notes in Comput. Sci. 4128, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 1064—
1074.

[7] C. BURSTEDDE, M. BURTSCHER, O. GHATTAS, G. STADLER, T. Tu, AND L. C. WiLcoX, ALPS:
A framework for parallel adaptive PDE solution, J. Phys. Conf. Ser., 180 (2009), 012009.

[8] D. E. CHARRIER, B. HAZELWOOD, E. TUTLYAEVA, M. BADER, M. DUMBSER, A. KUDRYAVTSEV,
A. MOSKOVSKY, AND T. WEINZIERL, Studies on the energy and deep memory behaviour of
a cache-oblivious, task-based hyperbolic PDE solver, Internat. J. High Perform. Comput.
Appl., 33 (2019), pp. 973-986, https://doi.org/10.1177/1094342019842645.

[9] D. E. CHARRIER AND T. WEINZIERL, Stop Talking to Me—A Communication-Avoiding ADER-
DG Realisation, preprint, https://arxiv.org/abs/1801.08682, 2018.

[10] J. DONGARRA, J. HITTINGER, J. BELL, L. CHACON, R. FALGoUT, M. HEROUX, P. HOVLAND,
E. N¢, C. WEBSTER, AND S. WILD, Applied Mathematics Research for Ezascale Com-
puting, DOE ASCR Exascale Mathematics Working Group, 2014, http://www.netlib.org/
utk/people/JackDongarra/PAPERS/doe-exascale-math-report.pdf.

[11] S. DosoprouLos, J. D. GARDINE, AND J. F. LEE, An MPI/GPU parallelization of an interior
penalty discontinuous Galerkin time domain method for Mazwell’s equations: MPI/GPU
for IP-DGTD, Radio Sci., 46 (2011), https://doi.org/10.1029/2011RS004689 (accessed
2018-05-21).

(12] A. DuBEY, A. S. ALMGREN, J. B. BELL, M. BERZINS, S. R. BRANDT, G. BRYAN, P. COLELLA,
D. T. GRAVES, M. LIJEWSKI, F. LOFFLER, B. O’SHEA, E. SCHNETTER, B. VAN STRAALEN,
AND K. WEIDE, A survey of high level frameworks in block-structured adaptive mesh re-
finement packages, J. Parallel Distributed Comput., 74 (2016), pp. 3217-3227.

[13] M. DUMBSER, F. FAMBRI, M. TAVELLI, M. BADER, AND T. WEINZIERL, Efficient implementation
of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE engine, Axioms,
7 (2018), 63, https://doi.org/10.3390/axioms7030063.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

http://www.exahype.org
https://doi.org/10.1137/S0036142997315974
https://doi.org/10.1177/1094342019842645
https://arxiv.org/abs/1801.08682
http://www.netlib.org/utk/people/JackDongarra/PAPERS/doe-exascale-math-report.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/doe-exascale-math-report.pdf
https://doi.org/10.1029/2011RS004689
https://doi.org/10.3390/axioms7030063

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

[14]

[15]

[16]

(17]

[20]

(21]

(31]

M

M.

M.

M.

~

G.

J.

ENCLAVE TASKING C95

. DUMBSER AND M. KASER, An arbitrary high-order discontinuous Galerkin method for elas-
tic waves on unstructured meshes—II. The three-dimensional isotropic case, Geophys. J.
Internat., 167 (2006), pp. 319-336.

DUMBSER, O. ZANOTTI, R. LOUBERE, AND S. DioT, A posteriori subcell limiting of the
discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput.
Phys., 278 (2014), pp. 47-75.

. R. FERREIRA AND M. BADER, Load balancing and patch-based parallel adaptive mesh re-

finement for tsunami simulation on heterogeneous platforms using Xeon Phi coprocessors,
in PASC ’17: Proceedings of the Platform for Advanced Scientific Computing, ACM, New
York, 2017, 12, https://doi.org/10.1145/3093172.3093237 (accessed 2018-05-21).

GODEL, N. NUnNN, T. WARBURTON, AND M. CLEMENS, Scalability of higher-order dis-
continuous Galerkin FEM computations for solving electromagnetic wave propagation
problems on GPU clusters, IEEE Trans. Magnetics, 46 (2010), pp. 3469-3472, https:
//doi.org/10.1109/TMAG.2010.2046022 (accessed 2018-05-21).

GRIEBEL AND G. ZUMBUSCH, Hash-storage techniques for adaptive multilevel solvers and
their domain decomposition parallelization, in Proceedings of Domain Decomposition
Methods 10 (DD10) (Boulder, CO, 1997), Contemp. Math. 218, AMS, Providence, RI,
1998, pp. 271-278.

HEINECKE, A. BREUER, S. RETTENBERGER, M. BADER, A.-A. GABRIEL, C. PELTIES,
A. Bobpge, W. BarrH, X.-K. L1a0o, K. VAIDYANATHAN, M. SMELYANSKIY, AND P. DUBEY,
Petascale high order dynamic rupture earthquake simulations on heterogeneous supercom-
puters, in SC ’14: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (New Orleans, LA, 2014), IEEE, Washington,
DC, 2014, pp. 3-14, https://doi.org/10.1109/SC.2014.6 (accessed 2016-03-01).

. HINDENLANG, G. GASSNER, C. ALTMANN, A. BECK, M. STAUDENMAIER, AND C.-D. MUNZ,

Ezxplicit discontinuous Galerkin methods for unsteady problems, Comput. & Fluids, 61
(2012), pp. 86-93.

. HOEFLER AND A. LUMSDAINE, Message progression in parallel computing—to thread or not

to thread?, in Proceedings of the 2008 IEEE International Conference on Cluster Comput-
ing, IEEE, Washington, DC, 2008, pp. 213-222, https://doi.org/10.1109/CLUSTR.2008.
4663774.

. Iuic, F. PrATAS, AND L. SousA, Cache-aware roofline model: Upgrading the loft, IEEE

Comput. Architecture Lett., 13 (2014), pp. 21-24, https://doi.org/10.1109/L-CA.2013.6.

. Isaac, C. BURSTEDDE, L. C. WILcoX, AND O. GHATTAS, Recursive algorithms for distributed

forests of octrees, SIAM J. Sci. Comput., 37 (2015), pp. C497-C531, https://doi.org/10.
1137/140970963.

. KLOCKNER, T. WARBURTON, J. BRIDGE, AND J. S. HESTHAVEN, Nodal discontinuous

Galerkin methods on graphics processors, J. Comput. Phys., 228 (2009), pp. 7863-7882.

. KomATITSCH, G. ERLEBACHER, D. GODDEKE, AND D. MICHEA, High-order finite-element

seismic wave propagation modeling with MPI on a large GPU cluster, J. Comput. Phys.,
229 (2010), pp. 7692-7714, https://doi.org/10.1016/j.jcp.2010.06.024 (accessed 2018-05-
21).

. KORMANN AND M. KRONBICHLER, Parallel finite element operator application: Graph parti-

tioning and coloring, in Proceedings of the 2011 IEEE Seventh International Conference on
eScience, ESCIENCE ’11, IEEE Computer Society, Washington, DC, 2011, pp. 332-339,
https://doi.org/10.1109/eScience.2011.53 (accessed 2018-05-27).
KRONBICHLER, K. KORMANN, I. PASICHNYK, AND M. ALLALEN, Fast matriz-free dis-
continuous Galerkin kernels on modern computer architectures, in High Performance
Computing, J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, eds., Lecture Notes
in Comput. Sci. 10266, Springer, Cham, 2017, pp. 237-255, https://doi.org/10.1007/
978-3-319-58667-0-13 (accessed 2018-05-27).

J. LEVEQUE, Finite- Volume Methods for Hyperbolic Problems, Cambridge University Press,
Cambridge, UK, 2002.

J. LEVEQUE, D. L. GEORGE, AND M. J. BERGER, Tsunami modelling with adaptively refined
finite volume methods, Acta Numer., 20 (2011), pp. 211-289.

Mao, D. BOHME, M.-A. HERMANNS, M. GEIMER, D. LORENZ, AND F. WoLF, Catching
idlers with ease: A lightweight wait-state profiler for MPI programs, in Proceedings of
the 21st European MPI Users’ Group Meeting, EuroMPI/ASIA 14 (Kyoto, Japan, 2014),
ACM, New York, 2014, pp. 103—-108, https://doi.org/10.1145/2642769.2642783 (accessed
2019-07-17).

D. McCALPIN, Memory bandwidth and machine balance in current high performance comput-
ers, in IEEE Computer Society Technical Committee on Computer Architecture (TCCA)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1145/3093172.3093237
https://doi.org/10.1109/TMAG.2010.2046022
https://doi.org/10.1109/TMAG.2010.2046022
https://doi.org/10.1109/SC.2014.6
https://doi.org/10.1109/CLUSTR.2008.4663774
https://doi.org/10.1109/CLUSTR.2008.4663774
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1137/140970963
https://doi.org/10.1137/140970963
https://doi.org/10.1016/j.jcp.2010.06.024
https://doi.org/10.1109/eScience.2011.53
https://doi.org/10.1007/978-3-319-58667-0_13
https://doi.org/10.1007/978-3-319-58667-0_13
https://doi.org/10.1145/2642769.2642783

Downloaded 05/15/20 to 129.234.0.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

[41]

[42]

[43]

(47]

D. E. CHARRIER, B. HAZELWOOD, AND T. WEINZIERL

Newsletter, IEEE, Washington, DC, 1995, pp. 19-25.

D. Mu, P. CHEN, AND L. WANG, Accelerating the discontinuous Galerkin method for seismic
wave propagation simulations using multiple GPUs with CUDA and MPI, Earthquake Sci.,
26 (2013), pp. 377-393, https://doi.org/10.1007/s11589-013-0047-7 (accessed 2018-05-21).

A. REINARZ, D. E. CHARRIER, M. BADER, L. BovarD, M. DuMBSER, K. DURU, F. FAMBRI,
A.-A. GABRIEL, J.-M. GALLARD, S. KOPPEL, L. KRENZ, L. RANNABAUER, L. REZZOLLA,
P. SAMFASS, M. TAVELLI, AND T. WEINZIERL, ExaHyPE: An Engine for Parallel Dynami-
cally Adaptive Simulations of Wave Problems, preprint, https://arxiv.org/abs/1905.07987,
2020 (accessed 2019-05-22).

J. REINDERS, Intel Threading Building Blocks, O’Reilly & Associates, Sebastopol, CA, 2007.

P. Samrass, T. WEINZIERL, D. E. CHARRIER, AND M. BADER, Tasks unlimited: Light-
weight task offloading exploiting MPI wait times for parallel adaptive mesh refinement,
in Concurrency and Computation: Practice and Experience, 2020, to appear; preprint,
https://arxiv.org/abs/1909.06096, 2019.

P. SAmFrAss, T. WEINZIERL, B. HAZELwWOOD, AND M. BADER, TeaMPI—replication-based re-
siliency without the (performance) pain, in Proceedings of the ISC High Performance 2020,
Lecture Notes in Comput. Sci., Springer, Berlin, to appear.

A. SASIDHARAN AND M. SNIR, MINIAMR—A Miniapp for Adaptive Meshrefinement, Tech.
report, 2016, https://www.ideals.illinois.edu/handle/2142/91046.

M. SCHREIBER, T. WEINZIERL, AND H. J. BUNGARTZ, Cluster optimization and parallelization of
simulations with dynamically adaptive grids, in Euro-Par 2013 Parallel Processing, F. Wolf,
B. Mohr, and D. Mey, eds., Lecture Notes in Comput. Sci. 8097, Springer, Berlin, 2013,
pp- 484-496.

M. SERGENT, M. DAGRADA, P. CARRIBAULT, J. JAEGER, M. PERACHE, AND G. PAPAURE,
Efficient communication/computation overlap with MPI+Openmp runtimes collaboration,
in Euro-Par 2018: Parallel Processing, M. Aldinucci, L. Padovani, and M. Torquati, eds.,
Lecture Notes in Comput. Sci. 11014, Springer, Berlin, 2018, pp. 560-572.

H. SUNDAR AND O. GHATTAS, A nested partitioning algorithm for adaptive meshes on heteroge-
neous clusters, in Proceedings of the 29th ACM on International Conference on Supercom-
puting, ICS 15, ACM, New York, 2015, pp. 319-328, https://doi.org/10.1145/2751205.
2751246.

H. SUNDAR, R. S. SAMPATH, AND G. BIROS, Bottom-up construction and 2:1 balance refinement
of linear octrees in parallel, SIAM J. Sci. Comput., 30 (2008), pp. 2675-2708, https://doi.
org/10.1137/070681727.

M. TAVELLI, M. DUMBSER, D. E. CHARRIER, L. RANNABAUER, T. WEINZIERL, AND M. BADER,
A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave
equations with complex topography, J. Comput. Phys., 386 (2019), pp. 158-189, https:
//doi.org/10.1016//j.jcp.2019.02.004.

C. UPHOFF, S. RETTENBERGER, M. BADER, E. H. MADDEN, T. ULRICH, S. WOLLHERR, AND
A. A. GABRIEL, Extreme scale multi-physics simulations of the tsunamigenic 2004 Suma-
tra megathrust earthquake, in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC '17, ACM, New York, 2017, 21,
https://doi.org/10.1145/3126908.3126948.

M. WEINZIERL AND T. WEINZIERL, Quasi-matriz-free hybrid multigrid on dynamically adaptive
Cartesian grids, ACM Trans. Math. Softw., 44 (2018), 32.

T. WEINZIERL, The Peano software—parallel, automaton-based, dynamically adaptive grid tra-
versals, ACM Trans. Math. Softw., 45 (2019), 14.

T. WEINZIERL AND M. MEHL, Peano—a traversal and storage scheme for octree-like adaptive
Cartesian multiscale grids, STAM J. Sci. Comput., 33 (2011), pp. 2732-2760, https://doi.
org/10.1137/100799071.

S. WiLLiAMS, A. WATERMAN, AND D. PATTERSON, Roofline: An insightful visual performance
model for multicore architectures, Commun. ACM, 52 (2009), pp. 65-76, https://doi.org/
10.1145/1498765.1498785.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1007/s11589-013-0047-7
https://arxiv.org/abs/1905.07987
https://arxiv.org/abs/1909.06096
https://www.ideals.illinois.edu/handle/2142/91046
https://doi.org/10.1145/2751205.2751246
https://doi.org/10.1145/2751205.2751246
https://doi.org/10.1137/070681727
https://doi.org/10.1137/070681727
https://doi.org/10.1016/j.jcp.2019.02.004
https://doi.org/10.1016/j.jcp.2019.02.004
https://doi.org/10.1145/3126908.3126948
https://doi.org/10.1137/100799071
https://doi.org/10.1137/100799071
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785

	Introduction
	ADER-DG on Cartesian meshes
	ADER-DG sketch
	A task language
	Dynamic adaptivity
	Computational character
	Task graph structure

	Enclave tasking
	Algorithmic blueprint
	Relation to trees and forests as well as space-filling curves
	Properties

	Tailoring the task runtime system
	Task prioritization and orchestration
	MPI progression and MPI buffer layout

	Generalization of enclave tasking
	Explicit Runge–Kutta DG schemes
	Finite volumes
	Block-structured methods
	Implicit schemes and linear equation system solves
	2:1 balancing and k-partitioning

	Experimental results
	Computational characteristics
	Impact of the task runtime parameters
	Shared memory scaling
	MPI+X scaling

	Conclusion
	References

