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Abstract: We present geomorphological evidence for multiple glacial fluctuations during the 16 

Quaternary in the middle section of the Tayantaweng Shan, which is situated at the transition 17 

zone of the southeastern Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau. To 18 

reconstruct the history of glacial evolution during the Quaternary Glaciation, we present a 19 

~13000 km2 geomorphologic map (1:440,000) for the Quaternary glaciations, as well as three 20 

electron spin resonance (ESR) ages and three optically stimulated luminescence (OSL) ages 21 

from the landforms. By integrating these with ages from previous studies, five major glacial 22 

advances are identified during marine oxygen isotope stages (MIS) 6, 3, 2, late glacial and 1. 23 

This glacial chronology is in reasonable agreement with existing glacial chronologies from 24 

other parts of the Hengduan Mountains and surrounding mountains. Glaciers had extended 25 

to the Yuqu River during the glacial maximum advance (MIS 6), but. became successively 26 

more restricted from MIS 3 to MIS 1. The glacial patterns show that precipitation brought by 27 

the south Asian monsoon might play a primary role in driving glacial advances during the last 28 

glacial period in the southeastern Qinghai-Tibet Plateau. 29 
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Introduction  34 

With its marginal mountain ranges, the Qinghai Tibet Plateau (QTP) has the most 35 

abundant glacial action at the highest altitude, with the exception of the two polar regions (Shi 36 

et al. 1988). Therefore, it has a far-reaching influence on the patterns of global and regional 37 

atmospheric circulation, and plays an important role in research regarding the dynamic 38 

mechanisms which drive global environmental changes (Benn and Owen 1998; Dortch et al. 39 

2013; Li, 1991; Shi 2002). Reconstructing the extent, timing, nature, and geologic impact of  40 

glaciation on the QTP is important because of the central role of glaciation in paleoclimate 41 

reconstructions and geological evolution models, and provides important content for the 42 

geomorphic evolution of the mountain system (Cui et al. 2011; Liu et al. 2011; Norto et al. 43 

2010). From the Quaternary Period, the results of large amounts of glacial erosion and 44 

accumulation clearly remain on the QTP. These have become important environmental 45 

indexes for the regional environmental evolution pattern, as well as for predictions of future 46 

climate change trends (Li et al. 1986; Owen and Dortch 2014; Owen et al. 2009; Tschudi et al. 47 

2003; Zhang et al. 2016b). A number of plateau-wide glacial reconstructions exist for the QTP 48 

(Li 1991; Lehmkuhl and Owen 2005), and in recent years the application of ArcGIS and 49 

remote sensing technologies, combined with traditional field geomorphologic survey methods, 50 

has made the reconstruction of glacial landforms more accurate (Lindholm and Heyman 2015; 51 

Fu et al. 2012), and promoted further research on the development of Quaternary glacial 52 

landforms on the QTP. However, the extent and timing of glaciation in the QTP remain poorly 53 

documented. In order to continue to develop documented evidence for former glaciations, we 54 

present detailed glacial geomorphological features and dates of deposits in the middle section 55 

of the Tayantaweng Shan on the southeastern QTP. 56 

Situated to the west of the Hengduan Mountains, the middle section of the Tayantaweng 57 

Shan is at the transition zone of the southeastern QTP and the Yunnan-Guizhou Plateau 58 

(Figure 1). During the Quaternary period, numerous glacial actions occurred on the large 59 

areas of planation surface in the region. Glacial erosion could also be mapped using the 60 

accumulation landforms, particularly the well-preserved glacial deposits. Maritime in nature 61 

and sustained by precipitation from the South Asian monsoon, the advance and retreat of the 62 

Quaternary glaciers in this region thus directly reflect fluctuations in the South Asian 63 

monsoon. This special geographical location gives particular importance to Quaternary glacial 64 

research in the middle section of the Tayantaweng Shan.  65 

We have investigated the glacial landforms of the middle section of the Tayantaweng 66 

Shan from 2014 to 2017. Several ESR dating results are presented in Zhang and Chai (2016a), 67 

which suggest at least four major glacial events during MIS 6, 3b, 2, and 1. However, there is 68 

still an essential lack of a detailed survey of glacial geomorphology and numerical dating of 69 

glacial sediments. In order to obtain additional geomorphic features and numerical dating 70 

evidence, this study focuses on detailed geomorphology as well as OSL and ESR dating of 71 

glacial landforms in the middle section of the Tayantaweng Shan. This work forms a basis for 72 

understanding the characteristics of past glaciations in this area. Furthermore, it also allows 73 

for a more comprehensive comparison of the timing and extent of Quaternary glaciations 74 

between the Hengduan Mountains and other glaciated areas in the southeastern QTP. 75 



1 Regional Geographic-geological Background 76 

The middle section of the Tayantaweng Shan (30°45′N–30°11′N, 96°30′E–97°30′E) is 77 

located between the Nujiang River and Lantsang River in the western region of the Hengduan 78 

Mountains (Figure 1). (Downstream, the Nu Jiang is known as the Salween River.) The 79 

mountains extend in a NW-to-SE direction, with altitudes of approximately 4200 m. The 80 

terrain is higher in the north and west, and lower in the south and east. Two levels of 81 

planation surface have developed, with the highest level reaching up to between 5100 and 82 

5200 m (Yang et al. 1983). On the Yuqu River, flowing in a NW-to-SE direction, the upstream 83 

altitude is above 4300 m and the main valley is a typical wide valley with wide and shallow 84 

riverbeds and a developed flood plain. Its width is between 1 and 2 km, and it is the largest 85 

valley in the Changdu Region (Shi et al. 1988). The lithology is mainly composed of granite, 86 

limestone, phyllite, sandstone, and slate. 87 

This area is mainly influenced by the south Asian monsoon, with an annual precipitation 88 

of 474.2 mm (Changdu meteorological station at 3307 m), and an annual average temperature 89 

of 7.6 ℃ (Su and Pu 1996). Contemporary glaciers are mainly distributed on both sides of the 90 

Yuqu River, consisting of approximately 100 small glaciers, with an area of 28.32 km2. The 91 

mean equilibrium line altitude (ELA) in the study area for the contemporary glaciers is 92 

approximately 5400 m according to Su and Pu (1996). The glacier shape types include cirque 93 

glaciers and hanging glaciers (Su and Pu 1996). In accordance with the development 94 

conditions and physical nature of the glaciers, the research area has been determined to have 95 

the characteristics of maritime glaciation (Shi and Liu 2000). 96 

2 Geomorphologic Features  97 

2.1 Characteristics of the glacial erosive landforms 98 

The most common glaciated landforms were “U” shaped valleys (Figure 2A), with lengths 99 

between 4.5 and 26 km, widths between 4 and 5 km, and depths between 200 and 500 m. In 100 

the glacial valley at one side of the Nujiang River (Figure 2B a–c), glacial action was evident 101 

upstream, whereas the downstream section showed a “V” shape due to fluvial incision. The 102 

valley on the bank of the Yuqu River mainly displayed a gentle “U” shape (Figure 2B d–f). 103 

Additionally, the longitudinal section showed that the glacial valley on the bank of the Nujiang 104 

River was steep, whereas the valley on the bank of the Yuqu River was gentle (Figure 2B g). In 105 

addition, owing to the differences in glacial erosion between the main and branch valleys, a 106 

large number of hanging glacial valleys formed on both sides of the main valley in the 107 

research area (Figure 3d). These combined with the main valley to form composite-type valley 108 

glaciers of different scales, such as the typical ones of the Quzha River (Figure 3e), Juequ 109 

River (Figure 3f), and Ruqu River. A total of 191 glacial valley polygons in the research area 110 

were digitized, with a total area of 2100 km2, which accounted for 12% of the total area of the 111 

research region. 112 

Furthermore, there are a large number of cirques in the research region. The majority of 113 



these cirques are empty, whereas only a small number of the inside or headwall cirques retain 114 

small cirque glaciers or hanging glaciers (Figure 3a, 3b). The altitudes of the cirque bottoms 115 

were within the range of 4800 to 5400 m. Meanwhile, typical roche moutonnées (Figure 3b, 116 

3c), comb-shaped arêtes, and pyramid-shaped horns were preserved in the research region 117 

(Figure 3f). 118 

2.2 Geomorphic features of the glacial deposits 119 

Marginal moraines are ridge-shaped constructional landforms created along the margins 120 

of glaciers, including arc-shaped moraines and lateral moraines formed by valley or cirque 121 

glaciers. Moraines formed by valley glaciers occur along valley sides. A total of 159.43 km2 122 

marginal moraine polygons were mapped. The morphostratigraphic relationships between 123 

landforms of different glacial stages were examined together with the surface weathering 124 

characteristics, altitude, and extent of the moraines in the Quzha Valley, Juequ Valley, and 125 

Ruqu Valley (Figure 4). 126 

2.2.1 Quzha and Qinggulong Valleys 127 

Four groups of moraines developed in the Quzha Valley ((Figure 4A). The moraine (QM4) 128 

at the valley’s mouth was located 30 km from the valley source, with an altitude of 4356 m, 129 

and height of 2.4 m. It covered bedrock, with a valley mouth lithology composed of slate. Its 130 

terminal reached the main valley of the Yuqu, and upstream it extended to a place near a 131 

moraine-dammed lake. On profile SECTION Z 1 of the 214-highway (Figure 5A), which was 132 

located north of the valley mouth, a small amount of granite gravel with boulder diameters 133 

between 50 and 100 cm is preserved on the crest of the moraine. Additionally, soil had 134 

developed on the surface of the deposits. The components of the lower gravel layer included 135 

granite, metamorphic rock, and limestone. The granite gravel displayed good roundness, and 136 

was observed to be severely weathered. The minerals had intense alteration, and easily 137 

incurred exfoliation. The middle of the section was a coarse sand layer supported by gravel, 138 

and contained a small number of suspended cobbles with diameters of 20 cm. This layer also 139 

had an abrupt contact with the underlying bed. The upper part was a mixed deposit layer 140 

consisting of granite and slate clasts, with a gravel content > 95%. The granite gravel was 141 

observed to be severely weathered, and the surface of the cobbles could be broken by grasping 142 

it in the hand.  143 

The profile SECTION Z2 (Figure 5A) was located on the lateral moraine near the lake, 144 

with an altitude between 4400 and 4500 m, which is approximately 35 m higher than the 145 

contemporary riverbed. The roadside exposure profile showed that the lithology of the lateral 146 

moraine mainly included limestone and granite, with the upper section a mixed deposit layer 147 

of a gravel structure, and the lower part made up of a developed ice–water interlayer. 148 

Additionally, the thickness of the sand layer exceeded 50 cm. The granite gravel on the crest of 149 

the lateral moraine was observed to be severely weathered. In accordance with the location of 150 

the deposits at the upstream lateral moraine, as well as at the valley mouth of the lake in the 151 

Quzha Valley, it was determined that glacier melting during the interglacial period had a 152 

long-term transformation effect on the terminal moraine deposited at the valley mouth. With 153 



respect to the moraine preserved on the upper bedrock at the valley mouth opposite the 154 

Quzha Valley, it was found to have a gravel structure and weathering features similar to M4. 155 

Therefore, these two trough valleys may have converged into the Yuqu River during the 156 

maximum glaciation period. 157 

The terminus of moraine QM3 was located 15 km from the source, and was between 158 

approximately 10 and 15 m higher than the contemporary riverbed (Figure 5A). It had 159 

intermittently developed on the northern side of the base of the trough valley, and the crest 160 

was covered by herbaceous vegetation. Parts of these areas were covered by talus and a 161 

proluvial fan, owing to the serious destruction effects of the hanging valley, as well as the 162 

deposits on both sides. 163 

The moraine at the intersection location (4810 m) of the upstream trough valley in the 164 

Quzha River was found to be preserved in the forms of a moraine platform and a terminal 165 

moraine (QM2, Figure 3f). The moraine platform had been split into eastern and western 166 

sections by water flow during a later phase: it has a length of 700 m, width of 200 m, height of 167 

7 to 8 m, and distance of approximately 8 km from the upstream cirque. The flat crest was 168 

found to be covered by weakly weathered granite gravel of various sizes. At an altitude of 4775 169 

m, below the moraine platform, there was one terminal moraine crossing through the front 170 

end of the valley mouth. Its main part consisted of loose bodies containing gravelly sand, and 171 

its crest was covered by a large amount of differently shaped gravel in a scattered pattern. 172 

Two to three rows of new terminal and lateral moraines, without a developed soil layer, 173 

were distributed between 1 and 3 km from the lower end (at 5200 m) of the contemporary 174 

glacier at the source of the Quzha Valley. Their lithology was monzonitic granite, with mainly 175 

angular gravel. Additionally, glacial boulders with maximum sizes of 3 × 2.5 × 1.7 m were 176 

found to be scattered on the crest in this section. 177 

In addition, Qinggulong Village (4370 m), which is located on the south side of the Quzha 178 

Valley, was found to have many groups of preserved moraine in clear and complete 179 

formations (QM4, Figure 5B) The moraine at an altitude of approximately 4300 m on the 180 

northeastern side of the entrance to Qinggulong Village was approximately 12 km from the 181 

source of the former glacier. It had a length of approximately 50 m, and it was 20 to 25 m 182 

above the contemporary river bed. The profile SECTION Z3 (Figure 5A) showed that it 183 

consisted of a mixed deposit gravel structure. Additionally, there was cementation observed 184 

among the gravel. Its lithology was dominated by granite, phyllite, and slate, and the gravel 185 

showed rounding, which was possibly due to experiencing a water flow transformation effect 186 

during a later phase. This indicated that the glaciers at that time may have extended from the 187 

glacier accumulation area (peak 5600 m) of the ancient planation surface on the western side 188 

of Qinggulong Village, towards the upstream bank of the Yuqu, which then produced deposits 189 

in the valley mouth. 190 

Moraine QM3 was observed to be distributed within an altitude range of 4600 to 5250 m, 191 

and extended from upstream to downstream for approximately 7 km. The most obvious 192 

moraines were the lateral and downstream terminal moraines, which displayed a parallel 193 

symmetric distribution (Figure 6). The lateral moraine dam was observed to be a mound 194 



shape, and had a relative height of approximately 20 m, with an obvious ridge feature on the 195 

crest. Additionally, granite boulders with diameters of 300 × 150 × 100 cm were scattered on 196 

the surface, and the profile of exposed and mixed deposit showed that its lithological 197 

composition mainly consisted of granite and phyllite, which displayed a low degree of 198 

weathering. Moreover, the arc-shaped terminal moraine, which had a large relief and 199 

connected with the lower limb of this set of lateral moraine, had an altitude range between 200 

4600 and 4860 m. The terminal moraine’s width was between 250 and 300 m, which 201 

indicated that glaciation had a slow recession rate in this location. At the same time, the 202 

surface of the terminal moraine was covered by a large number of granite boulders. 203 

The upstream QM2 moraine in Qinggulong Village was distributed in the valley bottom in 204 

the form of a lower lateral and terminal moraine (Figure 6). The lower lateral moraine 205 

extended downwards over 4.5 km, with heights between 2 and 6 m. Additionally, it was 206 

preserved in the form of a terminal moraine at an altitude of 5000 m at the end position. It 207 

was observed that granite gravel with obvious edges rested on the crest, and the weathered 208 

halos had a width ranging between 0.5 and 1 mm. 209 

The terminal moraine QM1 was preserved at altitudes between 5175 and 5320 m in the 210 

cirque, extended downwards to 5250 m at the exit of the cirque (Figure 3b), which was 60 to 211 

75 m above the valley bottom. This deposit  displayed a greyish-yellow colour and an arcuate 212 

distribution, and lay across the cirque mouth. It was observed to be steep outside and gentle 213 

inside, and extended downwards for approximately 0.75 to 1.5 km, until it reached the upper 214 

part of the rock step of the cirque mouth. It was observed that monzonitic granite gravel with 215 

a large volume and obvious edges was usually distributed on the crest of the moraine ridge. 216 

From the point of view of the exposed profile of the moraine ridge, the lithology of the 217 

moraine consisted of granite, and it was characterized by a fresh gravel surface and an 218 

extremely low degree of weathering. 219 

2.2.2 Juequ Valley 220 

The high lateral moraine in the Juequ River extended from the Qinqia Village (4550 m) 221 

to the banks of the Yuqu River (Figure 4B), and was preserved in the form of a terminal 222 

moraine (JM4) (Figure 7B). The terminal moraine at the valley mouth had an altitude ranging 223 

between 4350 and 4500 m, 85 to 140 m above the riverbed. A large number of granite 224 

boulders were observed to be scattered on the crest of the ridge, with a maximum particle size 225 

of 450 × 200 × 150 cm. The amount of granite gravel gradually decreased downwards to the 226 

Yuqu river bed, and the surfaces of some of the boulders were observed to be severely 227 

weathered. A yellow-grey weathering halo measuring between 1.5 and 2 cm thick was 228 

observed, and weathered debris was scattered around the boulders (Figure 3h). The SECTION 229 

J4 profile (Figure 7A) of the exposed deposits was approximately 25 km from the source of the 230 

trough valley. The deposits were mainly coarse sand, and also contained granite, sandstone, 231 

and limestone gravel, with a good suspension grounding in the middle. A portion of the 232 

granite gravel was observed to be intensely weathered. The crest of the lateral moraine near 233 

the Qinqia Village was found to be 120 to 150 m higher than the valley base. The exposed 234 

sediment profile SECTION J3 (Figure 7A) near the highway was located approximately 10 to 235 

15 km from the valley head. A large amount of granite gravel was distributed on the crest, with 236 



a maximum particle size of 250 × 250 × 100 cm. The deposit profile could be divided into four 237 

layers, where the gravel layers alternated with the coarse sand layers. The gravel layers had a 238 

high degree of roundness, and their lithology was determined to be granite and sandstone. 239 

The gravel was observed to have a high degree of weathering, and the granite gravel with 240 

particle sizes of 1.5 cm became loose when touched by hand. The coarse sand layer did not 241 

contain mud, and had a development of sand ripple bedding. Additionally, a good degree of 242 

roundness was observed in the pebbles. 243 

Moraine JM3 in the Juequ Valley was preserved at the intersection location between the 244 

main valley and the branch valley in the form of a terminal moraine (Figure 3g), with a crest 245 

altitude ranging between 4600 to 4770 m. The crest was approximately 40 m above the 246 

riverbed of the Juequ River, and displayed an arc shape, convex towards the downstream area. 247 

It was located 13 km from the trough valley, with a width of 640 m and a length of 4 km. A 248 

large amount of granite gravel was scattered on the crest, and low shrubs were observed to be 249 

growing. The terminal moraine was found to be mainly a combination of till and glacifluvial 250 

deposits. The glacifluvial deposits were widely distributed in this area, and were observed to 251 

be located at the outer margin of the terminal moraine, as well as close to the riverbed. The 252 

deposit profile of SECTION J1 (Figure 7A) mainly consisted of grey and light-yellow fine silt, 253 

up to 2.8 m thick and with no bedding. It contained granite and sandstone moraine gravel 254 

with good roundness, and diameters between 5 and 10 cm. The moraine was developed at a 255 

relatively higher position, and its deposit profile was SECTION J2 (Figure 7A). The main 256 

lithology contained granite, sandstone, and limestone. Additionally, light-grey clay was found 257 

to be preserved in the lower part of the moraine. 258 

Moraine JM2 in the Juequ River extended to approximately 3 km from the cirque mouth, 259 

and its terminal altitude was determined to be 4850 m. The lateral moraine on both sides 260 

formed a moraine lake (Cuo Ga Xiong) through an enclosure at the terminal location, and a 261 

large amount of gravel was observed to be scattered on the moraine ridge. The proluvial fan at 262 

the exit of the hanging valley on both sides of the trough valley displayed a large destruction 263 

area in the formation of this set of moraine ridges, which had previously led to confused 264 

judgments regarding the sources of the crest gravel and deposits, and had also influenced the 265 

collection of the chronological samples. 266 

Moraine JM1 in the Juequ River was preserved in the form of terminal moraine at a 267 

location which ranged from the contemporary glacier terminus to the rock step at the cirque 268 

mouth. The terminal altitude was 4900 m. Its clast lithology was monzonitic granite, with the 269 

glacial lake Cuo Ga located at the bottom of the cirque. 270 

2.2.3 Ruqu River 271 

It was found in this study that moraines in the Ruqu River basin were distributed at 272 

altitudes ranging from 4650 to 5200 m (Figure 4C, Figure 8B). Moraine RM4 was preserved 273 

as  large, high lateral and terminal moraines. The high and large lateral moraine 274 

intermittently extended from the altitude of 5000 m on both sides of the trough valley, to the 275 

altitude of 4670 m at the valley mouth, with a length of approximately 10 km, and was 276 

observed to be approximately 120 to 130 m above the valley bottom. A large amount of granite 277 



gravel (boulders) was preserved on the ridge crest, with a maximum size of 300 × 128 × 130 278 

cm. Abraded rocks were preserved at altitudes between 4790 and 4820 m upstream of the 279 

lateral moraine (Figure 3b), with granite (Figure 3d) and phyllite lithologies. The abraded 280 

granite displayed clearly preserved scratches on the top, whereas the abraded phyllite was 281 

observed to be severely weathered and broken. The terminal moraine at the valley mouth was 282 

located 25 km from the source of the trough valley, and was lying on bedrock. Its end (4630 m) 283 

extended towards the valley of the Yuqu River. The north side of the valley mouth had the 284 

largest scale, with a crest altitude of 4800 km. It was located 180 m above the Ruqu riverbed, 285 

and distributed with a large amount of scattered granite and slate gravel. In accordance with 286 

the deposit profile SECTION R1 (Figure 8A), which was exposed at the side of the highway 287 

area, the upper and lower sections were determined to be deposits of mixed gravel layers. The 288 

lower section had an angular unconformity contact with the bedrock (limestone), whereas the 289 

upper gravel layer often showed scratched limestone polygonal clasts. The middle layer was a 290 

greyish-yellow coarse sand layer interbedded with pebbles, with particle sizes between 2 and 291 

3cm. Additionally, a thicker soil layer was developed on the crest of the deposit profile 292 

SECTION R2 (Figure 8A), on which granite gravel was observed to be scattered. The lower 293 

section was a coarse sand layer interbedded with pebbles of diameter 3 to 5 cm, and the upper 294 

section contained a mixed deposit layer. 295 

The RM3 moraine in the Ruqu River was preserved in the form of gentle lateral moraine, 296 

with a terminal moraine at the valley bottom. These two moraine dams were observed to be 297 

completely limited in the extent of the high lateral moraine formed by the 4th group of 298 

moraine. The moraine which had been transformed by water flow was located between these 299 

two moraine dams and the terminal moraine at the valley mouth. The terminal moraine had 300 

an altitude of 4760 m, and was located at the intersection between the main valley and the 301 

branch valley, with an undulating terrain. It was located 11km from the source of the trough 302 

valley and river, at heights from 8 to 15 m. A large amount of granite gravel was scattered on 303 

the ridge crest, and the maximum particle size was determined to be 250 × 200 × 100 cm. The 304 

exposure surfaces of the deposits contained new gravel, whereas the bottom displayed a 305 

calcareous semi-cementation state. 306 

Moraine RM2 in the Ruqu River extended to approximately 5 km from the cirque mouth, 307 

and the terminal moraine blocks of the riverbed formed a barrier lake. A large amount of 308 

granite gravel was observed to be scattered on the moraine ridge. Additionally, a thin layer of 309 

soil had developed on the moraine ridge, and sparse grassland vegetation was found to be 310 

growing in the moraine ridge area. 311 

The newest set of moraines (RM1) was preserved within the scope of 2 km from the 312 

source of the trough valley, which could be divided into two parts, as follows: The first part 313 

was the terminal moraine end (5050 m) which was preserved in the cirque, and the second 314 

part was the downward moraine ridge end (5000 m) at the cirque mouth. It was determined 315 

that their clast lithology was granite. 316 

According to a comparative study on the topographic conditions, glacial scale, altitude 317 

range, moraine structure and weathering degree of the Quaternary glacial landform in the 318 

study area, we can conclude that the onset of the glaciation occurred at the same time in 319 



Juequ valley, Quzha valley, and Ruqu valley. Additionally, owing to the steep terrain, the 320 

Qinggulong valley only preserved glacial remnants from the last glacial period. 321 

3. Methods 322 

3.1 Field investigation and geomorphologic mapping 323 

The field work focused on the shape, depositional features, and distribution position of 324 

the glacial landforms. The landforms and strata were divided according to their relative 325 

geomorphologic positions, forms, vegetation cover, weathering characteristics, and the 326 

mutual relationships of the moraine. To reconstruct the moraine morphostratigraphy, 327 

features such as crest morphology (sharp to round crested) and elevation points measured 328 

from GPS were used. The entire erosional and depositional landforms of the valley have been 329 

marked all along the valley and plotted on the map. We have mapped glacial landforms using 330 

the SRTM DEM with 30 m horizontal resolution, and Google Earth. The mapping was 331 

primarily performed using the ArcGIS 10.0 software package. We present a glacial 332 

geomorphological map covering 13,000 km2, presented at a scale of 1:440,000. 333 

3.2 OSL dating 334 

Three OSL samples were collected from the glacial sediments at the Qinggulong Village   335 

moraine ridge (Figure 4A). A typical moraine matrix was sampled. Specifically, the surface 336 

40–50 cm layer was stripped from the moraine, and a tube (25 cm long, 4 cm wide, sealed at 337 

one end) was completely hammered into the fresh surface, and then removed and 338 

immediately closed with a steel sheet. The tube was wrapped tightly with aluminium foil and 339 

tape to avoid water loss and exposure to light, and was assigned a field-collection number.  340 

The samples were all processed and dated at the Luminescence Chronology Laboratory of 341 

South China Normal University, following the procedures in Lai (2010). The samples were 342 

first dry-sieved to eliminate the >300 μm grains. The fine particles were immersed 343 

sequentially in 10% diluted hydrochloric acid and 30% hydrogen peroxide to remove the 344 

carbonate and organic matter. The particles were dry-sifted to obtain the 38–63 μm fractions, 345 

which were then soaked in 35% fluorosilicic acid to remove feldspar. A small amount of 10% 346 

dilute hydrochloric acid was used in the last step to eliminate fluoride precipitates that came 347 

from reaction between the sample and fluorosilicic acid. The extracted quartz particles were 348 

scanned for purity by infrared stimulated luminescence (IRSL). High infrared signals indicate 349 

the presence of feldspar on the sample surface, which requires digestion by fluorosilicic acid 350 

again until the infrared signals vanish or decrease to a low level (IRSL/OSL < 10%), indicating 351 

sufficiently pure quartz. In the final step, a layer of silicone glue was evenly coated on a 352 

stainless-steel wafer of diameter 0.97 cm, and the sample was uniformly fixed within a 353 

diameter of approximately 0.67 cm. 354 

The equivalent dose (De) was measured by the single aliquot regenerative-dose (SAR) 355 

(Murray and Wintle 2000). BDO-04，BDO-05, and BDO-06 of the samples prepared 31, 38, 356 



and 47 aliquots were measured De using the SAR. The equivalent dose (De) measurements 357 

were performed on an automated Risø TL/OSL-DA-20 reader. The irradiation was provided 358 

by a 90Sr/90Y beta source. The luminescence was stimulated at 130 ℃  for 40 s by 359 

light-emitting diodes producing 90% blue light (λ = 470 ± 20 nm). The stimulated light was 360 

picked up and recorded by a photomultiplier tube (EMI 9235QA) after passing through a 361 

7.5-mm-thick Hoya U-340 filter. During the measurement, the regenerative doses and test 362 

doses were preheated at 260 ℃ for 10 s and 220 ℃ for 10 s, respectively. Figure 9 gives the 363 

OSL decay and growth curves. Previous studies suggest heat transfer as one of the factors for 364 

uncertainty in OSL dating. As such, a test at zero dose was added to the SAR protocol here to 365 

determine the effects of heat transfer on the equivalent dose measurement. The 366 

signal-to-noise ratios of BDO-04，BDO-05, and BDO-06 were 1.219 ± 0.060, 0.785 ± 0.027, 367 

and 1.053 ± 0.062，respectively, and the recycling ratios were 1.01 ± 0.07, 0.90 ± 0.04, and 368 

0.94±0.06, respectively. The heat-transfer effect is expressed as the ratio between the 369 

corrected zero-dose luminescence and natural-dose luminescence, (L0/T0) / (Ln/Tn). Wintle 370 

and Murray proposed an upper limit of 5% for (L0/T0) / (Ln/Tn), and the samples in this 371 

study all display ratios <3%, indicating negligible effect of heat transfer.  372 

The concentrations of U, Th, and K were measured by neutron activation analysis (NAA) 373 

to calculate the annual dose. The measured results of water content were found to be between 374 

0.59% and 3.8%. The contribution of cosmic rays to the annual dose was calculated according 375 

to the altitude, geographical location, and sampling depth of the samples (Prescott 1994). The 376 

equations and parameters used in annual dose calculation are given in Aitken (1998). The 377 

OSL results are listed in Table 1. 378 

3.3 ESR dating 379 

In recent years, remarkable progress has been made in Quaternary glacial-chronology 380 

with the development of ESR. Yi et al. (2016) studied the mechanism of ESR signal change in 381 

quartz sand in moraine in typical glacier area; they suggest that ESR will provide accurate 382 

dating of ancient glacier tills for Quaternary glaciation research (Bi and Yi, 2016). To 383 

constrain the chronology of glaciation in the Juequ valley, three samples for ESR dating 384 

(JQE-01, JQE-02, JQE-03) were collected from natural or human-made sections from the 385 

moraines in the Juequ Valley (Figure 4B, Figure 7A). The samples were kept in opaque bags to 386 

prevent exposure to sunlight. During transportation, the samples were carefully packaged to 387 

avoid grinding, collision, and heating. The samples were pre-treated in the State Key 388 

Laboratory of earthquake dynamics, Institute of Geology, China Earthquake Administration, 389 

Beijing following the procedure described in Liu et al. (2010). The quartz Ti-Li centres were 390 

chosen as dating signals and measured with a BRUKER ER041XG X band spectrometer. The 391 

specifications of the measurement are as follows: low-temperature (liquid nitrogen, 77 K) 392 

conditions; microwave power, 5 mW; microwave frequency, 9.46 GHz; modulation frequency, 393 

100 kHz; and modulation amplitude 0.16 mT. The Ti-Li centre intensity was measured from 394 

the top of the peak at g = 1.979 to the bottom at g =1.913 (Rink et al, 2007; Liu et al, 2013. The 395 

Ti signal intensities increased with additional increasing doses. All of the samples were 396 

measured six times in different directions to obtain the average intensity. 397 



For all samples, the equivalent dose (De) values and their individual errors were 398 

determined from the dose response data fitted with a single saturating exponential (SSE) 399 

function using the protocol (and the software) described by Yokoyama et al. (1985). A 400 

least-squares analysis was used to fit the data points based on different artificial irradiation 401 

doses and corresponding signal intensities using linear fits (Figure 10). All De values were 402 

obtained assuming complete bleaching. The dose rate (D) was calculated from the 403 

concentrations of U, Th, and K of each sample (Aitken 1998). The concentrations of U and Th 404 

were obtained using a thick source Daybreak 530 Model alpha counter, and the K 405 

concentrations were determined by atomic absorption. Finally, the annual dose rate was 406 

estimated from these radioactive elements, along with the water content and the cosmic ray 407 

contribution, which were estimated and calculated following the formulas suggested by 408 

Prescott and Hutton (1994). The details of the sampling sites, the results of the dating, and the 409 

correlated parameters are listed in Table 2. 410 

4 Results 411 

The OSL and ESR results are listed in Table 1 and Table 2, respectively. We have 412 

referenced Zhao et al. (2011) for the age control points of the MIS stage. In the Qingguling 413 

Valley, from the dating result (17.3 ± 1.25 ka) of moraine BDO-4 from the lower lateral side 414 

(QM 2), we suggest the moraine formed during the late stage of the last glacial period. The 415 

dating results of moraines BDO-5 and BDO- 6 from the higher lateral side (QM 3) are 31.38 ± 416 

3.48 ka and 25.78 ± 1.98 ka, respectively, corresponding to MIS 2. In the Juequ valley, the 417 

oldest moraine JM4 is dated to 212 ± 21.34 ka and 240.3 ± 49.8 ka with two ESR ages, 418 

suggesting a glacial advance during MIS 6. JM3 yields ESR dating of 51.78 ± 10.62 ka, 419 

corresponding to a glacial advance during MIS 3.  420 

 421 

5 Discussion  422 

5.1 Resetting of ESR and OSL signals in glacial environments 423 

A study of the Quaternary glacial sediments on the QTP and the surrounding mountains 424 

shows that from the accumulation zone to the terminal, the rock debris entering the glacier, 425 

following repeated alternative stretching and compression flows and possibly passing through 426 

a shear surface inside the glacier, has a higher chance of exposure (Richards 2000). Moving at 427 

the glacier surface, the signal from fine particles at the moraine ridge top could be completely 428 

bleached, providing reliable OSL results, and supraglacial deposits are demonstrated to be 429 

more suitable for OSL dating than tills (Benn and Owen 2002; Fuchs and Owen 2008; 430 

Richards 2000). The moraine ridge at Qinggulong is well preserved, and samples BDO-5 and 431 

BDO-6 were both collected from the QM3 ridge, whereas BDO-4 was sampled from the QM2 432 

ridge. The ages of the three samples are 31.38 ± 3.48 ka, 25.78 ± 1.98 ka, and 17.3 ± 1.25 ka, 433 

respectively. The reason for the discrepancy is that the age of BDO-5 was overestimated. 434 



Sample BDO-4 and BDO-6 were collected at the top of the moraine ridge. The sampled 435 

sediments are dominated by supraglacial sediments, which are more extended to reset prior 436 

to depositions (Ou et al, 2014; Richards 2000; Tsukamoto et al. 2002). Sample BDO-6 was 437 

collected from the lower part of the QM3 ridge, where the source of the debris is more 438 

complicated and may have consisted of mixted deposits, and probably caused poor bleaching. 439 

In addition, previous studies show that the original OSL signal of some quartz could weaken 440 

by 1% after 10 s exposure under natural light (Aitken 1998); in high-altitude regions, the high 441 

angle of solar radiation and increase in UV flux with elevation makes bleaching of the signal 442 

from quartz easier (Aitken 1998). As Qinggulong is located in southeastern QTP at an altitude > 443 

4300 m, there is very limited time, prior to burying, for total bleaching of the quartz signal 444 

from moraines found on the ridge top. 445 

 The silt used for ESR was collected from JM3 and JM4 of glaciofluvial sediments in the 446 

Juequ Valley. Owing to the greater transport distance between the glacier margin and point of 447 

deposition, which increases the probability of grains having sufficient exposure to sunlight, 448 

glaciofluvial sediments are considered more likely to have been bleached than those within 449 

glacial landforms (Thrasher et al. 2009). The Ti centre ESR signal is more suitable than others 450 

for the ESR dating of Quaternary sediment (Liu et al. 2010, 2011; Rink et al. 2007; Tissoux et 451 

al. 2008). Several experiments claimed that Ti-Li centres can be completely bleached within 452 

several to dozens of hours when exposed to sunlight or UV light in different situations (Liu et 453 

al. 2013; Tanaka et al. 1997; Tissoux et al. 2007; Voinchet et al. 2007). The results of natural 454 

sunlight bleaching of the Ti centre in quartz extracted from granite at different altitudes 455 

shows that the necessary time for the Ti centre signal to be bleached to zero decreases as the 456 

altitude increases (Gao et al. 2009). High altitude conditions meet the requirements for 457 

illumination and ultraviolet intensity by signals from quartz Ti-Li centres (Gao et al. 2009), 458 

and are considered the best locations for sampling. The Ti-Li centre ESR dating results 459 

correspond with the other dating method results on aqueous sediment, aeolian sediment, and 460 

mixed sediment (Liu et al, 2016). The dating samples JQE-01, JQE-02, and JQE-03 were 461 

collected from glaciofluvial sediments at higher elevation. Therefore, the ESR signals of the 462 

Ti-Li centres in glacial quartz grains could be removed. The dating results are consistent with 463 

the morphological relationship; previous studies have shown that Ti-Li centre ESR signal 464 

dating results are reliable and credible, and that this technique can be applied to Quaternary 465 

glaciation research of moraines and terraces (Zhang and Chai 2016; Zhang et al. 2017). 466 

5.2 Glacial history of the Tayantaweng Shan 467 

The results of this field survey and dating results show that the ESR and OSL contribute 468 

new data for a temporal framework displaying a long and complex history of landscape 469 

evolution in the middle section of the Tayantaweng Shan.  470 

The terminal moraine samples (JQE-02, JQE-03) from JM4 in the Juequ Valley were 471 

ESR-dated to 212 ± 21.34 ka and 240.3 ± 49.8 ka, respectively, corresponding to MIS 6, and 472 

showed good agreement with the ESR dating results (192 ± 51 ka - 207 ±45 ka) in the Quzha 473 

Valley. Moraine QM4 in the Ruqu Valley may also have formed during this period. 474 

Glaciofluvial deposits (JQE-01) from the terminal moraine JM3 in the Juequ Valley were 475 



ESR-dated to 51.78 ± 10.62 ka, corresponding to MIS 3, in accordance with the fourth group 476 

moraines (QM4) of Qinggulong Village, and were dated by ESR as 55 ± 8 ka and 54 ± 9 ka. 477 

The dating result of moraine BDO-4 from the lower lateral side (QM 2) was 17.3 ± 1.25 ka, 478 

correspond to the late glacial. The dating results of moraines BDO-5 and BDO-6 from the 479 

higher lateral side (QM 3) (31.38 ± 3.48 ka and 25.78 ± 1.98 ka, respectively) agree with the 480 

ESR results (38 ± 6 ka, 31 ± 6 ka, 26 ± 4 ka, and 25 ± 1 ka), which suggests that the moraines 481 

formed during the LGM and correspond to MIS 2 (Zhang and Chai 2016). The cirque contains 482 

the least amount of moraine (QM1), which is determined to be from the Neoglaciation / Little 483 

Ice Age based on relative geomorphology, and corresponds to MIS 1.  484 

5.3 Comparison with glaciation in neighbouring mountains 485 

Our glacial chronology derived using ESR and OSL datings in the middle section of the 486 

Tayantaweng Shan is consistent with glacial chronologies in nearby mountain ranges, the 487 

Hengduan Mountains and the southeastern Tibetan Plateau. This is confirmed by our five ESR 488 

ages of (192 ± 51)-(240.3 ± 49.8) ka (MIS 6) from the Quzha Valley and Juequ Valley. The MIS 489 

6 glacial advance is apparently the earliest glaciation recorded with numerical ages in this 490 

area. During this period, the glaciers in the Quzha Valley, Juequ Valley, and Ruqu Valley 491 

advanced approximately 16–35 km down- valley and reached elevations of 4300-4800 m a.s.l. 492 

It was determined that the glacier extent in the valleys on the side of the Yuqu river had 493 

generally reached valley mouths during the maximum glaciation period. There is a 494 

comparatively high glaciofluvial terrace in the upper reaches of Yuqu River; it is approximately 495 

30 m in height, with might be appropriate to the MIS 6 glacial advance (Yang et al. 1983). 496 

There is an obvious difference with respect to the extent of different glaciations in both the 497 

Hengduan Mountains and southeastern QTP (Figure 11). In several adjacent mountains with 498 

absolute chronological data, the dating results of the Shaluli Shan (Fu et al. 2014), Daocheng 499 

( Zheng and Ma 1995), Baimaxue Shan (Zhang et al. 2015), Yulong Mountain (Zheng, 2000; 500 

Zhao et al. 1999), and Nyainqêntanglha Mountain (Zhao et al. 2002) show preserved moraines 501 

from the Zhonglianggan glaciation (corresponding to MIS 12), the Kunlun glaciation 502 

(corresponding to MIS 16/18), when glaciers reached their maxima. On the other hand, the 503 

initial glaciation in the Gongga Mountains (Wang et al. 2013) and Tanggula Mountains (Owen 504 

et al. 2005; Wang et al. 2007), as in the middle section of the Tayantaweng Shan, was the 505 

penultimate glaciation (MIS 6). All these areas are influenced by the southwest monsoon, but 506 

there are obvious differences in the timing of maximum glaciation; these possibly correlate to 507 

the differences in the time, rate, and amplitude of the tectonic activity in various mountains. 508 

In addition, the Bodui Zangbo was located approximately 130 km from the middle part of 509 

the Tayantaweng, and the time of maximum glaciation agrees with Tayantaweng Shan. 510 

However, the valley glacier extent reached 100 km during the MIS 6 in this area (Zhou et al. 511 

2010), which was far great than that of Tayantaweng Shan. These two major areas were 512 

influenced by the south Asian monsoon. However, there were obvious differences in the 513 

glacier extents of the various glacial periods. Precipitation data show a decrease from between 514 

approximately 800 to 1000 mm (Bomi) to between approximately 400 to 500 mm (Chang Du) 515 

(Li et al. 1986). The spatial variations in glacier extent were possibly caused by spatial 516 

differences in precipitation. These findings also indicated that mountain barriers had a clear 517 



effect limiting precipitation and thus glacial development in the middle section of the 518 

Tayantaweng. 519 

The ESR ages suggest a glacial advance during MIS 3 in the middle section of the 520 

Tayantaweng Shan. Glacial advances with similar ages have been reported in the Hengduan 521 

Mountains and southeastern QTP, including the Qianhu Mountains (Zhang et al, 2014), Queer 522 

Mountains (Xu et al, 2010), Gongga Mountains (Wang et al. 2013), Shaluli Shan (Xu and Zhou 523 

2009), Zheduo Mountains (Xu et al. 2005), and Tanggula Mountains (Wang et a. 2007). From 524 

the expanse of the glaciers, the MIS 3 glaciers in these regions are bigger than the MIS 2 525 

glaciers. These features are observed in glacier growth occurring in the same period at the 526 

Hengduan Mountains and surrounding mountains (Ou et al. 2014; Wang et al. 2013). A 527 

comparative study of pollen data from Rencuo Lake and records of surrounding regions show 528 

annual rainfall of only 250 mm during the LGM in southeastern Tibet, which is 40% of what it 529 

is today. The climate of the southeastern QTP was also cold; January temperatures were lower 530 

by 7-10 ℃ than at present, and July temperatures were 2-5 ℃ lower (Tang et al. 2004). 531 

Studies on the pollen of Rencuo Lake and RM core of the Zoige Basin show enlarged desert 532 

steppes on the QTP during the LGM, occupying most of the ground and forcing the forests to 533 

the southeastern margin (Tang et al. 1998; Shi 2002). A paleoglacial study of the Bodoi 534 

Zangbo river basin shows a 6.6 ℃ temperature drop during LGM compared to the present, 535 

40% less precipitation, and a decrease in the ELA by 600 m (Zhou et al. 2010). Based on the 536 

above analyses, the Southeastern QTP and Hengduan Mountains are marked by arid and cold 537 

weather during the LGM, with violent fluctuations. However, the climate of the eastern and 538 

southern QTP during mid-MIS 3 was generally cold and humid under the effects of the south 539 

Asian monsoon (Shi and Yao 2002).  540 

6 Conclusions 541 

This study provides conclusive data on the geomorphic features and Quaternary glacial 542 

history of the middle section of the Tayantaweng Shan, on the southeastern QTP. The major 543 

outcomes of this study are as follows: 544 

Approximately 13000 km2 was mapped for a geomorphologic map (1:440,000) of 545 

Quaternary glaciations. The results showed that typical glacial erosional and depositional 546 

landforms were preserved above 4300 m. We present new ESR and OSL chronological ages 547 

from glacial landforms. In combination with previous results, we can find that the middle 548 

section of Tayantaweng Shan has preserved five stages of glaciations: MIS 6 (192 ± 51 - 240.3 ± 549 

49.8 ka), MIS 3 (51.78 ± 10.62 - 55 ± 8 ka), MIS 2 (25 ± 1 - 38 ± 6 ka), the late stage of the last 550 

glacial period (17.3 ± 1.25 ka), all Late Pleistocene, plus the Neoglaciation / Little Ice Age. This 551 

glacial chronology is consistent with glacial chronologies from the well-studied Hengduan 552 

Mountains and southeastern QTP, which indicates that the timing of Quaternary glaciations 553 

across these areas was broadly affected by similar climate. 554 

Glaciation advances during the last glaciation were successively more restricted from MIS 555 

3 to MIS 2, which was perhaps in response to the constant fluctuations in temperature and 556 

precipitation in the northern hemisphere during this period. In MIS 2 glaciers in this region 557 

were smaller than in MIS 3, probably reflecting the cold and dry climate conditions.    558 
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Figures 717 

Fig1. Overview map of the Tibetan Plateau showing the location of the Tayantaweng Shan in the 718 

southeastern part of the Tibetan Plateau. The glaciers (white) are based on Arendt et al. (2012) with 719 

minor updates. 1. Gongga Mountain; 2. Queer Shan; 3. Daocheng; 4. Yulong Mountain; 5. Qianhu 720 

Mountain; 6. Baima Mountain; 7. Tayantaweng Shan; 8. Nyaiqentanglha; 9. Tanggula; 10. Mayaxue 721 



Shan; 11. Anyemaqen Mountain 722 

Figure 2. (A) Distribution of glacial deposits, glacial geomorphology and the track of the field valley; (B) 723 

Transverse valley profiles (upper panels) and longitudinal valley profile (lower panel). 724 

Figure 3. Field photographs showing: a) Contemporary glacier and front deposits in the source of the 725 

Quzha Valley; b) Internal terminal moraine QM1, cirque threshold, and horn in the cirque above 726 

Qinggulong Village; c) Roche moutonnée at the high lateral moraine of the Ruqu Valley; d) Hanging 727 

valley in the Juequ Valley and deposits at valley mouth; e) Juequ U-type valley, and moraine ridge at 728 

both sides (JM4); f) Terminal moraine, moraine platform, and arête at the intersection location of the 729 

upstream trough valley of the Zhaqu Valley; g) JM3 terminal moraine in the Juequ Trough Valley; h) 730 

Severely weathered granite gravel on the crest of the terminal moraine JM4 at the valley mouth of the 731 

Juequ Valley; i) Moraine and surface scratches on the crest of the terminal moraine RM4 at the mouth of 732 

the Ruqu Valley. 733 

 734 

Figure 4. Glacial deposit distribution of the (A) Quzha Valley; (B) Juequ Valley; (C) Ruqu Valley. 735 



 736 

Figure 5. (A) Sediment characteristic diagrams and ESR sampling point for Quzha Valley and 737 

Qinggulong Village (Zhang and Chai 2016); (B) Longitudinal section of the Qinggulong Village. 738 

 739 



Figure 6. Upper QM2 moraine (yellow line) and QM3 moraine ridge (blue line) in Qinggulong Village, 740 

as viewed from the crest of the QM3 terminal moraine. 741 

Figure 7. (A) Sediment characteristic diagrams and ESR sampling point for Juequ valley; (B) 742 

Longitudinal section of the Quaternary glacial landforms in the Juequ Valley. 743 



 744 

Figure 8. (A) Sediment characteristic diagrams for Ruqu valley; (B) Longitudinal section of the 745 

Quaternary glacial landforms in the Ruqu Valley. 746 



 747 

Figure 9. Representative data of De determination by the sensitivity-corrected MAR protocol. Decay 748 

curves of natural and regeneration dose OSL intensity (Li) and the corrected OSL (Li/Ti) dose-response 749 

curves and De determination. 750 

 751 



Figure 10. Relations between ESR intensity and irradiation dose of the samples from the Tayantaweng 752 

Shan. 753 

 754 

Figure 11. Glacial chronology data from different mountain areas: a. Nyaiqentanglha (Zhao et al. 2002); 755 

b. Bomi (Zhou et al. 2010); c. Tanggula (Owen et al. 2005; Wang et al. 2007); d. Baimaxue Shan (Zhang 756 

et al. 2015); e. Yulong Mountain (Zheng 2000); f. Gongga Mountain (Wang et al. 2013); g. Tayantaweng 757 

Shan; h. Shaluli Mountain (Xu et al. 2009); i. Qianhu Mountain (Zhang et al. 2014); J. Queer Shan (Xu 758 

et al. 2010 ); K. Zheduo Mountain (Xu et al. 2005); l. Anyemaqen Mountain (Owen 2003); m. Mayaxue 759 

Shan (Liu et al. 2015). Stacked marine δ18O curves of Lisiecki and Raymo (2005). 760 

 761 

Tables 762 

Table 1. OSL dating results in the Qinggulong valley 763 

 764 

OSL 

Number 

Elevation 

/m 

Position 

Depth 

(m) 

Samples 

U 

/ppm 

Th 

/ppm 

K (%) 

Water 

content 

/% 

Dose 

rate 

GY/Ka-1 

De /GY Dating /ka 

BDO-4 4644 

97°08′19.99″E 

30°27′05.12″N 

0.65 silttil 2.56 12 1.54 0.59 3.428 59.3±4.3 17.3±1.25 



BDO-5 4867 

97°08′04.04″E 

30°26′35.42″N 

0.7 silttil 2.8 12.9 1.47 0.93 3.476 

109.06±

12.1 

31.38±3.48 

BDO-6 4922 

97°07′44.36″E 

30°26′34.54″N 

1.0 silttil 2.83 13 1.71 3.8 3.645 

93.97±7.

2 

25.78±1.98 

 765 

Table 2. ESR dating results as well as the correlated parameters in the Tayantaweng Shan 766 

 767 

ESR 

Number 

Elevation 

/m 

Position Samples 

Depth 

/m 

U 

μg/g-1 

Th 

μg/g-1 

Ka 

μg/g-1 

Water 

content % 

De 

/Gy 

Dose rate 

GY/Ka-1 

age 

/ka 

JQE-01 4598 

96°53′32.″E 

30°38′16″N 

silt 2 9.29 105 3.63 2.6 701±143 13.53 51.78±10.62 

JQE-02 4506 

96°53′33.″E 

30°38′04″N 
silt 0.8 7.52 84.1 4.17 1.7 2977±585 12.38 240.3±49.8 

JQE-03 4491 

96°53′19.″E 

30°38′29″N 
silt 1.2 6.36 62.5 4.24 2.05 2258±226 10.61 212±21 

 768 
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