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ABSTRACT  23 

Constraining radiocarbon reservoir age offsets is critical to deriving accurate calendar-24 

age chronologies from radiocarbon (14C) dating of materials which did not draw carbon directly 25 

from the atmosphere. The application of 14C dating to such materials is severely limited in 26 

hydrologically sensitive environments like the Black Sea because of the difficulty to quantify 27 

reservoir age offsets, which can vary quickly and significantly through time, due to the 28 

dynamics of the biogeochemical cycling of carbon. Here we reconstruct radiocarbon reservoir 29 

age offsets (Rshell-atm) of Holocene bivalve shells from the coastal Black Sea relatively to their 30 

contemporaneous atmosphere. We show that the radiocarbon reservoir age offset and the stable 31 

carbon isotope composition of bivalve shells are linearly correlated in this region. From a 32 

biogeochemical standpoint, this suggests that inorganic stable carbon isotope and radiocarbon 33 

compositions of Black Sea coastal waters are controlled by the balance between autochthonous 34 

primary productivity and heterotrophic respiration of allochthonous pre-aged terrestrial organic 35 

matter supplied by rivers. This provided an important implication for Black Sea geochronology 36 

as the reservoir age offset of 14C-dated bivalve shell can be inferred from its stable carbon 37 

isotope composition. Our results provide a fundamental and inexpensive geochemical tool 38 

which will considerably improve the accuracy of Holocene calendar age chronologies in the 39 

Black Sea.  40 

 41 

INTRODUCTION 42 

The radiocarbon reservoir age offset (R) of an organism is the difference between its 43 

14C age and that of the atmospheric CO2 at the time this organism was alive (Stuiver and Polach, 44 

1977; Ascough et al., 2005; Jull et al., 2013; Soulet et al., 2016). Radiocarbon reservoir age 45 

offsets are in “14C years”. Very importantly, any 14C age obtained from an organism that did 46 

not incorporate its carbon directly from the atmosphere must be corrected for a reservoir age 47 
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offset to provide an accurate estimate of its calendar age using the atmospheric radiocarbon 48 

calibration curve (Reimer et al., 2013). These corrections are crucial as they can range from a 49 

few hundreds to thousands of 14C years ( Siani et al., 2000, 2001; Bondevik et al., 2006; Kuzmin 50 

et al., 2007; Soulet et al., 2011a).  51 

Recent studies suggested that some geochemical characteristics of an organism could 52 

be related to its reservoir age offset. For instance, it has been shown that the radiocarbon 53 

reservoir age offset of modern Baltic Sea Macoma bivalve shell was inversely related to its 54 

shell 87Sr/86Sr ratio (Lougheed et al., 2016). Accurately determining the calendar age of 14C-55 

dated archeological remains of human populations that draw their carbon from various sources 56 

as a result of mixed diet is challenging. For example, individuals from a population that mostly 57 

eats fish can have their stable carbon and nitrogen compositions impacted (Schoeninger et al., 58 

1983; Schoeninger and Deniro, 1984) and even exhibit a reservoir age offset (Dewar and 59 

Pfeiffer, 2010; Olsen et al., 2010; Ascough et al., 2012; Wood et al., 2013). It has been shown 60 

from two archeological sites from the region of Lake Baikal that the radiocarbon reservoir age 61 

offset of human bones was linearly correlated to their nitrogen isotopic composition (δ15N) 62 

(Schulting et al., 2014), and for one site to both their δ15N and stable carbon isotopic 63 

compositions (δ13C) (Bronk Ramsey et al., 2014; Schulting et al., 2014). Another study showed 64 

that radiocarbon reservoir age offset of human bones from a medieval Icelandic cemetery can 65 

be inferred using the nitrogen, carbon and sulfur isotopic compositions of the bones (Sayle et 66 

al., 2016). These studies are fundamental in the field of geochronology because they showed 67 

that it is possible to untangle the very complicated reservoir age offset correction issue. 68 

The Black Sea is currently connected to the global oceans solely via the narrow and 69 

shallow Bosporus Strait (Fig. 1), leading to restricted water exchanges with the Mediterranean 70 

Sea and permanent stratification (Özsoy and Ünlüata, 1997). During the last glacial lowstand 71 

and for much of the deglacial sea-level rise, the Mediterranean connection was closed and the 72 
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Black Sea was a large lake (e.g., Ross et al., 1970; Badertscher et al., 2011). The understanding 73 

of the glacial-deglacial hydrologic changes of the Black Sea has been recently refined (Major 74 

et al., 2006; Bahr et al., 2006; Kwiecien et al., 2009; Soulet et al., 2011a, 2013), as well as of 75 

its Holocene evolution (e.g., van der Meer et al., 2008; Giosan et al., 2012; Coolen et al., 2013). 76 

However, a robust chronological framework for the Holocene Black Sea is still lacking, thereby 77 

limiting interpretation and still precluding an understanding of the sequence of events that led 78 

to the reconnection of the Black Sea to the Mediterranean Sea that occurred sometime during 79 

the early Holocene (Ryan et al., 1997; Aksu et al., 2002; Major et al., 2006; Giosan et al., 2009; 80 

Soulet et al., 2011b; Yanko-Hombach et al., 2014). The uncertainty surrounding the timing of 81 

the reconnection – and by extension, the Black Sea chronological framework – is related to 82 

unconstrained radiocarbon reservoir age offset correction. This weakness has long been 83 

recognized (Jones and Gagnon, 1994; Giosan et al., 2009; Kwiecien et al., 2008; Soulet et al., 84 

2011a) but it has never been fully solved.  85 

Here, we reconstruct radiocarbon reservoir age offsets of bivalve shells from the coastal 86 

Black Sea and relate them to their δ13C values, in an attempt to define radiocarbon reservoir 87 

ages on the basis of the relationship, with the potential to considerably improve the 88 

chronological framework of the Black Sea sediment archives. 89 

 90 

METHODS AND SAMPLES 91 

Reconstructions of radiocarbon reservoir age offsets typically rely upon 14C 92 

determinations on terrestrial/marine(or lacustrine) pairs or multiple pairs (Ascough et al., 2005; 93 

Jull et al., 2013; Soulet, 2015; Soulet et al., 2016). From cores collected in the western coastal 94 

Black Sea (Fig. 1), five single pairs of articulated bivalve shells and pieces of terrestrially-95 

derived plant material were sampled from the same sediment layers in order to ensure 96 
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contemporaneous deposition, and their 14C ages and stable carbon isotope values were 97 

determined. 98 

 99 

Radiocarbon and stable carbon isotope measurements 100 

As a pre-cleaning, the bivalve shells were sonicated and rinsed in deionized water at 101 

least 10 times. Then the shell carbonate was converted into CO2 following National Ocean 102 

Sciences Accelerator Mass Spectrometry (NOSAMS) facility’s standard phosphoric acid 103 

hydrolysis procedure (McNichol et al., 1994). The analyzed terrestrial plant materials were 104 

subjected to NOSAMS standard acid-base-acid pre-treatment and converted to CO2 through 105 

the sealed tube combustion method (McNichol et al., 1994). The CO2 was then converted to 106 

graphite and analyzed for its 14C composition by Accelerator Mass Spectrometry (AMS) at 107 

NOSAMS. Two shell samples and two terrestrial plant material samples were prepared and 108 

graphitized at Centre de Datation par le RadioCarbone (CDRC, Lyon, France) following 109 

procedures similar to those performed at NOSAMS and measured by AMS at the Laboratoire 110 

de Mesure du Radiocarbone (LMC14-ARTEMIS, Saclay, France). Results are corrected for 111 

the 13C/12C ratio as measured on the AMS (Santos et al., 2007) and are reported in Fm notation. 112 

Fm is identical to the ASN/AON metric (Stuiver and Polach, 1977), the 14aN notation (Mook and 113 

van der Plicht, 1999), and to the F14C notation (Reimer et al., 2004). Corresponding 114 

conventional 14C ages (ρ) reported in 14C years Before Present (AD 1950) were calculated 115 

according to: 116 

ρ =  −8033 ln(Fm) (1) 117 

The stable carbon isotope values of the dated samples were obtained from a 10%-118 

aliquot taken out of the produced CO2 using an Optima or VG Prism series II stable Isotope 119 

Ratio Mass Spectrometer (IRMS) at NOSAMS. 13C/12C ratios are reported in the δ13C notation 120 

(‰ relative to Vienna Pee Dee Belemnite, or VPDB). 121 
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 122 

Reservoir age offset calculation 123 

Radiocarbon reservoir age offsets of the bivalve shells, relative to their 124 

contemporaneous atmosphere (Rshell-atm), were calculated based on the 14C ages of the paired 125 

bivalve shell (ρshell) and terrestrially-derived plant material (ρplant) (e.g., Ascough et al., 2005; 126 

Jull et al., 2013; Soulet et al., 2016): 127 

Rshell−atm =  ρshell − ρplant (2) 128 

The 14C ages of the terrestrially-derived plant material are assumed to correspond to the 129 

14C age of the atmosphere at the time the bivalves were living. Five Rshell-atm values were 130 

calculated according to this method, based on the following paired samples of Black Sea shells 131 

and terrestrially-derived plant materials found co-located in the same sediment layer: 132 

i) A pair of an articulated juvenile Dreissena sp. bivalve and a sample of fragile foliar 133 

material, picked from a peat where the bivalve was found embedded and dated to 10,600–134 

11,080 (95%) cal yr BP (core SG in the modern Danube delta). The bivalve, being a juvenile, 135 

was small and could have easily been transported onto the marsh surface where the peat was 136 

developing.  137 

ii) A pair of a Monodacna caspia bivalve (single valve) and a fragile piece of 138 

Phragmites reed dated to 9,040–9,420 (95%) cal yr BP (core MD04-2774; offshore the modern 139 

Danube delta). 140 

 iii) Two paired samples of an articulated Mytilus galloprovincialis bivalve and 141 

charcoal from a ~15cm-thick archeological layer recovered in several cores (SOZ-7 cores; 142 

Alepu lagoon, Bulgaria) (Flaux et al., 2016). The archeological site, dated to 5,050–5,300 143 

(95%) cal yr BP (beginning of Early Bronze Age), was a pile-dwelling settlement recently 144 

discovered in the present Alepu lagoon (Flaux et al., 2016). The piles were 1 m long and 5 to 145 
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6 cm diameter and are made of oak. The bark was still in place showing that the wood was used 146 

directly after felling. The small diameter of the piles suggest that they were less than 40 years 147 

old at felling (Flaux et al., 2016). The piles indicate the beginning of the pile-dwelling 148 

occupation and were dated to 4550 ± 30 14C yr BP. The charcoal pieces that we used to calculate 149 

the reservoir age offsets were found in the archeological layer of the site occupation that lasted 150 

less than 80 years (Flaux et al., 2016). The two charcoal samples used were dated to 4525 ± 30 151 

and 4475 ± 30 14C yr BP. These 14C ages are not significantly different from those of the piles 152 

(Flaux et al., 2016). This suggests that the charcoals must originate from wood that lived during 153 

the occupation, and thus characterized by very little old wood effect, if any.  154 

iv) A pair of an articulated Dreissena polymorpha bivalve and a sample of small 155 

fragments of twigs dated to 4,540–4,820 (95%) cal yr BP (core NE-1 in the inner Danube delta). 156 

One additional Rshell-atm value was obtained from the calendar age of a mussel (Mytilus 157 

galloprovincialis) collected alive in 1931 (offshore of west Crimea) (Jones and Gagnon, 1994). 158 

In this case, the 14C composition of the atmosphere in 1931 was obtained from linear 159 

interpolation of the radiocarbon calibration curve IntCal13 (Reimer et al., 2013), then the Rshell-160 

atm value was calculated according to the above equations (substituting the subscript “plant” by 161 

“IntCal13”). The radiocarbon reservoir age offset of two bivalve shells collected alive during 162 

the 19th century in the Black Sea are reported in Siani et al. (2000) but stable carbon isotopes 163 

were not published, and thus cannot be included in this study.  164 

All radiocarbon and reservoir age offset data are compiled in the supplementary 165 

material (Table S1). 166 

 167 

RESULTS AND DISCUSSION 168 
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Calculated Rshell-atm values ranged widely between 340 and 1,100 14C years. This finding 169 

demonstrates that reservoir age offsets varied substantially in Black Sea coastal environments 170 

during the Holocene. The δ13Cshell values also ranged widely between –8 to +1 ‰ VPDB. We 171 

also found that the Rshell-atm values are linearly correlated to the δ13Cshell values (r2=0.87; p-172 

value < 0.01; n=6) (Fig. 2):  173 

Rshell−atm = 473(±58) − 68(±13) × δ13Cshell (3) 174 

 175 

Biogeochemical significance of the Rshell-atm-δ13Cshell line 176 

In order to understand the biogeochemical implications of the line, we explore the 177 

potential 14C-13C end-members of the coastal Black Sea. Here, we use the isotopic form of the 178 

reservoir age offset. This metric called the δ14R value (Soulet et al., 2016) is calculated based 179 

on the exact same 14C measurements used to calculate Rshell-atm: 180 

δ14Rshell−atm = 1000 (
Fmshell

Fmplant
− 1) ‰ (4) 181 

The link between δ14R and R is straightforward: 182 

Rshell−atm = −8033ln (
Fmshell

Fmplant
) (5) 183 

The δ14R-δ13C relationship (Fig. 3) is also a line (r2=0.87; p-value < 0.01; n=6): 184 

δ14Rshell−atm = −57.3(±6.6) + 7.8(±1.5) × δ13Cshell (6) 185 

Over the observed range of δ13C values (–8 to +1 ‰ VPDB), the difference in the Rshell-186 

atm inferred from Eq. 3 or Eq. 6 is minimal (<10 14C years). Instead, for very negative δ13C 187 

values the difference in calculated Rshell-atm can be up to thousands of 14C years. This is because 188 

Rshell-atm is a logarithmic function of the Fm values. This is why we must use the δ14R-δ13C 189 

relationship to understand the biogeochemical processes explaining the line. 190 
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Bivalves form their carbonate shell primarily from the dissolved inorganic carbon 191 

(DIC) component of the water column, over several months to a few years as longevity of the 192 

bivalves studied here (Mytilus galloprovinciallis and Dreissena rostriformis) is ~10 years and 193 

probably less (Karatayev et al., 2006; Okaniwa et al., 2010). Thus, the shell isotopic 194 

composition reflects an integrated carbon isotopic composition of the DIC of the water in which 195 

they formed (Leng and Marshall, 2004). The δ14Rshell-atm-δ13Cshell line (Eq. 6) indicates a 13C 196 

enrichment of the water DIC when the water DIC 14C composition becomes closer to that of 197 

the atmosphere (i.e., δ14Rshell-atm becomes closer to 0‰). In other words, the 14C composition 198 

of the water DIC becomes equilibrated with that of the atmosphere, when its stable isotope 199 

composition becomes enriched in 13C. The enrichment in 13C may also result in DIC stable 200 

carbon isotope composition equilibration with that of the atmosphere but with a fractionation 201 

in δ13C from atmospheric CO2 to bicarbonate of 7 to 8‰ (Mook et al., 1974; Romanek et al., 202 

1992). 203 

The trend of the line suggests that the composition of the DIC of Black Sea coastal 204 

waters may have been driven mainly by the balance between autochthonous primary 205 

productivity and heterotrophic respiration of 14C-depleted (pre-aged) allochthonous terrestrial 206 

organic matters supplied by rivers. Indeed, the increased surface primary productivity during 207 

phytoplankton photosynthesis leads to 13C enrichment in the DIC (Hollander and McKenzie, 208 

1991; Leng and Marshall, 2004). This also leads to increased transfer of atmospheric CO2 to 209 

surface water via green algae and phytoplankton demand for CO2 (Deuser, 1970; Hollander 210 

and McKenzie, 1991; Li et al., 2017), and may result in an equilibration of the surface water 211 

14C composition with that of the atmosphere, meaning that δ14Rshell-atm tends towards 0‰. The 212 

latter is supported by 14C activity measurements of the DIC of Black Sea coastal waters in May 213 

2004 showing that it had a similar 14C activity to that of the atmosphere on the day of sampling 214 

(Fontugne et al., 2009), with δ14R values of up to –4‰ (equivalent to a reservoir age offset of 215 
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only ~30 14C years), i.e, very close to 0 ‰. It is also supported by the presence of bomb 14C in 216 

short chain saturated fatty acids and alkenones – both produced by phytoplankton – extracted 217 

from core top sediments collected in the early 2000s from the coastal Black Sea (Kusch et al., 218 

2010, 2016).     219 

The primary productivity vs. heterotrophic respiration balance hypothesis is further 220 

supported by the composition of the end-members defining the δ14Rshell-atm-δ13Cshell linear 221 

relationship. Indeed, assuming a complete productivity-driven equilibration of the surface 222 

water with the atmosphere, i.e., δ14Rshell-atm = 0‰, the line predicts a δ13Cshell value of 6.0 ± 223 

1.9‰ VPDB for the carbonate phase (i.e., the mineral phase of the shell). At a range of 224 

temperatures typical for Black Sea surface waters, the δ13C of the carbonate phase is enriched 225 

by ~11-13‰ compared to CO2 (Romanek et al., 1992). Thus, the δ13C value of a carbonate 226 

derived from atmospheric CO2 with a pre-industrial δ13CO2 value of –6.4‰ with respect to 227 

VPDB (Schmitt et al., 2012) would be of 4.5 to 6.5‰ VPDB. This range is in excellent 228 

agreement with the shell δ13C value of 6.0 ± 1.9‰ VPDB, predicted by the line in the case of 229 

CO2 equilibration of the surface water with the atmosphere (Fig. 3). In addition, in the case of 230 

no autochthonous productivity at all, the organic matter utilized during heterotrophic 231 

respiration would have δ13C values of –25 to –27‰ VPDB, typical for Black Sea terrestrial 232 

organic matter (Kusch et al., 2010). Carbonate δ13C originating from pure respiration of 233 

terrestrial organic matter would thus range around –12 to –16‰ VPDB (Romanek et al., 1992), 234 

corresponding to predicted δ14Rshell-atm values of –150 to –180‰. These latter values are 235 

compatible with surface sediment δ14Rsed-atm of –200‰, calculated from total organic carbon 236 

14C ages offshore of the Danube River (Kusch et al., 2010) (Fig. 3). Mineralization of pre-aged 237 

terrestrial organic matter by microbial respiration occurs in temperate lakes and streams of 238 

Quebec (McCallister and del Giorgio, 2012). Our results suggest that pre-aged terrestrial 239 
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organic matter as old as ~1500 14C years supplied by rivers is also converted to CO2 by 240 

heterotrophic bacteria in the Black Sea coastal waters.         241 

A hard water effect (HWE) origin, i.e., reservoir age offset mainly explained by the 242 

contribution of 14C-depleted riverine DIC from the dissolution of outcropping carbonates, 243 

seems unlikely. Indeed, carbonate minerals can be weathered through two main pathways. The 244 

carbonic acid pathway:  245 

CaCO3  + CO2,g + H2O → Ca2+ + 2HCO3
− (7) 246 

This pathway involves CaCO3 and atmospheric CO2 with δ14R values of –1000 and 0‰ 247 

respectively, and δ13C values of ~0 and –6.5‰ VPDB (pre-industrial). Thus, the carbonate 248 

derived from the resulting DIC (~HCO3
−) would have a δ13C value of –2 to 0‰ VPDB (Romanek 249 

et al., 1992) and δ14RHWE-atm of –500‰ (Fig. 3). 250 

The second carbonate weathering pathway involves sulfuric acid, itself produced by the 251 

oxidation of sulfide minerals like pyrite (Calmels et al., 2007):  252 

2CaCO3  + H2SO4 → 2Ca2+ + 2HCO3
− + SO4

2− (8) 253 

In this case the carbonate derived from the resulting DIC would have a δ13C value of ~0‰ 254 

VPDB and δ14RHWE-atm would be of –1000‰. None of these endmembers fits the coastal Black 255 

Sea δ14R-δ13C line (Fig. 3).  256 

Oxidation of old methane could be another explanation, as it seems to impact on the 257 

14C composition of DIC of the present day Black Sea waters in the deeper part of the basin 258 

(slope and deep basin) (Fontugne et al., 2009). However, for very negative δ13C values typical 259 

of methane oxidation (e.g. –60‰; Kessler et al., 2006), the extension of the line predicts a 260 

δ14Rshell-atm of –400 to –450‰, in disagreement with δ14R values for Black Sea methane being 261 

as low as –850‰ (Kessler et al., 2006). Thus, oxidation of methane is unlikely to explain the 262 

reservoir age offset in the coastal settings of the western Black Sea. 263 
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 264 

Improving Black Sea geochronology 265 

The coastal Black Sea Rshell-atm-δ13Cshell line (Eq. 3; Fig. 2) has fundamental implications 266 

for the Black Sea geochronology. It is now possible to use bivalve shell δ13C values as a proxy 267 

for reconstructing the reservoir age offset in the coastal Black Sea. Moreover, this δ13C-based 268 

tool can be applied on the same bivalve shell that is being 14C dated, leading to a customized 269 

reservoir age offset correction, which is crucial to providing an accurate estimate of the 270 

calendar age for the 14C-dated shell. Using this proxy is inexpensive since most 14C laboratories 271 

can provide the δ13C values of the dated material. One should note that the δ13C determination 272 

must be performed by IRMS on the CO2 produced from the dated material and reported vs. 273 

VPDB. The δ13C value measured on the AMS during radiocarbon measurement should not be 274 

used because of potential large instrumental fractionation effects (Santos et al., 2007).  275 

At this stage of the research, i) any vital effect on the δ13C value seems of second order 276 

importance, but the use of the Rshell-atm-δ13Cshell line should be restricted to bivalve shells and 277 

for δ13C values of 2 to –10‰; ii) the application of the line should be restricted to the Holocene, 278 

in coastal to near coastal settings of the western Black Sea; iii) the line applies for both marine 279 

and lacustrine periods of the basin evolution – suggesting that the composition of the 280 

endmembers did not change much through the Holocene and that the pathway of terrestrial 281 

carbon mineralization (from Black Sea lacustrine or marine biotic communities) is also of 282 

second order importance.         283 

 284 

CONCLUSION 285 

Our results provide new pieces of information about carbon cycling in the coastal Black 286 

Sea. They suggest that the balance between primary productivity and heterotrophic respiration 287 

of terrestrial carbon supplied by rivers is governing the carbon isotopic composition of the 288 
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Black Sea coastal waters since early Holocene. As a consequence, they provide an invaluable 289 

δ13C-based tool to quantify reservoir age offset for the Holocene Black Sea coastal settings. 290 

This will undoubtedly help refine our understanding of the hotly debated last reconnection of 291 

the Black Sea and more generally provide constrained calendar age-depth models to the 292 

numerous studied sediment archives of the Black Sea. Other basins, e.g., the Caspian Sea, the 293 

Aral Sea or large lakes, may potentially yield such correlation between the 14C reservoir age 294 

offset and δ13C value of shells and deserve future investigation. This study, in line with other 295 

pioneering studies (Bronk Ramsey et al., 2014; Lougheed et al., 2016; Schulting et al., 2014), 296 

shows that correlations between the reservoir age offset and another geochemical parameter 297 

from the same material must be sought, with the aim of untangling the problem of reservoir 298 

age offset when deriving calendar age chronologies from non-atmospheric 14C measurements.         299 
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FIGURES AND FIGURE CAPTIONS 483 

 484 

Figure 1: Western Black Sea area with sample locations and labels (Coordinates are available 485 

in Supplementary material; Table S1).  486 
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 487 

Figure 2: Linear regression of reservoir age offset (Rshell-atm) and δ13C of Black Sea bivalve 488 

shells and its 95%-confidence interval.  489 

 490 
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 491 

Figure 3: Linear regression of δ14Rshell-atm and δ13C of Black Sea bivalve shells (green squares; 492 

r2=0.87; p-value<0.01; n=6) – same samples as in Fig. 2. Carbonate-equivalent endmembers 493 

of: i) CO2 atmosphere-water equilibration (blue rectangle), ii) CO2 from heterotrophic 494 

respiration of terrestrial organic matter supplied by rivers (yellow rectangle), iii) hard water 495 

effect from dissolution of outcropping carbonates by carbonic acid or sulfuric acid (red 496 

rectangles), and iv) CO2 from oxidization of methane (grey rectangle). Vertical dotted line is 497 

δ13C = 0 ‰. 498 

 499 

 500 

 501 

 502 

 503 



24 
 

SUPPLEMENTARY MATERIAL – TABLE S1 504 

 505 


