1	Using stable carbon isotopes to quantify radiocarbon reservoir age												
2	offsets in the coastal Black Sea												
3													
4	Guillaume Soulet ^{1†,*} , Liviu Giosan ¹ , Clément Flaux ² , Valier Galy ³												
5													
6	¹ Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 266 Woods Hole Road,												
7	Woods Hole, MA 02543, USA												
8	² Centre National de la Recherche Scientifique EcoLab (Laboratoire d'Ecologie Fonctionnelle et												
9	Environnement), Université Paul Sabatier, Toulouse, France												
10	³ Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole												
11	Road, MA 02543, USA												
40													
12													
13													
14	*Corresponding author. E-mail address: guillaume.s.soulet@durham.ac.uk, Tel. +44 191 33 41957												
15	[†] Current address: Department of Geography, Durham University, South Road, Durham DH1 3LE, United												
16	Kingdom												
17													
18													
19													
20													
24													
21													
22													

23 ABSTRACT

Constraining radiocarbon reservoir age offsets is critical to deriving accurate calendar-24 age chronologies from radiocarbon (¹⁴C) dating of materials which did not draw carbon directly 25 from the atmosphere. The application of ¹⁴C dating to such materials is severely limited in 26 hydrologically sensitive environments like the Black Sea because of the difficulty to quantify 27 reservoir age offsets, which can vary quickly and significantly through time, due to the 28 dynamics of the biogeochemical cycling of carbon. Here we reconstruct radiocarbon reservoir 29 age offsets (R_{shell-atm}) of Holocene bivalve shells from the coastal Black Sea relatively to their 30 contemporaneous atmosphere. We show that the radiocarbon reservoir age offset and the stable 31 carbon isotope composition of bivalve shells are linearly correlated in this region. From a 32 33 biogeochemical standpoint, this suggests that inorganic stable carbon isotope and radiocarbon compositions of Black Sea coastal waters are controlled by the balance between autochthonous 34 primary productivity and heterotrophic respiration of allochthonous pre-aged terrestrial organic 35 36 matter supplied by rivers. This provided an important implication for Black Sea geochronology as the reservoir age offset of ¹⁴C-dated bivalve shell can be inferred from its stable carbon 37 isotope composition. Our results provide a fundamental and inexpensive geochemical tool 38 which will considerably improve the accuracy of Holocene calendar age chronologies in the 39 Black Sea. 40

41

42 INTRODUCTION

The radiocarbon reservoir age offset (R) of an organism is the difference between its ¹⁴C age and that of the atmospheric CO₂ at the time this organism was alive (Stuiver and Polach, 1977; Ascough et al., 2005; Jull et al., 2013; Soulet et al., 2016). Radiocarbon reservoir age offsets are in "¹⁴C years". Very importantly, any ¹⁴C age obtained from an organism that did not incorporate its carbon directly from the atmosphere must be corrected for a reservoir age offset to provide an accurate estimate of its calendar age using the atmospheric radiocarbon
calibration curve (Reimer et al., 2013). These corrections are crucial as they can range from a
few hundreds to thousands of ¹⁴C years (Siani et al., 2000, 2001; Bondevik et al., 2006; Kuzmin
et al., 2007; Soulet et al., 2011a).

Recent studies suggested that some geochemical characteristics of an organism could 52 be related to its reservoir age offset. For instance, it has been shown that the radiocarbon 53 reservoir age offset of modern Baltic Sea Macoma bivalve shell was inversely related to its 54 shell ⁸⁷Sr/⁸⁶Sr ratio (Lougheed et al., 2016). Accurately determining the calendar age of ¹⁴C-55 56 dated archeological remains of human populations that draw their carbon from various sources 57 as a result of mixed diet is challenging. For example, individuals from a population that mostly eats fish can have their stable carbon and nitrogen compositions impacted (Schoeninger et al., 58 59 1983; Schoeninger and Deniro, 1984) and even exhibit a reservoir age offset (Dewar and Pfeiffer, 2010; Olsen et al., 2010; Ascough et al., 2012; Wood et al., 2013). It has been shown 60 from two archeological sites from the region of Lake Baikal that the radiocarbon reservoir age 61 offset of human bones was linearly correlated to their nitrogen isotopic composition ($\delta^{15}N$) 62 (Schulting et al., 2014), and for one site to both their $\delta^{15}N$ and stable carbon isotopic 63 compositions (δ^{13} C) (Bronk Ramsey et al., 2014; Schulting et al., 2014). Another study showed 64 65 that radiocarbon reservoir age offset of human bones from a medieval Icelandic cemetery can 66 be inferred using the nitrogen, carbon and sulfur isotopic compositions of the bones (Sayle et 67 al., 2016). These studies are fundamental in the field of geochronology because they showed that it is possible to untangle the very complicated reservoir age offset correction issue. 68

69 The Black Sea is currently connected to the global oceans solely via the narrow and 70 shallow Bosporus Strait (Fig. 1), leading to restricted water exchanges with the Mediterranean 71 Sea and permanent stratification (Özsoy and Ünlüata, 1997). During the last glacial lowstand 72 and for much of the deglacial sea-level rise, the Mediterranean connection was closed and the

Black Sea was a large lake (e.g., Ross et al., 1970; Badertscher et al., 2011). The understanding 73 of the glacial-deglacial hydrologic changes of the Black Sea has been recently refined (Major 74 et al., 2006; Bahr et al., 2006; Kwiecien et al., 2009; Soulet et al., 2011a, 2013), as well as of 75 its Holocene evolution (e.g., van der Meer et al., 2008; Giosan et al., 2012; Coolen et al., 2013). 76 However, a robust chronological framework for the Holocene Black Sea is still lacking, thereby 77 limiting interpretation and still precluding an understanding of the sequence of events that led 78 79 to the reconnection of the Black Sea to the Mediterranean Sea that occurred sometime during the early Holocene (Ryan et al., 1997; Aksu et al., 2002; Major et al., 2006; Giosan et al., 2009; 80 81 Soulet et al., 2011b; Yanko-Hombach et al., 2014). The uncertainty surrounding the timing of the reconnection – and by extension, the Black Sea chronological framework – is related to 82 unconstrained radiocarbon reservoir age offset correction. This weakness has long been 83 84 recognized (Jones and Gagnon, 1994; Giosan et al., 2009; Kwiecien et al., 2008; Soulet et al., 2011a) but it has never been fully solved. 85

86 Here, we reconstruct radiocarbon reservoir age offsets of bivalve shells from the coastal 87 Black Sea and relate them to their δ^{13} C values, in an attempt to define radiocarbon reservoir 88 ages on the basis of the relationship, with the potential to considerably improve the 89 chronological framework of the Black Sea sediment archives.

90

91 METHODS AND SAMPLES

Reconstructions of radiocarbon reservoir age offsets typically rely upon ¹⁴C
determinations on terrestrial/marine(or lacustrine) pairs or multiple pairs (Ascough et al., 2005;
Jull et al., 2013; Soulet, 2015; Soulet et al., 2016). From cores collected in the western coastal
Black Sea (Fig. 1), five single pairs of articulated bivalve shells and pieces of terrestriallyderived plant material were sampled from the same sediment layers in order to ensure

97 contemporaneous deposition, and their ¹⁴C ages and stable carbon isotope values were
98 determined.

99

100 Radiocarbon and stable carbon isotope measurements

As a pre-cleaning, the bivalve shells were sonicated and rinsed in deionized water at 101 least 10 times. Then the shell carbonate was converted into CO₂ following National Ocean 102 Sciences Accelerator Mass Spectrometry (NOSAMS) facility's standard phosphoric acid 103 hydrolysis procedure (McNichol et al., 1994). The analyzed terrestrial plant materials were 104 subjected to NOSAMS standard acid-base-acid pre-treatment and converted to CO₂ through 105 the sealed tube combustion method (McNichol et al., 1994). The CO₂ was then converted to 106 graphite and analyzed for its ¹⁴C composition by Accelerator Mass Spectrometry (AMS) at 107 NOSAMS. Two shell samples and two terrestrial plant material samples were prepared and 108 graphitized at Centre de Datation par le RadioCarbone (CDRC, Lyon, France) following 109 procedures similar to those performed at NOSAMS and measured by AMS at the Laboratoire 110 de Mesure du Radiocarbone (LMC14-ARTEMIS, Saclay, France). Results are corrected for 111 the ${}^{13}C/{}^{12}C$ ratio as measured on the AMS (Santos et al., 2007) and are reported in Fm notation. 112 Fm is identical to the A_{SN}/A_{ON} metric (Stuiver and Polach, 1977), the ¹⁴a_N notation (Mook and 113 van der Plicht, 1999), and to the F¹⁴C notation (Reimer et al., 2004). Corresponding 114 conventional ¹⁴C ages (p) reported in ¹⁴C years Before Present (AD 1950) were calculated 115 according to: 116

117
$$\rho = -8033 \ln(Fm)$$
 (1)

118 The stable carbon isotope values of the dated samples were obtained from a 10%-119 aliquot taken out of the produced CO₂ using an Optima or VG Prism series II stable Isotope 120 Ratio Mass Spectrometer (IRMS) at NOSAMS. ¹³C/¹²C ratios are reported in the δ^{13} C notation 121 (‰ relative to Vienna Pee Dee Belemnite, or VPDB).

123 Reservoir age offset calculation

124 Radiocarbon reservoir age offsets of the bivalve shells, relative to their 125 contemporaneous atmosphere ($R_{shell-atm}$), were calculated based on the ¹⁴C ages of the paired 126 bivalve shell (ρ_{shell}) and terrestrially-derived plant material (ρ_{plant}) (e.g., Ascough et al., 2005; 127 Jull et al., 2013; Soulet et al., 2016):

128
$$R_{shell-atm} = \rho_{shell} - \rho_{plant}$$
 (2)

The ¹⁴C ages of the terrestrially-derived plant material are assumed to correspond to the ¹⁴C age of the atmosphere at the time the bivalves were living. Five $R_{shell-atm}$ values were calculated according to this method, based on the following paired samples of Black Sea shells and terrestrially-derived plant materials found co-located in the same sediment layer:

i) A pair of an articulated juvenile *Dreissena sp.* bivalve and a sample of fragile foliar
material, picked from a peat where the bivalve was found embedded and dated to 10,600–
11,080 (95%) cal yr BP (core SG in the modern Danube delta). The bivalve, being a juvenile,
was small and could have easily been transported onto the marsh surface where the peat was
developing.

ii) A pair of a *Monodacna caspia* bivalve (single valve) and a fragile piece of *Phragmites* reed dated to 9,040–9,420 (95%) cal yr BP (core MD04-2774; offshore the modern
Danube delta).

141 iii) Two paired samples of an articulated *Mytilus galloprovincialis* bivalve and
142 charcoal from a ~15cm-thick archeological layer recovered in several cores (SOZ-7 cores;
143 Alepu lagoon, Bulgaria) (Flaux et al., 2016). The archeological site, dated to 5,050–5,300
144 (95%) cal yr BP (beginning of Early Bronze Age), was a pile-dwelling settlement recently
145 discovered in the present Alepu lagoon (Flaux et al., 2016). The piles were 1 m long and 5 to

146 6 cm diameter and are made of oak. The bark was still in place showing that the wood was used directly after felling. The small diameter of the piles suggest that they were less than 40 years 147 old at felling (Flaux et al., 2016). The piles indicate the beginning of the pile-dwelling 148 occupation and were dated to 4550 ± 30^{14} C yr BP. The charcoal pieces that we used to calculate 149 the reservoir age offsets were found in the archeological layer of the site occupation that lasted 150 less than 80 years (Flaux et al., 2016). The two charcoal samples used were dated to 4525 ± 30 151 and 4475 ± 30^{14} C yr BP. These ¹⁴C ages are not significantly different from those of the piles 152 (Flaux et al., 2016). This suggests that the charcoals must originate from wood that lived during 153 154 the occupation, and thus characterized by very little old wood effect, if any.

iv) A pair of an articulated *Dreissena polymorpha* bivalve and a sample of small
fragments of twigs dated to 4,540–4,820 (95%) cal yr BP (core NE-1 in the inner Danube delta).

157 One additional R_{shell-atm} value was obtained from the calendar age of a mussel (Mytilus galloprovincialis) collected alive in 1931 (offshore of west Crimea) (Jones and Gagnon, 1994). 158 In this case, the ¹⁴C composition of the atmosphere in 1931 was obtained from linear 159 interpolation of the radiocarbon calibration curve IntCal13 (Reimer et al., 2013), then the R_{shell}-160 atm value was calculated according to the above equations (substituting the subscript "plant" by 161 "IntCal13"). The radiocarbon reservoir age offset of two bivalve shells collected alive during 162 the 19th century in the Black Sea are reported in Siani et al. (2000) but stable carbon isotopes 163 164 were not published, and thus cannot be included in this study.

165 All radiocarbon and reservoir age offset data are compiled in the supplementary166 material (Table S1).

167

168 **RESULTS AND DISCUSSION**

169 Calculated R_{shell-atm} values ranged widely between 340 and 1,100 ¹⁴C years. This finding 170 demonstrates that reservoir age offsets varied substantially in Black Sea coastal environments 171 during the Holocene. The $\delta^{13}C_{shell}$ values also ranged widely between -8 to +1 ‰ VPDB. We 172 also found that the R_{shell-atm} values are linearly correlated to the $\delta^{13}C_{shell}$ values (r²=0.87; p-173 value < 0.01; n=6) (Fig. 2):

174
$$R_{\text{shell-atm}} = 473(\pm 58) - 68(\pm 13) \times \delta^{13}C_{\text{shell}}$$
 (3)

175

176 Biogeochemical significance of the $R_{shell-atm}$ - $\delta^{13}C_{shell}$ line

177 In order to understand the biogeochemical implications of the line, we explore the 178 potential ¹⁴C-¹³C end-members of the coastal Black Sea. Here, we use the isotopic form of the 179 reservoir age offset. This metric called the δ^{14} R value (Soulet et al., 2016) is calculated based 180 on the exact same ¹⁴C measurements used to calculate R_{shell-atm}:

181
$$\delta^{14} R_{\text{shell-atm}} = 1000 \left(\frac{Fm_{\text{shell}}}{Fm_{\text{plant}}} - 1 \right) \%_0$$
(4)

182 The link between
$$\delta^{14}$$
R and R is straightforward:

183
$$R_{\text{shell-atm}} = -8033 \ln \left(\frac{Fm_{\text{shell}}}{Fm_{\text{plant}}} \right)$$
 (5)

184 The
$$\delta^{14}$$
R- δ^{13} C relationship (Fig. 3) is also a line (r²=0.87; p-value < 0.01; n=6):

185
$$\delta^{14} R_{\text{shell-atm}} = -57.3(\pm 6.6) + 7.8(\pm 1.5) \times \delta^{13} C_{\text{shell}}$$
 (6)

186 Over the observed range of δ^{13} C values (-8 to +1 ‰ VPDB), the difference in the R_{shell-} 187 _{atm} inferred from Eq. 3 or Eq. 6 is minimal (<10 ¹⁴C years). Instead, for very negative δ^{13} C 188 values the difference in calculated R_{shell-atm} can be up to thousands of ¹⁴C years. This is because 189 R_{shell-atm} is a logarithmic function of the Fm values. This is why we must use the δ^{14} R- δ^{13} C 190 relationship to understand the biogeochemical processes explaining the line. 191 Bivalves form their carbonate shell primarily from the dissolved inorganic carbon (DIC) component of the water column, over several months to a few years as longevity of the 192 bivalves studied here (Mytilus galloprovinciallis and Dreissena rostriformis) is ~10 years and 193 probably less (Karatayev et al., 2006; Okaniwa et al., 2010). Thus, the shell isotopic 194 composition reflects an integrated carbon isotopic composition of the DIC of the water in which 195 they formed (Leng and Marshall, 2004). The $\delta^{14}R_{\text{shell-atm}}-\delta^{13}C_{\text{shell}}$ line (Eq. 6) indicates a ¹³C 196 enrichment of the water DIC when the water DIC ¹⁴C composition becomes closer to that of 197 the atmosphere (i.e., $\delta^{14}R_{\text{shell-atm}}$ becomes closer to 0%). In other words, the ¹⁴C composition 198 of the water DIC becomes equilibrated with that of the atmosphere, when its stable isotope 199 composition becomes enriched in ¹³C. The enrichment in ¹³C may also result in DIC stable 200 201 carbon isotope composition equilibration with that of the atmosphere but with a fractionation in δ^{13} C from atmospheric CO₂ to bicarbonate of 7 to 8‰ (Mook et al., 1974; Romanek et al., 202 1992). 203

204 The trend of the line suggests that the composition of the DIC of Black Sea coastal waters may have been driven mainly by the balance between autochthonous primary 205 productivity and heterotrophic respiration of ¹⁴C-depleted (pre-aged) allochthonous terrestrial 206 organic matters supplied by rivers. Indeed, the increased surface primary productivity during 207 phytoplankton photosynthesis leads to ¹³C enrichment in the DIC (Hollander and McKenzie, 208 1991; Leng and Marshall, 2004). This also leads to increased transfer of atmospheric CO₂ to 209 210 surface water via green algae and phytoplankton demand for CO₂ (Deuser, 1970; Hollander and McKenzie, 1991; Li et al., 2017), and may result in an equilibration of the surface water 211 ¹⁴C composition with that of the atmosphere, meaning that δ^{14} R_{shell-atm} tends towards 0‰. The 212 latter is supported by ¹⁴C activity measurements of the DIC of Black Sea coastal waters in May 213 2004 showing that it had a similar ¹⁴C activity to that of the atmosphere on the day of sampling 214 (Fontugne et al., 2009), with $\delta^{14}R$ values of up to -4% (equivalent to a reservoir age offset of 215

only $\sim 30^{14}$ C years), i.e, very close to 0 ‰. It is also supported by the presence of bomb ¹⁴C in short chain saturated fatty acids and alkenones – both produced by phytoplankton – extracted from core top sediments collected in the early 2000s from the coastal Black Sea (Kusch et al., 2010, 2016).

The primary productivity vs. heterotrophic respiration balance hypothesis is further 220 supported by the composition of the end-members defining the $\delta^{14}R_{shell-atm}-\delta^{13}C_{shell}$ linear 221 relationship. Indeed, assuming a complete productivity-driven equilibration of the surface 222 water with the atmosphere, i.e., $\delta^{14}R_{\text{shell-atm}} = 0\%$, the line predicts a $\delta^{13}C_{\text{shell}}$ value of 6.0 ± 223 224 1.9‰ VPDB for the carbonate phase (i.e., the mineral phase of the shell). At a range of temperatures typical for Black Sea surface waters, the δ^{13} C of the carbonate phase is enriched 225 by ~11-13‰ compared to CO₂ (Romanek et al., 1992). Thus, the δ^{13} C value of a carbonate 226 derived from atmospheric CO₂ with a pre-industrial δ^{13} CO₂ value of -6.4‰ with respect to 227 VPDB (Schmitt et al., 2012) would be of 4.5 to 6.5‰ VPDB. This range is in excellent 228 agreement with the shell δ^{13} C value of 6.0 ± 1.9‰ VPDB, predicted by the line in the case of 229 CO₂ equilibration of the surface water with the atmosphere (Fig. 3). In addition, in the case of 230 no autochthonous productivity at all, the organic matter utilized during heterotrophic 231 respiration would have δ^{13} C values of -25 to -27‰ VPDB, typical for Black Sea terrestrial 232 organic matter (Kusch et al., 2010). Carbonate δ^{13} C originating from pure respiration of 233 terrestrial organic matter would thus range around -12 to -16‰ VPDB (Romanek et al., 1992), 234 corresponding to predicted $\delta^{14}R_{\text{shell-atm}}$ values of -150 to -180%. These latter values are 235 compatible with surface sediment δ^{14} R_{sed-atm} of -200‰, calculated from total organic carbon 236 ¹⁴C ages offshore of the Danube River (Kusch et al., 2010) (Fig. 3). Mineralization of pre-aged 237 238 terrestrial organic matter by microbial respiration occurs in temperate lakes and streams of Quebec (McCallister and del Giorgio, 2012). Our results suggest that pre-aged terrestrial 239

organic matter as old as ~1500 14 C years supplied by rivers is also converted to CO₂ by heterotrophic bacteria in the Black Sea coastal waters.

A hard water effect (HWE) origin, i.e., reservoir age offset mainly explained by the contribution of ¹⁴C-depleted riverine DIC from the dissolution of outcropping carbonates, seems unlikely. Indeed, carbonate minerals can be weathered through two main pathways. The carbonic acid pathway:

246
$$CaCO_3 + CO_{2,g} + H_2O \rightarrow Ca^{2+} + 2HCO_3^-$$
 (7)

This pathway involves CaCO₃ and atmospheric CO₂ with δ^{14} R values of -1000 and 0‰ respectively, and δ^{13} C values of ~0 and -6.5‰ VPDB (pre-industrial). Thus, the carbonate derived from the resulting DIC (~HCO₃⁻) would have a δ^{13} C value of -2 to 0‰ VPDB (Romanek et al., 1992) and δ^{14} R_{HWE-atm} of -500‰ (Fig. 3).

The second carbonate weathering pathway involves sulfuric acid, itself produced by the oxidation of sulfide minerals like pyrite (Calmels et al., 2007):

253
$$2CaCO_3 + H_2SO_4 \rightarrow 2Ca^{2+} + 2HCO_3^- + SO_4^{2-}$$
 (8)

In this case the carbonate derived from the resulting DIC would have a δ^{13} C value of ~0‰ VPDB and δ^{14} R_{HWE-atm} would be of -1000‰. None of these endmembers fits the coastal Black Sea δ^{14} R- δ^{13} C line (Fig. 3).

Oxidation of old methane could be another explanation, as it seems to impact on the ¹⁴C composition of DIC of the present day Black Sea waters in the deeper part of the basin (slope and deep basin) (Fontugne et al., 2009). However, for very negative δ^{13} C values typical of methane oxidation (e.g. -60‰; Kessler et al., 2006), the extension of the line predicts a $\delta^{14}R_{\text{shell-atm}}$ of -400 to -450‰, in disagreement with $\delta^{14}R$ values for Black Sea methane being as low as -850‰ (Kessler et al., 2006). Thus, oxidation of methane is unlikely to explain the reservoir age offset in the coastal settings of the western Black Sea.

265 Improving Black Sea geochronology

The coastal Black Sea R_{shell-atm}- δ^{13} C_{shell} line (Eq. 3; Fig. 2) has fundamental implications 266 for the Black Sea geochronology. It is now possible to use bivalve shell δ^{13} C values as a proxy 267 for reconstructing the reservoir age offset in the coastal Black Sea. Moreover, this δ^{13} C-based 268 tool can be applied on the same bivalve shell that is being ¹⁴C dated, leading to a customized 269 reservoir age offset correction, which is crucial to providing an accurate estimate of the 270 calendar age for the ¹⁴C-dated shell. Using this proxy is inexpensive since most ¹⁴C laboratories 271 can provide the δ^{13} C values of the dated material. One should note that the δ^{13} C determination 272 must be performed by IRMS on the CO₂ produced from the dated material and reported vs. 273 VPDB. The δ^{13} C value measured on the AMS during radiocarbon measurement should not be 274 used because of potential large instrumental fractionation effects (Santos et al., 2007). 275

At this stage of the research, i) any vital effect on the δ^{13} C value seems of second order 276 importance, but the use of the $R_{shell-atm}-\delta^{13}C_{shell}$ line should be restricted to bivalve shells and 277 for δ^{13} C values of 2 to -10%; ii) the application of the line should be restricted to the Holocene, 278 279 in coastal to near coastal settings of the western Black Sea; iii) the line applies for both marine and lacustrine periods of the basin evolution - suggesting that the composition of the 280 endmembers did not change much through the Holocene and that the pathway of terrestrial 281 carbon mineralization (from Black Sea lacustrine or marine biotic communities) is also of 282 second order importance. 283

284

285 CONCLUSION

Our results provide new pieces of information about carbon cycling in the coastal Black Sea. They suggest that the balance between primary productivity and heterotrophic respiration of terrestrial carbon supplied by rivers is governing the carbon isotopic composition of the 289 Black Sea coastal waters since early Holocene. As a consequence, they provide an invaluable δ^{13} C-based tool to quantify reservoir age offset for the Holocene Black Sea coastal settings. 290 This will undoubtedly help refine our understanding of the hotly debated last reconnection of 291 292 the Black Sea and more generally provide constrained calendar age-depth models to the numerous studied sediment archives of the Black Sea. Other basins, e.g., the Caspian Sea, the 293 Aral Sea or large lakes, may potentially yield such correlation between the ¹⁴C reservoir age 294 offset and δ^{13} C value of shells and deserve future investigation. This study, in line with other 295 pioneering studies (Bronk Ramsey et al., 2014; Lougheed et al., 2016; Schulting et al., 2014), 296 297 shows that correlations between the reservoir age offset and another geochemical parameter from the same material must be sought, with the aim of untangling the problem of reservoir 298 age offset when deriving calendar age chronologies from non-atmospheric ¹⁴C measurements. 299

300

301 ACKNOWLEDGEMENTS

G.S. acknowledges the Postdoctoral Scholar Program at the Woods Hole Oceanographic 302 Institution (WHOI) with funding provided by the NOSAMS facility (OCE-1239667). He 303 thanks the entire NOSAMS crew with special thanks to Ann McNichol and William Jenkins, 304 305 as well as Mary Lardie, Liz Klein and Al Gagnon for assistance in the lab. L.G. thanks Florin 306 Filip and Stefan Constantinescu for help in collecting Danube delta cores as well as to WHOI 307 for continuous support to his work in the Danube delta and the Black Sea. We thank Gilles 308 Lericolais from Ifremer for providing access to core MD04-2774. This work is a contribution to the ASSEMBLAGE project funded by the European Commission (EVK3-CT-2002-00090). 309

310

311 **REFERENCES CITED**

Aksu AE, Hiscott RN, Mudie PJ, Rochon A, Kaminski MA, Abrajano T, Yaşar D. 2002.

313 Persistent Holocene outflow from the Black Sea to the Eastern Mediterranean

314	Contradicts Noah's Flood Hypothesis. GSA Today 12(5):4-10.
315	Ascough PL, Cook GT, Dugmore AJ. 2005. Methodological approaches to determining the
316	marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532-547.
317	Ascough PL, Church MJ, Cook GT, Dunbar E, Gestsdóttir H, McGovern TH, Dugmore AJ,
318	Fridriksson A, Edwards KJ. 2012. Radiocarbon reservoir effects in human bone
319	collagen from northern Iceland. Journal of Archaeological Science 39(7):2261–2271.
320	Badertscher S, Fleitmann D, Cheng H, Edwards RL, Göktürk OM, Zumbühl A, Leuenberger
321	M, Tüysüz O. 2011. Pleistocene water intrusions from the Mediterranean and Caspian
322	seas into the Black Sea. Nature Geoscience 4(4):236–239.
323	Bahr A, Arz HW, Lamy F, Wefer G. 2006. Late glacial to Holocene paleoenvironmental
324	evolution of the Black Sea, reconstructed with stable oxygen isotope records obtained
325	on ostracod shells. <i>Earth and Planetary Science Letters</i> 241(3–4):863–875.
326	Bondevik S, Mangerud J, Birks HH, Gulliksen S, Reimer PJ. 2006. Changes in North
327	Atlantic Radiocarbon Reservoir Ages During the Allerod and Younger Dryas. Science
328	312(5779):1514–1517.
329	Bronk Ramsey C, Schulting R, Goriunova OI, Bazaliiskii VI, Weber AW. 2014. Analyzing
330	radiocarbon reservoir offsets through stable nitrogen isotopes and Bayesian modeling:
331	A case study using paired human and faunal remains from the Cis-Baikal region,
332	Siberia. Radiocarbon 56(2):789–799.
333	Calmels D, Gaillardet J, Brenot A, France-Lanord C. 2007. Sustained sulfide oxidation by
334	physical erosion processes in the Mackenzie River basin: Climatic perspectives.
335	Geology 35(11):1003.
336	Coolen MJL, Orsi WD, Balkema C, Quince C, Harris K, Sylva SP, Filipova-Marinova M,

337	Giosan L. 2013. Evolution of the plankton paleome in the Black Sea from the Deglacial
338	to Anthropocene. Proceedings of the National Academy of Sciences 110(21):8609-
339	8614.

340	Deuser WG. 1970. Isotopic evidence for diminishing supply of available carbon during
341	diatom bloom in the Black Sea. <i>Nature</i> 225(5237):1069–1071.

- Dewar G, Pfeiffer S. 2010. Approaches to estimating marine protein in human collagen for
 radiocarbon date calibration. *Radiocarbon* 52(4):1611–1625.
- Flaux C, Rouchet P, Popova T, Sternberg M, Guibal F, Talon B, Baralis A, Panayotova K,
- 345 Morhange C, Riapov AV. 2016. An Early Bronze Age pile-dwelling settlement
- 346 discovered in Alepu lagoon (municipality of Sozopol, department of Burgas), Bulgaria.
- 347 *Méditerranée* 126:57–70.
- ³⁴⁸ Fontugne M, Guichard F, Bentaleb I, Strechie C, Lericolais G. 2009. Variations in ¹⁴C

349 reservoir ages of Black Sea waters and sedimentary organic carbon during anoxic

- 350 periods: Influence of photosynthetic versus chemoautotrophic production. *Radiocarbon*
- **351 51**(3):969–976.
- 352 Giosan L, Coolen MJL, Kaplan JO, Constantinescu S, Filip F, Filipova-Marinova M, Kettner

AJ, Thom N. 2012. Early anthropogenic transformation of the Danube-Black Sea
system. *Scientific Reports* 2(1):582.

- Giosan L, Filip F, Constatinescu S. 2009. Was the Black Sea catastrophically flooded in the
 early Holocene? *Quaternary Science Reviews*. 28(1–2):1–6.
- Hollander DJ, McKenzie JA. 1991. CO₂ control on carbon-isotope fractionation during
 aqueous photosynthesis: A paleo-pCO₂ barometer. *Geology* 19(9):929–932.
- 359 Jones GA, Gagnon AR. 1994. Radiocarbon chronology of Black Sea sediments. Deep Sea

360 *Research Part I: Oceanographic Research Papers* 41(3):531–557.

- Jull AJT, Burr GS, Hodgins GWL. 2013. Radiocarbon dating, reservoir effects, and
 calibration. *Quaternary International*. 299:64–71.
- 363 Karatayev AY, Burlakova LE, Padilla DK. 2006. Growth rate and longevity of Dreissena

polymorpha (Pallas): A review and recommendations for future study. *Journal of Shellfish Research* 25(1):23–32.

Kessler JD, Reeburgh WS, Southon J, Seifert R, Michaelis W, Tyler SC. 2006. Basin-wide

367 estimates of the input of methane from seeps and clathrates to the Black Sea. *Earth and*368 *Planetary Science Letters* 243(3–4):366–375.

369 Kusch S, Rethemeyer J, Hopmans EC, Wacker L, Mollenhauer G. 2016. Factors influencing

 14 C concentrations of algal and archaeal lipids and their associated sea surface

temperature proxies in the Black Sea. *Geochimica et Cosmochimica Acta* 188:35–57.

Kusch S, Rethemeyer J, Schefuß E, Mollenhauer G. 2010. Controls on the age of vascular

plant biomarkers in Black Sea sediments. *Geochimica et Cosmochimica Acta*74(24):7031–7047.

Kuzmin YV, Nevesskaya LA, Krivonogov SK, Burr GS. 2007. Apparent ¹⁴C ages of the

³⁷⁶ "pre-bomb" shells and correction values (R, Δ R) for Caspian and Aral Seas (Central

- 377 Asia). Nuclear Instruments and Methods in Physics Research Section B: Beam
- 378 *Interactions with Materials and Atoms* 259(1):463–466.
- Kwiecien O, Arz HW, Lamy F, Plessen B, Bahr A, Haug GH. 2009. North Atlantic control
 on precipitation pattern in the eastern Mediterranean/Black Sea region during the last
 glacial. *Quaternary Research* 71(3):375–384.
- 382 Kwiecien O, Arz HW, Lamy F, Wulf S, Bahr A, Röhl U, Haug GH. 2008. Estimated

383	reservoir ages of the Black Sea since the Last Glacial. <i>Radiocarbon</i> 50(1):99–118.
384	Leng MJ, Marshall JD. 2004. Palaeoclimate interpretation of stable isotope data from lake
385	sediment archives. Quaternary Science Reviews 23(7-8):811-831.
386	Li Y, Qiang M, Jin Y, Liu L, Zhou A, Zhang J. 2017. Influence of aquatic plant
387	photosynthesis on the reservoir effect of Genggahai Lake, Northeastern Qinghai-
388	Tibetan Plateau. Radiocarbon in press doi:10.1017/RDC.2017.127.
389	Lougheed BC, van der Lubbe HJL, Davies GR. 2016. ⁸⁷ Sr/ ⁸⁶ Sr as a quantitative geochemical
390	proxy for ¹⁴ C reservoir age in dynamic, brackish waters: Assessing applicability and
391	quantifying uncertainties. Geophysical Research Letters 43(2):735–742.
392	Major CO, Goldstein SL, Ryan WBF, Lericolais G, Piotrowski AM, Hajdas I. 2006. The co-
393	evolution of Black Sea level and composition through the last deglaciation and its
394	paleoclimatic significance. <i>Quaternary Science Reviews</i> 25(17–18):2031–2047.
395	McCallister SL, del Giorgio PA. 2012. Evidence for the respiration of ancient terrestrial
396	organic C in northern temperate lakes and streams. Proceedings of the National
397	Academy of Sciences 109(42):16963–16968.
398	McNichol AP, Osborne EA, Gagnon AR, Fry B, Jones GA. 1994. TIC, TOC, DIC, DOC,
399	PIC, POC — unique aspects in the preparation of oceanographic samples for 14 C-AMS.
400	Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
401	with Materials and Atoms 92(1–4):162–165.
402	Mook WG, Bommerson JC, Staverman WH. 1974. Carbon isotope fractionation between
403	dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters
404	22(2):169–176.
405	Mook WG, van der Plicht J. 1999. Reporting ¹⁴ C activities and concentrations. <i>Radiocarbon</i>

406 41(3):227–239.

407	Okaniwa N, Miyaji T, Sasaki T, Tanabe K. 2010. Shell growth and reproductive cycle of the
408	Mediterranean mussel Mytilus galloprovincialis in Tokyo Bay, Japan: Relationship
409	with environmental conditions. Plankton and Benthos Research 5(Supplement): 214-
410	220.
411	Olsen J, Heinemeier J, Lübke H, Lüth F, Terberger T. 2010. Dietary habits and freshwater
412	reservoir effects in bones from a Neolithic NE German cemetery. Radiocarbon
413	52(2):635–644.
414	Özsoy E, Ünlüata Ü. 1997. Oceanography of the Black Sea: A review of some recent results.
415	Earth-Science Reviews 42(4):231–272.
416	Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C., Buck CE, Cheng
417	H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I,
418	Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B,
419	Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA,
420	Turney CSM, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age
421	calibration curves 0–50,000 Years cal BP. Radiocarbon 55(4):1869–1887.
422	Reimer PJ, Brown TA, Reimer RW. 2004. Discussion: Reporting and calibration of post-
423	bomb ¹⁴ C data. <i>Radiocarbon</i> 46(3):1299–1304.
424	Romanek CS, Grossman EL, Morse JW. 1992. Carbon isotopic fractionation in synthetic
425	aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et
426	Cosmochimica Acta 56(1):419–430.
427	Ross DA, Degens ET, MacIlvaine J. 1970. Black Sea: Recent Sedimentary History. Science
428	170(3954):163–165.

429	Ryan WBF, Pitman WC, Major CO, Shimkus K, Moscalenko V, Jones GA, Dimitrov P,
430	Gorür N, Sakinç M, Yüce H. 1997. An abrupt drowning of the Black Sea shelf. Marine
431	<i>Geology</i> 138(1–2):119–126.
432	Santos GM, Southon JR, Griffin S, Beaupre SR, Druffel ERM. 2007. Ultra small-mass AMS
433	¹⁴ C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments
434	and Methods in Physics Research Section B: Beam Interactions with Materials and
435	Atoms 259(1):293–302.
436	Sayle KL, Hamilton WD, Gestsdóttir H, Cook GT. 2016. Modelling Lake Mývatn's
437	freshwater reservoir effect: Utilisation of the statistical program FRUITS to assist in the
438	re-interpretation of radiocarbon dates from a cemetery at Hofstaðir, north-east Iceland.
439	Quaternary Geochronology 36:1–11.
440	Schmitt J, Schneider R, Elsig J, Leuenberger D, Lourantou A, Chappellaz J, Kohler P, Joos F,
441	Stocker TF, Leuenberger M, Fischer H. 2012. Carbon Isotope Constraints on the
442	Deglacial CO2 Rise from Ice Cores. Science 336(6082):711–714.
443	Schoeninger M, DeNiro M, Tauber H. 1983. Stable nitrogen isotope ratios of bone collagen
444	reflect marine and terrestrial components of prehistoric human diet. Science
445	220(4604):1381–1383.
446	Schoeninger MJ, DeNiro MJ. 1984. Nitrogen and carbon isotopic composition of bone
447	collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta
448	48(4):625–639.
449	Schulting RJ, Ramsey CB, Bazaliiskii VI, Goriunova OI, Weber A. 2014. Freshwater
450	reservoir offsets investigated through paired Human-Faunal ¹⁴ C dating and stable
451	carbon and nitrogen isotope analysis at Lake Baikal, Siberia. Radiocarbon 56(3):991-
452	1008.

- 453 Siani G, Paterne M, Arnold M, Bard E, Métivier B, Tisnerat N, Bassinot F. 2000.
- 454 Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. *Radiocarbon*455 42(2):271–280.
- 456 Siani G, Paterne M, Michel E, Sulpizio R, Sbrana A, Arnold M, Haddad G .2001.
- 457 Mediterranean Sea Surface Radiocarbon Reservoir Age Changes Since the Last Glacial
 458 Maximum. *Science* 294(5548):1917–1920.
- 459 Soulet G. 2015. Methods and codes for reservoir–atmosphere ¹⁴C age offset calculations.
 460 *Quaternary Geochronology* 29: 97–103.
- 461 Soulet G, Menot G, Bayon G, Rostek F, Ponzevera E, Toucanne S, Lericolais G, Bard E.
- 462 2013. Abrupt drainage cycles of the Fennoscandian Ice Sheet. *Proceedings of the*463 *National Academy of Sciences* 110(17):6682–6687.
- 464 Soulet G, Ménot G, Garreta V, Rostek F, Zaragosi S, Lericolais G, Bard E. 2011a. Black Sea

465 "Lake" reservoir age evolution since the Last Glacial — Hydrologic and climatic

466 implications. *Earth and Planetary Science Letters* 308(1–2):245–258.

- 467 Soulet G, Ménot G, Lericolais G, Bard E. 2011b. A revised calendar age for the last
- reconnection of the Black Sea to the global ocean. *Quaternary Science Reviews* 30(9–
 10):1019–1026.
- 470 Soulet G, Skinner LC, Beaupré SR, Galy V. 2016. A Note on reporting of reservoir ¹⁴C
- disequilibria and age offsets. *Radiocarbon* 58(1):205–211.
- 472 Stuiver M, Polach HA. 1977. Discussion: Reporting of ¹⁴C data. *Radiocarbon* 19(3):355–363.
- 473 van der Meer MTJ, Sangiorgi F, Baas M, Brinkhuis H, Sinninghe Damsté JS, Schouten S.
- 474 2008. Molecular isotopic and dinoflagellate evidence for Late Holocene freshening of
- 475 the Black Sea. *Earth and Planetary Science Letters* 267(3–4):426–434.

476	Wood RE, Higham TFG, Buzilhova A, Suvorov A, Heinemeier J, Olsen J. 2013. Freshwater
477	radiocarbon reservoir effects at the burial ground of Minino, Northwest Russia.
478	Radiocarbon 55(1):163–177.
479	Yanko-Hombach V, Mudie PJ, Kadurin S, Larchenkov E. 2014. Holocene marine

- 480 transgression in the Black Sea: New evidence from the northwestern Black Sea shelf.
- 481 *Quaternary International* 345:100–118.

483 FIGURES AND FIGURE CAPTIONS

485 Figure 1: Western Black Sea area with sample locations and labels (Coordinates are available486 in Supplementary material; Table S1).

Figure 2: Linear regression of reservoir age offset ($R_{shell-atm}$) and $\delta^{13}C$ of Black Sea bivalve 489 shells and its 95%-confidence interval.

Figure 3: Linear regression of δ^{14} R_{shell-atm} and δ^{13} C of Black Sea bivalve shells (green squares; r²=0.87; p-value<0.01; n=6) – same samples as in Fig. 2. Carbonate-equivalent endmembers of: i) CO₂ atmosphere-water equilibration (blue rectangle), ii) CO₂ from heterotrophic respiration of terrestrial organic matter supplied by rivers (yellow rectangle), iii) hard water effect from dissolution of outcropping carbonates by carbonic acid or sulfuric acid (red rectangles), and iv) CO₂ from oxidization of methane (grey rectangle). Vertical dotted line is δ^{13} C = 0 ‰.

- 500
- 501
- 502
- 503

504 SUPPLEMENTARY MATERIAL – TABLE S1

Table S1. Coastal Black Sea ¹⁴C data and reservoir age offsets

Area	Core/Name	Latitude	Longitude	Elevation	Year ^a	Depth in core	– Material	Lab #	Shell ô ¹³ C	Shell (p _{shell})	Material	ial Lab#	Atmospheric (ρ _{atm})	R _{shell-atm}	$\delta^{14}R_{shell-atm}$	Calibrated range (95%) ^c
				(m)	(AD)	(cm)			(‰ VPDB)	(¹⁴ C yr BP)			(¹⁴ C yr BP)	(¹⁴ C yrs)	(‰)	(cal yr BP)
Crimean coast	S&G94	44°40'00" N	33°30'00" E	0 to -5	1931	-	Mytilus galloprovincialis ^b	OS-718	0.72	490 ± 34	-	-	152 ± 7	338 ± 35	-41.2 ± 4.2	19 ^d
Danube delta	NE-1	45°15'20" N	28°59'29" E	1	2005	350-351	Dreissena polymorpha	OS-117856	-6.44	4904 ± 19	Fragments of twigs	OS-117857	4126 ± 19	778 ± 27	-92.3 ± 3.0	[4537-4813]
Bulgarian coast	SOZ-7 ter(1)	42°21'55" N	27°42'30" E	1	2012	580-583	Mytilus galloprovincialis	Lyon-10874	-0.98	5138 ± 34	Charcoal	Lyon-10873	4524 ± 27	614 ± 43	-73.6 ± 5.0	[5053-5304]
Bulgarian coast	SOZ-7 ter(2)	42°21'55" N	27°42'30" E	1	2012	558-560	Mytilus galloprovincialis	Lyon-10872	-0.73	5056 ± 27	Charcoal	Lyon-10871	4475 ± 28	581 ± 39	-69.8 ± 4.6	[4978-5286]
Danube delta	MD04-2774	44°57'27" N	29°50'07" E	-30	2004	481-482	Monodacna caspia	OS-108017	-3.04	8940 ± 108	Phragmites reed	OS-107988	8258 ± 49	682 ± 119	-81.4 ± 13.7	[9040-9417]
Danube delta	SG	44°54'14" N	29°35'15" E	0.5	2007	4550-4551	Dreissena sp.	OS-77369	-7.92	10600 ± 60	Fragile foliar material from a peat laver	OS-65848	9500 ± 55	1100 ± 81	-128.0 ± 8.9	[10588–11081]

24

a Year of the collection of the material (the cores or the alive shell reported in Jones and Gagnon (1994)

b Pre-bomb shell collected alive in 1931 (Jones and Gagnon, 1994). The atmospheric age is inferred from Intcal13 (Reimer et al., 2013) using ResAge software (Soulet, 2015; Soulet et al., 2016).

c Calibrated using IntCal13 (Reimer et, 2013)

d Year AD 1931 is the year 19 calBP