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Supplementary Methods

Early and Late Season Visits

At one site (La Palma; table A1), we conducted experiments during two different time periods—once in the early season,
when Hetaerina titia males and females exhibit light-phase phenotypes similar to those of Hetaerina occisa, and once
in the late season, after the population of H. titia has undergone a dramatic phenotypic shift and has divergent dark-
phase phenotypes (see detailed descriptions in Drury et al. 2015a, 2015b). Thus, for our analyses of pairwise similarity
between females, we treat these two separate visits as separate sites.

Indexes of Female Wing Similarity

We measured female wing lightness using photographs of females that were used in tethering experiments from each
site. For sites where fewer than 25 photographs of tethered females were available, we added photographs of other
females from the site to reach a sample size of 25 where possible. Overall, we measured photographs of 1,101 females
(mean5SD per species per site p 32:28520:03, n p 16 sites). Following an established protocol (Drury et al. 2015b),
we measured the RGB profile for the basal and distal halves of both wings in color-balanced photos, for a total of
four measurements on each photograph. From these photographic measurements, we generated four site-level indexes
of female wing similarity (table A2).

At a subset of sites, we also used reflectance spectroscopy to quantify the lightness of female wings. For sites where
heterospecific females came from translocation experiments, we used the reflectance values from the site of origin for
females. In one case, we used reflectance measurements from a nearby site (Castroville) rather than the site of origin
(San Jacinto), as there was no difference in the photographic index of lightness between these two sites (Wilcoxon rank
sum test, W p 211, P p :14, nCV p 25, nSJ p 13). In total, we scanned 505 females (mean5SD per species per
site p 20:3257:87, n p 12 sites). Reflectance measurements were taken at the base, midpoint, and tip of each female’s
wing, as described elsewhere (Drury et al. 2015b), using an Ocean Optics USB 200 spectrometer equipped with a fiber-
optic reflectance probe (Ocean Optics R200-7-UV-VIS) connected to a pulsed xenon light source (Ocean Optics PX-2).

From these reflectance scans, we used the R package pavo (Maia et al. 2013) to calculate the total intensity of each
patch as the sum of reflectance values binned at 2-nm intervals. We then generated two reflectance-based indexes of
female wing similarity (table A2).

Overall, the photographic measurement of lightness is highly correlated with the log-transformed reflectance-based
measurement of lightness (linear regression model, F1, 250 p 946:6, P ! :001, adjusted R2 p 0:79, n p 252 individuals).

Comparative Statistical Analyses

We tested for correlations between pairwise female wing comparisons and reproductive isolation due to male mate
recognition (MR) using Spearman’s rank-order correlations. For discriminant function indexes of similarity, each pairwise
comparison yields two indexes of misidentification (i.e., the probability that species A is misidentified as species B,
and vice versa), so we used all pairwise comparisons in our analyses. However, for the other variables (e.g., Euclidean
distance in photographic lightness), the same similarity index applies to both species in the comparison. To account
for this nonindependence, we randomized the data by dropping one of each species pair# site combination and
calculating the Spearman’s correlation coefficient (r) on this randomized subset. We then repeated this procedure
1,000 times to produce a distribution of r values.

In addition to the nonindependence that arises from the pairwise nature of the analysis, we also accounted for the
evolutionary nonindependence of taxa in our analyses using a phylogenetic simulation approach (Drury et al. 2015b,
2018). To conduct the phylogenetic correction for correlations of univariate measurements (photographic-based lightness
difference and reflectance-based lightness difference), we first fit Brownian motion (BM) and Ornstein-Uhlenbeck (OU)
models of trait evolution to the trait data and phylogeny (see “Phylogeny Construction” below) using maximum
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likelihood optimization in the R package mvMORPH (Clavel et al. 2015). We then simulated 1,000 data sets using
the maximum likelihood parameter estimates from each of these models. For each of these simulated data sets, we ran
Spearman’s correlations using the simulated index of female wing similarity and the observed values of reproductive
isolation to generate a phylogenetically informed null distribution of test statistics. We then compared the observed mean
r value from the randomization outlined above to this null distribution using one-sample t-tests.

For the discriminant function and overlap variables, we fit multivariate trait models using a recently developed
penalized likelihood approach (see fit_t_pl.R and associated documentation at https://github.com/hmorlon/PANDA)
that estimates BM and OU parameters well, even in cases where the number of traits is near to or exceeding the number of
tips in a phylogeny (Clavel et al. 2019). As above, we then simulated 1,000 multivariate BM and OU data sets from
these model fits. To generate these phylogenetically simulated data sets, for each site we generated a number of samples
matching the number of empirical samples (e.g., if there were 25 photos of Hetaerina americana females measured
at Bonita Creek, we simulated 25 values). We simulated these values with a mean value equal to the mean of the
phylogenetically simulated data set and with standard deviation values set to the observed standard deviations of species-
level measurements of the empirical data sets. For each site, we then used these simulated data sets to calculate the
simulation-based female wing similarity indexes and then ran the correlation tests and comparisons with the empirical
r values as above.

Phylogeny Construction

We added several new sequences (table A3) to the phylogenetic analyses published previously (Drury et al. 2015b),
amplifying the same loci and following the same protocols outlined in that article. From the Bayesian posterior of
trees built in MrBayes 3.2.2 (Ronquist et al. 2012) through the Cipres web portal (Miller et al. 2010), we created a
maximum clade credibility tree (fig. A2) using TreeAnnotator v. 1.7.4 (Drummond et al. 2012). For all analyses presented
here, we trimmed the phylogeny to have one branch for each species and then rendered this pruned phylogeny
ultrametric using the chronos function in the R package ape (Paradis 2011).
Additional Details for Tests for RCD in Male MR

Hetaerina titia exhibits a seasonal polyphenism, wherein individuals emerging in the spring possess light-phase
phenotypes similar to those of other congeners and, as a result, engage in higher levels of behavioral interference early
in the year (Drury et al. 2015a). For allopatric MR experiments, all trials were conducted in the late season, when
divergent dark-phase forms predominate in populations of H. titia.

For H. titia males, we presented conspecific and Hetaerina americana females to H. titia territory holders at a sympatric
site (Castroville) and at an allopatric site (Burr Ferry). At the sympatric site, we obtained H. americana females from
the same drainage as the transect. At the allopatric site, we collected live H. americana from a site (San Jacinto) 205 km away
(30.217N, 295.407W). We conducted all female tethering as described in the main text, and nearly all trials were conducted
on the same day as the initial collection.

Tests for reproductive character displacement (RCD) in heterospecific male MR were conducted using either
translocations of live H. titia females or using experimental wing darkening of conspecific females (Drury et al. 2015a,
2015b). Live H. titia females were transported to a nearby allopatric site with Hetaerina occisa males (once from Otapa
to Upper Otapa where we recorded only one H. titia male and no H. titia females over the course of several visits, once from
La Palma to Laguna Escondida where we never recorded any H. titia individuals in visits lasting several weeks over a 3-year
period). We conducted experimental wing-darkening experiments on H. americana in sympatry (Castroville) and allopatry
(Lampasas) and on H. occisa in sympatry (La Palma) and in allopatry (Cuetzalapan, Laguna Escondida).

To verify the statistical robustness of our results—and, in particular, the finding that interactions between site type
and female treatment were not statistically significant—we conducted a permutation test. We randomized the order of
female treatment for allopatric populations and reran the regression analyses used in the raw analyses 1,000 times to
generate a null distribution of test statistics for the interaction term. We then compared our observed test statistic to this
distribution. In all instances, the observed test statistic for the interaction term fell entirely outside of the permuted
range (i.e., P p 0; fig. A3), indicating that the nonsignificant terms observed in our analyses (table 1; fig. 3) are
statistically robust.
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Estimating Population Structure in H. americana

We used seven previously generated nuclear microsatellites from wild-collected Hetaerina americana damselflies
(Anderson and Grether 2013). We collected H. americana damselflies during the summers of 2004–2012 in the southwest
United States and Mexico. This analysis considers 131 individuals from 14 riverine sites (table A6; 6–20 individuals
per site). Within a few hours of collection, damselflies were preserved in 95% ethanol. Seven microsatellite loci—h1, h3,
h4, h7, h8, h11, and h15—were amplified following the polymerase chain reaction protocol described in Anderson
and Grether (2013). Population pairwise differences (FST) were calculated using GenAlEx v6.0 (Peakall and Smouse
2012). A Mantel’s test was performed to examine the correlation between genetic and geographic distances in
GenAlEx v6.0 (Peakall and Smouse 2012).
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Figure A1: Using several alternative indexes comparing female wing phenotypes, we consistently find that males discriminate between
conspecific and heterospecific females as a function of female wing lightness, measured as Euclidean distance in the weighted total
intensity value calculated from reflectance spectra (A), the rate at which discriminant function analyses misidentify species using total
intensity values from reflectance spectra (B), and the rate at which discriminant function analyses misidentify species using photographic
grayscale values (C, D; see table A2 for a description of variables and table A4 for statistical analyses).
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Figure A2: Maximum clade credibility tree calculated using Bayesian phylogenetic inference. Black circles indicate a mean posterior
probability of 10.95, gray circles of 10.75 and !0.95, and white circles of !0.75. The scale bar indicates the expected number of
changes per site.
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Figure A3: Null distributions of z-values for the interaction terms of models presented in table 1 and figure 3, calculated using per-
mutation tests. In each permutation, the female treatment was shuffled for the data in allopatric sites. Panels are ordered as in figure 3.
Vertical red lines correspond to the z-value in the models presented in table 1 and in every case fall outside of the null distribution.
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Figure A4: Isolation-by-distance relationship among populations of Hetaerina americana. Scatterplot of pairwise FST versus geographic
distances (in kilometers) among 14 H. americana populations showing significant correlation between geographic and genetic distance
(r p 0:713, Mantel test, P p :01). Trend lines show the predicted relationships from a linear regression including an effect of drainage.
Table A1: Study locations and Hetaerina species for which we measured male mate recognition (MR) at each site
7

Analysis
Site name (abbreviation)
 Species 1
 Species 2
 Species 3
 Lat.
 Long.
 1
 2
 3
Bonita Creek, USA (BC)
 H. americana
 H. vulnerata
 32.91627
 2109.49282
 X

Burr Ferry, USA (BF)
 H. titia
 31.0749
 293.495933
 X
 X

Cuetzalapan, MX (CT)
 H. cruentata
 H. occisa
 18.37100
 295.00148
 X
 X

Castroville, USA (CV)
 H. americana
 H. titia
 29.33350
 298.86690
 X
 X
 X

Laguna Escondida, MX (ES)
 H. sempronia
 H. occisa
 18.59245
 295.08390
 X
 X
 X

Rio Bitey, CR (ESRB)
 H. titia
 H. miniata
 9.71961
 282.9657
 X

Golfito, CR (GO01)
 H. fuscoguttata
 H. occisa
 H. titia
 8.64301
 283.195277
 X

Lampasas, USA (LM)
 H. americana
 31.08271
 298.01973
 X

Las Haciendas, CR (LH03)
 H. occisa
 H. miniata
 10.98932
 285.377696
 X

San Luis, CR (MV04)
 H. majuscula
 H. cruentata
 10.27801
 284.786277
 X

Socorro, CR (MV05)
 H. capitalis
 H. cruentata
 10.27826
 284.818937
 X

Otapa, MX (OT)
 H. occisa
 H. titia
 18.68339
 296.38350
 X
 X

La Palma, MX (PA)
 H. occisa
 H. titia
 18.55010
 295.06671
 X
 X
 X

Pixquiac, MX (PX)
 H. vulnerata
 H. cruentata
 19.46679
 296.95018
 X

Rio Tempisquito, CR (RT02)
 H. occisa
 H. capitalis
 10.94903
 285.511632
 X

Upper Otapa, MX (UOT)a
 H. occisa
 H. titiab
 18.70015
 296.550277
 X
 X
Note: “Analysis” columns indicate whether a site was used for analyses of variation in male MR as a function of heterospecific female wing phenotype (analysis 1), anal-
yses of translocation experiments (analysis 2), or analyses of female wing color manipulation experiments (analysis 3).

a This site is in the same drainage as OT.
b A single H. titia male was sighted at UOT.
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Table A2: Sample sizes for experiments measuring reproductive isolation due to male mate
recognition (MR) in Hetaerina species
Site name (abbreviation), territory holder species
n

Conspecific
8

Heterospecific
Bonita Creek (BC):

H. americana
 18
 18

H. vulnerata
 18
 18
Burr Ferry (BF):

H. titia
 15
 15
Cuetzalapan (CT):

H. cruentata
 17
 17

H. occisa
 20
 20
Castroville (CV):

H. americana
 24
 24

H. titia
 22
 22
Laguna Escondida (ES):

H. sempronia
 10
 10

H. occisa
 20
 20 (H. sempronia); 8 (H. titia)
Rio Bitey (ESRB):

H. titia
 33
 33

H. miniata
 18
 18
Golfito (GO01):

H. fuscoguttata
 27
 23 (H. occisa); 22 (H. titia)

H. occisa
 34
 30 (H. fuscoguttata); 26 (H. titia)

H. titia
 24
 21 (H. fuscoguttata); 19 (H. occisa)
Las Haciendas (LH03):

H. miniata
 17
 17

H. occisa
 44
 44
San Luis (MV04):

H. cruentata
 19
 19

H. majuscula
 17
 17
Socorro (MV05):

H. capitalis
 32
 32

H. cruentata
 34
 34
Otapa (OT):

H. occisa
 7
 7

H. titia
 17
 17
La Palma (PA):

H. occisa
 64 (early); 42 (late)
 64 (early); 42 (late)

H. titia
 38 (early); 24 (late)
 38 (early); 24 (late)
Pixquiac (PX):

H. cruentata
 14
 14

H. vulnerata
 11
 11
Rio Tempisquito (RT02):

H. capitalis
 38
 38

H. occisa
 37
 37
Upper Otapa (UOT):

H. occisa
 13
 13
Note: There was no relationship between the isolation index used in subsequent analyses and the number of conspecific trials
(Spearman’s rank correlation, r p 20:15, P p :38) or heterospecific trials (Spearman’s rank correlation, r p 20:24, P p :17).
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Table A3: Indexes of pairwise comparisons of female wing lightness used in analyses
Index
 Description
Photo lightness difference
 Euclidean distance in population mean of sum of grayscale values (calculated with RGB Measure function
in ImageJ MBF package; Collins 2007; Schneider et al. 2012) across all four wing patches (basal, distal,
hindwing, and forewing)
Photo lightness overlap
 Proportional overlap of density curves calculated (using overlapping package in R; Pastore 2017) from
individual-level data of sum of grayscale values across all four wing patches (basal, distal, hindwing, and
forewing)
Photo lightness DFA no. 1 error rate
 Proportion of heterospecific females misidentified as conspecific females in a discriminant function analysis
conducted (using lda function in R MASS package; Venables and Ripley 2002) with individual-level data
from all three RGB channels across all four wing patches (12 measurements per individual)
Photo lightness DFA no. 2 error rate
 Proportion of heterospecific females misidentified as conspecific females in discriminant function analysis
conducted with individual-level data from grayscale value across all four wing patches (four measure-
ments per individual)
Spectral lightness difference
 Euclidean distance in population mean of midpatch weighted total intensity value (calculated using Ltotal p
.1 Lbase 1 .8 Lmiddle 1 .1 Ltip and summing both wings) from reflectance spectra across all six wing scans
(basal, mid, and tip of hindwing and forewing)
Spectral lightness DFA error rate
 Proportion of heterospecific females misidentified as conspecific females in discriminant function analysis
conducted with individual-level data from total intensity value across all six wing scans (basal, mid, and
tip of hindwing and forewing, totaling six measurements per individual)
Note: DFA p discriminant function analysis.
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Table A5: Correlations between reproductive isolation indexes and species comparisons of female wing coloration
11
Phylogenetic mean r5SD
 P
Index
 Empirical mean r5SD
 BM
 OU
 BM
 OU
Photo lightness difference
 .545 .08
 .025 .30
 015 .31
 !.001
 !.001

Photo lightness overlap
 2.645 .07
 2.165 .23
 2.185 .24
 !.001
 !.001

Photo lightness DFA no. 1 error rate
 2.52
 .015 .15
 .015 .15
 !.001
 !.001

Photo lightness DFA no. 2 error rate
 2.59
 .035 .17
 .025 .17
 !.001
 !.001

Spectral lightness difference
 .715 .08
 .025 .31
 .015 .31
 !.001
 !.001

Spectral lightness DFA error rate
 2.75
 2.045 .22
 2.035 .22
 !.001
 !.001
Note: Empirical estimates of r statistics from Spearman’s correlations tested against null r distributions calculated from phylogenetically simulated data sets. P values are
from one-sample t-tests. Standard deviations are presented for empirical data sets where we conducted randomization tests to account for pairwise analyses (see appendix).
DFA p discriminant function analysis.
Table A6: Population abbreviations, site description, geographic information, and number of genetic
samples per population for microsatellite analyses of Hetaerina americana
Population code
 Site description
 Lat.
 Long.
 N
P001
 Armeria, Mexico
 18.95002
 2103.934
 20

P002
 Tehuixtla, Mexico
 18.54733
 299.2695
 9

P006
 Rio Cebadilla, Mexico
 19.6334
 2104.483
 9

P007
 Bridge to Autlan, Mexico
 19.85082
 2104.283
 7

P008
 Rio Limon, Mexico
 21.36674
 2104.617
 14

P009
 San Luis Potosi, Mexico
 22.05957
 2100.492
 8

P011
 Gila River, AZ
 32.88384
 2109.517
 9

P012
 Bonita Creek, AZ
 32.90923
 2109.487
 6

P013
 San Francisco River, AZ
 33.13293
 2109.282
 7

P014
 Tularosa River, NM
 33.89524
 2108.506
 7

P015
 Rio Grande, NM
 35.80315
 2106.194
 8

P016
 Roosevelt, TX
 30.49153
 2100.066
 8

P017
 New Braunfels, TX
 29.87414
 298.4892
 8

P018
 Guadalupe River, TX
 30.06675
 299.2669
 11
Table A7: Linear regression fit of FST with geographic distance for a sample of 14 populations
of Hetaerina americana (table A6), accounting for whether populations are in the same
or different drainage
Model term
 Est.
 SD
 t-value
 P
Intercept
 .11
 .024
 4.71
 !.001

Distance (km)
 .00014
 .000019
 7.07
 !.001

Drainage (same)
 2.08
 .037
 22.15
 .035
Table A8: Geographic distances and predicted levels of genetic isolation between sites included in tests of reproductive
character displacement
Comparison
 Male species
 Distance (km)
 Same drainage
Analysis
FST (predicted)
 Level of isolationa
2
 3
BF, CV
 Hetaerina titia
 551.9
 No
 X
 .189
 Great

PA, ES
 Hetaerina occisa
 5.0
 No
 X
 X
 .114
 Moderate

OT, UOT
 H. occisa
 17.7
 Yes
 X
 .036
 Low

CV, LM
 Hetaerina americana
 210.4
 No
 X
 .142
 Moderate

PA, CT
 H. occisa
 21.0
 No
 X
 .116
 Moderate
Note: Predictions were derived from a linear regression of the observed FST values and distance from H. americana populations (table A7; fig. A4). See table A1 for site
abbreviations and analysis numbers.

a See Hartl et al. (1997).
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Table A9: Analyses of Hetaerina occisa male sexual responses toward tethered conspecific
and heterospecific females in sympatry and allopatry, excluding the Otapa and Upper
Otapa comparison, which took place within the same drainage
Term
 Est.
12
SE
 z-value
 P
Intercept
 3.65
 1.47
 2.49
 .013

Female species (Hetaerina titia)
 27.27
 1.82
 24.0
 !.001

Site type (sympatry)
 .03
 1.40
 .02
 .98

Female species# site type
 2.11
 1.66
 2.06
 .95
Note: Translocation experiment with 50 male H. occisa and logistic regression models fit using bayesglm in R.




