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Abstract. This article is concerned with support theorems of the X-ray trans-
form on non-compact manifolds with conjugate points. In particular, we prove

that all simply connected 2-step nilpotent Lie groups have a support theorem.
Important ingredients of the proof are the concept of plane covers and a sup-

port theorem for simple manifolds by Krishnan. We also provide examples of

non-homogeneous 3-dimensional simply connected manifolds with conjugate
points which have support theorems.

1. Introduction

The classical X-ray transform associates to a continuous, sufficiently rapidly de-
creasing function on the Euclidean plane the values of its integrals along straight
lines. J. Radon [22] proved in 1917 an inversion formula for the X-ray transform
and mentioned that, with a small modification, his inversion formula also holds for
the hyperbolic plane. The X-ray transform and its variants are fundamental to
computed tomography (see, e.g., [2, 3, 15]). The X-ray transform has also been
studied in other geometries like Riemannian Symmetric and Damek-Ricci Spaces
(see, e.g., [6, 8, 9, 23, 24]) or so-called simple manifolds, i.e., bounded manifolds with
strictly convex boundary and without conjugate points (see, e.g., [20, 27, 14, 18]).
The methods introduced for simple manifolds played also an important role in the
boundary rigidity problem, i.e., the question whether the distance function between
boundary points of a Riemannian manifold determines the Riemannian metric in
the interior. See, e.g., [19], for a survey with a list of open problems. There is also
recent work [16, 17] extending X-ray transform methods from simple manifolds
to complete, simply connected non-positively curved manifolds (Cartan-Hadamard
manifolds). In this paper we will only consider non-compact manifolds, but there
are also various results about the X-ray and related transforms for compact homo-
geneous spaces, see [9, Section IV.1] and references in its bibliographic notes and,
e.g., [4, 10] for other recent results.

We are particularly interested in support theorems for the X-ray transform on
non-compact spaces with conjugate points. The classical support theorem in the
Euclidean plane states the following for sufficiently decaying continuous functions
f ∈ C(R2): if the integrals of f over all geodesics avoiding a given closed ball B
vanish then we have suppf ⊂ B (see [9, Theorem I.2.6]). Moreover, this fact can
be generalized to arbitrary compact sets K ⊂ R2 (instead of balls). In this case
the conclusion is suppf ⊂ conv(K), where conv(K) is the convex hull of K (see [9,
Cor.I.2.8]). In particular the support theorem implies injectivity of the X-ray trans-
form. It is natural to ask for analogous results in more general geometries. A local
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support theorem for simple manifolds with real-analytic metric was proved by Kr-
ishnan in [14]. We will use Krishnan’s result for the Heisenberg group, even though
the Heisenberg group has conjugate points. Another local injectivity result without
requiring analyticity was introduced by Uhlman and Vardy [29]. Their method is
based on Melrose’s scattering calculus and is relevant for many subsequent papers.
Certain results for spherical layers on manifolds with radially symmetric metrics
can also be understood as local support theorems. For more detailed information
and further references on these topics see, e.g., [11, Chapter 7].

All Riemannian manifolds (M, g) in this paper are assumed to be simply con-
nected, complete and non-compact. Moreover, we only consider functions with
compact support to guarantee that the integrals over all escaping geodesics are
finite. Let us recall the definition of escaping geodesics (see, e. g., [30]):

Definition 1.1. A unit speed geodesic γ : R → M is called escaping if γ is a
proper map, i.e.for every compact set K ⊂M there exists t0 > 0 such that γ(t) 6∈ K
whenever |t| ≥ t0. We denote the set of all escaping geodesics of M by Ge (M).
For any subset M ′ ⊂M , let Ge (M ′) denote the set of all escaping geodesics of M
contained in M ′.

In plain words, an escaping geodesic γ eventually leaves every given compact
set. Let Cc(M) be the space of all continuous functions with compact support. For
every function f ∈ Cc(M) the integral of f over an escaping geodesic exists. In
simply connected manifolds without conjugate points all geodesics are escaping. By
the Cartan-Hadamard Theorem Riemannian manifolds of non-positive curvature do
not have conjugate points. On the other hand, the Cartesian product M = R× S2

of the real line and the unit sphere has conjugate points and a geodesic γ is escaping
if and only if γ′ has a non-zero component in the direction of R.

Definition 1.2. The X-ray transform Xf of f ∈ Cc(M) is the function on Ge (M)
given by

Xf(γ) :=

∫ ∞
−∞

f(γ(t))dt .

Note that in the simply connected example M = R × S2 the X-ray transform
is not injective: Let f0 ∈ Cc(R) be any non-zero odd function and define f : M =
R× S2 → R to be the function with f(t, x) = f0(t) for all t ∈ R, x ∈ S2. Then we
have Xf(γ) = 0 for all escaping geodesics γ, but f is not zero.

This non-injectivity holds in great generality. In [12] the kernel of the X-ray
transform on products [0, 1] × Rn/Zn is determined. In particular a function f ∈
C([0, 1]×Rn/Zn) with Xf = 0 must be constant in the torus direction. This kernel
is inevitable in all similar product geometries, but it is generally not known whether
it is the whole kernel.

Definition 1.3. We say that (M, g) has a support theorem if for every compact

set K ⊂M there exists a compact set K̂ ⊂M with the following properties:

(a) For all functions f ∈ Cc(M), Xf |Ge(M\K) = 0 implies that suppf ⊂ K̂.
(b) If Kn ⊂ M is a sequence of compact subsets of M with Kn+1 ⊂ Kn and

diam (Kn)→ 0, then also diam (K̂n)→ 0.

We will be particularly interested in the concrete construction of a set K̂ ⊂ M
from a given compact set K ⊂ M satisfying properties (a) and (b) in Definition
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1.3. While in the Euclidean case we can choose K̂ = conv(K) to be the convex hull

of K, it is not obvious how to choose K̂ in more general geometries, in particular
if there are conjugate points.

Let us discuss the properties (a) and (b) in more detail.
If K is the support of a non-negative function f ∈ Cc(M), then Xf(γ) > 0 for

every geodesic γ through the interior of K. It follows that K̂ must contain the
interior of K for all compact sets K.

Property (b) guarantees that if the set K becomes small then so does K̂. In

particular, if K = ∅, then diam K̂ = 0, hence K̂ is empty or a singleton and any

function f with suppf ⊂ K̂ is zero. Thus (b) implies that the X-ray transform is
injective.

We aim to extend the strong support theorem in the Euclidean and hyperbolic
plane to manifolds exhausted by such planes.

Definition 1.4. A 2-dimensional totally geodesic closed submanifold Σ of (M, g)
is called a plane in M if Σ is diffeomorphic to R2 and if the induced metric on Σ
has constant non-positive curvature. A plane cover of M is a collection P of planes
in M such that

M =
⋃

Σ∈P
Σ.

Since a plane is closed all geodesics of M contained in a plane are escaping.
Hence a manifold with a plane cover has escaping geodesics through every point.

A generic Riemannian manifold has no totally geodesic submanifolds of dimen-
sion ≥ 2, in particular no plane covers. There even are homogeneous spaces, for
example the Heisenberg group, that do not contain totally geodesic submanifolds
of dimension ≥ 2. Nevertheless, important classes of Riemannian manifolds (M, g)
have plane covers. The easiest examples are products of Riemannian manifolds with
only escaping geodesics. (Another injectivity result of the X-ray transform for com-
pact domains in product manifolds can be found in [25, Thm 1.3].) Most prominent
examples of manifolds with plane covers are symmetric spaces of non-compact type
and higher rank. In Damek-Ricci spaces, and therefore in particular in non-compact
rank-1-symmetric spaces, every geodesic is contained in a hyperbolic plane, see [24].
Hence these also have a plane cover. More generally homogeneous spaces contain-
ing a flat or a hyperbolic plane have a plane cover. In Proposition 2.3 we prove
that such homogeneous spaces have a support theorem if this plane is extrinsically
homogeneous. Proposition 2.4 implies that all 2-step nilpotent Lie groups with
left invariant metric of dimension ≥ 4 have Euclidean plane covers. Nilpotent Lie
groups of lower dimensions are abelian or, up to rescaling, isometrically isomorphic
to the Heisenberg group H3 (which coincides with the filiform group L3, see [13]).
By different techniques we show that H3 also has a support theorem.

Theorem 1.5. All simply connected 2-step nilpotent Lie groups with left invariant
metrics have a support theorem. In particular, the X-ray transform is injective.

Finally, we like to point out that plane covers yielding support theorems do not
always arise from homogeneity or a product structure. In section 4 we provide
examples of a warped product metric on R3 which is non-homogeneous and has
conjugate points. Nonetheless, the metric has a plane cover yielding a support
theorem.
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A more quantitative viewpoint on support theorems has been taken in [21].
The results there depend on the more stringent condition of uniformly esacaping
geodesics, i.e. every geodesic γ must have left the ball of radius r around γ(0) after
a finite time P (r) independent of the geodesic. If a manifold has a support theorem
in the sense of Definition 1.3 and σ : R+

0 → R+
0 is a function so that for all p ∈ M

and all r ∈ R+
0 we have B̂σ(r)(p) ⊂ Br(p), then the σ-support theorem as defined

in [21] holds in the manifold.

2. Plane covers

Planes, i.e. the euclidean plane R2 or the hyperbolic plane H2, both with their
standard metric of constant non-positive curvature, have a simple support theorem
(see Cor. I.2.8 and Theorem III.1.6 in [9] or [5, 6, 7]):

Theorem 2.1 (Support Theorem for planes, [9]). Let K ⊂ X be a compact subset
of the plane X = R2 or X = H2 and f a compactly supported continuous function
on X. If the X-ray transform of f vanishes on all geodesics avoiding K, then the
support of f lies in the convex hull of K,

Xf |Ge(X\K) = 0 =⇒ f |X\convK = 0 .

We use this theorem to prove

Proposition 2.2. Let P be a plane cover of M and K ⊂ M (not necessarily
compact). Let f ∈ Cc(M). If Xf |Ge(M\K) = 0, then
(1)

suppf ⊂ K̂ := {x ∈M | ∀Σ ∈ P, x ∈ Σ: x ∈ convΣ(K)} =
⋂

Σ∈P
((M \ Σ) ∪ convΣ(K)) ,

where for A ⊂M , convΣ(A) denotes the convex hull of A ∩ Σ in Σ. In particular,
X is injective.

Proof. Let f ∈ Cc(M) and K ⊂M be a compact subset such that Xf |Ge(M\K) = 0.

Let x ∈ M\K̂. By the definition of K̂ there is Σ ∈ P with x ∈ Σ \ convΣ(K ∩ Σ).

Let f0 = f
∣∣∣
Σ

and K0 = Σ∩K. Then f0 ∈ Cc(Σ) and K0 ⊂ Σ is compact. Moreover,

x ∈ Σ and x 6∈ convΣ(K0). After rescaling the metric by a constant factor Σ is
isometric to the Euclidean or hyperbolic plane. All geodesics γ in Σ are escaping
and also geodesics in M . Therefore

XΣ(f0)|Σ\K0
= 0 .

Now we employ the Support Theorem for planes and conclude that

f0

∣∣∣
Σ\convΣ(K0)

≡ 0,

and, in particular, f(x) = f0(x) = 0. By (1), if K = ∅ then K̂ = ∅, hence X is
injective. �

This does not automatically yield a support theorem because the set K̂ defined
by (1) need not be precompact (i.e. bounded). In a homogeneous space however
the existence of a plane implies that the space has a plane cover. We show that a
homogeneous space containing an extrinsically homogeneous plane has a support
theorem.
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Proposition 2.3. Let M be a homogeneous space, G a closed transitive subgroup of
the isometry group of M , and P be a plane cover of M containing all translates of

at least one extrinsically homogeneous plane Σ. Then K̂, defined in (1), is bounded
for every compact subset K ⊂M and M has a support theorem.

It follows that a homogeneous space which contains an extrinsically homogeneous
plane has a support theorem.

Proof. Let Σ ⊂ M be an extrinsically homogeneous plane so that gΣ ∈ P for all
g ∈ G. We may also assume that p ∈ Σ ∩ K 6= ∅. Since the projection G → M ,
g 7→ gp, is proper, the subset GK = {g ∈ G | gp ∈ K} ⊂ G is compact. The set

SK := {(g, k1, k2) | g ∈ GK , k1, k2 ∈ K, g−1k1, g
−1k2 ∈ Σ} ⊂ GK ×K ×K

is compact and the function

δK : SK → R+
0 with δK(g, k1, k2) = dΣ(g−1k1, g

−1k2)

is continuous since Σ ⊂M is closed. Therefore

DK = max
g∈GK

diam gΣK ∩ gΣ = max{dΣ(g−1k1, g
−1k2) | (g, k1, k2) ∈ SK} = max δK

exists and is finite. The convex hull of a subset of a plane has the same diameter
as the subset itself. Hence

diam gΣconvgΣ(K) = diam gΣK ∩ gΣ ≤ DK for all g ∈ GK .

If for some g ∈ G, convgΣ(K) 6= ∅, then gΣ ∩ K 6= ∅. Let q ∈ Σ be so that
gq ∈ K. Since Σ is extrinsically homogeneous, q = g′p for some g′ ∈ G with
g′Σ = Σ. Hence gΣ = gg′Σ and gg′ ∈ GK . It follows that

K̂ ⊂
⋃
g∈G

convgΣ(K) =
⋃

g∈GK
convgΣ(K) .

Each slice convgΣ(K), g ∈ GK , intersects K. It now follows that

(2) diam K̂ ≤ 2DK + diamK .

Finally, let Kn be a sequence of compact sets as in Definition 1.3 (b). If Kn is
empty for some n, then Km is empty for all m ≥ n and we have DKm = diamKm =

0 hence diam K̂m = 0 for all m ≥ n, hence limn→∞ diam K̂n = 0. If Kn 6= ∅ for all
n, then for each n ∈ N we have gn ∈ GKn , k1,n, k2,n ∈ Kn so that

DKn = dΣ(g−1
n k1,n, g

−1
n k2,n) .

The sequence (DKn)n is monotone non-increasing and by compactness, we can
assume that limn→∞ gn = g∞ exists. Since limn→∞ diamKn = 0, the intersection⋂
nKn = {q} is a singleton and limn→∞ k1,n = q = limn→∞ k2,n. In particular, by

continuity of dΣ,

lim
n→∞

DKn = lim
n→∞

dΣ(g−1
n k1,n, g

−1
n k2,n) = dΣ(g−1

∞ q, g−1
∞ q) = 0 .

By (2),

lim
n→∞

diam K̂n ≤ lim
n→∞

(2DKn + diamKn) = 0 .

�

We now show that many nilpotent Lie groups with left invariant metric have a
Euclidean plane cover and a support theorem.
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Proposition 2.4. Let G be a simply connected k-step nilpotent Lie group with a
left invariant metric. Let g be its Lie algebra and

0 = g0 C g1 C g2 C · · ·C gk = g

be the upper central series of g. Assume that for some i ∈ {1, . . . , k} we have

(3) dim gi/gi−1 > 1 + dim gi−1 .

Then G has a Euclidean plane cover and has a support theorem. It follows im-
mediatly that G has a support theorem if dim gi ≥ 2i for some i ∈ {1, . . . , k}, in
particular if dim G ≥ 2k, or if the center of G has at least dimension 2.

Proof. Let i be as in the assumption of the theorem and let hi = g⊥i−1 ∩ gi be the
orthogonal complement of gi−1 in gi. Then

dim hi = dim gi/gi−1 > 1 + dim gi−1 .

For any x ∈ hi, the kernel of the linear map adx : hi → gi−1 is therefore at least
2-dimensional. Hence there are x, y ∈ hi \ {0} with [x, y] = 0. By the Koszul
formula for left invariant vector fields we have for any z ∈ g,

(4) 2〈∇xy, z〉 = 〈[x, y]︸ ︷︷ ︸
=0

, z〉 − 〈x, [y, z]︸︷︷︸
∈gi−1

〉 − 〈y, [x, z]︸ ︷︷ ︸
∈gi−1

〉 = 0 .

This shows that ∇xx = ∇xy = ∇yy = 0.
Hence F = {Exp(rx + sy) | r, s ∈ R} is a 2-dimensional totally geodesic flat

abelian subgroup of G. In particular, F is extrinsically homogeneous. Since the
exponential map of a nilpotent Lie group is a diffeomorphism, F is a closed subman-
ifold. Its cosets form a Euclidean plane cover P = {gF | g ∈ G}. By Proposition
2.3 G has a support theorem. �

Remark. A nilpotent group can have a plane cover even if the dimension condition
(3) is violated. A k-step nilpotent group must have at least dimension n = k+1, the
groups with this minimal dimension are called filiform, [13]. For example (in the
notation of [13], p 1592), let Ln be the metric Lie algebra with orthonormal basis
{X1, X2, . . . , Xn}, and Lie bracket so that [X1, Xi] = Xi+1 and all other brackets
trivial. Then if n > 3, (4) shows that any pair Xi, Xj with 1 ≤ i ≤ j ≤ n, i+1 < j,
spans a plane in Ln.

3. A support theorem for the Heisenberg group

We now show that the Heisenberg group H3 has a support theorem. In partic-
ular, the X-ray transform on H3 is injective.

Theorem 3.1. For every compact subset K ⊂ H3, there is a compact subset K̂ ⊂
H3 such that if f ∈ Cc(H3) is so that

∫
γ
f = 0 for all geodesics γ in H3 \K, then

f |H3\K̂ = 0.

Proof. We will use the Lie group exponential

Exp: R3 ∼= h3 ∼= H3

as coordinates for H3, with the last coordinate representing the center and the
first two its orthogonal complement. The Campbell-Hausdorff formula for a 2-step
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nilpotent Lie group reads

Exp(x)Exp(a) = Exp

(
x+ a+

1

2
[x, a]

)
for x, a in the Lie algebra. In the case of the Heisenberg group this becomes

Exp(x, y, z)Exp(a, b, c) = Exp

(
x+ a, y + b, z + c+

xb− ya
2

)
.

In the sequel we will suppress the exponential map in the notation. For the geodesics
in the Heisenberg group see [1], p31. We will only need horizontal geodesics, in
particular those of the form

γx(t) =

(
x, t,

xt

2

)
= (x, 0, 0)(0, t, 0)

and those obtained from γx by rotations about the z-axis with an angle α, which
we will denote by γx,α. These geodesics lie outside the paraboloid

P =

{
(u, v, w) | w ≥ u2 + v2

4

}
with exception of one point. The geodesic γx touches the boundary of P in the

point γx(x) =
(
x, x, x

2

2

)
. Clearly every point on the boundary of P is the unique

intersection point of ∂P with a suitable geodesic γx,α.
Let f be a continuous function on H3, with compact support. Let L ⊂ H3 be

a compact subset so that the integral of f over any geodesic avoiding L vanishes.
We can enclose L by two shifted paraboloids,

L ⊂ (P−(0, 0, h−))∩(−P+(0, 0, h+)) =

{
(u, v, w) | u

2 + v2

4
− h− ≤ w ≤ h+ −

u2 + v2

4

}
for suitable h−, h+ ∈ R. We will show that the support of f then also lies in the
intersection of these paraboloids. By symmetry it clearly suffices to do this for one
paraboloid only. Shifting f in direction of the center, i. e. the z-axis, if necessary,
we may assume that L lies in some shifted paraboloid and that the support of f
lies in the paraboloid P ,

L ⊂ Ph := P + (0, 0, h) ⊂ P ⊃ suppf for some h > 0 ,

and that the support of f intersects the boundary of P . Rotating about the z-axis
if necessary, we can also assume that such an intersection point q lies on a geodesic
γx0

,

suppf ∩ ∂P 3 q = γx0
(x0)

for some x0 ∈ R. Let δ ∈ R be so that B2δ(q) ∩ Ph = ∅ and Bρ(q) is simple for all
ρ ≤ 2δ, i. e. has strictly convex boundary and the Riemannian exponential map is
a diffeomorphism where defined. For z ∈ (−∞, 0] consider the geodesics

γzx0
(t) =

(
x0, t,

x0t

2
+ z

)
.

Among these only γx0 = γ0
x0

intersects P . There is z0 < 0 so that γz0x0
intersects

∂B2δ(q) in one point a.
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z

x

y

x0

γx0

B2δ(q)

a

γz0x0

P

Ph

L ⊂ Ph $ P

The geodesics in Γ := {γzx0
| z ∈ [z0, 0]} do not intersect Ph. By Theorem

3. 1 from [21], geodesics in 2-step nilpotent Lie groups are uniformly escaping.
Thus there is T ∈ R+, such that for all geodesics γ with γ(0) ∈ B2δ(q) and all
t > T , we have γ(t) 6∈ L ∪ (suppf \ Bδ(q)). On the other hand, since [−T, T ] is
compact, there is ε > 0 so that no geodesic in the ε-neighbourhood A of Γ intersects
L ∪ (suppf \Bδ(q)). Γ ⊂ A is a deformation retract.

In particular any geodesic in A can be deformed to the point a. From Theorem
1, [14], we infer that the function f vanishes on the union of the intersections of
the geodesics in A with Bδ(q), which is a neighbourhood of q, hence q can not lie
in the closure of f−1(R \ {0}).

�

4. Non-homogeneous examples in dimension 3 with conjugate points

The previous examples are all homogeneous. We finish this paper presenting 3-
dimensional non-homogeneous examples with conjugate points admitting Euclidean

and hyperbolic plane covers so that for every compact set K we have K̂ bounded.
Let g be a Riemannian metric on R3 given in cylindrical coordinates (t, r, α) ∈

R× [0,∞)× [0, 2π) by

(5) g = dt2 + dr2 + f(r, t)2dα2,

where f : R× [0,∞)→ R is a smooth function satisfying

f(r, t) =


sin(r) if 0 ≤ r ≤ 3π

4
φ(r) if 3π

4 ≤ r ≤ π
2 + r − π if π ≤ r ≤ 2π
2 + r − π if 2π ≤ r and t ≤ 0
> 2 + r − π if 2π ≤ r and t > 0

where φ :
[

3π
4 , π

]
→ (0, 2] is so that f becomes smooth.
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The submanifold F = {(0, r, α) | r ∈ [0,∞), α ∈ [0, 2π)} is locally isometric to
the round unit sphere for r < 3

4π. Inside the cylinder r ≤ 2π, the manifold is
isometric to a product, inside the cylinder r ≤ π

2 this is the product of the round
hemisphere with R.

For α ∈ [0, π) let Eα := {(t, r, α), (t, r, α + π), | t ∈ R, r ∈ [0,∞)}. Then
P = {Eα | α ∈ [0, π)} is a plane cover. The geodesics emanating from the origin
are the same as those of the standard metric of R3. In particular g is complete. For
t ∈ R, St = {(t, r, α) | 0 ≤ r ≤ π

2 , 0 ≤ α < 2π} is a totally geodesic submanifold
with boundary, isometric to a standard hemisphere. Antipodal points (t, π2 , α) and
(t, π2 , α + π) on the boundary of St are conjugate. To see this, observe that the
embeddings

(6) {(t, r, α) | r ≤ π} ∼= R× S2
+ ⊂ R× S2

are isometric. The rotations of S2 about the axis corresponding under (6) to a
pair of antipodal points in the boundary of S+ provide a one parameter family of
minimizing geodesics joining two such points. The metric is not homogeneous, in
fact g is flat in the region {r > π, t < 0} and isometric to S2 × R in the region
{r ≤ π

2 }. In the region {t < 0 or r < 2π}, g is isometric to F ×R, but clearly, this
isometry does not hold globally.

Let K ⊂ R3 be compact and let D = max{‖k‖ | k ∈ K} = max{
√
t2 + r2 |

(t, r, α) ∈ K}, note that the distance of a point from the origin with respect to g is

the same as the euclidean distance. Thus K ⊂ BD(0). Clearly, for all Eα ∈ P we

have K ∩ Eα ⊂ BD(0), hence

K̂ ⊂
⋃
α

convEα(K) ⊂ BD(0) .

In order to obtain a similar example with a hyperbolic plane cover, we replace
the metric (5) with

(7) g = dt2 + e2t
(
dr2 + f(r, t)2dα2

)
.

The submanifolds Eα as above are now totally geodesic hyperbolic planes (with
curvature −1) and P = {Eα | α ∈ [0, π)} is a hyperbolic plane cover. The hemi-
spheres St from above are not totally geodesic. As before the points (t, π2 , α) and

(t, π2 , α + π) are conjugate. The maps in (6) are still isometric provided R × S2

carries the metric dt2 + e2tgS2 where gS2 is the standard metric on S2. As above
rotations of S2 provide a one parameter family of minimizing geodesics joining such
two points.

Acknowledgment: This research was supported by the University of Cyprus.
We also thank the referee for useful references.

References

[1] BibliographyJ. Berndt, F. Tricerri and L. Vanhecke, Generalized Heisenberg Groups and

Damek-Ricci Harmonic Spaces, Lecture Notes in Mathematics 1598, Springer, 1995.
[2] BibliographyCh. L. Epstein, Introduction to the mathematics of medical imaging, Second

Edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
[3] BibliographyT. G. Feeman, The mathematics of medical imaging, A beginner’s guide, Second

Edition, Springer Undergraduate Texts in Mathematics and Technology, Springer, Cham,
2015.

[4] BibliographyE. L. Grinberg and S. G. Jackson, On the kernel of the maximal flat Radon

transform on symmetric spaces of compact type, J. Lie Theory 27(3) (2017), 623–636.



10 NORBERT PEYERIMHOFF AND EVANGELIA SAMIOU

[5] BibliographyS. Helgason, A duality in integral geometry; some generalizations of the Radon

transform, Bull. Amer. Math. Soc. 70 (1964), 435–446.

[6] BibliographyS. Helgason, The Radon transform on Euclidean spaces, compact two-point ho-
mogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180.

[7] BibliographyS. Helgason, Support of Radon transforms, Adv. in Math. 38(1) (1980), 91–100.

[8] BibliographyS. Helgason, The X-ray transform on a symmetric space, in Global differential
geometry and global analysis (Berlin, 1979), Lecture Notes in Math. 838, 145–148, Springer,

Berlin-New York, 1981.

[9] BibliographyS. Helgason, Integral geometry and Radon transforms, Springer, New York, 2011.
[10] BibliographyJ. Ilmavirta, On Radon transforms on compact Lie groups, Proc. Amer. Math.

Soc. 144(2) (2016), 681–691.

[11] BibliographyJ. Ilmavirta and F. Monard, Integral geometry on manifolds with boundary and
applications, arXiv:1806.06088.

[12] BibliographyJ. Ilmavirta and G. Uhlmann, Tensor tomography in periodic slabs, J. Funct.
Anal. 275(2) (2018), 288–299.

[13] BibliographyM. M. Kerr and T. L. Payne, The geometry of filiform nilpotent Lie groups,

Rocky Mountain Journal of Mathematics 40(5) (2010), 1587–1610.
[14] BibliographyV. P. Krishnan, A Support Theorem for the Geodesic Ray Transform on Func-

tions, Fourier Anal Appl 15 (2009), 515–520.

[15] BibliographyP. Kuchment, The Radon transform and medical imaging, CBMS-NSF Regional
Conference Series in Applied Mathematics 85, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 2014.

[16] BibliographyJ. Lehtonen, The geodesic ray transform on two-dimensional Cartan-Hadamard
manifolds, arXiv:1612.04800.

[17] BibliographyJ. Lehtonen, J. Railo, and M. Salo, Tensor tomography on Cartan-Hadamard

manifolds, Inverse Problems 34(4) (2018), 044004, 27pp.
[18] BibliographyG. P. Paternain, M. Salo, and G. Uhlmann, Tensor tomography on surfaces,

Invent. Math. 193(1) (2103), 229–247.
[19] BibliographyG. P. Paternain, M. Salo, and G. Uhlmann, Tensor tomography: progress and

challenges, Chin. Ann. Math. Ser. B 35(3) (2014), 399–428.

[20] BibliographyL. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a
manifold of negative curvature, Siberian Math. J. 29(3) (1988), 427–441.

[21] BibliographyN. Peyerimhoff and E. Samiou, The X-ray transform on 2-step nilpotent Lie

groups of higher rank, arXiv:1601.04614, to appear in Rendiconti Seminario Matematico
Univ. Pol. Torino, Workshop for Sergio Console, Vol. 74, 1 (2016), 297–305.
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