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a b s t r a c t

MATLAB is adept at the development of concise Finite Element (FE) routines, however
it is commonly perceived to be too inefficient for high fidelity analysis. This paper
aims to challenge this preconception by presenting two optimised FE codes for both
continuous Galerkin (CG) and discontinuous Galerkin (DG) methods. Although this has
previously been achieved for linear-elastic problems, no such optimised MATLAB script
currently exists, which includes the effects of material non-linearity. To incorporate
these elasto-plastic effects, the externally applied load is split into a discrete number
of loadsteps. Equilibrium is determined at each loadstep between the externally applied
load and the arising internal forces using the Newton–Raphson method. The optimisation
of the scripts is primarily achieved using vectorised blocking algorithms, which minimise
RAM-to-cache overheads and maximise cache reuse.

The optimised codes yielded maximum speed gains of ×25.7 and ×10.1 when
compared to the corresponding unoptimised scripts, for CG and DG respectively. It
was identified that with increasing refinement of the mesh, the solver time begins to
dominate the overall simulation time. This bottleneck has a greater disadvantage on the
DG code, predominantly due the asymmetric nature of the global stiffness matrix. The
implementation of an efficient solver would see further improvement to the overall run
times, particularly for large problems.
© 2019 TheAuthors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Finite Element Analysis (FEA) has become a frequently used computational technique in modern industry. The method
has had a substantial precedent within the engineering community since the initial concept was first established in the
1940s, originating in the field of structural mechanics. Its development has been greatly aided over the years by the
exponential increase of computational power and memory storage, allowing high fidelity problems to be solved rapidly.

Finite element codes can be developed in a number of computing languages including C, C++ and Fortran, however
these compiled codes can require thousands of lines of code to be written. Conversely, high-level computational
environments, such as MATLAB, allow equivalent routines to be written in a fraction of the time and with far fewer
lines. Nonetheless, MATLAB is often overlooked for finite element analysis (FEA) due to its computational inefficiencies,
particularly when executing for-loops. To overcome this, a number of optimisation techniques can be implemented
in order to reduce run-times. Without these optimisation routines, MATLAB simply cannot compete, in terms of
computational speed, with alternative languages for FEA.
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MATLAB utilises the Linear Algebra PACKage (LAPACK), written in Fortran, which performs mathematical operations by
calling Basic Linear Algebra Subroutines (BLAS) [1]. The poor performance associated with MATLAB for-loops is primarily
due to the accumulation of RAM-to-cache overheads,1 which arise each time data is sent to and from cache.2 To negate
this, data can be sent in the form of a large vector, the BLAS calculations performed in cache before the data is transferred
back to RAM. This significantly reduces the overheads associated with the calculation compared to non-vectorised BLAS
calls. Optimum performance is achieved when the size of the vectors, referred to as ‘blocks’, sent to BLAS match the CPU
cache memory size such that high speed cache reuse is maximised. Should the size of the block exceed the cache memory,
LAPACK executes data-management algorithms and sub-optimal performance is realised [1].

In 2008, Dabrowski et al. [2] published an open source MATLAB code capable of solving a 2D linear elastic problem
with 106 degrees of freedom in under one minute (MILAMIN). The algorithms, however, include a number of non-
native MATLAB functions, which are written in C. Whilst the use of these non-native functions can improve the overall
performance, the code becomes less transportable as the MATLAB software must have the SuiteSparse [3] package
installed. Consequently, Bird et al. [4] conducted an investigation into extending the work of Dabrowski et al. to present
a highly optimised linear elastic using only native MATLAB functions. Other work in this area includes the extension
of the Dabrowski et al. [2] techniques to include parallelisation [5]. More recently, vectorisation techniques have been
applied to different element formulations [6,7], comparisons made between different algorithms [8] and general routines
devised which are applicable to multiple vector languages [9]. Although the focus of this paper is on non-linear solid
mechanic, it is worth noting that the MILAMIN framework [2] has recently been extended to simulate the non-linear
deformation of incompressible Newtonian and non-Newtonian fluids [10].

Bird et al. [4] also extended the algorithm to discontinuous Galerkin methods (DG) for linear elastic problems. The DG
method introduces an alternative way to assemble and solve the system in question, whereby discontinuities between
elements are permitted by averaging the jumps of variables at element interfaces [4]. In contrast to the standard
continuous Galerkin (CG) methods, the degrees of freedom at the nodes are not shared by neighbouring elements. To
maintain stability and ensure a realistic system response, the local stiffness calculations include a penalising term, which
prohibits complete separation of elements faces. DG methods aid in localised p- and h-type refinement of a problem
as no intermediate mesh is required to negate hanging nodes [11]. However the calculation of the element stiffness
matrices requires additional integral terms and, therefore, is more computationally expensive than CG methods. This
further highlights the need for an efficient calculation of the stiffness terms. Moreover, due to the element specific degrees
of freedom, the global stiffness matrix is larger than that of a corresponding CG mesh, resulting in longer linear system
solve times.

This paper extends the work of [2] and [4] to present two optimised elasto-plastic codes using CG and DG methods.
Elasto-plasticity, also referred to as material non-linearity, describes a situation whereby the stress is no longer linearly
dependent on the strain. The introduction of elasto-plasticity further improves the FEA approximations, which otherwise
do not take into account the non-linear material properties. The first code formulated in this paper builds upon the work
of Coombs et al. [12], who present a concise 70-line non-optimised MATLAB script to solve material and geometrically
non-linear problems. This code acts as a framework upon which several optimisation techniques are implemented. By
employing similar techniques to those used in the optimised CG code and extending the code formulated by Bird et al.
[4], a second optimised code is presented for the incomplete interior penalty discontinuous Galerkin (IIPG) method for
elasto-plastic problems.

This paper first provides the underlying theory behind DG finite element methods and elasto-plasticity in finite element
analysis, before providing a breakdown of the key sections of each algorithm where these concepts are applied. The
results obtained from the code are verified against a problem with an analytical solution, before providing performance
testing to determine the overall speed gains achieved through optimisation. As the focus of this paper is on the efficient
implementation of elasto-plasticity for CG and DG finite element methods, the equations are presented in matrix–vector
format to facilitate implementation. We restrict the paper to two-dimensional analysis, although the algorithms can
equally be applied to one and three dimensional non-linear problems.

2. Governing equations for CG and DG

2.1. Formulation of the weak form for linear-elasticity

The strong form equation is the governing partial differential equation which requires equilibrium to be satisfied at
every point within the domain. For the linear-elastic problem, the strong form can be written as

− [L]T {σ } = {f } in Ω, (1)

1 These overheads exist in other languages, such as C/C++and Fortran, however they appear to not be as severe as in MATLAB where they can
significantly degrade an algorithm’s performance.
2 See Dabrowski et al. [2] for a detailed discussion on the overheads associated with RAM to CPU cache transfer and the benefits of blocking for

cache reuse.
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subject to the following boundary conditions

[σ ]{n} = {gN} on ∂ΩN and {u} = {gD} on ∂ΩD, (2)

where Ω ⊂ Rn is the domain, with boundary ∂Ω= ∂ΩD ∪ ∂ΩN , [L] is the standard differential operator, {σ } and [σ ]

are the Cauchy stress in vector and matrix form, respectively, {f } is vector of the body forces, {n} is the unit outward
normal to the boundary and {gN} and {gD} are the prescribed Neumann (traction) and Dirichlet (displacement) boundary
conditions. To implement the governing equations in finite elements, the weak form of the equation must be derived,
such that equilibrium is satisfied in a weighted average sense across all elements in the domain. Also, meshes and finite
element spaces have to be defined. The finite element mesh is denoted by Th and it is assumed to be shape-regular and
to be constituted by quadrilateral elements. Single elements are denoted by E and faces by F . The set of all interior faces
of the mesh Th is denoted by Eh. The CG and DG finite element spaces defined on Th are denoted by VCG

p (Th) and VDG
p (Th),

respectively, where p is the order of the elements. In the CG case we assume that VCG
p (Th) ⊂ [H1

0 (Ω)]n and in the DG case
VDG
p (Th) ⊂ [L2(Ω)]n.
As the focus of this paper is on algorithmic and performance issues associated with the MATLAB implementation of

non-linear solids mechanics, details of the adopted CG and DG formulations are not given in this section. Instead the
interested reader is referred to the Appendix for details of the adopted CG and DG methods.

2.2. Extension to elasto-plasticity

In contrast to the linear elastic problem, for elasto-plasticity the stress in the domain is no longer linearly dependent on
the nodal displacements and the stiffness of the material varies through the physical domain. The fundamental concept
of the finite element method is that the determined solution must leave the system in a state of equilibrium. That is,
the sum of the applied external forces is equal and opposite to the sum of the element internal forces. This underlying
principal is referred to as the non-linear incremental equation of equilibrium

{f oobf} = {f ext} − {f int} = {0}, (3)

where {f oobf} is the residual out-of-balance force vector and {f ext} is the sum of externally applied loads, including body
forces and tractions. {f int} denotes the internal forces at each node summed from the element internal force vectors {f e}.
Consequently, it is essential to formulate a set of equations to calculate the internal forces in each element.

3. Elasto-plasticity

This section will outline the underlying concepts of elasto-plasticity which are implemented in the finite element codes.

3.1. Loadsteps

Material non-linearity provides a situation whereby the relationship between the stress and strain varies as the
material yields. That is {σ } ̸= [De

]{ε}, where [De
] is the elastic stiffness matrix, {ε} = [B]{u} is the strain and [B] is

the strain–displacement matrix. It is necessary to discretise the applied load into a number of loadsteps and solve the
non-linear equation of equilibrium (3) for the unknown displacements, {d}, at each load level.

3.2. Newton–Raphson convergence of out-of-balance forces

By combining the equilibrium concept with the Newton–Raphson method, it is possible to iterate to a solution for each
loadstep in a number of steps (where n + 1 denotes the current loadstep number and k the Newton–Raphson iteration
number):

1. The process will begin at a previously converged state, where {f oobf} = {0} (point (i) in Fig. 1). The external force
vector {f ext} will be updated to the subsequent loadstep, and thus {f oobf} ̸= 0.

2. Calculate the incremental nodal displacements {δdk+1}. This is obtained by {δdk+1} = [K ]
−1

{f oobfk }, where [K ] is the
global stiffness matrix, which acts as a tangent.

3. Recalculate the internal force vector {f int} from the updated displacements {dk+1
n+1}.

4. Recalculate the residual out-of-balance force vector {f oobfk+1 } using Eq. (3). This gives point (ii) in Fig. 1.

5. Repeat steps (2)–(4) until the normalised residual out-of-balance force converges to a given tolerance, that is

∥{f oobf}∥
∥{f ext}∥

⩽ tolerance. (4)

in this paper the tolerance is set to 1 × 10−9.
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Fig. 1. Newton–Raphson convergence process.

3.3. Associated flow perfect plasticity

Here we restrict the material to linear elastic, perfectly plastic behaviour with associated plastic flow and a von Mises
yield surface (Prandtl–Reuss constitutive model). This is the simplest, general, form of elasto-plasticity, however the
algorithms presented in this paper are applicable to more sophisticated forms of non-linear material behaviour.

In 1913, R.E. von Mises [13] postulated an analytical yield surface f , used to define the admissibility of a given stress
state. The yield function can be expressed as

f = ρ2
− ρ2

y = 0, (5)

where ρ is the deviatoric stress, and ρy is a limiting yield stress. The deviatoric stress ρ is defined as

ρ =

√
2J2, (6)

where J2 is the second stress invariant determined by

J2 =
1
2
tr([s][s]) and [s] = [σ ] −

tr([σ ])
3

[I], (7)

where [s] is the traceless deviatoric stress matrix, [I] is a 3 × 3 identity matrix, and tr(·) is the trace operator. The von
Mises yield surface can most easily be visualised in the principal stress space as an open-ended cylinder with its major
axis aligned with the hydrostatic axis (where σ1 = σ2 = σ3) with a radius of ρy. It should be noted that, in this paper,
the yield surface remains at a fixed radius, ρy, due to the perfect plasticity assumption.

For associated flow plasticity theory we assumed that the outward normal to the yield surface provides the flow
direction controlling the evolution of plastic strains, that is

{ε̇p
} = γ̇

{
∂ f
∂σ

}
(8)

where γ̇ is the scalar plastic multiplier rate (or consistency parameter). This plastic multiplier must satisfy the Kuhn–
Tucker–Karush consistency conditions

f ≤ 0, γ̇ ≥ 0 and f γ̇ = 0. (9)

These conditions enforce that the material must either be on the yield surface undergoing elasto-plastic deformation
(f = 0 and γ̇ ≥ 0) or inside the yield surface with purely elastic behaviour (f ≤ 0 and γ̇ = 0). The above plasticity
equations are given in rate form, however in order for them to be implemented within a finite element algorithm, or
even used as an stress–strain relationship to predict material behaviour at a single point, they must be integrated into an
incremental relationship between stress and strain. This stress integration is the focus of the next section.

3.4. Stress integration

The key question that stress integration algorithms are required to answer is: given a current stress state, {σn}, which
is subjected to a strain increment, {∆ε}, what is the updated stress state, {σn+1}? Algorithms to answer this question for
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elasto-plastic constitutive models are normally split into three categories, namely: (i) explicit, (ii) implicit and (iii) exact
stress integration. Several papers explore and contrast different stress integration approaches and an interested reader is
refereed to the works of [14–16], amongst others. Explicit stress integration methods (see for example the initial work
of Ilyushin [17] which was later applied to Prandtl–Reuss by Mendelson [18] and generalised by Nayak and Zienkewicz
[19]) have advantages in terms of their simplicity but they do not enforce the consistency conditions at the updated
stress state [20]. Implicit stress integration algorithms are normally formulated in terms of a prediction step followed by
a correction for stress stated that induce elasto-plastic behaviour. These approaches were initially formulated by Wilkins
[21] and have been developed over the last 50 years [22–26], including some analytical (closed-form) techniques
[27–29] and general approaches that can be applied to arbitrary yield envelopes [30–32]. For textbook accounts of implicit
methods see [33,34], amongst others. The key advantage of implicit methods over the earlier explicit approaches, despite
their additional computational complexity, is that they rigorously enforce the consistency conditions at the new stress
state. They also allow for larger stress increments to the applied to the constitutive model. However, in this paper we
adopt an exact stress integration approach for von Mises elasto-plasticity of Wei et al. [35] for reasons outlined below.

The primary advantage of exact stress integration methods [15,35–39] is that they remove any errors associated with
the stress integration process. However, exact stress integration methods are generally considered to be too expensive for
routine engineering stress analysis [39]. In this paper we challenge this criticism as, due to their closed-form nature, exact
stress integration routines are far more amenable to vectorisation as compared to iterative approaches (such as implicit
stress updating). See Wei et al. [35] for details of the stress integration algorithm and consistent tangent, and Coombs
et al. [12] for an example conventional (non vectorised) implementation. Section 4.7 provides details on the efficient
implementation of the exact stress update algorithm.

An additional advantage of adopting an exact (or implicit) stress update algorithm is that it allows determination of
the algorithmic consistent tangent [40,41] which facilitates optimum convergence of the global non-linear problem (3).
The benefits of using the consistent tangent operator have recently been demonstrated by Duretz et al. [42]. This tangent
is the linearisation of the stress updated algorithm with respect to changes in the trial elastic strain state and replaces
[D] in the global stiffness matrix, [K ], assembled using (A.2). The algorithmic consistent tangent derived by Wei et al. [35]
can be expressed as

[D] = η1{sn}{sn}T + η2{sn}{∆ϵ}T + η3{∆ϵ}{sn}T + η4{∆ϵ}{∆ϵ}T + η5[I], (10)

where ηi are variables that depend on the stress state and the deviatoric component of the applied strain increment, {∆ϵ}.
{sn} is the vector form of the deviatoric stress, [s] see (7), evaluated at the previously converged (or initial) stress state.
As η2 ̸= η3, the algorithmic consistent tangent is non-symmetric and the numerical implications of this will be explored
in Sections 4.7 and 4.8.

4. Elasto-plastic optimised CG algorithm

Algorithm 1 outlines the code structure used for the optimised elasto-plastic MATLAB algorithm, highlighting the key
sections of code, which are further explained in the subsections that follow. However, before looking at specific aspects
of the code it is helpful to explain the main speed-up mechanism — blocking.

Standard finite element implementations loop over each Gauss point for each finite element and determine the stiffness
contribution of each Gauss point to their parent element and then assemble the element stiffness matrix into a global
stiffness matrix. The critical speed up mechanism for the algorithm shown in Algorithm 1 is blocking. Elements are
grouped into blocks, where the optimum block size is dependent on the physical architecture of the machine used to
perform the assembly calculations, and then vectorised stiffness calculations are performed for all the elements in the
block for a specific Gauss point location. The stiffness contributions are then assembled into a global stiffness matrix.

4.1. Mesh set-up and block size determination

Line 1 of Algorithm 1 denotes where the problem set-up and script initialisation occur. The mesh set-up is achieved
by calling a MATLAB function, which returns the element coordinates coord, the element topology etpl and boundary
conditions bc. Furthermore, the material properties of Young’s modulus and Poisson’s ratio are returned, which are used
to calculate the elastic stiffness and compliance matrix. These matrices are used several times later in the code, and hence
it is favourable only to declare these variables once in the code. Additionally, it is here that the material yield stress is
defined.

The number of elements per block nelblo is determined from a user input, referring to the size of the vectors sent to
BLAS, which is dependent on CPU cache size. Finally, memory allocation is declared for two vectors used to store all of the
element stiffness matrices and element internal force vectors, K_all and felem_all respectively, until the global stiffness
matrix is assembled. The allocations are defined as K_all=zeros(nels,nDoF,nDoF) and felem_all = zeros(nels,nDoF),
where nels is the number of elements in the domain and nDoF is the total number of degrees of freedom for an element.
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Algorithm 1 Optimised CG elastoplatic code.
1: Mesh set-up and block size determination
2: for Loadstep loop do
3: Update the external force vector {f ext}
4: Calculate initial residual out-of-balance force {f oobf}
5: while ||{f oobf}||

||{f ext}|| ⩾ tolerance do
6: Solve equations for displacement increment
7: for Element block loop do
8: Element block memory allocation
9: for Gauss point loop do
10: Gauss point initialisation
11: Strain increment calculation
12: Call to Constitutive model (von Mises elasto-plasticity)
13: Local stiffness calculation [ke]
14: Local internal force calculation {f e}
15: end for
16: Assignment to temporary block storage
17: end for
18: Global stiffness matrix and internal force vector assembly
19: Update out-of-balance residual force {f oobf}
20: end while
21: Set reference variables equal to converged values
22: end for

Fig. 2. Code fragment corresponding to lines 3–5 of Algorithm 1.

4.2. Out-of-balance residual calculation

Lines 3 and 4 of Algorithm 1 are responsible for updating the external force vector fext and calculating the residual
out-of-balance force oobf, respectively. Fig. 2 shows the corresponding code fragment. It can be observed that the external
force vector is updated upon each load step lstp, as an appropriate proportion of the total external force applied fext0,
where no_lstps is the total number loadsteps.

The residual out-of-balance force is calculated as the difference between the internal force vector fint and the sum of
the external and reaction forces (fext and react respectively). It should be noted that the L2 norm variable oobfnorm is
assigned a value of twice the Newton–Raphson tolerance NRtol, such that the while() loop is entered on the first iteration
of each loadstep.

Furthermore, an iteration counter NRit is included to ensure the number of iterations does not exceed the user defined
maximum number iterations NRitmax, should the solution fail to converge.

4.3. Linear solution for displacement increment

Line 6 of Algorithm 1 is where the system solver function is called. Using the out-of-balance force array oobf and the
global stiffness matrix from the previous iteration K, the solver returns the incremental displacements and reaction forces,
subject to the system boundary conditions. The solver uses the native MATLAB function mldivide(), which is capable of
solving a large system of linear equations.

4.4. Element block memory allocation

Line 8 of Algorithm 1 denotes where the memory allocations for the current block take place. Memory is assigned to the
following variables: the Jacobians Jx, Jy, inverse Jacobians invJx, invJy, the block storage local stiffness matrices K_block,
the block storage element internal force vector felem and the updated stress vector sig_new. The variables K_block and
felem act as temporary storage for all elements considered within the block before they are stored in K_all and felem_all,
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Table 1
Size of memory allocated to the variables in each block.
Variable Rows Columns Third dimension

Jx, Jy nelblo nD –
invJx, invJy nelblo nD –
K_block nelblo nDoF nDoF
felem nelblo nDoF –
sig_new nelblo 3 –

Fig. 3. Code fragment corresponding to line 11 of Algorithm 1.

respectively. Table 1 presents the size of each variable to which memory is assigned in this section, where nD is the number
of degrees of freedom at each node.

At the start of each loop, K_block and felem are required to be set to zero, so as to eliminate the possibility of incorrect
addition during the Gauss point loop.

4.5. Gauss point initialisation

Line 10 of Algorithm 1 denotes where the derivatives of the shape functions, with respect to the global coordinates,
are determined dNx, dNy. The method used is consistent with that of [2] and [4] for the volume and surface terms and,
therefore, will not be discussed.

4.6. Strain increment calculation

Line 11 of Algorithm 1 denotes where the strain increment is calculated at the Gauss point locations. To achieve
maximum speed gains, a set of expressions must be derived such that the strain increment {δε} can be simultaneously
calculated for the current Gauss point of every element in the block. For plane-strain/stress problems, the strain increment
expressions can be written as

{
δεxx
δεyy
δγxy

}
=

nen∑
i=1

⎡⎢⎢⎢⎣
∂Ni

∂x
0

0 ∂Ni
∂y

∂Ni

∂y
∂Ni
∂x

⎤⎥⎥⎥⎦
{
δui
δvi

}
, (11)

where δu and δv are the incremental displacements at the nodes as returned from the solver. ∂N
∂x and ∂N

∂y are the shape
function derivatives with respect to the global coordinates x and y respectively, and nen is the number of element nodes.
By multiplying out (11), expressions are obtained for each strain direction as outlined in the code fragment shown in
Fig. 3, where deps is the strain increment and du, dv are the incremental displacements in x and y respectively.

4.7. Constitutive model

Line 12 of Algorithm 1 is where the constitutive model is called. This function is used to assess the stress state of
each Gauss point, returning an updated [D] matrix. It should be noted that this constitutive model is consistent with
the function implemented by Coombs et al. [12], however it has been rewritten in a vectorised block form to reduce
the number of calls to BLAS. This requires the separation of all the Gauss points in the current block into those acting
elastically and those undergoing elasto-plastic deformation. This is done by implementing the von Mises yield surface
introduced in Section 3.3, shown in the code fragment in Fig. 4.3 Here, epsEtr is the trial strain state of the Gauss point,

3 Note that in the algorithm shown in Fig. 4 the stress and strain quantities are expressed in general 9-component form with the following
format {σ̄ } = {σxx, σyy, σzz , σxy, σyx, σyz , σzy, σzx, σxz}, where the bar denotes a 9-component form. This is for a number of reasons: (i) it facilitates
the calculation of the trace of a matrix in vector form such that both shear components are correctly accounted for which allows for vectorisation
of the calculation of ρ and (ii) it allows the algorithm to the applied to 1D, 2D (plane stress, plane strain and axi-symmetry) and 3D analysis by
only changing the supplied increment in strain.
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Fig. 4. Code fragment corresponding to line 12 of Algorithm 1. bm1 is a vector of ones and zeros, used to calculate the trace in vector form. fc is
the user specified yield stress of the material.

calculated by adding the strain increment deps to the previously converged strain state epsEn. By multiplying this trial
strain state by the elastic stiffness matrix De, the trial stress state sig_tr is obtained for every element in the current
block.

An expression for the yield function can be derived by substituting (7) into (6), and subsequently substituting the
resultant equation into (5). This gives

f = tr([s][s]) − ρ2
y . (12)

Within the code, this is implemented by first calculating the trace of the deviatoric stress matrix in vector form, which is
assigned to the variable s_tr. The squaring of s_tr is calculated using sum(s_tr.*s_tr,1), such that a single scalar quantity
of ρ is obtained for each Gauss point in the block. Consequently, the vector of the yield function f is calculated. Two
logical statements are made using this vector: elast_indx = find(f<0) and plast_indx = find(f>=0). These statements
return vectors containing the locations of the elastic and plastic Gauss points within the f vector where f<0 and f>=0

respectively. That is, elast_indx will contain an index for the elements that contain an admissible stress state for the
Gauss point in question, which are therefore elastic. Conversely, plast_indx denotes the elements for which the stress
state of the Gauss point lies on or outside the yield surface, which will undergo elasto-plastic deformation.

The variable plast_indx is also used as a logical indicator, as shown in Fig. 4. The script section bounded by
‘if plast_indx’ will only be entered if there exists one or more plastic Gauss point in the current block. Should this
be the case, this section of code will be executed in order to calculate the [D] matrix for all elasto-plastic Gauss points.
See [35] or [12] for details of the determination of [D], the algorithmic consistent tangent.

The values of [D] are calculated and subsequently output within a MATLAB structure D.a. . .D.i, where a . . . i denote a
location in [D] such that

[D] =

[a b c
d e f
g h i

]
. (13)

For each plastic Gauss point within the block, the values a . . . i are unique and thus [D] is potentially non-symmetric (see
(10) in Section 3.4). The values are steered into the overall D.a vector using plast_indx, for example D.a(plast_indx,:) =

(expression for plastic a). For all elastic Gauss points, the values a . . . i are assigned consistent values, such that the matrix
takes the form of the elastic stiffness matrix [De

] e.g. D.a(elast_indx,:) = (expression for elastic a). Thus, the total length
of each array contained within the D structure is the block length nelblo.

Additionally, the updated stress and strain states are calculated and outputted from the function, epsE and sig_new

respectively. Again, these variables are plastic dependent and, therefore, also require assembling using elast_indx and
plast_indx.

4.8. Local stiffness calculation

Line 13 of Algorithm 1 references where the local stiffness matrices [ke] are calculated for all elements in the block.
For elasto-plasticity, the [D] matrices are potentially non-symmetric and thus the resultant stiffness matrices are also
non-symmetric. Consequently, all terms in the stiffness matrix need to be calculated, degrading the overall performance
(both in terms of stiffness assembly and linear solution). In order to negate this problem, the [D] matrices for the plastic
Gauss points are forced to be symmetric. By taking the average of the off-diagonal terms, a symmetrical matrix is obtained

[DAS] =

[a α β

α e γ

β γ i

]
, (14)
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Fig. 5. Code fragment corresponding to line 14 of Algorithm 1. Here, felem is the element internal force vector, dNx, dNy are the shape function
derivatives, sig_new are the non-linear stress states and w denotes the integral weight points.

where [DAS] denotes the average symmetric form of [D]. With reference to (13)

α =
1
2
(b + d), β =

1
2
(c + g), γ =

1
2
(f + h), (15)

where a, e and i retain their original values. Although this results in sub-optimal convergence through a small error in
the global stiffness tangent, the speed gained through the assembly of the local stiffness matrices results in an overall
performance improvement. It should also be noted that the performance of the solver is enhanced when solving a
symmetric matrix.

From here, a similar technique is used to those evident in [4] and [2], whereby the upper triangle of the stiffness
matrices is calculated explicitly by looping over the element nodes. Each term within the stiffness matrix is a function
of the values from the [D] matrix, the shape function derivatives dNx and an integration weighting w. This Jacobian
determinant detJ is included within w. The key difference is that [D], in general, can be different at each Gauss point
in each element.

4.9. Local internal force calculation

Line 14 of Algorithm 1 denotes where the local element internal force vector is calculated. The expression for this is
obtained by summarising (A.6) as{

f exj
f eyj

}
=

ngp∑
i=1

nen∑
j=1

[
∂Nj
∂x 0 ∂Nj

∂y

0 ∂Nj
∂y

∂Nj
∂x

]{
σxx
σyy
σxy

}
i

det([J])wi. (16)

By multiplying out this equation, expressions are derived for each element internal force vector entry. The implementation
of this is achieved by looping over the element nodes, as shown in Fig. 5.

4.10. Assignment to temporary block storage

Line 16 of Algorithm 1 denotes where the local stiffness and internal force vectors for the current block are assigned to
temporary variables, K_all and felem_all respectively. These variables remain unused until the calculations for all blocks
are complete. The variables are subsequently used to assemble the global stiffness matrix and internal force vector.

4.11. Global stiffness matrix and internal force vector assembly

Line 18 of Algorithm 1 refers to where the global stiffness matrix K and global internal force vector fint are assembled.
The global stiffness matrix is assembled using the native MATLAB function sparse(), a memory efficient way to store large
matrices by only storing non-zero terms and their corresponding matrix locations.

The assembly of the global stiffness matrix is therefore achieved by executing
K=sparse(ed_i,ed_j,K_all,tndof,tndof),

where ed_i, ed_j are the steering vectors for rows and columns respectively.4 The overall size of the matrix is defined by
tndof, the total number of degrees of freedom for the system. The assembly of fint is achieved by executing

fint=accumarray(ed,felem_all),
where ed is a vector denoting the degrees of freedom at each node. The MATLAB function accumarray() is used to construct
an array with accumulation. This is necessary here, where the internal forces at nodes can contain contributions frommore
than one element.

4 Note that ed_i, ed_j are only calculated once (on the first Newton iteration of the first load step) and then stored for repeated calls to
sparse. The code allows the sparse function to sum the repeated row/index entries in the global stiffness matrix rather than pre-computing
reduced fill-in of the global stiffness matrix.
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Algorithm 2 DG stiffness and internal force calculation.
1: for Face block loop do
2: Face block initialisation
3: for Surface Gauss point loop do
4: for Loop over element faces do
5: Determine global shape functions for each face
6: end for
7: Strain increment calculation for positive and negative Gauss points
8: Calls to Constitutive model for positive and negative Gauss points
9: Local stiffness calculation [ke]
10: Local internal force calculation {f e}
11: end for
12: Assignment to temporary block storage
13: end for

Fig. 6. Code fragment showing the first component of strain increment calculation for positive and negative Gauss points.

4.12. Update out-of-balance residual force

Line 19 of Algorithm 1 is where the out-of-balance residual force is recalculated using the newly calculated internal
force vector. The L2 norm of the subsequent vector is obtained using the native MATLAB norm() function. This value is
then compared to the Newton–Raphson tolerance and, if smaller, the loadstep has converged and the while-loop is exited.

4.13. Set reference variables equal to converged values

Line 21 of Algorithm 1 denotes where the reference variables are set to the converged values from the completed
loadstep. The reference variables required for the next loadstep are the total elastic strain vector epsE and the total
displacement uvw, which are assigned to epsEn and uvwold respectively.

5. Elasto-plastic optimised algorithm in DG

The elasto-plastic optimised DG code takes the same form as the CG code, however it requires one extra loop to
determine the stiffness and internal force contributions from the element faces. The DG algorithm can be expressed
by simply including the additional pseudo code presented in Algorithm 2 between lines 17 and 18 of Algorithm 1. The
stiffness and internal force calculations discussed in the CG code can be directly implemented into the DG code, as this is
identical to the area integral required for term (Q ) in (A.2). It should be noted that lines 1 to 6 are unchanged from the
DG linear-elastic code presented by Bird et al. [4] and, therefore, will not be discussed.

5.1. Strain increment calculation

The DG strain increment calculation for the DG face terms is performed on Line 7 of Algorithm 2. As in the CG code,
the strain increment due to increased externally applied load must be calculated. However, the DG code differs such
that the strain increments must be obtained at the current Gauss point for both the + and − elements. Fig. 6 shows the
implementation of this within the code for the first component of strain δεxx only. Here, deps_p and deps_n denote the
positive and negative strain increments respectively, while dNx_p, dNy_p and dNx_n, dNy_n are the positive and negative
shape function derivatives respectively. Additionally, the incremental displacements of the positive and negative elements
are denoted by du_p and du_n respectively.

5.2. Constitutive model for positive and negative Gauss points

Line 8 of Algorithm 2 references where the constitutive model is called for both the positive and negative elements
surfaces. A consistent constitutive model should be used for all 3 calls throughout the DG code (1 call for the area
calculations and 2 calls for surface calculations), varying only in the strain states applied as an input to the function.
That is, for the positive element face ∂E+, the strain state from the previously converged loadstep epsEn_surfp and the
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Algorithm 3 Local internal force calculation for DG.
1: for Loop over element nodes do
2: Calculate penalty contribution terms
3: end for
4: for Loop over element nodes do
5: Calculate the degrees of freedom for current node
6: Calculate the surface contribution terms
7: Assemble local internal force using penalty and surface contribution terms
8: end for

positive strain increment deps_p are sent to the constitutive model. This is also the case for the negative element face
∂E−, using epsEn_surfn and deps_n instead.

Each Gauss point is determined to be elastic or plastic using the same von Mises criteria discussed in Section 4.7 and
the appropriate [D] matrices are returned. Again, the values of these matrices are returned in MATLAB structure form,
where Dp.a. . .i and Dn.a. . .i denote the positive and negative [D] matrices respectively. It should be noted that the values
a . . . i take the same asymmetrical form as shown in (13). Also returned are the updated non-linear stress states sig_p

and sig_n and the strain states epsE_surfp and epsE_surfn, for the positive and negative surfaces respectively.

5.3. Local stiffness calculation

Line 9 of Algorithm 2 is where the terms R1...4 and S1...4 of (A.2) are calculated, where each term is a [ndof]×[ndof]

matrix. As previously discussed, the (Q ) term has already been calculated in the area integral. By multiplying out the
equations in (A.4), it was found that there exists a set of common algebraic expressions for entries of the R1...4. These
repeated terms are a function of the shape function derivatives, the outward facing normal vectors and components of
the [D] matrices calculated in the constitutive model.

By executing two nested for-loops over the element nodes, the stiffness terms for each node’s degrees of freedom can
be calculated. The repeated terms that arise frommultiplying out the R1...4 expressions vary only in columns and, therefore,
lie outside the second nested for-loop. Consequently, these terms are only calculated nen number of times, reducing the
number of calls to BLAS and, thus, reducing the overhead time. However, due to the omission of the symmetric DG term,
the entirety of each stiffness matrix must be determined. This differs from the optimised linear elastic code, whereby only
the upper triangle is calculated and subsequently transposed.

Within the nested for-loop, the R1...4 stiffness terms are calculated and placed into the correct location within the
matrix, using steering terms mult_i and mult_j. The stabilising terms S1...4 are also calculated here, which are derived
from the derivatives of the shape functions, nodal displacements and integration weightings. These stabilising terms are
subtracted from the R1...4 terms, in accordance with (A.2), to obtain the overall stiffness matrix contribution for the Gauss
point in question. On each Gauss point loop, the stiffness matrix contributions from the current Gauss point are summed
with those from the previous loops.

5.4. Local internal force calculation

Algorithm 3 describes the code structure used to calculate the internal force contributions, line 10 of Algorithm 2,
from terms R1...4 and S1...4, utilising two sequential for-loops. The initial loop calculates the internal force components,
which arise from the penalty terms S1...4 and are functions of the shape functions and the node displacements for both
the positive and negative elements. The second loop is used to calculate the internal force components arising from the
surface integral terms R1...4 and are functions of the outward facing normal vectors and the non-linear stress components
of the positive and negative elements. The overall element internal force components at each element degree of freedom
can subsequently be determined by combining the contributions from the area integral (calculated at line 14 of Algorithm
1), the surface integral and the penalty terms.

It should be noted that the first for-loop cannot be nested within the second, as the penalty term is a cumulative
variable, which requires information from every element node before it can be used to calculate the internal forces at
each degree of freedom.

5.5. Assignment to temporary storage block

This occurs on Line 12 of Algorithm 2 and is equivalent to Line 16 of Algorithm 1 in CG, with the inclusion of two
temporary variables for the positive and negative element internal forces, felem_p_all and felem_n_all respectively.

6. Numerical results and discussion

This section presents the analysis of a two-dimensional elasto-plasticity problem with a known analytical solution. The
section initially focuses on determination of the optimum block size for the hardware/software used and then investigates
the speed-up of the optimised algorithm.
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Fig. 7. Performance variation of constitutive model with varying block size.

6.1. Determining the optimum block size

Optimum performance is reached by maximising the cache reuse and, therefore, is CPU dependent. Performance testing
was carried out to determine the optimum block size for the computer in use. All simulations were run within the
Windows 7 OS on version MATLAB R2015b. The CPU used an Intel Xeon E5-1620 V2@3.70 GHz processor with 64GB
of RAM.

To determine the optimum block size, a for-loop was set up around the vectorised constitutive model (the bottleneck
in the vectorisation of the non-linear finite element algorithm), which increased the block size by 200 on each loop.
All variables were cleared at the beginning of each loop and the stress, strain and incremental strain vectors were
subsequently declared. These variables were consistent for each block size, to ensure the tested trial stress state was
deemed inadmissible, such that the plastic section of code was executed. The variables were repeated to match the block
size, using the MATLAB repmat() function.

Each loop was timed and subsequently divided by the block size to determine the average calculation time per Gauss
point in the block. By plotting the inverse of these times, the peak speed can be observed, as shown in Fig. 7. It should
be noted that each loop was executed 40 times, from which the mean time was calculated, to reduce the effect of speed
variation due to CPU background tasks. Here, the optimum block size was observed to be ≈ 13000 and, henceforth, this
was the block size used for all simulations5. The grey region in Fig. 7 is the region where cache-reuse is maximise and
the overhead associated with data transfer is relatively insignificant. For block sizes > 15000, the routine requires more
memory than available in the CPU cache and this inhibits cache reuse (see Dabrowski et al. [2] for a discussion on this
point). Note that the block size is not influenced by the number of Gauss points used to integrate the finite element as
the Gauss point loop contains the blocking algorithm.

6.2. Result validation against an analytical solution

The results obtained for both CG and DG were validated using a problem with an analytical solution. The problem
analysed was the stretching of a double-notched plate, initially presented by Nagtegaal et al. [43] for small strain plasticity.
The plate assumes a Young’s modulus E = 206.9 GPa, a Poisson’s ratio ν = 0.2 and a yield stress ρy = 0.45 GPa.

The height and width of the specimen were defined to be 30 mm and 15 mm respectively, with a 2 mm unit linking
ligament at mid height, as shown in Fig. 8(ii). For this implementation, a plane-strain assumption was made, such that
the total out-of-plane strains were assumed to be zero. Due to the symmetrical nature of the problem, only one quarter of
the specimen was discretised using 75 bi-linear four-noded quad elements integrated using 2 × 2 Gauss quadrature (four
points per element). For this geometry, Nagtegaal et al. [43] postulates a small strain analytical load due of Flim ≈ 2.673kN.
Fig. 8(i) shows the force–displacement graph for the first 6 refinements of the mesh, run using the optimised CG script.
Each refinement halves the element size in both directions, hence quadrupling the number of elements. In each case, a
displacement of 2 mm was applied to the top edge of the plate over 20 equal loadsteps.

It is clear from the responses that the numerical solution from the CG code converges towards the correct analytical
solution. It is also evident that the same response is achieved in DG, as shown in Fig. 9, which compares the error after
each refinement. The degrees of freedom for each of the meshes is given in Table 2.

5 Note that this is the optimum block size for this specific architecture and the optimum block size will vary depending on the hardware/software
used. However, 13000 can provide a useful initial investigation point for determining the optimum block size for other machines.
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Fig. 8. Nagtegaal et al. [43] plate problem (i) load–displacement curve for mesh refinement (ii) specimen dimensions.

Fig. 9. Percentage error of solution with decreasing element size h.

Table 2
Degrees of freedom for the CG and DG meshes.
Refinement CG DG

1 192 600
2 682 2,400
3 2,562 9,600
4 9,922 38,400
5 39,042 153,600
6 154,882 614,400

6.3. Average-symmetric vs non-symmetric [D] matrix

This section assesses the effect of applying the average-symmetric [D] matrix in the CG optimised code. The effect of
the matrix symmetricity is analysed for both the Newton–Raphson convergence rate and the system solver performance.
Fig. 10 presents two convergence graphs for loadstep 5 of the fourth refinement. It is evident from both graphs that using
a non-symmetric [D] matrix results in a quicker convergence rate, such that it requires two fewer iterations. It can also
be seen from Fig. 10(ii) that the logarithmic gradient of convergence of the non-symmetric matrix is ≈2 or greater for
each iteration. This suggests correct implementation, as the Newton–Raphson method should asymptotically approach
quadratic convergence if the correct tangent is used.

Conversely, the average symmetric matrix converges sub-optimally. This is clearly apparent in Fig. 10(ii) whereby
the logarithmic gradient of convergence is < 2 for all iterations. This is due to the error in the global stiffness tangent
acquired when forcing the [D] matrix to be symmetric. Although this results in the need for additional iterations per
loadstep, dramatic speed gains are achieved in both the assembly of the local stiffness matrix and the solver time. This
is shown in Fig. 11, which shows the time to assemble the local stiffness matrices, the solver time and the overall time
for the first six refinements. The speed gains are clearly evident for all three measured sections of code, with maximum
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Fig. 10. N–R convergence of loadstep 5 of the fourth refinement for CG optimised code. Gradients are displayed in (ii).

Fig. 11. Time taken for local stiffness assembly, solver and overall simulation for the DG analysis. AS denotes average-symmetric, whilst NS denotes
non-symmetric.

speed gains obtained for the sixth refinement. Here, applying the average-symmetric matrix method yielded speed gains
of ×1.58, ×3.05 and ×1.94 for the local stiffness assembly, solver time and overall simulation respectively.

6.4. Identification of performance bottlenecks

It is possible to identify performance bottlenecks by analysing the time spent in various sections of the code. Fig. 12
shows a time breakdown of the DG optimised code, where the solver time, surface integral time, volume integral time and
sparse assembly are plotted as a percentage of the overall simulation time. The graph clearly highlights the dominance
of the solver time for large problems. For the sixth refinement, the solver time accounts for 76% of the total simulation
time, acting as a performance bottleneck. This outcome was also observed within the optimised CG code, however the
asymmetrical nature of the DG global stiffness matrix results in greater performance degradation.

6.5. Overall performance improvements

The overall performance improvements were analysed by comparing the elasto-plastic CG and DG optimised codes to
their corresponding non-optimised MATLAB scripts for the notched plate problem. The simulation times for the first six
refinements can be observed in Fig. 13 and Table 3 for both CG and DG optimised and non-optimised scripts.

For the CG code, the maximum speed gain of ×25.7 is achieved for refinement 4. Beyond this, the solver time begins
to dominate and the speed enhancement is marginally reduced, with a speed gain of ×22.0 for refinement 6. Maximum
speed gains of ×10.1 are obtained for refinements 3 and 4 of the DG code, beyond which the solver time dominates
heavily. By excluding the solver time, set-up time and sparse assembly time, a true comparison can be made between
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Fig. 12. Percentage of time spent in each section of the DG code.

Fig. 13. Simulation times for CG and DG codes to complete refinements 1 to 6, for optimised and non-optimised scripts.

Table 3
Simulation times for optimised and non-optimised codes.

CG DG

Refinement Optimised time (s) Non-optimised time (s) Optimised time (s) Non-optimised time (s)

1 0.371 2.31 3.43 9.99
2 0.502 9.88 6.38 45.5
3 1.85 44.4 20.8 211
4 7.75 199 104 1060
5 39.6 919 644 4830
6 189 4170 4720 23500

the optimised sections of code and the corresponding non-optimised sections. Table 4 provides a summary of this data,
showing maximum speed gains of ×52 and ×47 for CG and DG respectively.

The total number of iterations and the run time per Newton–Raphson iteration are given in Table 5. The run time
per iteration is based on the total time minus the solver time, set-up time and sparse assembly time, that is the run
times given Table 4. The maximum speed gain per iteration for the CG method is ×55 which is greater than the speed
gain based on Table 4. This is due to more iterations being required in the optimised symmetric CG algorithm which has
sub-optimal convergence, as shown in Section 6.3. However, in the authors’ opinion quantifying the speed gains in terms
of the total simulation time is more appropriate for non-linear algorithms if they require different numbers of iterations
to find convergence.
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Table 4
Simulation times for optimised and non-optimised codes, disregarding the solver time, setup time and sparse assembly
time.

CG DG

Refinement Opt time
−(Solve + Setup
+ Sparse) (s)

Non-opt time
−(Solve + Setup
+ Sparse) (s)

Opt time
−(Solve + Setup
+ Sparse) (s)

Non-opt time
−(Solve + Setup
+ Sparse) (s)

1 0.322 2.27 3.08 9.61
2 0.343 9.64 4.52 43.4
3 0.945 43.0 8.74 199
4 3.54 192 25.2 971
5 17.2 876 94.2 4260
6 74.9 3930 403 19100

Table 5
Total number of Newton iterations and run times per iteration (in brackets, s)

CG DG

Refin. Opt. Non-opt. Opt. Non-opt.

1 61 (5.3 × 10−3) 59 (3.8 × 10−2) 61 (5.0 × 10−2) 61 (1.6 × 10−1)
2 73 (4.7 × 10−3) 65 (1.5 × 10−1) 69 (6.6 × 10−2) 69 (6.3 × 10−1)
3 80 (1.2 × 10−2) 74 (5.8 × 10−1) 79 (1.1 × 10−1) 79 (2.5 × 10+0)
4 89 (4.0 × 10−2) 84 (2.3 × 10+0) 96 (2.6 × 10−1) 96 (1.0 × 10+1)
5 103 (1.7 × 10−1) 97 (9.0 × 10+0) 105 (9.0 × 10−1) 105 (4.1 × 10+1)
6 115 (6.5 × 10−1) 109 (3.6 × 10+1) 118 (3.4 × 10+0) 118 (1.6 × 10+2)

It is worth noting that modern BLAS libraries support multithreading and in order to investigate the impact of
multithreading, MATLAB was initiated with a single thread6 and the run times with a single thread compared with the
default four threads for the optimised CG code. The runtime change moving from four threads to a single thread was
insignificant apart from the 6th refinement where the runtime increased by 6.7%. However, the majority of this increase
in runtime was in the solver, with an increase of 14.1%, and in the constitutive model, with an increase in runtime of 5.8%.
The runtime change of the rest of the algorithm combined was negligible confirming that the majority of the stiffness
matrix calculations are memory bandwidth bounded rather than compute bounded.

7. Conclusions

This paper presents two optimised codes capable of setting up and solving elasto-plastic problems in 2D, for CG and
DG. Firstly, the optimised CG code was developed, building upon the work of Coombs et al. [12] who present a 70-line
MATLAB script to solve for material and geometrically non-linear problems. In this code, the major performance bottleneck
is observed from the large number of calls made to BLAS, resulting in the build up of overheads. The accumulation of these
overheads predominantly occur in the constitutive model, where a high number of mathematical operations are performed
on every Gauss point within the domain. By implementing blocking algorithms, initially proposed by Dabrowski et al. [2],
the number of calls to BLAS are significantly reduced and, therefore, so are the overheads. This results in speed gains of
≈100 times in the constitutive model alone.

It was also found that the [D] matrix is often non-symmetric for plastic Gauss points. This has a negative consequence
on the formulation of the local stiffness matrices [ke], such that all the matrix terms must be calculated. To negate this,
the code adopts a technique which forces the plastic [D] matrices to be symmetric by averaging the off-diagonal terms.
Consequently, only the upper triangle of the local stiffness matrices is required to be calculated, significantly reducing the
number of calculations required. Once the global stiffness matrix [K ] is assembled, the complete matrix is determined
by summing this matrix with the transpose of itself. Moreover, the symmetricity of global stiffness matrix results in
improved solver performance. The penalty for using average-symmetric [D] matrices comes through sub-optimal Newton–
Raphson convergence at each loadstep, due to the small error in the global stiffness tangent. However the effect of this
is outweighed by the speed gains achieved elsewhere in the code, resulting in a maximum overall simulation speed gain
of ×1.94 when compared to the non-symmetric optimised code. This further breaks down to speed gains of ×1.58 and
×3.05 for the local stiffness formulation and solver time respectively.

Comparison of the optimised CG code to the equivalent non-optimised code by Coombs et al. [12] yields a maximum
overall simulation speed gain of ×25.7 (and ×52 if the solver, setup and sparse time are disregarded). To ensure the
correct implementation of the methods, the results were validated against a problem with an analytical solution.

6 This can be done via the command line using matlab -singleCompThread.
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The optimised DG code takes an identical structure to the CG code, with the inclusion of a surface integral loop.
The surface loop used is similar to that developed by Bird et al. [4], who presents an optimised SIPG code for linear
elasticity. However, due to difficulty in deriving the interior forces for the SIPG method, this paper adopts a IIPG approach.
Furthermore, this loop requires two additional calls to the constitutive model to assess the stress state of surface Gauss
points on the positive and negative elements. From this, appropriate [D] matrices are returned. Unlike the CG code, the
DG script does not force the [D] matrices to be symmetric as the IIPG method will result in a non-symmetric stiffness
matrix regardless. For this reason, the speed gains achieved are not as substantial as for CG, as all terms in the stiffness
matrices must be calculated. Nonetheless a maximum speed gain ×10.1 was observed in comparison to the equivalent
non-optimised code.

It was also identified for both codes that with increasing refinement of the mesh, the solver time begins to dominate
the overall simulation. This bottleneck has a greater disadvantage on the DG code due to the global stiffness matrix [K ]

being non-symmetric alongside being much larger as a result of unshared degrees of freedom at the nodes. For example,
for a DG analysis with ≈ 6 × 105 degrees of freedom, the solver time accounted for 76% of the overall simulation time.
Although the current speed gains achieved are significant, the bottleneck now resides in the linear solver rather than the
stiffness assembly as for standard MATLAB finite element implementations.

The presented computational efficiency codes could be used in solving more challenging problems. Recently Bird et al.
presented a DG code for configurational force crack propagation for brittle materials [44]. The DG code presented in this
paper could be used together with the configurational force method in [44] to simulate crack propagation in materials
with plastic behaviour. The efficiency of the CG and DG codes could be further increased introducing adaptivity to the
problem. An hp a posteriori error estimator for linear elasticity in the DG setting is presented in [45]. Due to the similarities
between linear elasticity and the linear system arising from the Constitutive model in Algorithm 1, it plausible to foreseen
the possibility to apply the a posteriori error estimator from [45] also in the elasto-plastic context.

In addition to the above points, it should be noted that the developed code is only applicable to the analysis of
material where yielding is governed by a von Mises yield surface (for example metals or undrained soils). However, it is
straightforward to replace the von Mises constitutive model with an alternative depending on the material analysed. The
advantage of the adopted closed-form von Mises algorithm is that it allows straightforward vectorisation which may be
problematic for other constitutive algorithms that require iterations to update the stress state and stiffness of the material.
This is an interesting area for future research.

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research Council, UK grant number [EP/M507854/1].

Appendix. Finite element formulation

A.1. IIPG approximation: linear elasticity

This paper adopts a reduction of the symmetric interior penalty discontinuous Galerkin (SIPG) method. This reduction
refers to the removal of the symmetrisation term, due to difficulty formulating an expression for the internal forces
for problems involving elasto-plasticity. This leaves the IIPG form [46], which proves far simpler for implementation of
elasto-plasticity, as adopted by [47,48]. The IIPG approximation to the linear elastic problem can be written as: Find
{uh} ∈ VDG

p (Th) such that for all {vh} ∈ VDG
p (Th) we have

(({vh}
T
{f })) = (({vh}

T
[L]T [D][L]{uh})) − ⟨⟨J{vh}K

T
[D]{
⏐⏐[L]T {uh} }

⏐⏐ ⟩⟩ + αr (uh, vh) in Ω. (A.1)

Here ((·)) and ⟨⟨·⟩⟩ denote an integral over all element E ∈ Th, and all portions of element boundaries in the interior of
the mesh, i.e. ∂E ∩ Eh ̸= ∅ for all E ∈ Th, respectively. {

⏐⏐· }⏐⏐ and J·K are the average and jump operators respectively, as
defined in [4]. Additionally, [D] is the Hookean stiffness matrix and αr is a stabilising term as defined in [4]. The shape
function matrix [N] is used to interpolate to a given point within an element and can be used for the approximations
{uh} = [N]{u} and {vh} = [N]{v}, where {u} is a vector containing the displacements of the point’s parent element. The
boundary conditions are imposed strongly, therefore no integral face terms have to be computed along the boundary of
the domain. It should be noted that for CG only the area integral is considered.

Multiplying out the J·K and {
⏐⏐· }⏐⏐ terms, substituting the shape function equations for {uh} and {vh} and subsequently

eliminating the test function {vh}, (A.1) can be written that

A
∀E∈Th

(P) = A
∀E∈Th

(Q ) − A
∀F∈Eh

⟨R1...4 − S1...4⟩

≡[K ]{d},
(A.2)
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where A is the standard finite element assembly operator, {d} contains the displacements for all nodes in the finite
element mesh, [K ] is the global stiffness matrix, (·) denotes an integral over E, ⟨·⟩ denotes an integral over ∂E ∩ Eh,

P = [N]
T
{f },

Q = [B]T [D][B]{u},
(A.3)

with [B] := [L][N] and where

R1 = [N+
]
T
[n+

][D+
][B+

]{u+
}/2,

R2 = [N+
]
T
[n+

][D−
][B−

]{u−
}/2,

R3 = − [N−
]
T
[n+

][D+
][B+

]{u+
}/2,

R4 = − [N−
]
T
[n+

][D−
][B−

]{u−
}/2,

S1 = ησ [N+
]
T
[N+

]{u+
},

S2 = − ησ [N+
]
T
[N−

]{u+
},

S3 = − ησ [N−
]
T
[N+

]{u−
} and

S4 = ησ [N−
]
T
[N−

]{u−
}.

(A.4)

Here, the + and − denote element properties corresponding to E+ and E− respectively, which are defined as neighbouring
elements, connected by a face F . The penalty term ησ = βFEp2h−1

F , where E is the elastic Young’s modulus of the material,
βF is the stabilisation penalty parameter which may vary from face to face [49] (set equal to 10 in this paper), p is the
polynomial order of the element and hF is the face length, and the positive outward facing normal matrix [n] is as defined
by Bird et al. [4] for SIPG. It should be noted that for CG only terms (P) and (Q ) need to be evaluated.

Numerical integration is carried out using Gauss–Legendre quadrature, which requires nGp sampling Gauss points
located throughout the element. For example Q is approximated using

(Q ) ≈

( nGp∑
i=1

[B]T [D][B] det
(
[J]
)
wi

)
{u}, (A.5)

where [J] is the Jacobian mapping between the global and local coordinates and wi is the weight associated with the
Gauss point.

A.2. Internal force vector: elasto-plasticity

The element internal force vector is simply obtained by multiplying the element stiffness matrix by the displacement
at the nodes. For CG finite element analysis the internal force of an element can be expressed as

{f e} =

∫
E
[B]T [D][B]{u}dx =

∫
E
[B]T {σ }dx. (A.6)

Note that in the case of elasto-plastic material deformation, the Cauchy stress is not linearly dependent on displacement.
For DG, the terms R1...4 and S1...4 must also be considered. The terms R1...4 can be evaluated in similar manner to (Q ),

taking R1 as an example, it can be written that

{f e}R1=
1
2

∫
∂E∩Eh

[N+
]
T
[n+

][D+
][B+

]{u+
} ds

=
1
2

∫
∂E∩Eh

[N+
]
T
[n+

]{σ+
}  

{t+}

ds,
(A.7)

where {f e}R1 is the R1 component of the element internal force calculation and {σ+
} and {t+} are the stress vector and

traction vector corresponding to the element E+, respectively.
For terms S1...4, the element internal force components are as stated in (A.4). This is because the penalty terms do

not contain a non-linear component, as they simply penalise the displacement jump terms between adjacent elements.
In this paper the non-linear equilibrium equation (3) is solved using a fully implicit Newton–Raphson algorithm. This
requires linearisation of the equilibrium equation (3) in order to obtain the global stiffness matrix, [K ]. The form of the
global stiffness matrix for elasto-plasticity is the same as that given in (A.2) but the material stiffness matrix, [D], is now
non-linear in the nodal displacements. This is explained in more detail in Section 3.4.
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