1	Group A Streptococcus coordinates manganese import and iron efflux in response to
2	hydrogen peroxide stress
3	
4	Andrew G. Turner ¹ , Karrera Y. Djoko ^{1,3} , Cheryl-lynn Y. Ong ^{1,2} , Timothy C. Barnett ⁴ , Mark
5	J. Walker ^{1,2,*} , Alastair G. McEwan ^{1,2,*}
6	
7	¹ School of Chemistry and Molecular Biosciences and ² Australian Infectious Diseases
8	Research Centre, The University of Queensland, St Lucia 4072, Australia; ³ Department of
9	Biosciences, Durham University, DH1 3LE, UK, ⁴ Telethon Kids Institute, The University of
10	Western Australia, Nedlands 6009, Australia.
11	
12	To whom correspondence should be addressed: Prof. Alastair McEwan, School of Chemistry
13	and Molecular Biosciences, The University of Queensland, Cooper Road, St Lucia, QLD,
14	4072, Australia. mcewan@uq.edu.au, Tel: +61-7-3346 0503; Prof. Mark Walker, School of
15	Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, St
16	Lucia, QLD, 4072, Australia. mark.walker@uq.edu.au, Tel: +61-7-33461623
17	
18	*Contributed equally to this work
19	
20	Key words: iron, manganese, superoxide dismutase, oxidative stress response, Streptococcus
21	pyogenes

1 Abstract

2 Bacterial pathogens encounter a variety of adverse physiological conditions during infection, 3 including metal starvation, metal overload and oxidative stress. Here we demonstrate that 4 group A Streptococcus (GAS) utilizes Mn(II) import via MtsABC during conditions of 5 hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. 6 MtsABC expression is controlled by the DtxR-family metalloregulator MtsR, which also 7 regulates expression of Fe uptake systems in GAS. Our results indicate that the SodA in 8 GAS requires Mn for full activity and has lower activity when it contains Fe. As a 9 consequence, under conditions of hydrogen peroxide stress where Fe is elevated we observed 10 that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, 11 thus protecting SodA from becoming mismetallated. Our findings demonstrate the coordinate 12 action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by 13 PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function. 14

1 Introduction

2 Trace transition metals are important bacterial nutrients but can be toxic in excess. The 3 concentration of available metal ions is tightly regulated in the host (1), particularly for Fe 4 and Zn, which are sequestered within host tissues as pathogen control strategies (2). In 5 addition to metal starvation, bacteria are also subject to killing via metal overload within 6 innate immune cells. Examples include Cu- and Zn- dependent killing of Salmonella (3, 4) 7 and Mycobacterium tuberculosis within macrophages (5, 6), and Zn-dependent killing of 8 Streptococcus pyogenes within neutrophils (7). Bacteria also experience oxidative and 9 nitrosative stress arising from reactive oxygen and nitrogen species (ROS and RNS) 10 generated by innate immune cells, and bacterial pathogens have evolved defense systems that 11 protect against these challenges (8). Importantly, there is close interplay between metal ion 12 homeostasis and oxidative stress response. Metals such as Cu and Fe can cause toxicity by 13 potentiating oxidative stress (9), while Mn is generally considered to have a protective role 14 against ROS (10, 11).

15

16 S. pyogenes (group A Streptococcus, GAS) is an obligate human pathogen that causes a wide 17 spectrum of diseases, ranging from mild infections of the pharynx and skin through to severe, 18 life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome 19 (12). GAS strains express a variety of virulence factors to subvert phagocytosis (13), abrogate 20 immune responses, enhance inflammation (14), promote local tissue invasion (15), acquire 21 metal ions (16), and defend against oxidative stress (17, 18). GAS uses superoxide dismutase 22 (SOD) to detoxify the superoxide anion and, although it lacks catalase, it does possess 23 peroxidases for the removal of hydrogen peroxide (H_2O_2) (18, 19). GAS encodes a single 24 superoxide dismutase, SodA, which is thought to use Mn as a cofactor (20, 21) although it 25 should be noted that cambialistic SODs capable of using either Mn or Fe have been described in some Gram-positive bacteria, including *Streptococcus pneumoniae* and *Staphylococcus aureus* (22, 23).

3

4 Given the differing pro- and anti- oxidant effects of Fe and Mn, it follows that GAS must 5 tightly coordinate Fe and Mn homeostasis to meet the intracellular demand for these metal 6 ions and maintain biochemical functions, while at the same time avoid the potential for 7 oxidative stress. In many Gram-positive bacteria, including GAS, the peroxide response 8 regulator PerR regulates the cellular response to oxidative stress and also contributes to Fe 9 and Mn homeostasis (17, 24-26). The Fe-loaded form of PerR is highly sensitive to oxidation 10 by H_2O_2 , which in turn enables de-repression of genes involved in the oxidative stress 11 response (27). In GAS, these genes include *pmtA*, which encodes a P_{1B-4}-type ATPase that 12 effluxes ferrous iron and likely reduces the potentiating effects of excess Fe on H₂O₂ and 13 superoxide stress (28, 29). In contrast, Mn-loaded PerR is H₂O₂-insensitive and thus it 14 continues to repress the PerR regulon (30).

15

16 Mn import in GAS is mediated by the ABC-type metal transport system MtsABC and this 17 system is essential for protection against the superoxide generator, paraquat (21). The DtxR 18 family regulator MtsR functions as a repressor that senses cellular Mn levels in GAS and 19 regulates expression of MtsABC (21, 31). GAS lacks a Fur homolog and instead uses its Mn 20 sensor, MtsR, to also control Fe homeostasis via the expression of the haem acquisition 21 accessory proteins Shr and Shp, the haem importer SiaABC, and the ferric ferrichrome 22 importer SiuABDG (32-36). Recent findings in Streptococcus cristatus (formerly S. 23 *oligofermentans*) have shown that MntR, an MtsR homologue, can also act as a H₂O₂ sensor 24 and activate Mn import in response to H₂O₂ stress (37).

1 In this work, we examine the relationship between Mn import (via MtsABC and regulated by 2 MtsR), Fe efflux (via PmtA and regulated by PerR), and defense against oxidative stress (via 3 SodA) in GAS. We show that uptake of Mn occurs upon exposure to H_2O_2 and subsequently 4 leads to activation of SodA. This influx of Mn requires a functional MtsABC but does not 5 rely upon upregulation of *mtsABC* by MtsR. We further demonstrate that SodA from GAS is 6 more active in the Mn-metallated form when compared to the Fe-metallated form and that 7 optimal SodA activity also depends on a functional PmtA. These coordinated systems ensure 8 optimal Mn metallation of GAS SodA for oxidative stress defense.

9

10 **Experimental procedures**

11 Bacterial strains and growth conditions

12 The invasive GAS strain M1T1 clinical isolate 5448 was used in this study (38). 5448 wild-13 type (WT) and isogenic mutant strains were routinely cultured at 37 °C in Todd-Hewitt broth 14 (Difco) supplemented with 1% w/v yeast extract (Merck) (THY). For growth on solid 15 medium, strains were cultured on horse blood agar (5% w/v) or THY agar (1.5% w/v). 16 Escherichia coli strains were grown in lysogeny broth (LB) (39). E. coli Top10 was used for 17 maintenance of pJRS233, pLZ12, and pBAD derived plasmids (Table S1). For selection in GAS, the antibiotics kanamycin (300 µg/mL), spectinomycin (100 µg/mL), and erythromycin 18 19 (2 µg/mL) were used. Kanamycin (50 µg/mL), spectinomycin (100 µg/mL), and 20 erythromycin (500 µg/mL) were used to select for plasmids in E. coli.

21

22 DNA manipulations and mutant construction

All GAS mutant strains except $5448\Delta sodA$ (see below) (Table S1) were constructed as previously described (40). To construct the $5448\Delta mtsR$ mutant, the 5' and 3' flanking regions of *mtsR* was amplified using 5448 WT genomic DNA as templates and primer pairs mtsR-

1 KO-1 (incorporating an XhoI site at the 5' end) and mtsR-KO-2 (with homology to aad9 2 (spec^R) at the 5' end), and mtsR-KO-3 (with homology to *aad9* at the 5' end) and mtsR-KO-4 3 (incorporating a BamHI site at the 5' end), respectively (Table S2). The aad9 cassette was 4 amplified from pUCSpec using primers spec-F and spec-R. The resulting fragments were fused by 3-way PCR to form the mtsR-KO construct, which was ligated with the 5 6 temperature-sensitive shuttle vector pJRS233. The pJRS233-mtsR-KO plasmid was 7 electroporated into electrocompetent GAS as previously described (41). A double crossover 8 event was selected for by serial passaging at 37 °C and 30 °C, resulting in 5448 $\Delta mtsR$ that 9 contains spec^R (marker) and has lost ery^R (shuttle vector). To generate the 5448 $\Delta mtsR::mtsR$ 10 complemented strain, the WT mtsR allele was amplified using primers mtsR-KO-1 and mtsR-11 KO-4, and ligated into pJRS233, yielding pJRS233-mtsR, which was electroporated into 5448 AmtsR. The plasmid was integrated via double crossover at 37 °C for replacement of 12 13 aad9 with mtsR at the original locus, to yield $5448 \Delta mtsR$.

14

Construction of $5448 \Delta mtsABC$ was achieved by amplification of the 5' and 3' flanking 15 regions of mtsABC using 5448 WT template DNA and primer pairs mtsABC-KO-1 16 17 (incorporating an XhoI site at the 5' end) and mtsABC-KO-2 (with homology to aphA-3 18 (km^R) at the 5' end), and primer set mtsABC-KO-3 (with homology to *aphA-3* at the 5' end) 19 and mtsABC-KO-4 (incorporating a PstI site at the 5' end), respectively (Table S2). The 20 aphA-3 gene was amplified from pUC4 Ω km2 using primers km-F and km-R. The resulting 21 fragments were fused by 3-way PCR to form the mtsABC-KO construct, which was ligated 22 into the temperature-sensitive shuttle vector pJRS233. The pJRS233-mtsABC-KO plasmid 23 was electroporated into electrocompetent GAS and a double crossover event was selected for by serial passaging as described above, resulting in 5448 $\Delta mtsABC$. To generate the 24 25 5448\(\Delta\)mtsABC::mtsABC complemented mutant, the WT mtsABC allele was amplified using

primers mtsABC-KO-1 and mtsABC-KO-4, and ligated into vector pJRS233, yielding
 pJRS233-mtsABC, which was electroporated into 5448Δ*mtsABC*. The plasmid was
 integrated *via* double crossover at 37 °C for replacement of km^R with *mtsABC* at the original
 locus to yield 5448Δ*mtsABC::mtsABC*.

5

6 Construction of $5448 \Delta sodA$ was achieved using the temperature-sensitive *E. coli*-GAS shuttle 7 vector pLZ12ts (Barnett et al., manuscript in preparation). The genomic regions flanking 8 sodA from 5448 WT amplified using primer pairs sodA-1 and sodA-2 (5), and sodA-3 and 9 sodA-4 (3'). The kanamycin resistance cassette was amplified from pUC4 Ω Km2 using 10 primers km-sodA-F and km-sodA-R which also shared homology to the sodA gene (Table 11 S2). pLZ12ts was amplified using primers pLZ12-F and pLZ12-R. The four PCR products 12 and linearised vector were assembled using the NEBuilder system (New England Biolabs) 13 according to manufacturer's directions, and the resultant plasmid was sub-cloned E. coli 14 Top10. The plasmid was electroporated into electrocompetent GAS and double crossover 15 mutants were selected for as described above, resulting in 5448 Δ sodA that contains the km^R (marker) and has lost spec^R (shuttle vector). 16

17

18 Construction of a plasmid for expression of GAS SodA was achieved through site-directed 19 mutagenesis of pBAD-myc-His-A to remove the myc epitope and insert a TEV protease cut 20 site upstream of the C-terminal 6xHis tag, using primer pairs pBAD-site-F and pBAD-site-R. 21 The resulting plasmid, pBAD-TEV-His, was digested with NcoI and ApaI, and ligated to a 22 sodA PCR fragment, which was prepared as follows. The sodA gene was amplified from 23 5448 WT using primers sodA-prot-F (incorporating a NcoI cut site at the 5' end) and sodA-24 prot-R (incorporating an ApaI cut site at the 5' end). Then resultant PCR product was then 25 digested with NcoI and ApaI and ligated into pBAD-TEV-His, and transformed into E. coli Top10. All strains were confirmed by DNA sequencing (Australian Equine Genetics
 Research Centre, The University of Queensland).

3

4 Analyses of intracellular metal content

For analysis of intracellular Mn accumulation, GAS strains were grown in THY to OD₆₀₀ 0.6-5 6 0.8 and challenged for 1 h with either 8 mM Fe(II) or 1 mM Mn(II). Sterile deionised water 7 was used as a control. For metal accumulation following H_2O_2 exposure, strains were grown 8 in THY to OD_{600} 0.6-0.8. Following collection of the T₀ aliquot, the strains were challenged 9 for 30 min with either sterile water, 1 mM, or 4 mM H₂O₂. Alternatively, for experiments 10 examining metal accumulation profiles due to regulator deletion, strains were grown to OD_{600} 11 0.6-0.8 in THY alone. For experiments to establish metal accumulation profile, strains were 12 grown in THY alone or in the presence of 2,2'-bipyridyl (20 µM), Fe(II) (20 µM, 200 µM, or 13 2 mM), and/or Mn(II) (20 μ M).

14

15 Cells were spun at 3,200 x g at 4°C for 15 min and washed three times in 1X PBS containing 16 250 mM EDTA, followed by 3 washes in 1X PBS, and a sample was taken to determine total 17 protein content by BCA assay (Thermo Scientific). Samples were digested in 70% nitric acid 18 at 70 °C for 48 h, diluted to 2% nitric acid with HPLC grade H₂O, and analysed for Fe and 19 Mn by inductively-coupled plasma mass-spectrometry (ICP-MS) at the School of Earth and 20 Environmental Sciences at the University of Queensland. Metal content was normalised to 21 total protein content obtained from the BCA assay.

22

23 Metal content of rSodA proteins was assessed by ICP-MS. Briefly, protein concentrations of 24 rSodA-Fe and rSodA-Mn isoforms were obtained by BCA assay and solutions of each 25 protein were adjusted to a final concentration of 10, 20, or 40 nM in HPLC-grade H₂O with

1 2% HNO₃. Total parts per billion values for metal were converted to nM in sample to
2 establish molar equivalents of bound metal.

3

4 Viability of cells during hydrogen peroxide challenge

5 GAS strains were grown in THY to $OD_{600} = 0.6-0.8$. Upon collection of a T₀ sample, cultures 6 were challenged with water, 1 mM H₂O₂, or 4 mM H₂O₂, and incubated at 37 °C for 30 min. 7 Following incubation, cultures were vortexed for 30 s, serially diluted, and plated onto THY 8 agar plates to assess viable colony-forming units (CFUs).

9

10 Growth analysis

11 Bacterial growth was assessed in the presence of varying amounts of Fe(II) (FeSO₄·7H₂O), 12 Mn(II) (MnSO₄·4H₂O), Zn(II) (ZnSO₄·7H₂O), streptonigrin (Sigma), and methyl viologen 13 (paraquat; Sigma). All salts were analytical grade (Sigma). Metal solutions were prepared in 14 deionised distilled water and filter-sterilised. Streptonigrin was prepared in 100% ethanol and 15 paraquat in distilled deionised water. Overnight cultures of GAS grown in THY were diluted 16 in fresh THY to $OD_{600} = 0.05$ and supplemented with varying concentrations of each 17 compound. Cultures were grown in flat-bottom 96-well plates (Greiner; final volume of 200 18 µL/well) without shaking at 37 °C and optical densities at 595 nm were measured every 30 19 min using a FLUOstar Optima plate reader (BMG Labtech). Doubling time was calculated 20 using the reciprocal of the gradient of natural log-transformed OD₅₉₅ values during 21 exponential growth phase.

22

23 RNA extraction and qPCR analysis

Overnight GAS cultures were diluted to $OD_{600} = 0.025$ in THY broth with or without 2 mM Fe(II) or 0.5 mM Mn(II). At $OD_{600} = 0.6-0.8$, 5 mL of culture was harvested by

1 centrifugation (8,000 x g, 10 min). Bacterial pellets were immediately resuspended in TRIzol 2 (Invitrogen), transferred to lysing matrix B tubes (MP Biomedicals), and mechanically lysed 3 using the FastPrep 120 instrument (Thermo Scientific). Chloroform (0.2 volumes) was added 4 and the mixture was centrifuged (12,000 x g, 30 min, 4 °C). The aqueous phase was 5 removed, supplemented with 70% ethanol, and loaded onto RNeasy columns (QIAGEN) for 6 purification following manufacturer's recommendations. RNA was eluted in ultrapure water 7 and contaminating genomic DNA was removed using RNase-free DNase (TURBO, 8 Ambion). RNA integrity was examined by gel electrophoresis, and quantified by 9 spectrophotometric analysis on the NanoDrop instrument (Thermo Scientific).

10

11 RNA (500 ng) was converted to cDNA using random hexamers and Superscript VILO 12 (Invitrogen) following manufacturer's directions. qPCR was performed using SYBR Green 13 mastermix (Applied Biosystems) with 100 nM primer mixes (Table S2) and 2 ng cDNA per 14 reaction using an Applied Biosystems Quantistudio 6 instrument. Data were analysed using 15 LinRegPCR (42) to obtain Cq values with gyrA as the reference gene, and data plotted as 16 $\Delta\Delta$ Cq (Log₂FC) (43) using 5448 WT in THY alone as the control, or WT at OD₆₀₀ = 0.3 17 (early exponential phase), $OD_{600} = 0.6$ (mid-exponential phase), or $OD_{600} = 0.9$ (late 18 exponential) for experimentation with $5448 \Delta perR$.

19

20 Expression of rSodA

E. coli Top10 containing pBAD-Sod-TEV-His was cultured in 500 mL LB containing 100 µg/mL ampicillin supplemented with either 250 μ M Fe(II) or Mn(II) at 37 °C with vigorous agitation. At OD₆₀₀ = 0.5, *L*-arabinose was added to a final concentration of 0.2% and cultures were shifted to 28 °C for a further 4 h. Cells were harvested by centrifugation (5,000 x *g*, 4°C, 15 min), resuspended in buffer A (50 mM Tris pH 8.5, 150 mM NaCl, 5% glycerol)

1 containing protease inhibitors (Roche complete EDTA-free), and lysed by sonication. Lysates 2 were centrifuged (50,000 x g, 4° C, 1 h) and rSodA was purified from the soluble fraction by 3 fast protein liquid chromatography using a HisTrap column (GE Healthcare). rSodA was 4 eluted using a 25 to 500 mM imidazole gradient in buffer A, and imidazole was removed by 5 dialysis against buffer A using a 10,000 Da molecular weight cutoff membrane. The 6xHis 6 tag from rSodA was removed by digestion with TEV (44) at 4 °C overnight, followed by 7 passing the reaction through a HisTrap column and collecting the flowthrough. The identity 8 of tag-free rSodA (23.48 kDa) was confirmed by electrospray ionization mass spectrometry. 9 Protein concentration was estimated using absorbance at 280 nm with molar extinction coefficient of 40,910 M⁻¹ cm⁻¹ (calculated using ExPASy (45)) as well as BCA assay 10 11 (Thermo Scientific).

12

13 **SOD** activity assays

14 To determine the role of metal ions in SOD activity, overnight cultures were inoculated to 15 $OD_{600} = 0.025$ in THY with or without Fe(II) or Mn(II). Strains were cultured to $OD_{600} 0.6$ -0.8, harvested by centrifugation (3,200 x g, 15 min, 4 °C), washed with HEPES buffer (50 16 17 mM, pH 7.4), resuspended in 1 mL of HEPES buffer (50 mM, pH 7.4), and lysed 18 mechanically on the FastPrep 120 instrument. For H₂O₂ challenge experiments, strains were 19 grown to $OD_{600} = 0.6$ and exposed to water (control) or H_2O_2 (1 or 4 mM) for 30 min. Cells 20 were harvested by centrifugation (3,200 x g, 15 min, 4 °C), washed with HEPES buffer (50 21 mM, pH 7.4), resuspended in 1 mL of HEPES buffer (50 mM, pH 7.4), and lysed 22 mechanically on the FastPrep 120 instrument.

23

GAS lysates were centrifuged (20,000 x g, 2 min) and soluble fractions were used in SOD assay (Sigma-Aldrich) following manufacturers' instructions. Protein concentrations in the lysates were determined using BCA assay (Thermo Scientific). Lysates were assayed for
 SOD activity using a commercial SOD assay kit (Sigma-Aldrich) following manufacturers'
 instructions.

4

5 Purified rSodA-Fe or rSodA-Mn were prepared in HEPES buffer (50 mM, pH 7.4) and 6 assessed for SOD activity using a commercial SOD assay kit (Sigma-Aldrich) following 7 manufacturers' instructions.

8

9 SOD gel activity assays

Whole cell lysates (40 μg) were resolved on native PAGE gels. Gels were incubated with 0.1% nitroblue tetrazolium (NBT) in deionised water for 1 h with gentle shaking, washed 3 times with water, and finally incubated with (-)-riboflavin (28 μM) in phosphate buffer (100 mM, pH 7) containing TEMED (28 mM) for 15 min in the dark with gentle shaking. Gels were washed 3 more times with water and subsequently exposed to light to promote colour development.

16

17 Data analysis

18 All data were analysed using GraphPad Prism 7. Analyses of ICP-MS and gene expression 19 data were performed using either 1-way ANOVA or 2-way ANOVA (for comparison of 20 strains under mixed conditions) as indicated. 2-way ANOVA was used to compare to either 21 the WT control of that treatment or to assess differences within strains as a result of 22 treatment, compared to H₂O as control. For 1-way or 2-way ANOVA, Tukey's or Dunnett's 23 post-hoc tests were used, respectively. Growth curve data represents mean ± standard 24 deviation of at least 4 independent biological replicates. SOD assays show mean \pm standard 25 deviation of at least 4 independent biological replicates.

1 **Results**

2 Mn is imported in response to hydrogen peroxide stress

3 We previously demonstrated that PmtA is a PerR-regulated Fe export pump (28). Based on 4 these results, we hypothesised that intracellular Fe levels would fall in response to H_2O_2 5 shock as a consequence of PmtA activity. To determine changes in the intracellular metal 6 levels of GAS during oxidative stress, we cultured 5448 WT in THY medium to the mid-7 exponential phase and subsequently exposed this culture to 0, 1, or 4 mM H_2O_2 for 30 min. 8 Surprisingly, treatment with high concentrations of H₂O₂ (4 mM) led to a 1.5-fold increase in 9 intracellular Fe levels, rather than the predicted decrease (Figure 1A), and this increase 10 occurred independently of changes in bacterial viability, as determined by CFU counts 11 (Figure S1).

12

13 To assess the role of PmtA in the H₂O₂-induced increase in intracellular Fe, we next 14 compared the levels of intracellular Fe in 5448 WT, 5448 \Delta pmtA, and 5448 \Delta pmtA::pmtA 15 complemented strains following H₂O₂ challenge. Consistent with our previous observations 16 (28), the 5448 $\Delta pmtA$ strain accumulated 2.1-fold higher intracellular Fe levels when 17 compared to the isogenic parent and complemented strains (Figure 1B). Similar to the 5448 18 WT and 5448 $\Delta pmtA$: *pmtA* complemented mutant, the amounts of intracellular Fe in 19 5448 $\Delta pmtA$ also increased following exposure to 4 mM H₂O₂ (Figure 1B). While these 20 results were consistent with our previous description of PmtA as an Fe efflux pump (28), they 21 did not identify the mechanism underpinning the observed increase in intracellular Fe in 22 response to oxidative stress (Figure 1A).

23

In addition to an increase in intracellular Fe levels, we detected a 3.7-fold increase in intracellular Mn levels in the 5448 WT strain following exposure to as low as 1 mM H_2O_2

1 (Figure 1C). This increase also occurred in the $5448\Delta pmtA$ strain but failed to reach levels 2 observed in the 5448 WT and $5448\Delta pmtA::pmtA$ complemented strains under any condition 3 (Figure 1D). In fact, basal Mn levels in $5448\Delta pmtA$ before exposure to H₂O₂ were 4 reproducibly lower than those in the WT or complemented mutant strains (Figure 1D), an 5 opposite phenotype to that observed for intracellular Fe levels (Fig 1B). Together, these 6 findings suggest that there might be coordinated shifts of intracellular Fe and Mn levels in 7 GAS, particularly during conditions of oxidative stress.

8

9 Mn uptake during hydrogen peroxide stress requires MtsABC

10 To determine whether the observed increase in intracellular Mn (Figure 1C) required the Mn 11 importer MtsABC, we constructed the 5448 Δ mtsABC deletion and 5448 Δ mtsABC::mtsABC 12 complemented mutant strains. As reported previously for M1 GAS (21), growth of 13 5448 Δ mtsABC in THY was impaired, as evidenced by a prolonged doubling time (1.6 ± 0.2 h 14 for this mutant vs. 1.2 ± 0.1 h for 5448 WT) and a lower stationary phase optical density 15 compared to the wild type and complemented mutant strains (Figure 2A). This growth defect 16 was abolished by addition of 10 µM Mn(II) (Figure 2B) but not Fe(II) or Zn(II) (Figure S2). 17 Consistent with the role of MtsABC in Mn uptake, we found that 5448 AmtsABC was Mn-18 deficient when compared to the isogenic parent or the complemented mutant strains (Figure 19 2C). This deficiency was again alleviated by supplementing the culture medium with 20 μ M 20 Mn(II) (Figure 2C), indicating that alternative low-affinity or non-specific Mn import 21 pathways may be present in GAS.

22

In contrast to Mn, levels of intracellular Fe in 5448 Δ *mtsABC* were identical with those in the wild type or the 5448 Δ *mtsABC*::*mtsABC* complemented strains, regardless of whether they were cultured in THY alone, in the presence of the Fe chelator 2,2'-bipyridyl (20 µM), or in the presence of Fe(II) (20 μM, 200 μM, or 2 mM) (Figure 2D), indicating that MtsABC did
 not facilitate Fe import under these experimental conditions.

3

4 We next examined the effects of oxidative stress on intracellular Mn levels in the 5 5448∆mtsABC mutant. Unlike the 5448 WT or the 5448∆mtsABC::mtsABC complemented 6 strains, intracellular Mn levels in 5448 AmtsABC remained low (~8-fold less Mn compared 7 with 5448 WT and 5448 \Delta mtsABC::mtsABC) under all conditions. Exposure to 1 mM H₂O₂ 8 did result in a 2-fold increase in intracellular Mn levels in the 5448 AmtsABC mutant (Figure 9 2E) but this effect was not statistically significant. These results established that the influx of 10 Mn during conditions of oxidative stress was dependent on MtsABC. By contrast to Mn, 11 intracellular Fe levels in 5448 Δ mtsABC were not significantly different from that of the 12 isogenic parent or complemented mutant strains (Figure 2F), again consistent with the 13 proposal that MtsABC does not facilitate import of Fe under these conditions.

14

15 Hydrogen peroxide stress does not induce the expression of *mtsABC*

16 The transcriptional response to oxidative stress in GAS is controlled by the H_2O_2 -sensing 17 transcriptional regulator PerR. However, a recent study in S. cristatus showed that the MtsR 18 homologue MntR is also a H_2O_2 sensor (37). Hence, we hypothesised that the observed 19 increase in intracellular Mn (Figure 1C) occurred following transcriptional upregulation of 20 MtsABC, either by MtsR or PerR, or both. To test this proposal, we examined the levels of 21 *mtsA* mRNA in the 5448 Δ *mtsR* and 5448 Δ *perR* mutant and complemented strains, as well as 22 the 5448 $\Delta mtsABC$ mutant and its complemented strains in response to H₂O₂, using the same 23 experimental conditions as in Figure 1 (Figure 3).

1 As shown in Figure 3A, deletion of mtsR led to the constitutive upregulation of mtsA2 regardless of the experimental condition, consistent with MtsR acting as a transcriptional 3 repressor of *mtsABC*. As anticipated, other known MtsR-regulated genes such as *shp*, *shr*, 4 and *siaA* were also constitutively upregulated (Figure S3A-C). In comparison, expression of 5 *pmtA*, which is not regulated by MtsR, did not change in an MtsR-dependent manner (Figure 6 S3D). We further confirmed that transcription of *mtsA* was Mn-responsive and showed that 7 addition of Mn(II) led to downregulation of mtsA expression in the 5448 WT strain (Figure 8 3A), consistent with repression by Mn-MtsR. In contrast, expression of mtsA remained 9 unchanged in the $5448 \Delta perR$ mutant (Figure 3B). Under the same conditions, deletion of 10 perR led to the constitutive upregulation of known PerR-regulated genes pmtA, ahpC, and 11 dpr (Figure S4A-C). Together, these results indicated that mtsA is not part of the PerR 12 regulon in GAS. Consistent with this finding, there is no Per box upstream of the *mtsABC* 13 operon in GAS (26).

14

15 Consistent with the idea that PerR is not involved in the regulation of *mtsABC*, we detected a 16 2-fold decrease in mtsA expression, albeit not statistically significant, in the 5448 WT and 17 5448\[Deltambda mtsABC::mtsABC complemented strains following challenge with 1 mM H2O2 and a 18 statistically significant decrease (~5-fold) upon treatment with 4 mM H₂O₂ (Figure 3C). 19 Transcription of *mtsA* in the 5448 $\Delta pmtA$ mutant mirrored this trend (Figure S5A). In 20 comparison, the PerR-regulated genes *pmtA*, *dpr*, *ahpF*, and *sodA* were all upregulated by 21 H₂O₂ (Figure S5C-J), the opposite trend from *mtsA*. This downregulation of *mtsA* expression 22 occurred as early as 5 minutes post-exposure to H₂O₂ (Figure 3D), whereas PerR-regulated 23 genes dpr, sodA, and ahpF were all upregulated within the same time period (Figure S6A-C). 24 Therefore, although the increase in intracellular Mn during oxidative stress required a functional MtsABC transporter (Figure 2E), it did not appear to involve transcriptional
 upregulation of *mtsABC* by MtsR.

3

4 Exposure to hydrogen peroxide stimulates SOD activity and this process requires 5 MtsABC

6 Having shown that exposure to H_2O_2 led to MtsABC-dependent uptake of Mn (Figure 2E) 7 and increased transcription of sodA (Figure S5I-J), we next determined whether the 8 intracellular accumulation of Mn led to an increase in SodA enzyme activity. Following a 9 short (30 min) exposure to 1 mM H₂O₂, we detected a ~3-fold increase in SodA activity in 10 the 5448 WT strain (Figure 4A and Figure S7A). This result was consistent with the expected 11 role of SodA activity in protecting the cell during conditions of oxidative stress (46). As a 12 control, we confirmed that there was negligible superoxide dismutase activity in the 13 5448 Δ sodA strain, regardless of H₂O₂ exposure (Figure 4A and Figure S7A).

14

15 To determine whether the H₂O₂-mediated increase in SodA activity was dependent on the 16 import of Mn via MtsABC, we repeated the above experiment using the 5448 Δ mtsABC 17 mutant strain (Figure 2C). We noted that basal activity of SodA in 5448 AmtsABC, even 18 before exposure to H₂O₂, was reproducibly lower when compared with the 5448 WT and 19 5448\[2015] mtsABC complemented strains (Figure 4A and Figure S7A), consistent with 20 previously reported findings (21). SodA activity was restored to wild type levels by addition 21 of exogenous Mn(II) (40 µM) (Figure 4B and Figure S7B), mirroring the finding that Mn 22 deficiency in the 5448\[emptyself] mutant was corrected by addition of Mn salts (Figure 2C). 23 Importantly, Mn supplementation did not affect background activity in the 5448\[extrmstyle]sodA 24 mutant (Figure S7B), indicating that any potential contribution from non-SodA Mn-protein or 25 Mn-sugar complexes in superoxide quenching was negligible (47, 48).

2 Following treatment with 1 mM H₂O₂, amounts of sodA mRNA in 5448ΔmtsABC increased 3 to levels that were comparable with those in the isogenic parent and complemented strains 4 (Figure S5J). However, unlike 5448 WT and 5448 AmtsABC::mtsABC, the increased 5 expression of *sodA* in 5448 Δ *mtsABC* was only accompanied by a moderate, 1.5-fold increase 6 in SodA activity (Figure 4A). As shown in Figure 2E, this mutant accumulated lower 7 intracellular Mn during conditions of oxidative stress. Thus, it was likely that some of the 8 SodA enzymes in this mutant was produced in the *apo*- or incorrectly metalated form (20). 9 Consistent with this view, growth curve analysis indicated that while all strains displayed 10 identical growth in THY alone (Figure 4C), the 5448∆*mtsABC* mutant was unable to grow in 11 the presence of the superoxide generator paraquat (1 mM) (Figure 4D). Nevertheless, growth 12 of this mutant was restored to wild type levels upon supplementation of the growth medium with 10 µM Mn(II) (Figure 4E). As a control, 5448ΔsodA was unable to grow in the presence 13 14 of 1 mM paraquat, regardless of Mn supplementation. Together, these results indicated that 15 MtsABC is required for optimal metalation of SodA with Mn but supplemental Mn may be 16 imported via alternative transporters and become available to SodA. This corroborates 17 previous findings in GAS (21) and Streptococcus gordonii (49).

18

19 SodA is less active in the Fe-metallated form

We were surprised to find that SodA in the 5448 WT and $5448\Delta mtsABC::mtsABC$ complemented strains failed to activate upon exposure to 4 mM of H₂O₂ when compared with 1 mM H₂O₂ (Figure 4A), despite similar increases in *sodA* expression under these conditions (Figure S5J). As shown in Figure 1D and Figure 2E, Mn was imported under both conditions. However, the relative intracellular levels of Fe were higher upon exposure to 4 mM H₂O₂ compared with 1 mM H₂O₂ (Figures 2E and 2F). We therefore hypothesised that the

increased relative abundance of intracellular Fe might outcompete Mn from SodA, leading to

2 formation of Fe-SodA, and that the Fe-SodA form was less active than Mn-SodA.

3

To investigate the metal dependence of SodA, we purified recombinant GAS SodA from E. 4 5 *coli*. As we were unable to generate an *apo*-form of the enzyme for subsequent reconstitution 6 with only Mn or Fe, we prepared Mn- or Fe-metalated forms of SodA from E. coli cultured in 7 the presence of excess Fe(II) or Mn(II) salts (250 µM). ICP-MS analyses indicated that SodA 8 isolated from Mn-supplemented *E. coli* cultures contained 1.2 ± 0.2 (SD) molar equivalents 9 of Mn. This Mn-SodA form was relatively pure and it contained only 0.06 ± 0.08 (SD) molar 10 equivalents of contaminating Fe (Figure 5A). Conversely, SodA isolated from Fe-11 supplemented *E. coli* cultures contained 0.8 ± 0.1 (SD) molar equivalents of Fe and 0.2 ± 0.0 12 (SD) molar equivalents of Mn (Figure 5A). We were unable to remove the Mn-SodA 13 contaminant from this mixture and so the enzyme was used as isolated. Subsequent 14 measurements of SodA activity of both the Mn- and the Fe- forms demonstrated that the Mn-15 SodA displayed approximately four times as much activity as the Fe-SodA (Figure 5B). 16 Some of the activity in the Fe-SodA sample may be attributed to Mn-SodA contamination, 17 but nonetheless our results support our proposal that Fe-SodA was less active than Mn-SodA. 18 Hence, we propose that GAS SodA may be a cambialistic enzyme, similar to SodM from 19 Staphylococcus aureus (23), though the GAS SodA appeared to displays less activity with Fe 20 as a cofactor.

21

22 PmtA protects SodA from mis-metalation by Fe

We have previously shown that the $5448\Delta pmtA$ mutant was sensitive to the superoxide generator paraquat (28). As shown in Figures 1B and 1D, $5448\Delta pmtA$ displayed a higher intracellular Fe/Mn ratio when compared with the WT or complemented strains. We therefore hypothesised that the excess intracellular Fe may promote the Fenton reaction in the presence
of paraquat, whilst Mn might quench this reactive oxygen species (28). As described
previously (28), growth curve analysis showed that in THY alone, all strains grew equally
well (Figure 6A), but the addition of 2 mM paraquat resulted in diminished growth of the
5448Δ*pmtA* mutant (Figure 6B) and we were able to rescue growth by adding excess Mn(II)
into the growth medium (Figure 6C).

7

8 Our experiments with recombinant SodA indicated that excess intracellular Fe may lead to 9 mis-metalation of SodA, leading to generation of the less active Fe-SodA enzyme. To test 10 this proposal, we first examined the effects of excess exogenous Fe(II) on SodA activity in 11 the 5448 WT strains. As anticipated, we found that Fe treatment led to a complete loss of 12 SodA activity to background levels (*i.e.* levels in 5448∆sodA mutant strain) (Figure 6D and 13 Figure S7). This reduction in SodA activity may arise from downregulation of *sodA* by Fe(II) 14 but there was only a small decrease (1.5-fold) in *sodA* gene expression under the same 15 conditions (Figure S9). As a control, we also measured SodA activity in 5448 WT cultures in 16 the presence of excess exogenous Mn(II). As anticipated, we observed an increase in SodA 17 activity in 5448 WT but not in 5448\(\Delta sodA\) mutant (Figure 6D and Figure S7C). Thus, our 18 results indicated that the loss of SodA activity likely occurred from the incorporation of Fe 19 into the enzyme.

20

In the 5448 $\Delta pmtA$ mutant strain, which was Fe-rich and Mn-deficient, we detected a lower basal SodA activity when compared to the 5448 WT and 5448 $\Delta pmtA$::pmtA complemented strains (Figure 6D-E and Figure S7C-D). Although exposure of 5448 $\Delta pmtA$ to 1 mM H₂O₂ upregulated transcription of *sodA* to levels that were comparable to those in the isogenic parent or complemented mutant strains (Figure S5I), SodA activity in 5448 $\Delta pmtA$ reached

only half of that in 5448 WT and 5448Δ*pmtA::pmtA* (Figure 6E and Figure S7D). These
trends were mirrored by SOD in-gel activity assays (Figure S8). Under these conditions of
oxidative stress, we found that 5448Δ*pmtA* accumulated more Fe (Figure 1B) and less Mn
(Figure 1D) than did the 5448 WT parent strain. Thus, our findings were again consistent
with the suggestion that SodA may be partially metalated with Fe and that the Fe-SodA form
was less active than Mn-SodA.

7

8 MtsR is critical for Mn and Fe homeostasis during oxidative stress

9 Although it is established that MtsR differentially controls expression of Mn uptake genes 10 (mtsABC) and Fe uptake genes (shp, shr, and siaA) (Figure 3A, Figure S3A-C), its role in 11 regulating the balance of Mn and Fe inside cells is not fully understood. Given the 12 constitutive upregulation of *mtsA* in a 5448 Δ *mtsR* mutant, we anticipated that this strain 13 would accumulate Mn. Contrary to this hypothesis, 5448∆mtsR was Mn-deficient compared 14 to 5448 WT and 5448 $\Delta mtsR::mtsR$ (Figure 7A). Instead of Mn, 5448 $\Delta mtsR$ appeared to 15 accumulate Fe (Figure 7A) and, consistent with this observation, $5448 \Delta mtsR$ was unable to 16 grow in the presence of the Fe-dependent antibiotic streptonigrin (Figure 7B). These results 17 can be explained by the constitutive upregulation of Fe uptake genes *shp*, *shr*, and *siaA* in 18 5448 $\Delta mtsR$.

19

The Fe-rich and Mn-deficient phenotype of $5448\Delta mtsR$ was reminiscent of $5448\Delta pmtA$ (Figure 1B and 1D) but the underlying mechanism was likely different. The MtsR-regulated Fe uptake gene *shp* was not upregulated in $5448\Delta pmtA$ when compared with the isogenic parent or complemented strains (Figure S5K). Hence, the increase in intracellular Fe in $5448\Delta pmtA$ was not a consequence of Fe influx *via* MtsR-dependent Fe uptake systems, but rather was attributed to the loss of PmtA and the inability to remove excess Fe. Similarly,

1 basal expression levels of *mtsA* in 5448 Δ *pmtA* were largely unchanged when compared with 2 those in the WT or complemented mutant strains (Figure 7C). Thus, the observed Mn 3 deficiency was not related to a loss of MtsABC expression. Nevertheless, addition of 2 mM 4 Fe(II) to 5448 $\Delta pmtA$ did result in a 28-fold downregulation of *mtsA* (Figure 7C). We 5 hypothesise that the excess intracellular Fe in 5448∆*pmtA* may lead to formation of Fe-MtsR 6 and constitutive repression of *mtsA*. To date, the precise binding affinities of MtsR for Mn 7 and Fe and their respective affinities (and/or allosteric free energies) to the mtsA, sia, shp, 8 and *shr* promoters are unknown and warrant future investigation.

9

10 In the case of $5448 \Delta perR$, we found that this mutant contained less Fe but more Mn relative 11 to 5448 WT and 5448 \DerR::perR (Figure 7D). The Fe-deficient phenotype was consistent 12 with constitutive upregulation of the Fe efflux pump *pmtA* (Figure S4A) (26, 28). This 13 mutant was reproducibly less sensitive to streptonigrin when compared to the parent or the 14 complemented mutant strains (Figure 7B). The Mn-rich phenotype was also reported 15 previously for the $\Delta perR$ mutant of S. cristatus (50) but it could not be explained by our 16 current understanding of PerR regulation, particularly considering the lack of a Per box 17 upstream of *mtsABC* (50) and our findings that *mtsA* was not constitutively activated in 18 5448Δ*perR* (Figure 3B).

19

20 **DISCUSSION**

It is now established that during host-pathogen interactions, systemic and niche-specific Mn levels in the host are kept low by Mn-sequestering host effectors such as calprotectin (51, 52). Conversely, high-affinity uptake systems for Mn are known to be important for the virulence of a number of pathogenic bacteria, including PsaABC in *S. pneumoniae* (53, 54) and MtsABC in GAS (21). Nonetheless, we have previously shown that excess Mn can be

toxic to GAS and that this bacterium requires the cation diffusion facilitator, MntE, to efflux
excess Mn (40). Our work herein describes the complementary roles of the Mn importer
MtsABC and the Fe efflux pump PmtA in GAS Fe/Mn metal homeostasis and their
contribution to oxidative stress defence, particularly in ensuring optimal metalation of SodA
(Figure 8A). Our data also suggest an interplay or overlapping roles between MtsR and PerR
in Fe and Mn homeostasis in GAS but several outstanding questions remain.

7

8 One surprising result from this study is the observation that, while the increase in intracellular 9 Mn in response to H_2O_2 required a functional MtsABC, the levels of *mtsABC* expression 10 decreased (instead of increased) under oxidative stress conditions (Figure 3C). A potential 11 rationalisation of this observation is that MtsABC activity increases in response to H₂O₂ 12 stress. Our data demonstrated that GAS has a relatively high intracellular Fe/Mn ratio when 13 grown in THY. This ratio mirrored the relative metal composition of THY, which contained 14 $15.6 \pm 0.7 \mu$ M Fe and $0.30 \pm 0.01 \mu$ M Mn. We propose that extracellular Fe (in the Fe(II) 15 form) in THY may compete for the Mn(II) binding site in MtsA (the solute-binding protein) 16 and subsequently inhibit Mn(II) import during normal conditions (Figure 8A). Consistent 17 with this idea, intracellular Mn levels did not increase in the 5448 $\Delta mtsR$ mutant, despite 18 constitutive upregulation of *mtsABC*. However, addition of H_2O_2 into the culture medium (to 19 enforce conditions of oxidative stress) may lead to oxidation of extracellular Fe(II) to Fe(III) 20 and subsequent dissociation of Fe(III) from MtsA, allowing Mn import to occur. There was 21 also a hint that excess intracellular Fe may block Mn uptake via MtsABC, with 5448 [] mtA 22 showing decreased intracellular Mn levels when compared with 5448 WT and 23 5448 $\Delta pmtA::pmtA$ despite comparable levels of *mtsA* expression (Figure 7C, 8B). Whether 24 the excess cytoplasmic Fe blocks Mn import by binding to the cytoplasmic domains of 25 MtsABC and/or locking this transporter in a closed or non-functional state is unknown.

2 The Mn-rich phenotype of the $5448 \Delta perR$ mutant also requires further investigation. 3 Previous microarray data reported that the *mts* operon was downregulated in a $\Delta perR$ mutant 4 of the M1 strain AP1 (26). By contrast, deletion of *perR* in the M3 strain 003Sm (55) or the 5 M14 strain HSC5 (56) did not appear to affect mts transcription. Furthermore, in M1T1 6 MGAS5005 perR mutant, mtsA was found to be upregulated (31) but this experiment used 7 metal-depleted THY medium, which may have provided different growth conditions 8 compared to that used in the present study. Nonetheless, the pattern of regulation of *mtsA* in 9 response to Fe and Mn that we observed is consistent with other published findings (31). In 10 the 5448 $\Delta perR$ mutant, the constitutive activation of *pmtA* and subsequent Fe efflux leads to 11 low intracellular Fe. As a consequence, MtsR may sense these low Fe levels and activate 12 MtsR-regulated genes including *mtsABC*. The import of Fe by Sia and Siu (57) may result in 13 cycling of Fe but at the same time permit Mn to accumulate inside the cytoplasm due to 14 activation of MtsABC (21).

15

16 An additional key question that arises relates to the mechanism of differential regulation of 17 Mn uptake genes (mtsABC) and Fe uptake genes (shp, shr, siaA) by MtsR (Figure 3A and 18 Figure S3). Previous work with MtsR from MGAS5005 indicated that the Mn- and Fe-forms 19 of MtsR display distinct affinities for DNA. Mn-MtsR was shown to bind with high affinity 20 to the *mtsABC* promoter, while Fe-MtsR exhibited a lower affinity to the same sequence. In 21 addition, Mn-MtsR bound with high affinity to the sia and siu promoters but exhibited low 22 affinity binding to the siu promoter in the presence of Fe. (31). In this work, we showed that, 23 unlike *mtsA*, expression of *shp* appeared to increase (instead of decrease) in response to 4 24 mM H₂O₂. Even though MtsR from GAS and MntR from S. cristatus share high amino acid sequence identity (98% cover, 55% identity, 2x10⁻⁸⁷ E-value), including the H₂O₂-sensing 25

1	cysteine residues Cys11 and Cys123, H ₂ O ₂ did not induce expression of <i>mtsA</i> in GAS as
2	shown for S. cristatus (37). GAS MtsR lacks the Cys156 residue present in S. cristatus MntR.
3	Cys156 has been shown to play a role in disulfide bond formation in response to H_2O_2 stress
4	(37), and so its absence in GAS MtsR may explain the lack of H ₂ O ₂ -dependent gene
5	expression of <i>mtsA</i> at low levels of H ₂ O ₂ . Thus, GAS appears to use both MtsR and PerR to
6	control Fe homeostasis. Given the differing requirements of GAS for Fe and Mn, and the
7	opposing effects of these two metal ions on SodA activity and the response to oxidative
8	stress, the mechanisms for how Fe and Mn homeostasis are organised or coordinated
9	represent an interesting topic for future studies.
10	
11	Acknowledgements
12	
13	
14	Declaration of interest
15	The authors declare that they have no conflicts of interest with the contents of this article.
16	
17	Funding information
18	KYD is supported by a Royal Society Research Grant (RSG\R1\180044). CYO is a recipient
19	of a Garnett Passe & Rodney Williams Memorial Foundation Research Fellowship TCB is
20	supported by a Career Development Fellowship from the National Health and Medical
21	Research Council (NHMRC)-funded "Improving Health Outcomes in the Tropical North: A
22	multidisciplinary collaboration" (Hot North; APP1131932). MJW is supported by NHMRC
23	grants APP1102621 and APP1071659. AGM is supported by NHMRC Project grant
24	1084460.
25	

1 Author contribution statement

2 AGT, KYD, CYO, MJW, and AGM conceived the project and designed experiments. AGT 3 performed experimentation. TCB provided reagents and critiqued experimental design. AGT, 4 KYD, CYO, MJW, and AGM wrote the manuscript and all authors edited the manuscript. 5 6 References 7 1. Skaar EP, Raffatellu M. Metals in infectious diseases and nutritional immunity. 8 Metallomics : integrated biometal science. 2015;7(6):926-8. 9 2. Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron: a role for manganese and 10 zinc. Curr Opin Chem Biol. 2010;14(2):218-24. 11 3. Achard ME, Stafford SL, Bokil NJ, Chartres J, Bernhardt PV, Schembri MA, et al. 12 Copper redistribution in murine macrophages in response to Salmonella infection. Biochem J. 13 2012;444(1):51-7. 14 4. Kapetanovic R, Bokil NJ, Achard ME, Ong CL, Peters KM, Stocks CJ, et al. 15 Salmonella employs multiple mechanisms to subvert the TLR-inducible zinc-mediated 16 antimicrobial response of human macrophages. FASEB J. 2016;30(5):1901-12. 17 5. Shah S, Dalecki AG, Malalasekera AP, Crawford CL, Michalek SM, Kutsch O, et al. 18 8-Hydroxyquinolines are boosting-agents of copper related toxicity in Mycobacterium 19 tuberculosis. Antimicrob Agents Chemother. 2016;60(10):5765-76. 20 6. Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y, Brandli I, et al. 21 Mycobacterial P_1 -type ATPases mediate resistance to zinc poisoning in human macrophages. 22 Cell Host Microbe. 2011;10(3):248-59. 23 7. Ong CL, Gillen CM, Barnett TC, Walker MJ, McEwan AG. An antimicrobial role for 24 zinc in innate immune defense against Group A Streptococcus. J Infect Dis. 25 2014;209(10):1500-8.

- 1 8. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and
- 2 controversies. Nat Rev Microbiol. 2004;2(10):820-32.
- 3 9. Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med
 4 Chem. 2005;12(10):1161-208.
- 5 10. Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ. Manganese: elemental defence
 6 for a life with oxygen? Trends Microbiol. 2002;10(11):496-501.
- 7 11. Juttukonda LJ, Skaar EP. Manganese homeostasis and utilization in pathogenic
- 8 bacteria. Mol Microbiol. 2015;97(2):216-28.
- 9 12. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, et al.
- 10 Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin
- 11 Microbiol Rev. 2014;27(2):264-301.
- 12 13. Kwinn LA, Nizet V. How Group A Streptococcus circumvents host phagocyte
- 13 defenses. Future Microbiol. 2007;2(1):75-84.
- 14 14. Fieber C, Kovarik P. Responses of innate immune cells to Group A *Streptococcus*.
- 15 Front Cell Infect Microbiol. 2014;4:140.
- 16 15. Cole JN, Barnett TC, Nizet V, Walker MJ. Molecular insight into invasive group A
- 17 streptococcal disease. Nat Rev Microbiol. 2011;9(10):724-36.
- 18 16. Turner AG, Ong C-IY, Walker MJ, Djoko KY, McEwan AG. Transition metal
- 19 homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. In: Robert KP,
- 20 editor. Adv Microb Physiol. Volume 70: Academic Press; 2017. p. 123-91.
- 21 17. King KY, Horenstein JA, Caparon MG. Aerotolerance and peroxide resistance in
- 22 peroxidase and PerR mutants of *Streptococcus pyogenes*. J Bacteriol. 2000;182(19):5290-9.
- 23 18. Henningham A, Dohrmann S, Nizet V, Cole JN. Mechanisms of group A
- 24 *Streptococcus* resistance to reactive oxygen species. FEMS Microbiol Rev. 2015;39:488-508.

1	19.	Brenot A, King KY, Janowiak B, Griffith O, Caparon MG. Contribution of
2	glutat	hione peroxidase to the virulence of Streptococcus pyogenes. Infect Immun.
3	2004;	72(1):408-13.
4	20.	Gerlach D, Reichardt W, Vettermann S. Extracellular superoxide dismutase from
5	Strept	tococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol Lett.
6	1998;160(2):217-24.	
7	21.	Janulczyk R, Ricci S, Bjorck L. MtsABC is important for manganese and iron
8	transp	port, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun.
9	2003;71(5):2656-64.	
10	22.	Eijkelkamp BA, Morey JR, Ween MP, Ong CL, McEwan AG, Paton JC, et al.
11	Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress	
12	management in Streptococcus pneumoniae. PLoS One. 2014;9(2):e89427.	
13	23.	Garcia YM, Barwinska-Sendra A, Tarrant E, Skaar EP, Waldron KJ, Kehl-Fie TE. A
14	supero	oxide dismutase capable of functioning with iron or manganese promotes the resistance
15	of Sta	phylococcus aureus to calprotectin and nutritional immunity. PLoS Pathogens.
16	2017;	13(1).
17	24.	Brenot A, King KY, Caparon MG. The PerR regulon in peroxide resistance and
18	virule	nce of Streptococcus pyogenes. Mol Microbiol. 2005;55(1):221-34.
19	25.	Grifantini R, Toukoki C, Colaprico A, Gryllos I. Peroxide stimulon and role of PerR
20	in Gro	oup A Streptococcus. J Bacteriol. 2011;193(23):6539-51.
21	26.	Ricci S, Janulczyk R, Bjorck L. The regulator PerR is involved in oxidative stress
22	respon	nse and iron homeostasis and is necessary for full virulence of Streptococcus pyogenes.
23	Infect	Immun. 2002;70(9):4968-76.
24	27.	Lee JW, Helmann JD. The PerR transcription factor senses H ₂ O ₂ by metal-catalysed
25	1. : . 4 : . 1	ine evidetion Neture 2006.110(7082).262 7

25 histidine oxidation. Nature. 2006;440(7082):363-7.

1	28.	Turner AG, Ong C-lY, Djoko KY, West NP, Davies MR, McEwan AG, et al. The
2	PerR-	regulated P _{1B-4} -type ATPase (PmtA) acts as a ferrous iron efflux pump in <i>Streptococcus</i>
3	pyoge	nes. Infect Immun. 2017;85(6).
4	29.	VanderWal AR, Makthal N, Pinochet-Barros A, Helmann JD, Olsen RJ,
5	Kuma	raswami M. Iron efflux by PmtA is critical for oxidative stress resistance and
6	contri	butes significantly to group A Streptococcus virulence. Infect Immun. 2017;85(6).
7	30.	Makthal N, Rastegari S, Sanson M, Ma Z, Olsen RJ, Helmann JD, et al. Crystal
8	structu	are of peroxide stress regulator from Streptococcus pyogenes provides functional
9	insigh	ts into the mechanism of oxidative stress sensing. J Biol Chem. 2013;288(25):18311-
10	24.	
11	31.	Hanks TS, Liu MY, McClure MJ, Fukumura M, Duffy A, Lei BF. Differential
12	regula	tion of iron- and manganese-specific MtsABC and heme-specific HtsABC transporters
13	by the	metalloregulator MtsR of Group A Streptococcus. Infect Immun. 2006;74(9):5132-9.
14	32.	Montanez GE, Neely MN, Eichenbaum Z. The streptococcal iron uptake (Siu)
15	transp	orter is required for iron uptake and virulence in a zebrafish infection model.
16	Micro	biol-Sgm. 2005;151:3749-57.
17	33.	Hanks TS, Liu M, McClure MJ, Lei B. ABC transporter FtsABCD of Streptococcus
18	pyoge	nes mediates uptake of ferric ferrichrome. BMC Microbiol. 2005;5:62.
19	34.	Bates CS, Montanez GE, Woods CR, Vincent RM, Eichenbaum Z. Identification and
20	charac	cterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and
21	acquis	sition of iron. Infect Immun. 2003;71(3):1042-55.
22	35.	Sook BR, Block DR, Sumithran S, Montanez GE, Rodgers KR, Dawson JH, et al.
23	Chara	cterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC
24	transp	ort system. Biochemistry. 2008;47(8):2678-88.

1 36. Akbas N, Draganova EB, Block DR, Sook BR, Chan YF, Zhuo J, et al. Heme-bound 2 SiaA from Streptococcus pyogenes: Effects of mutations and oxidation state on protein 3 stability. J Inorg Biochem. 2016;158:99-109. 4 37. Chen ZY, Wang XH, Yang F, Hu QQ, Tong HC, Dong XZ. Molecular insights into 5 hydrogen peroxide-sensing mechanism of the metalloregulator MntR in controlling bacterial 6 resistance to oxidative stresses. J Biol Chem. 2017;292(13):5519-31. 7 38. Chatellier S, Ihendyane N, Kansal RG, Khambaty F, Basma H, Norrby-Teglund A, et 8 al. Genetic relatedness and superantigen expression in group A Streptococcus serotype M1 9 isolates from patients with severe and nonsevere invasive diseases. Infect Immun. 10 2000;68(6):3523-34. 11 39. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic 12 Escherichia coli. J Bacteriol. 1951;62(3):293-300. 40. 13 Turner AG, Ong CL, Gillen CM, Davies MR, West NP, McEwan AG, et al. 14 Manganese homeostasis in Group A Streptococcus is critical for resistance to oxidative stress 15 and virulence. mBio. 2015;6(2):e00278-15. 16 41. Venturini C, Ong CIY, Gillen CM, Ben-Zakour NL, Maamary PG, Nizet V, et al. 17 Acquisition of the Sda1-encoding bacteriophage does not enhance virulence of the serotype 18 M1 Streptococcus pyogenes strain SF370. Infect Immun. 2013;81(6):2062-9. 19 42. Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of 20 quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62-21 6. 22 43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{(-\Delta\Delta CT)}$ method. Methods. 2001;25(4):402-8. 23

1	44.	Kapust RB, Tozser J, Fox JD, Anderson DE, Cherry S, Copeland TD, et al. Tobacco
2	etch v	irus protease: mechanism of autolysis and rational design of stable mutants with wild-
3	type c	atalytic proficiency. Protein Eng. 2001;14(12):993-1000.
4	45.	Gasteiger E, Hoogland C, Gattiker A, Duvaud Se, Wilkins MR, Appel RD, et al.
5	Protei	n Identification and Analysis Tools on the ExPASy Server. In: Walker JM, editor. The
6	Protec	omics Protocols Handbook. Totowa, NJ: Humana Press; 2005. p. 571-607.
7	46.	Miller AF. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett.
8	2012;	586(5):585-95.
9	47.	Archibald FS, Fridovich I. The scavenging of superoxide radical by manganous
10	compl	exes - in vitro. Arch Biochem Biophys. 1982;214(2):452-63.
11	48.	Al-Maghrebi M, Fridovich I, Benov L. Manganese supplementation relieves the
12	pheno	typic deficits seen in superoxide-dismutase-null Escherichia coli. Arch Biochem
13	Bioph	ys. 2002;402(1):104-9.
14	49.	Jakubovics NS, Smith AW, Jenkinson HF. Oxidative stress tolerance is manganese
15	Mn^{2+}	regulated in Streptococcus gordonii. Microbiology. 2002;148(Pt 10):3255-63.
16	50.	Wang CH, Chuan CN, Kuo HT, Zheng PX, Tsou CC, Wang SY, et al. Peroxide
17	respor	nsive regulator PerR of Group A Streptococcus is required for the expression of phage-
18	associ	ated DNase Sda1 under oxidative stress. PLoS One. 2013;8(12):e81882.
19	51.	Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host
20	interfa	ace. Nat Rev Microbiol. 2012;10(8):525-37.
21	52.	Kehres DG, Maguire ME. Emerging themes in manganese transport, biochemistry
22	and pa	athogenesis in bacteria. FEMS Microbiol Rev. 2003;27(2-3):263-90.
23	53.	Marra A, Lawson S, Asundi JS, Brigham D, Hromockyj AE. In vivo characterization
24	of the	psa genes from Streptococcus pneumoniae in multiple models of infection.
25	Micro	biology. 2002;148(Pt 5):1483-91.

1	54. Tseng HJ, McEwan AG, Paton JC, Jennings MP. Virulence of <i>Streptococcus</i>
2	pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect Immun.
3	2002;70(3):1635-9.
4	55. Gryllos I, Grifantini R, Colaprico A, Cary ME, Hakansson A, Carey DW, et al. PerR
5	confers phagocytic killing resistance and allows pharyngeal colonization by Group A
6	Streptococcus. PLoS Pathogens. 2008;4(9):e1000145.
7	56. Brenot A, Weston BF, Caparon MG. A PerR-regulated metal transporter (PmtA) is an
8	interface between oxidative stress and metal homeostasis in Streptococcus pyogenes. Mol
9	Microbiol. 2007;63(4):1185-96.
10	57. Ge R, Sun X. Iron acquisition and regulation systems in <i>Streptococcus</i> species.
11	Metallomics : integrated biometal science. 2014;6(5):996-1003.
12	

5448 WT was grown in THY at 37 °C to mid-exponential phase ($OD_{600} 0.6 - 0.8$) and challenged with H₂O, or with 1 mM or 4 mM H₂O₂, and total intracellular accumulation of Fe (**A**) or Mn (**C**) was assessed by ICP-MS. Strains 5448 WT, 5448 $\Delta pmtA$ and 5448 $\Delta pmtA$::*pmtA* were grown in THY at 37 °C to mid-exponential phase ($OD_{600} 0.6 - 0.8$) and challenged with H₂O, or with 1 mM or 4 mM H₂O₂, and total intracellular accumulation of Fe (**B**) or Mn (**D**) was measured by ICP-MS. Total metal content was normalised to

- 1 protein content of the sample. Graph represents mean + standard deviation of 4 independent 2 biological replicates (1-way ANOVA comparing all samples to H₂O control and (2-way 3 ANOVA comparing strains to WT of that treatment or change due to treatment within strain, 4 compared to H₂O as control, **** P < 0.0001).
- 5

Figure 2 - Effect of mutation of *mtsABC* on intracellular metal accumulation and growth

3 Overnight cultures of 5448 WT (black circles), 5448 (open circles) and 4 5448 Δ mtsABC::mtsABC (grey circles) were diluted to OD₆₀₀ = 0.05 into THY broth alone 5 (A) or THY broth with 10 µM Mn(II) (B). Growth was monitored at 37 °C by recording the 6 optical density at 595 nm (OD₅₉₅). WT (black bars), 5448 AmtsABC (white bars) or 7 5448\DeltamtsABC::mtsABC (grey bars) were grown in THY with or without 20 \u03c0 M Mn(II) for 8 intracellular Mn analysis (C) or in THY with or without 20 µM 2,2'-bipyridyl, 20 µM, 200 9 μM, or 2 mM Fe(II) for intracellular Fe analysis (D). Strains 5448 WT, 5448ΔmtsA and 10 5448 AmtsABC:: mtsABC were grown in THY at 37 °C to mid-exponential phase (OD₆₀₀ 0.6 -11 0.8) and challenged with H₂O, or with 1 mM or 4 mM H₂O₂, and total intracellular 12 accumulation of Mn (E) or Fe (F) was measured by ICP-MS. Total metal content was 13 normalised to protein content of the sample. Graphs represent mean \pm standard deviation of 4 14 independent biological replicates. ((2-way ANOVA comparing strains to WT of that treatment or change due to treatment within strain, compared to H₂O as control, *** P <15 16 0.001, **** P < 0.0001).

2 Figure 3 – Analysis of expression of *mtsA* in response to Fe, Mn and H₂O₂

5448 WT, 5448 $\Delta mtsR$, and 5448 $\Delta mtsR$::mtsR were grown at 37 °C to mid-exponential phase (OD₆₀₀ = 0.6-0.8) in either THY alone or THY containing 2 mM Fe(II) or 0.5 mM Mn(II) and expression of the *mtsA* gene was analysed (**A**). 5448 WT, 5448 $\Delta perR$, and 5448 $\Delta perR$::perR were grown in THY at 37 °C to early-exponential (OD₆₀₀ = 0.3), mid-exponential (OD₆₀₀ = 0.6), or late-exponential (OD₆₀₀ = 0.9) and expression of the *mtsA* gene was analysed (**B**). 5448 WT, 5448 $\Delta mtsABC$, 5448 $\Delta mtsABC$::mtsABC were grown in THY to mid-exponential 1 phase ($OD_{600} = 0.6-0.8$) in THY and challenged with H₂O, or with 1 mM or 4 mM H₂O₂, and 2 expression of the mtsA gene was analysed (C). 5448 WT was grown to mid-exponential 3 phase (OD₆₀₀ = 0.6-0.8) in THY and challenged with either H_2O (black bars) or 1 mM H_2O_2 4 (grey bars) and expression of the *mtsA* gene was analysed at t = 0, 5, 15, 30 or 60 min (**D**). 5 mtsA expression was analysed by qPCR using gyrA as the reference gene. Data represent the 6 mean ± standard deviation of 3 independent biological replicates ((2-way ANOVA 7 comparing strains to WT of that treatment or change due to treatment within strain, compared to H₂O as control, ** P < 0.01, *** P < 0.001, **** P < 0.0001). 8

2 Figure 4 – Superoxide dismutase activity and sensitivity analysis of 5448∆*mtsABC*

3 Strains 5448 WT, 5448\[2010] mtsABC, 5448\[2010] mtsABC and 5448\[2010] sodA were grown in 4 THY at 37 °C to mid-exponential phase ($OD_{600} 0.6 - 0.8$), challenged with either H₂O, 1 mM 5 H₂O₂, or 4 mM H₂O₂. Cells were harvested and SOD activity in cell extracts was analysed 6 (A). Strains 5448 WT, 5448 \Delta mtsABC, 5448 \Delta mtsABC :: mtsAB, and 5448 \Delta sodA were grown in 7 THY, THY + 40 μ M Fe(II), or THY + 40 μ M Mn(II) to mid-exponential growth phase 8 $(OD_{600} 0.6 - 0.8)$. Cells were harvested and SOD activity in cell extracts was analysed (**B**). 9 SOD activity in strains was normalised to 5448 WT in THY (or control) = 100% and activity 10 in the 5448 Δ sodA mutant = 0%. (Raw data are shown in Figure S7). Overnight cultures of 11 5448 WT (black circles), 5448 Δ mtsABC (open circles), 5448 Δ mtsABC::mtsABC (grey circles), 5448 Δ sodA (red circles), and 5448 Δ sodA ::sodA (blue circles) were diluted to OD₆₀₀ 12

1 = 0.05 into THY broth alone (C), THY broth with 1 mM paraquat (D), or THY broth with 1 2 mM paraquat and 10 μ M Mn(II) (E). Growth was monitored at 37 °C by recording the optical 3 density at 595 nm (OD₅₉₅). Graphs represent mean \pm standard deviation of at least 3 4 independent biological replicates. ((2-way ANOVA comparing strains to WT of that 5 treatment or change due to treatment within strain, compared to H₂O as control, * *P* < 0.05, 6 ** *P* < 0.01,*** *P* < 0.001, **** *P* < 0.0001).

2 Figure 5 – Activity of recombinant SodA in Fe or Mn isoforms

- 3 Metal content of Fe-rSodA and Mn-rSodA isoforms (A). SOD activity in Fe-rSodA and Mn-
- 4 rSodA isoforms (**B**). Data represent mean ± standard deviation of 3 biological replicates.
- 5 (Student's *t*-test, ** P < 0.01).

2

3 Figure 6 – Superoxide sensitivity analysis and superoxide dismutase activity of
 4 5448∆pmtA

5 Strains 5448 WT, 5448\Delta pmtA, 5448\Delta pmtA and 5448\Delta sodA were grown in THY, THY 6 + 2 mM Fe(II), or THY + 0.5 mM Mn(II) to mid-exponential growth phase ($OD_{600} 0.6 - 0.8$. 7 Cells were harvested and SOD activity in cell-free extracts was analysed (A). 5448 WT, 8 5448\DeltapmtA, 5448\DeltapmtA, and 5448\DeltasodA were grown in THY at 37 °C to mid-9 exponential phase (OD₆₀₀ 0.6 - 0.8), challenged with either H₂O, 1 mM H₂O₂ or 4 mM H₂O₂. 10 Cells were harvested and SOD activity was analysed (B). Activity in strains was normalised 11 to 5448 WT in THY (or control) = 100% and activity in the 5448 Δ sodA mutant = 0% (Raw 12 data is in Figure S7). Overnight cultures of 5448 WT (black circles), 5448 \Delta pmtA (open 13 circles), $5448 \Delta pmtA::pmtA$ (grey circles), $5448 \Delta sodA$ (red circles), and $5448 \Delta sodA::sodA$

- 1 (blue circles) were diluted to $OD_{600} = 0.05$ into THY broth alone (C), THY broth with 2 mM 2 paraquat (D), or THY broth with 2 mM paraquat and 100 μ M Mn(II) (E). Growth was 3 monitored at 37 °C by recording the optical density at 595 nm (OD₅₉₅). Graphs represent 4 mean \pm standard deviation of at least 3 independent biological replicates. (2-way ANOVA 5 comparing strains to WT of that treatment or change due to treatment within strain, compared 6 to H₂O as control, * *P* < 0.05, ** *P* < 0.01, **** *P* < 0.0001).
- 7

2 Figure 7 – Fe and Mn content of *perR* and *mtsR* mutants and *mtsA* regulation in
3 5448∆*pmtA*

Strains 5448 WT, 5448 AmtsR and 5448 AmtsR::mtsR were grown in THY at 37 °C to mid-exponential phase ($OD_{600} 0.6 - 0.8$) and analysed by ICP-MS for Fe and Mn (A). Total metal content was normalised to protein content of the sample. 5448 WT (black circles), $\Delta mtsR$ (white circles), 5448 $\Delta mtsR::mtsR$ (grey circles), 5448 $\Delta perR$ (red circles), or $\Delta perR$: *perR* (blue circles) was diluted to OD₆₀₀ = 0.05 into THY broth alone (Figure S10) or THY broth containing 200 nM streptonigrin (**B**). Growth was monitored at 37 °C by recording the optical density at 595 nm (OD₅₉₅). Strains 5448 WT, 5448 \(\Delta\)pmtA, and $\Delta pmtA::pmtA$ were grown at 37 °C to mid-exponential phase (OD₆₀₀ = 0.6-0.8) in either

1	THY alone, THY + 2 mM Fe(II), or 0.5 mM Mn(II), and expression of the <i>mtsA</i> gene was
2	analysed (C). mtsA expression was analysed by qPCR using gyrA as the reference gene.
3	Strains 5448 WT, 5448∆perR, and 5448∆perR::perR were grown in THY at 37 °C to mid-
4	exponential phase (OD ₆₀₀ $0.6 - 0.8$) and analysed by ICP-MS for Fe and Mn (D). Total metal
5	content was normalised to protein content of the sample. Graphs represent mean \pm standard
6	deviation of 3 independent biological replicates. (1-way ANOVA used comparing all to 5448
7	WT or 2-way ANOVA comparing strains to WT, ** $P < 0.01$, **** $P < 0.0001$).

1

Figure 8 – Model of the interplay between Mn and Fe homeostasis and Sod metalation in 5448 WT and 5448∆*pmtA*

5 During hydrogen peroxide stress conditions, H₂O₂ is sensed by PerR, leading to the 6 upregulation of PmtA and subsequent efflux of Fe(II). At the same time, we hypothesise that 7 Fe that is adventitiously bound to the cytoplasmic domains of MtsABC may become oxidized 8 and dissociate, leading to increased Mn import (A). In the 5448 $\Delta pmtA$ mutant, high 9 intracellular Fe may result in dysregulation of MtsR and hence downregulation of Mn uptake 10 by MtsABC. This combined high Fe, low Mn status may result in the generation of Fe-SodA, 11 which has reduced activity compared to the Mn-cofactored form (B). Dashed lines denote 12 hypothetical or putative mechanisms, while solid lines indicate mechanisms that have been 13 confirmed experimentally. Thick arrows show upregulation, while a thick blocked arrow 14 indicates repression.