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Abstract 

Water shortages are forecast to affect 50% of the world’s population by 2030, impacting 

developing nations most acutely. To increase water security there has been a significant 

increase in Inter-basin Water Transfer (IBWT) schemes, engineering mega-projects that 

redistribute water from one basin to another. However, the implementation of these schemes 

is often contested, and evaluation of their complex impacts inadequate, or hidden from full 

public scrutiny. There is an urgent need to develop more integrated, holistic, and transparent 

ways of evaluating the multiple interlinking impacts of IBWT schemes of this scale. In this 

paper, we address this gap by outlining an experimental methodology to evaluate IBWT 

schemes using a multidisciplinary and transparent methodology which utilises publicly 

available data. We illustrate the method using a case study from the Inter-Linking Rivers 

Project in Northern India, comparing the results of the experimental approach against the 
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official analysis of the proposed scheme produced by the State Government of Jharkhand. 

The results demonstrate that the proposed experimental method allows more detailed 

evaluation of spatial and temporal variability in water availability and demand, as well as 

holistic evaluation of the functioning of the proposed scheme under different future scenarios. 

Based on these results we propose a flexible framework for future evaluation of proposed 

water transfer schemes which embeds the principles of integrated assessment, transparency, 

and sound science which can be adapted to other IBWT projects across the world. 

Keywords: Integrated water resources management; inter-basin water transfer; water 

resource modelling; water scarcity 
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1 Introduction 

Water security is one of the most pressing problems of the 21st Century (Srinivasan et al., 

2017), with current estimations suggesting that water shortages are likely to affect 50% of 

the world’s population by 2030 (Zhuang, 2016). In light of the seriousness of the issue, 

water security has been explicitly included in the 2015 United Nation’s (UN) Sustainable 

Development Goals (Harmancioglu, 2017). In order to mitigate water shortages many 

countries have proposed the redistribution of water across natural drainage divides through 

so called ‘Inter-basin Water Transfer’ (IBWT) schemes (Bhaduri et al., 2008). In 2005, 

approximately 14% of the total water withdrawal from rivers globally was for IBWT, which is 

predicted to increase to 25% by 2025 (Gohari et al., 2013; ICID, 2005). 

Such large schemes are complex and value laden, with a spread of impacts, problems, and 

perspectives (Batie, 2008; Pueppke et al., 2018). Proponents claim that IBWT is beneficial 

for socio-economic development (Shao et al., 2003) and the ecological recovery of water-

stressed basins (Ghassemi and White, 2007). In contrast, critics of IBWT have raised 

concerns over governance (Amarasinghe, 2012; Moore, 2014; Smakhtin et al., 2007), the 

equitability of impacts and outcomes (Chopra, 2006; Howe and Easter, 1971), and more 

simply the practicality of implementing such large engineering interventions (Gupta and 

Zaag, 2008).  

A key challenge is how to assess the implications of IBWT schemes effectively (de Andrade 

et al., 2011; Gupta and Zaag, 2008). Only a few large scale, multi-disciplinary studies have 

evaluated the impacts of schemes (Wilson et al., 2017), and pre-construction assessment 

methods and data are often hidden from public scrutiny (Pasi and Smardon, 2012) or 

contain large uncertainties (Wilson et al., 2017). Previous studies have evaluated schemes 
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against the principles of Integrated Water Resources Management (IWRM) (Gupta and Zaag, 

2008), however, few attempts have been made to translate these general approaches into a 

formalised, practically applicable framework. Given the number of potential schemes 

worldwide, there is an urgent need for such a framework. To addresses this need we 

propose a method for IBWT scheme evaluation which operationalises the principles of 

IWRM, delivering a holistic, transparent, and publicly accessible way of effectively 

evaluating the complex spatially and temporally variable impacts of an IBWT scheme which 

considers the needs of both the donor and recipient catchments. We test the method 

against part of the ongoing Interlinking Rivers Project (ILR), a mega-scale IBWT project 

which has been evaluated officially by the National Water Development Agency (NWDA) of 

India that has attracted significant criticism for how it has been developed and justified 

(Alley, 2004) 

The research presented demonstrates that, by utilising publicly available environmental and 

socio-economic data, we can not only evaluate present day water demand and supply 

effectively in the context of proposed IBWT schemes, taking into account spatial and 

temporal variability, but also evaluate potential future water transfer scenarios post-

construction. Application of this method to the ILR case study identifies a number of 

shortcomings in the original analysis prepared in support of the proposed case study scheme. 

In particular the original analysis fails to take account of spatial and temporal variability in 

the availability of, and demand for, water within both donor and recipient catchments. The 

new method has significant implications for the future assessment of IBWT schemes, 

offering opportunities to democratise debates around the planning and implementation of 

such schemes, aligning more closely with the Dublin Principles, which promote participation 

and equitability in water management (Savenije and Zaag, 2002). 
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2 Inter-basin Water Transfer (IBWT): background and assessment 

IBWT is the “purposeful rearrangement of natural hydrologic patterns via engineering works 

[…] to move water across drainage divides to satisfy perceived human needs” (Micklin, 1984, 

p. 37). IBWT schemes exist, or are planned, across all continents, with the exception of 

Antarctica, in both developed and developing countries (Gupta and Zaag, 2008; Shumilova 

et al., 2018). Shumilova et al. (2018) identified 76 ‘Mega’ IBWT projects costing over US$1 

billion, either under construction (25) or in the planning phase (51) which, if all are 

constructed, will transfer up to 1,910 km3 a-1 of water, equivalent to 26 times the average 

annual flow of the River Rhine (Figure 1).  

Fig 1 – Major existing and proposed IBWT schemes globally (data collated from Ghassemi 

and White, 2007; Shumilova et al., 2018; UNESCO, 1999; Zhang et al., 2015). [FULL WIDTH] 

2.1 Critiques of IBWT 

IBWT projects are principally driven by governing authorities who promote these projects as 

critical to alleviate water deficits and to ensure water security (Angelakis et al., 2012; Gupta 

and Deshpande, 2004; WWF, 2007). Proponents argue that they deliver socio-economic 

development (Gichuki and McCornick, 2008; Matete and Hassan, 2006) and enhanced water 

security (Das, 2006), and result in environmental benefits through the alleviation of 

environmental degradation in recipient basins suffering water shortages (Berkoff, 2003; Sun 

et al., 2017; Zhuang, 2016). IBWT schemes also sometimes offer potential reductions in 

flood risk (Zhuang, 2016).  

Yet, IBWT schemes are often contested and controversial (Das, 2006), with frequent 

conflicts of interest and many overlapping questions regarding potential impacts (Rogers et 
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al., 2019). Overarching concerns relate to the decision-making processes, especially the 

rationale used to justify these mega-scale projects. Existing projects have been challenged 

for using incorrect data inputs (Gichuki and McCornick, 2008; Micklin, 1984), or for relying 

on data at spatial (Gupta and Zaag, 2008) and temporal (Smakhtin et al., 2007) resolutions 

that do not map onto the scale of the project, which can lead to inaccurate assessment of 

water availability (Micklin, 1984) and demand (Liu and Ma, 1983). A lack of robust methods 

has been exacerbated by concerns that governance of schemes lacks transparency (Thakkar 

and Chaturvedi, 2006; UNESCO, 1999), and that there are large discrepancies in the power 

and influence that different water users have in scheme planning and design, and the 

allocation of water resources post-construction (Abed-Elmdoust and Kerachian, 2014).  

Critics of IBWT have also highlighted that following construction, the socio-economic and 

ecological impacts of schemes can contradict the positive image presented during the 

planning phase. The construction of IBWT infrastructure often displaces “large sections of 

people from their land, economy, resources and culture” (Singh, 2002, p. 182) and resettles 

them (World Commission on Dams, 2000). These people tend to have low-incomes or be 

from indigenous communities (Das, 2006; Patekar and Parekh, 2006) and their emotional, 

cultural and livelihood losses, and loss of valued land, are routinely neglected by IBWT 

planners (McCully, 2001; Singh, 2002). Resettled communities tend not to benefit from 

IBWT projects, which instead favour large-scale projects such as irrigation (Micklin, 1984). 

Such irrigation projects often promote the development of overreliance on cash crops for 

export, with consequent limitations on the sustainability and resilience of agricultural 

economies (Howe, 1977; WWF, 2007, 2002). IBWT projects have also been critiqued for 

causing irreversible environmental impacts (Gichuki and McCornick, 2008; Howe and Easter, 

1971) including changes to flow regimes (Erskine et al., 1999; Hirji, 1998; Kingsford, 2003), 
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restricting minimum environmental flows (Smakhtin et al., 2007), altering morphology 

downstream (McCully, 2001), the drying up of wetlands (Richter et al., 2010), and delta 

retreat leading to sea-water incursion (Higgins et al., 2018).  

The impacts of IBWT projects occur at a range of spatial and temporal scales. For instance, 

the proposed ‘Project Integration of the São Francisco River’ (PISF) in north-eastern Brazil is 

intended to transfer water from the São Francisco River basin to small basins in the arid 

regions. The São Francisco River basin has an area of approximately 641,000 km2 (7.5% of 

the total area of Brazil), covers eight states and houses 15.5 million inhabitants. Concerns 

over the economic and social impacts of these water transfers exist at both a local 

(homeowner and community) and a national scale (de Andrade et al., 2011). Impacts can 

also be felt transnationally where river basins are not contained within individual states. For 

example, the Indian ILR project will directly transfer water between India and Nepal, and 

will indirectly impact Bangladesh rivers, even though no direct IBWT infrastructure crosses 

into Bangladesh itself (Amarasinghe and Sharma, 2008; Misra et al., 2007). Rogers et al. 

(2019) evaluated the potential impacts of China’s ongoing South–North Water Transfer 

Project (SNWTP) and concluded that continuous, long-term evaluation of socio-economic, 

environmental, and political impacts are necessary to truly understand the project’s 

implications. 

2.2 Evaluating Inter-basin Water Transfer Schemes 

Conflict over IBWT schemes reflects their lack of systematic evaluation; a direct result of 

their complexity, multiple stakeholders and their myriad of objectives (Wilson et al., 2017). 

Sscholars have proposed standardised approaches, based on specific criteria drawn from 

IWRM, by which schemes can be assessed (Gupta and Zaag, 2008) (Table 1).   
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Table 1 – Criteria sets developed to evaluate IBWT schemes. 

Existing criteria sets share two main common requirements: 

1. The donor basin must have surplus Water Availability (WA), taking into account 

existing and future WD; and 

2. The recipient basin must have real Water Demand (WD), after considering all 

possibilities for WA within the basin.  

Although the criteria sets generally contain references to multi-disciplinarity or holistic 

assessment, the use of sound science, and integrated approaches to social, environmental, 

and economic sustainability, there is no consistency in how this is incorporated, or the 

extent to which this is prioritised. Early criteria sets were founded on a relatively restrictive 

set of procedures for assessment and include specific statements on environmental impacts 

and social and cultural impacts (Cox, 1999). Gupta and van der Zaag’s (2008) criteria are 

more flexible, recommending only that projects should be “socially, environmentally and 

economically sustainable” (p.32). In contrast, the most recent criteria, proposed by Kibiiy 

and Ndambuki (2015), contains no specifics on what should be assessed or how, relying 

instead on the addition of ‘sub-branches’ of assessment at different levels to consider 

different aspects.  

This transition from mechanistic to flexible sets of criteria may reflect a changing 

understanding that no two IBWT schemes can be evaluated by the same criteria, and that 

the complexity of benefits and impacts changes over time. However, relying on a process 

which lacks specificity opens up the assessment process to potential criticism, given the 

highly contested and often technocratic nature of IBWT projects (Gupta and Zaag, 2008; 

Pasi and Smardon, 2012; Thakkar, 2012).  
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3 Methods 

In this study we developed an experimental methodology for evaluating IBWT schemes, 

which integrates the principles of IWRM (Section 2) to provide a solution for the evaluation 

of IBWT schemes which are often presented by expert government agencies on the basis of 

calculations which are hidden from full public scrutiny. We combined a flexible approach 

similar to that adopted by Kibiiy and Ndambuki (2015), but incorporated specific areas 

highlighted in the other approaches. We adopted the following as essential criteria: 

1. The donor basin must have surplus WA after fulfilling all its present and future WD. 

2. The recipient basin must have a water deficit after tapping all possibilities of WA 

within the basin. 

3. The completed project must be supported by an integrated, multi-disciplinary 

assessment of potential impacts and benefits, intended to minimise adverse impacts 

and maximise benefits, and demonstrate equitable distribution among donor and 

recipient basins. 

In response to criticisms of a lack of transparency and unequal power dynamics in previous 

schemes, we propose including a fourth criterion: 

4. Analysis must use, where possible, data which is freely available within the public 

domain, and which should be made available for scrutiny. 

We developed and tested the method against a case study from part of the Indian 

Interlinking Rivers (ILR) Project, a scheme which proposes to transfer water from a donor 

basin to a recipient basin through two river links.  
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First we present the case study and the calculations used to justify the scheme, before 

outlining the experimental method. Further details of calculations are included within the 

supplementary materials.  

3.1 The case study 

The IBWT scheme used for this study is part of the proposed ILR Scheme, an ambitious IBWT 

project proposed by the Government of India (GOI), consisting of approximately 30 inter-

state and 35 intra-state inter-basin transfer links (Higgins et al., 2018). Our study examined 

two of the proposed intra-state links: the Sankh-South Koel (S-SK) and South Koel-

Subarnarekha (SK-Sr), proposed by the State Government of Jharkhand (GOJ) (Figure 2). We 

considered these as one project referred to as the S-SK-Sr link.  

Fig 2 – Overview of the study area showing the locations of HOCs, and the catchments 

identified by the NWDA assessment and those considered in this study; (a) the study area in 

relation to the proposed inter-state Inter-Linking Rivers links, (b) the study area in relation to 

the Brahmani-Baitarini and Subarnekha Rivers Basins. [FULL WIDTH] 

The S-SK-Sr link is planned to withdraw a total of 1,887 million cubic metres of water per 

annum (M m3 a-1) from two donor rivers, the Sankh and South Koel (referred to as the donor 

basin), and transfer it to the Subarnarekha River basin (referred to as the recipient basin) 

through the Kharkai River. The transferred water is primarily intended to provide irrigation 

for agriculture in the recipient basins (Deogharia, 2016). 

3.2 Evaluation of the proposed Sankh-South Koel - South Koel-Subarnarekha Link by 

the National Water Development Agency 

Analysis in support of the proposed water-transfer link was provided by feasibility reports 

published by the National Water Development Agency (NWDA) (2009a, 2009b). These 
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calculations represent the baseline against which to test the effectiveness of the experiment 

method. 

The NWDA calculated WA and WD only for upstream donor catchments (Figure 2, inset b). 

WA was calculated based on annual natural water yields at 75% dependability1 at the 

Jenapur HOC (Hydrological Observation Centre), (downstream of the proposed ILR link), 

using observed flow data from 1964-65 to 1997-98. The calculated natural flow was used to 

calculate annual WA for the whole basin upstream of the Jenapur HOC, including future 

imports, but not including groundwater availability (NWDA, 2009a). WA for each link of the 

scheme was calculated per km2 according to the size of the donor catchment. 

WD was calculated from the sum of domestic, irrigation, and industrial water demand, and a 

share of committed water utilisation from the Rengali Dam (based on a proportionate area 

approach). Domestic WD was calculated based on 2050 population projections calculated 

according to United Nations estimates (United Nations Population Division, 1995), with the 

share of urban and rural populations (66% urban and 44% rural) also calculated using these 

estimates. Domestic WD was based on usage rates of 135.00 (urban) and 53.15 (rural) litres 

per capita per day (NWDA, 2009a). 100% of urban and 50% of rural WD was assumed to be 

satisfied from surface water, whilst 80% of the calculated domestic WD was assumed to be 

regenerated flow. Industrial WD was assumed equal to domestic WD due to a lack of 

evidence of industrial usage rates. Irrigation use was calculated based upon total current 

and future irrigation schemes. Regenerated flow was assumed to be 10% of net irrigation 

water demand, less 20% of total irrigational water in evaporation-loss. 

Water surplus/deficit was then calculated by:  

                                                      
1
 75% dependability denotes the amount of flow which is projected to be available in the river for 75 years out 

of 100 years (Reddy 2005) 
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Eq 1. 

𝑊𝑎𝑡𝑒𝑟 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑜𝑟 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 = (𝑊𝐴𝑛𝑎𝑡 − 𝑊𝐷𝑡𝑜𝑡) + 𝑅𝑑𝑜𝑚 + 𝑅𝑖𝑛𝑑 + 𝑅𝑖𝑟𝑟𝑖𝑔 

where WAnat is the natural water availability; WDtot is the total water demand; and Rdom, 

Rind, and Rirrig are regenerated flows from domestic, industrial, and irrigation respectively. All 

values are in M m3 a-1. 

Annual WA was then compared against proposed water transfer through the scheme to 

determine scheme viability.  

3.3 The experimental Method 

Our experimental method for evaluating IBWT schemes is composed of two main 

components (Figure 3), which are intended to readily address the criteria for evaluation of 

IBWT set out at the beginning of this section: the first evaluates Water Availability (WA) and 

Water Demand (WD) across proposed donor and recipient areas (Criteria 1 and 2); the 

second models potential scheme impacts using a commonly available numerical model 

(Criteria 3).  

Fig 3 – Overview of the experimental method; (a) is the assessment of overall water surplus 

or deficit across the donor and recipient catchments, and (b) is a holistic analysis of potential 

impacts of the scheme under different future scenarios. [1.5 Width] 

3.3.1 Data for the experimental method 

To address Criteria 4 the method was developed using only publicly available data. Data 

were collected from government sources, either from the GOJ or from the Central GOI. They 

were supplemented, where necessary, from international organisations, such as the UN. 
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Where possible the data collected was at catchment scale, however, in some cases this was 

augmented by other datasets where catchment-level data were unavailable (Table 2). 

Table 2 – overview of principal data sources and their use within the experimental method. 

3.3.2 Characterising the donor and recipient basins 

The study area was divided between the donor and recipient basins (Figure 2) on the basis 

of their hydrology, levels of urbanisation, and by the percentage area under irrigation2. The 

donor basin has an area of 21,806 km2, whilst the recipient basin is smaller at 14,148 km2. 

Both basins have elevations between 65-1100 m asl, with diverse lithologies, dominated by 

poor quality soils which store little water. Hydrologically, the entire study area shows inter-

annual variability in rainfall and river flows relating to its monsoonal climate. The donor 

basin receives greater rainfall than the recipient during monsoon periods, but this is 

reversed during the non-monsoon season. Flows in donor basins are significantly higher 

than recipient basins during monsoons, but only marginally higher during non-monsoon 

season. Both basins also showed short-term patterns of wet-dry variability likely to be 

related to El Niño. 

The population distribution between rural and urban areas and landcover, in particular 

percentage area of cropping, show relatively small differences between the two basins. 

However, the recipient basin has higher levels of urbanization (2.2% by area in comparison 

to less than 1%), as well as greater industrial activity, including mining, metal founding, 

automotive, and chemicals production. 33% of the recipient basin is under irrigation, in 

comparison to 13% for the donor basin. 

                                                      
2
 Further details of both catchments can be found within the supplementary materials. 
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3.3.3 Assessing Water Availability 

WA was calculated at a monthly temporal resolution at 75% dependability for all six HOCs 

within the area of interest in order to effectively represent the seasonal variability resulting 

from the monsoon climate (Smakhtin et al., 2007; Smakhtin and Eriyagama, 2008). Mean 

monthly natural flows for the period 1980-2013 were used (Equation 2a), and then annual 

WA was calculated for each catchment (Equation 2b) following Galkate et al. (2015).  

(Eq 2a) 

𝑀𝑀𝑄𝑥%𝑑𝑒𝑝 ∗ 𝐷𝑎𝑦𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ = 𝑊𝐴𝑚𝑜𝑛𝑡ℎ 𝑥%𝑑𝑒𝑝 

where MMQx%dep is the Monthly mean natural flow of each month at x% flow dependability 

and WAmonth x%dep is the Monthly water availability of each month at x% flow dependability. 

(Eq 2b) 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑊𝐴 𝑎𝑡 𝑥% 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  ∑(𝑀𝑀𝑄𝑥%𝑑𝑒𝑝 ∗ Days per month) 

12

𝑛=1

 

3.3.4 Assessing Water Demand 

WD within each catchment was calculated based on WD allocated to different demand 

categories, in this case domestic, irrigation, industrial, livestock, and environmental uses. 

Evaluation of these factors considered temporal variability drawing upon examples within 

the literature. Estimates of livestock (after Singh 2006) and a more detailed calculation of 

industrial and irrigation WD were included to characterise their impact on WD and its 

seasonal variability (after Zawawi et al. 2010). Environmental flows, which can have 

significant impact on WA for other users depending on their magnitude, were set according 

to the method proposed by Smakhtin and Anputhas (2006), following guidance from the 
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Indian Institute of Technology (Indian Institute of Technology, 2011). Additional details of 

these calculations can be found in the supplementary material. 

To determine overall WD within each basin, direct summation of catchment WD was 

possible for the Tilga, Jaraikela and Adityapur catchments. For Gomlai, Jamshedpur and 

Ghatshila catchments, which receive flows from other catchments, total WD was calculated 

within the contributing catchment area to the scheme measured at their outflow points.  

3.3.5 Assessment of potential water surplus or deficit 

Water surplus or deficit was calculated at 75% dependability for each donor and recipient 

catchment. WA and WD were first integrated by calculating return flow at both annual and 

monthly levels. Water surplus/deficit was calculated as: 

(Eq 3) 

𝑊𝑎𝑡𝑒𝑟 𝑆𝑢𝑟𝑝𝑙𝑢𝑠/𝐷𝑒𝑓𝑖𝑐𝑖𝑡 = (𝑊𝐴𝑡𝑜𝑡 − 𝑊𝐷𝑡𝑜𝑡) + 𝑇𝑊𝑅 

Where WAtot is the total water available at 75% dependability3, WDtot is total water demand, 

and TWR is total regenerated flow.  

3.3.6 Evaluation of scheme performance 

Simulation of potential scheme performance was undertaken using numerical modelling 

with the Water Evaluation and Planning (WEAP) modelling package (Yates et al., 2005). 

WEAP has been used previously for the analysis of IBWT schemes, for example Bharati et al. 

(2008), and Mousavi et al. (2017). It has also been applied to the planning and management 

of other water resource projects, for example water allocation in different climatic 

conditions (Lévite et al., 2003) and under climate change (Rosenzweig et al., 2004), impact 

                                                      
3
 Note that WAtot in this case is not equal to WAnat and will always be a smaller value. 
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assessment of water policy change (Varela-Ortega et al., 2011) and projections of WA and 

WD (Dimova et al., 2014). To represent the proposed case study scheme, a WEAP model 

was configured to represent the main rivers and significant tributaries, proposed 

transmission links, return flows, and water diversions, as well as demand nodes 

representing domestic, livestock, irrigation, and industrial demand; a model schematic can 

be found in the supplementary materials.  

WA was adapted for the case study to include observed flow and storage in reservoirs above 

1M m3 (Equation 4): 

(Eq 4) 

𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝐹𝑙𝑜𝑤 = 𝐹𝑙𝑜𝑤𝑂𝑏𝑠𝑣 + (𝑊𝐷𝑡𝑜𝑡 − 𝑇𝑊𝑅) + 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 

where Flowobsv is daily observed flow at HOCs, WDtot is total water demand, and TWR is total 

regenerated flow. 

Naturalised flow for the Tilga, Jaraikela and Adityapur catchments was calculated on the 

basis of their area-ratio with their respective catchments. These natural flows were used as 

a water supply node in each of the catchments or sub-catchments. For WD, each demand 

node (domestic including urban and rural, livestock, irrigation and industry) was assigned 

data on annual activity, water-use rates, consumption percentage and monthly variation. 

WEAP objects for minimum flow requirements (representing environmental WD) were also 

added, as well as streamflow gauges for model validation. Highest joint priority within the 

model was given to domestic WD and minimum flow requirements (environmental WD), 

followed by livestock, irrigation, and then industry, on the basis of socio-economic patterns 

observed within the basins, and the priorities used by the NWDA. All WD in the upstream 

catchments were prioritised over WD in downstream catchments. Validation of the model 
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outputs was carried out using streamflow gauges at the two final outflow points; Gomlai 

HOC for the donor basin and Ghatshila HOC for the recipient basin. Nash-Sutcliffe efficiency 

(E) (Nash and Sutcliffe, 1970) was used to validate the results obtained against observed 

flows. 

3.3.7 Model Scenarios 

Five scenarios were explored using the model (Table 3) to explore the impact of water 

allocation priority on post-construction WA (Scenarios 2 and 3) and to investigate drivers of 

socio-economic demand and their potential impact on WA in the donor and recipient 

catchments (Scenarios 4 and 5). Two extremes of water allocation priority were considered 

for this study: priority given to ILR transfers, where proposed transfers of water were 

undertaken before water was allocated to other WD areas; and priority given to donor 

catchment WD, where all donor catchment WDs were met first, with any net water 

allocated to the ILR transfer. In all cases donor basin WD is prioritised over recipient WD. 

Table 3 – Overview of scenarios simulated using the WEAP model. 

ILR scheme performance in each scenario was assessed against the reliability index 

(Equation 5) following Hashimoto (1982): 

(Eq 5) 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑊𝐷 𝑤𝑎𝑠 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
∗ 100% 

The reliability index shows the probability (%) of WD being met completely by the available 

water resources (Gohari et al., 2013). The annual reliability of ILR links was estimated using 

WEAP, whilst monthly reliability was calculated using monthly unmet WD for each month 

(Hashimoto et al., 1982). We further calculate and report ‘risk’ using: 
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(Eq 6) 

𝑅𝑖𝑠𝑘 (%) = 100 − 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

Risk represents the probability (%) of WD not being met by the available water resources. It 

is a useful metric for evaluating the performance of IBWT schemes since it represents a 

potential shortfall in WA. These indices were used to evaluate of the ILR scheme’s 

performance in terms of; (i) meeting the WD of all catchments, referred to as the risk posed 

to catchments, and (ii) the ability of the ILR to meet its proposed flow regime, referred to as 

the risk posed to the ILR scheme.  

4 Results 

4.1 Results of the NWDA evaluation of ILR scheme feasibility 

The results of the NWDA evaluation (Table 4) show that on an annual basis, both links 

report a water surplus, +788.06 M m3 a-1 in the case of the S-SK ILR Link, and +2097.51 M m3 

a-1 for the SK-Sr ILR link. It was proposed that 498 M m3 a-1 be transferred through the S-SK 

ILR link, providing 55 M m3 a-1 and 30 M m3 a-1 of water to irrigational and domestic use, 

with an estimated loss of approximately 10 M m3 to transmission. The SK-Sr link was 

proposed to transfer 1792 M m3 a-1, providing 38 M m3 a-1 and 30 M m3 a-1 of water en route 

to irrigational and domestic use respectively, with approximately 40 M m3 a-1 of transmission 

losses. Based on the NWDA analysis, a total of 1684 M m3 a-1 water will therefore be 

transferred through the scheme to the water-deficit Subarnarekha River. Both of the 

proposed links are intended to operate throughout the year, but the proposed supply is not 

uniform across the year, with peak transfers in February-March and July-August (Table 4b).  
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Table 4 – (a) Results of the NWDA analysis of water surplus for the proposed ILR link, and (b) 

the proposed monthly transfer schedule of water along the proposed link (NWDA, 2009b, 

2009a). 

4.2 Results from the experimental method 

4.2.1 Assessment of Water Availability 

Figure 4 presents the calculation of WA for each catchment. WA for all catchments is 

highest during the monsoon (June-September) and declines significantly during September 

and October. At a catchment level, Gomlai has the highest WA of all catchments, closely 

followed by Jamshedpur and Ghatshila.  

Fig 4 - Monthly WA per km2 at 75% flow dependability (1980-2013) by catchment. [SINGLE 

WIDTH] 

4.2.2 Assessment of Water Demand 

The WD of domestic, livestock, irrigation, industry and environmental needs were projected 

for each catchment for the year 2050 (Table 5).  

Table 5 –WD for each catchment by sector using the experimental method. 

Jamshedpur has the highest domestic and urban WD. Rural domestic WD is highest in 

Jaraikela, which also shows high WD for livestock and irrigation. Industrial WD is highest in 

Ghatshila, although these results include the WD for the Adityapur Industrial Development 

Area (AIDA). No data are available on the distribution of cross-boundary WD for this area so 

in this case it was allocated to the WD calculation for Ghatshila. Although this does not 

appear to significantly impact on the calculations, further sensitivity testing could be 

undertaken to evaluate this.  
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Gomlai and Ghatshila represent environmental as well as total WD for both donor and 

recipient basins respectively. Domestic, livestock, and industrial WD are divided equally 

across all months, whilst environmental and irrigation WD are distributed seasonally (Figure 

5).  

Fig 5 – Variability in WD across the year by catchment showing (a) variability in predicted 

irrigation WD, (b) variation in environmental WD. [SINGLE WIDTH] 

Monthly WD in non-monsoon months is influenced by irrigation and was high in February. 

Environmental WD is highest during the monsoon, with peak WD in August. Gomlai, which is 

representative of the donor basin, shows the highest WD among all catchments during 

monsoon months, followed by Ghatshila, which is representative of the recipient 

catchments. In non-monsoon months Ghatshila has the highest WD, due to its high 

industrial WD, followed by Gomlai. 

4.2.3 Determination of water surplus or deficit 

Table 6 shows the calculation of water surplus or deficit on an annual basis for the six 

catchments under consideration. All catchments show annual surplus water at 75% 

dependability. 

Table 6 – Water surplus at 75% dependability by catchment using the experimental method. 

The donor basin shows less surplus water than the recipient basin, due to high 

environmental WD. Adityapur, the main recipient catchment, has less surplus water than 

the main donor catchment Jaraikela. Ghatshila, which is located downstream of 

Jamshedpur, showed lower water surplus than Jamshedpur. This pattern is likely to be 

attributed to the high industrial WD in Ghatshila due to AIDA, which includes some 

industrial WD for the remaining two recipient catchments. 
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In contrast, the monthly calculation of water surplus highlights the temporal variability in 

the calculation of water surplus/demand resulting from the impact of the monsoon climate. 

Figure 6 shows surplus/deficit results for the monsoon (June-September) and non-monsoon 

season (October – May). 

Fig 6 - Monthly water surplus or deficit at 75% dependability by catchment in (a) monsoon 

and (b) non-monsoon seasons. [SINGLE WIDTH] 

The results demonstrate that all catchments report a water surplus during the monsoon 

season, with Jamshedpur recording the highest surplus. However, in the non-monsoon 

season, particularly from December to May, all catchments either break even, or in the case 

of the donor catchments (Tilga, Jarakeila, and Gomlai), report water deficits up to 100 

Mm3/month. 

4.3 Results of the evaluation of ILR scheme performance using the WEAP model 

4.3.1 Validation of the WEAP model 

The results of model validation show that for Gomlai, E was 0.97, while for Ghatshila E was 

0.86. No investigators that have used the WEAP model have undertaken any validation of 

model outputs using gauged stream flows (for example Bharati et al., 2008; Dimova et al., 

2014; Jamshid Mousavi et al., 2017; Lévite et al., 2003; Varela-Ortega et al., 2011), so it is 

difficult to compare this result to other directly equivalent studies. However, these results 

compare extremely favourably with other river modelling studies which have used Nash-

Sutcliffe model efficiency for validation against streamflow data, where N values exceeding 

0.79 are considered acceptable (Moriasi et al., 2007; Rollason et al., 2018). 
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4.3.1.1 Assessment of risk in fulfilling catchment Water Demand 

Results presented in Table 7 indicate that even in the current-day, pre-ILR scenario 

(Scenario 1), some donor catchments are unlikely to be able to fulfil the proposed irrigation 

and industrial water demands. In the case of Tilga, risk of not meeting supply is low, 

however, in the upstream parts of Jarakeila, upstream of the proposed ILR, risk is high, 

especially during non-monsoon months. The remaining catchments and sub-catchments in 

the donor basin showed negligible or no risk in meeting their WD. Similarly, catchments in 

the recipient basins show little or no risk in meeting their WD. 

Table 7 – Results of the modelling undertaken with WEAP showing annual and monthly risks 

to fulfilling catchment water requirements. 

The results of other scenarios show similar patterns, but the extent of risks is predominantly 

dictated by the prioritisation of water use. In donor-catchment WD prioritised scenarios 

(Scenarios 2 and 4) there is little change in risk noted in donor catchments during current 

scenarios, however, risk increases in the future scenario. A marginal improvement in the 

risks is seen in Adityapur during current scenarios, however, a negligible risk in future 

scenarios remains. Note that in this scenario, the WD of the recipient catchments are fully 

satisfied. In contrast, when water transfer is prioritised (Scenarios 3 and 5), donor 

catchments show sharp increases in risk in meeting their WD in both current and future 

scenarios. In Scenario 3 annual risks in the Tilga increase to moderate or high, and in 

Jarakeila risk is high across all demand types, extending into the mid-part of the catchment. 

Examined monthly, risk across Tilga and Jarakeila in non-monsoon months is very high, and 

even during the monsoon season is moderate. In upstream areas of Jarakeila 100% risk is 

seen during the February-May period. Similar patterns are seen in scenario Scenario 5, with 
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upstream Tilga showing a sharp increase in the risks for all WD, increasing them from 

moderate to significant risk levels. The monthly risk pattern also increases considerably, 

showing almost 100% risk during December-May. All parts of Jaraikela show heightened 

risks across all WD types. These risks were high or very high in the upstream and middle 

parts of the catchment. Similar to Tilga, they displayed a higher monthly risk pattern with 

100% risk in all WD during February-May. The remaining catchments and sub-catchments in 

donor and recipient basins showed no risk in meeting their WD. 

4.3.1.2 Assessment of risk in fulfilling ILR water transfers 

The results for the present day scenarios show a risk of 47% for the S-SK link and a risk of 

51% for the SK-Sr link at the annual timescale in meeting the flow requirements of the 

proposed ILR Scheme. Both links show higher risk in donor-catchment prioritised scenarios 

(see supplementary materials for full results).  

The monthly risk pattern suggests a strong seasonality, with both links showing very high 

risk during the non-monsoon period (December – May), switching immediately to low risk in 

the early monsoon season (June). The S-SK link demonstrates negligible risk during the 

monsoon season, however, the SK-Sr link shows moderate to high risk during October and 

November, particularly under a catchment prioritised flows scenario. Similar patterns are 

seen in the future scenarios, with small increases in annual risk identified across both links 

in both catchment and transfer-prioritised scenarios. At a monthly timescale there is little 

change in risk for the S-SK link, with the same level of seasonality present, with a slightly 

increased risk in November if water transfer is prioritised. However, the SK-Sr link shows 

significantly increased risk in the non-monsoon season, with high risk identified in both 

October and November. 
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4.3.1.3 Assessment of risk in meeting catchment environmental flow requirements 

The results of the modelling indicate that in present day scenarios there was limited risk in 

fulfilling catchment environmental flows, even under water transfer prioritisation scenarios 

assuming the ILR link was built today. Only Jaraikela showed minor, but negligible risks 

during the Business as Usual scenario (Scenario 1) in June and August, but risks were 

reduced under the catchment-prioritised scenario (Scenario 2) in June. Risk increased 

considerably under link-prioritised scenario (Scenario 3) covering months from June-

January, but only at low to moderate levels. Under the future scenario (Scenario 5), similar 

patterns were shown, with marginal or negligible change in risk seen. 

5 Discussion 

This paper has developed and presented a method for the evaluation of IBWT schemes in 

response to long-standing criticisms of the existing methods used to justify these mega-

scale engineering projects. The method adopts the principles of IWRM, demonstrating a 

transparent approach to assessment using publicly available data, aiming to increase the 

transparency of assessment of proposed schemes and ensure that the potential impacts of 

water transfers are evaluated effectively.  

 

5.1 Evaluating the NWDA assessment against IBWT assessment criteria 

The feasibility assessments undertaken by the NWDA justify the proposed S-SK-Sr link on 

the basis of a simplistic assessment of WA and WD which fails to adequately assess real WA 

and WD both spatially and temporally. As such the assessments fail to fully satisfy the 

criteria sets laid out in Sections 2 and 3. By using averages across hydrological years, the 
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significance of inter-seasonal variations in WA resulting from the monsoon climate is not 

accounted for. This issues has been highlighted by Smakhtin et al. (2007) in relation to other 

Indian IBWT projects. This means that the assessment is unable to accurately judge the 

degree of WA in donor catchments, making the satisfaction of Criterion 1 difficult, if not 

impossible. In addition, the NWDA analysis fails to account for temporal variability present 

in WD, also noted by Liu and Ma (1983) in relation to IBWT projects in China. This is 

exacerbated by the assessment of WA and WD considering only donor catchments. The 

NWDA analysis therefore fails to identify whether the recipient catchment has a real water 

deficit, making achievement of Criterion 2 difficult to evaluate.  

In addition, the NWDA assessment makes only limited attempts to evaluate potential future 

impacts, considering 2050 population growth estimates but not evaluating the impacts of 

the scheme as it is likely to function. Additionally, the calculations are not complete, with 

some components requiring reconstruction and considerable interpretation, not satisfying 

the requirement that the assessment should be transparent and open to external critique.  

5.2 Evaluating the performance of the experimental method against the NWDA 

analysis 

In contrast to the analysis by the NWDA, the experimental method demonstrated in this 

study embeds the principles of IWRM and provides a more holistic assessment capable of 

satisfying the requirements of the criteria set out in Sections 2 and 3. Our experimental 

method adopted a spatially and temporally distributed approach to assessing WA and WD 

across both donor and recipient catchments. The results indicate a much lower WA in the 

donor catchments of the Sk-Sr link (Figure 7a) than that calculated by the NWDA. Similarly, 

WD is estimated to be much higher in the donor catchments of the S-SK link (Figure 7b) than 
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NWDA estimates. Based on this evaluation upstream catchments are at significant risk of 

being unable to fulfil their water requirements following IBWT scheme implementation; 

hence, they do not have surplus WA after fulfilling their existing and present WD (criterion 

1). Additionally, the results of this study indicate that recipient catchments lack a real water 

deficit to justify the proposed link, showing almost no risk in meeting water demands, even 

under a current ‘business as usual’ scenario (Criterion 2). The proposed water transfers 

(Figure 7c and d) do not reflect these temporal patterns and if progressed would exacerbate 

water stress across catchments which already show risk in meeting basic water needs 

(Criterion 3).  

Fig 7 - (a) Comparison of annual water availability with 75% dependability in the catchment 

area contributing to the two ILR links. (b) Projected annual water demand in 2050 in the 

upstream donor catchments of the two ILR links. (c) Proposed monthly water transfer of 

Sankh-South Koel (S-SK) and (d) South Koel-Subarnarekha (SK-Sr) ILR links (NWDA, 2009b, 

2009a) along with the projected monthly surplus water with 75% dependability in 2050 at 

the upstream donor catchments. [FULL WIDTH] 

The new experimental method is therefore able to demonstrate that the proposed S-SK-Sr 

scheme as proposed does not satisfy the criteria laid out in Sections 2 and 3, avoiding the 

ambiguity involved in the NWDA calculations. 

These calculations have been undertaken using data which is freely available and has been 

made available for scrutiny (Criterion 4). This latter aspect is particularly welcome as this 

study has clearly communicated the approach and methods adopted, which influence the 

calculations of WA and WD. Several components of the experimental method demonstrated 

here would warrant further research be undertaken to evaluate the impact of adopting 
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different approaches, for example consideration of Environmental WD, something which 

the experimental method allows and encourages. 

5.3 Implications for the S-Sk-Sr Project 

Sternberg (2016) argues that  

“water projects create winners – residents and regions who gain access to 

water, receive economic advantage and improve quality of life – and losers – 

who benefit little if at all from [water transfer] megaprojects, pay more for an 

essential good, and lose land and livelihoods” (p. 316).  

Jharkhand, which hosts the proposed S-Sk-Sr link, is one of the most under-developed states 

in India (Mukherjee and Chakraborty, 2012). The proposed donor catchments used in our 

study have a combined population of 4,875,330 (2011 census), of which 80% are involved in 

agricultural activities. In contrast, the recipient catchments contain larger urban areas, and 

greater concentrations of modern industry. Evidence suggests that water transfer into 

basins which lack real water deficit, as is the case in the recipient catchments in this study, 

encourages unsustainable economic development, consequently increasing water usage 

(Gohari et al., 2013). In the case of the S-Sk-Sr link this will be at the expense of less 

developed donor catchments, which are already experiencing a degree of water stress 

which is likely to increase into the future; our results thus demonstrate that if the proposed 

ILR link goes ahead, there will be clear winners and losers, a situation not considered by the 

NWDA assessment used to justify the proposed water transfers. 
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5.4 Implications for the global inter-basin water transfer projects 

The implications of the new method presented are not limited only to India or to the ILR 

scheme. Shumilova et al. (2018) documented the number of large-scale IBWT projects which 

are proposed globally, many in areas of water stress or scarcity, or in locations with extreme 

temporal and spatial variability in precipitation, such as arid/dryland areas or monsoonal 

precipitation regimes (Gassert et al., 2015; Jacques et al., 2013; Kottek et al., 2006; 

Shumilova et al., 2018). Whilst climatic factors make the equitable distribution of water in 

these areas a key factor in promoting development, many proposed schemes are located in 

countries with unstable governance (e.g. Turkey, South Africa, Jordan, Sudan) (Bogardi et 

al., 2012; Economist Intelligence Unit, 2019), which in turn might compound issues with a 

lack of transparency in evaluation of potential impacts. Prior examples of IBWT schemes in 

such locations have seen politically driven schemes proposed (Gupta and Zaag, 2008), the 

use of questionable science (Bandyopadhyay, 2012), and the coercion of affected 

populations (Moore, 2014). Failure to effectively evaluate potential impacts, both upstream 

and downstream, at suitable temporal and spatial resolution, may have disastrous 

consequences for the environment (Moore, 2014) and may create many millions of losers in 

the global distribution of water (Sternberg, 2016).  

5.5 A new framework for guiding the assessment of Inter-Basin Water Transfer 

Projects 

The results of this study have underlined how governments and their agencies can justify 

large-scale alterations to a regions hydrology without effective evaluation of real WA and 

WD in the areas which will be impacted. A framework to guide future evaluations of IBWT 

schemes is therefore needed. Such a framework must be comprehensive, integrated, and 
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adaptable to different scales and contexts, able to be applied to the wide variety of 

proposed IBWT schemes around the world. It must also be freely available, transparent and 

open to external scrutiny to allow the data, assumptions, and calculations to be tested and 

validated. In so being it could be applied by any organisation involved in IBWT: governments 

keen to effectively plan proposed IBWT schemes, bodies interested in the scrutiny of 

governmental proposals, opposition political parties, the World Bank, or the International 

Monetary Fund. We propose that the experimental method demonstrated in this study 

could be such a framework (Figure 9). The proposed framework is intended to both 

encourage critical analysis of, and dialogue around, proposed IBWT schemes, but also 

strengthen the justification for proposed projects where this exists. 

Fig 9 – Proposed framework for the evaluation of future IBWT schemes. [1.5 WIDTH] 

The new model framework is comprised of three main components: 

1. Catchment assessment 

The proposed framework embeds the criteria set outlined in Section 3, requiring an 

integrated assessment of the characteristics of the catchments affected by any 

proposed IBWT scheme. It addresses the complex and integrated nature of water 

scarcity issues and their proposed solutions. The model proposes landscape 

characteristics (Biggs et al., 2007; Colby, 2003); hydrological behaviour (Bracken et 

al., 2008; Burt and Weerasinghe, 2014; Ceballos and Schnabel, 1998; Morán-Tejeda 

et al., 2012); and socio-economic trends and conditions (Global Water Partnership 

(GWP), 2009; Iglesias et al., 2007; Rosenzweig et al., 2004) as the principal 

catchment characterisations. However, flexibility may be necessary in some cases 

and the framework should be applied as required.  
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2. Integrated assessment of Water Availability and Demand 

The framework estimates WA and WD at the catchment level as a complex problem 

(after Asiliev 1977), involving multiple objectives and stakeholders with conflicting 

perspectives and requirements (Zhang et al., 2012). The proposed approach presents 

an integrated and transparent approach founded on the use of freely available data 

to present calculations in a clear and logical manner. Decisions on how WD should 

be calculated and why, and the appropriate temporal resolution for calculation of 

WA, should be undertaken based on the detailed understanding of catchment 

processes developed in 1. 

3. Scenario modelling and scheme assessment 

Assessments should be based on sound science (Gupta and Zaag, 2008), 

communicated in a transparent manner (Lund, 2012). Doing so allows the 

assessment of how adverse impacts on donor basins have been minimised and the 

benefits to recipient catchment maximised in an equitable fashion (Cox, 1999; Kibiiy 

and Ndambuki, 2015), enabling others to interrogate the data and results. The 

identification of appropriate scenarios should be informed by the understanding of 

the study area and the proposed scheme.  

The proposed framework also enables the sensitivity of risks to be evaluated against 

different futures to identify the impact of areas of uncertainty or knowledge gaps. It could, 

for example, be used to explore longer term variability in WA resulting from the impacts of 

El Niño on rainfall patterns (Annamalai and Sperber, 2016), long term reductions in rainfall 

resulting from climate change (Zhang et al., 2018), or to explore the potential feedbacks 

associated with increased water availability, which have been identified but not explored 

fully within this research.  
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By adopting the proposed framework we can develop more rigorous, integrated, but 

transparent assessments of the viability of proposed IBWT schemes, giving a voice to those 

who are affected by potential water transfers. The approach will also help to increase the 

legitimacy of effectively justified schemes, ensuring that they are practical and sustainable 

solutions to the complex problem of water scarcity. 

6 Conclusions 

IBWT is championed as a bold solution to the unequal distribution of water across the 

world. Large-scale engineering projects have been undertaken, or are planned, across the 

world to encourage development and increase prosperity in areas affected by water 

scarcity. However, the scale of these projects mean they have massive socio-economic and 

environmental impacts which are difficult to assess and even harder to forecast. Many are 

accused of being justified on the basis of biased or inadequate calculations hidden from 

public scrutiny.  

This research has demonstrated an experimental method for evaluating the viability and 

impacts of IBWT schemes, which embeds the principles of IWRM, using freely accessible 

data. Testing the method against the proposed S-Sk-Sr IBWT link, part of the Indian ILR 

scheme, has demonstrated the limitations of the NWDA justification of the scheme, and 

proven the ability of the experimental method in helping understand spatial and temporal 

heterogeneity in WA and WD, and the impact of potential future water usage scenarios.  

The findings of the research have significant implications for IBWT schemes globally. Many 

future schemes are proposed in areas of existing water stress, or in countries lacking robust 

democratic governance structures. Inadequate justifications for major water transfers have 
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the potential to devastate affected catchments, creating or enhancing existing water stress 

and negatively impacting the lives of millions of people. The assessment framework 

developed through this research will provide a valuable tool in opening up and 

democratising the analysis of proposed IBWT schemes worldwide.
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Table 1 – Criteria sets developed to evaluate IBWT schemes 

Criteria Set Details 

International 

Commission of 

Irrigation and 

Drainage, 1978 

(Rahman, 1999) 

1. The donor basin must have surplus water after fulfilling all its 

needs, and its current and future water requirements must be secured 

before implementing IBWT. 

2. The recipient basin must have a water deficit after deducting water 

available: 

a. Through all possible alternative sources which are cheaper than 

IBWT, and 

b. By saving available water through effective management without 

affecting the productivity. 

3. Adverse impacts of the water transfer are minimised. 

(Cox, 1999) 

1. The recipient basin must encounter substantial water deficit in 

present or in future after deducting its: 

a. Natural Water Availability, and 

b. Possible Water Availability through Water Demand 

management. 

1. The donor basin must not encounter water deficit in the present or in 

the future due to the water transfer and IBWT project must not 

significantly hinder its future economic development. However, the 

donor basin can consider transferring water in the case of obtaining 

compensation in lieu of its productivity loss. 

2. A thorough EIA must be carried out for donor and recipient basins 

to ensure that the project will not adversely affect the environment. 

However, a project can be considered if it is ready to compensate for 

the environmental damage. 

3. A detailed evaluation of social and cultural influence is required to 

guarantee that the project will not cause any significant interruption. 

However, projects can be considered if they are ready to compensate 

for any potential loss. 

2. The net benefits from the water transfer must be shared impartially 

between donor and recipient basins. 

Gupta and Zaag 

(2008) 

1. The donor basin should have real surplus water while the 

recipient basin should have a real water deficit after efficient 

water use is available there. 

2. The IBWT project should be socially, environmentally and 

economically sustainable and should be adaptive to natural and 

social stress. 

3. The IBWT project should be planned under good governance 

practice. 
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4. The project should balance the existing rights of territory of the 

project with the needs of the project. 

5. The IBWT project should be based on sound science including 

hydrological, ecological and socio-economic analyses which 

should identify associated risks, uncertainties and any knowledge 

gaps. All alternatives should be considered. 

Kibiiy and 

Ndambuki (2015) 

1. Justification of the need for water transfer 

2. Demonstration of minimising the anticipated negative impacts 

3. Demonstration of maximising the anticipated positive impacts 
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Table 2 – overview of principal data sources and their use within the experimental method 

 

  

Data Source Usage 

Daily discharge data for 

6 HOCs within study 

area 

Water Resource Information System 

(WRIS) 

Calculation of Water 

Availability 

Average water usage 

rates (urban, rural, 

livestock) 

NWDA (2016) 

Calculation of Water Demand 

District level 

agricultural usage data 

(livestock population 

and cropped area) 

Technical note on the 19th Livestock 

census by Ministry of Agriculture 

(2012); Open Government Data 

platform. 

Irrigation projects and 

their command area 

Prefeasibility reports of S-SK-ILR 

link and SK-Sr ILR link (NWDA, 

2009b, 2009a); Report by Regional 

Remote Sensing Service Centre 

(Sharma et al., 2007) 

Industrial demand 

information 

Water Resource Department, 

Government of Jharkhand (2012); 

Ministry of Micro Small & Medium 

Enterprises (2016) 
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Table 3 – Overview of scenarios simulated using the WEAP model 

 

  

Scenario Description Scenario Code 

1 Baseline (2012) 
With no ILR to represent the present day, 

‘business as usual’ scenario 
2012 

2 

Baseline (2012) with 

priority given to 

donor-catchment 

WD 

Depicting the current conditions assuming ILR 

links are constructed and priority given to donor-

catchment WD. 

2012-WL-PC 

3 

Baseline (2012) with 

priority given to 

water transfer 

Depicting the current conditions with ILR links 

constructed and priority given to proposed water 

transfer. 

2012-WL-PL 

4 

Future (2050) with 

priority given to 

donor-catchment 

WD 

Depicting change in demand drivers (socio-

economic) in projected future with ILR links 

constructed and priority given to donor-

catchment WD. 

2050-WD-WL-PC 

5 

Future (2050) with 

priority given to 

water transfer 

Depicting change in demand drivers (socio-

economic) in projected future with ILR links 

constructed and priority given to proposed water 

transfer. 

2050-WD-WL-PL 
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Table 4 – (a) Results of the NWDA analysis of water surplus for the proposed ILR link, and 

(b) the proposed monthly transfer schedule of water along the proposed link (NWDA, 2009b, 

2009a). 

(a) Calculation of water 

surplus 
S-SK ILR Link SK-Sr ILR link 

Water Demand (WD) 
Water Usage 

(M m
3 

a
-1

) 

Water Usage 

(M m
3 

a
-1

) 

Domestic 10.33 95.16 

Industrial 11.52 106.08 

Irrigational 94.28 939.05 

Downstream commitment to 

Rengali Dam 
139.33 475.86 

Livestock Not considered 

Total WD (WDTOT) 255.47 1616.15 

Water Availability (M m
3 

a
-1

) (M m
3 

a
-1

) 

Natural Water  

Availability (WAnat) 
1018.5 3487.07 

Regenerated Flows Domestic 

(Rdom) 
8.26 76.13 

Regenerated Flows Industrial 

(Rind) 
9.22 84.86 

Regenerated Flows 

Irrigational (Rirrig) 
7.54 65.60 

Water Surplus or Deficit 

(after Equation 1) 
+788.06 +2097.51 

(b) Proposed month-wise water transfer plan 
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Table 5 –WD for each catchment by sector using the experimental method 

 

  

 Water Demand (M m
3 

a
-1

) 

 Domestic Livestock Irrigation Industry Environmental 

 Total Urban Rural 

Tilga 21 10.7 10.5 5.9 86 0.4 664 

Jaraikela 197 135 62 25 607 16 991 

Gomlai 89 61 28 18 141 64 2942 

Adityapur 95 58 37 15 362 1.3 424 

Jamshedpur 247 200 47 19 421 14.0 976 

Ghatshila 75 64 11 4.6 14 1170 1273 

Donor 308 207 101 48 834 81 2942 

Recipient 417 322 96 39 797 1185 1273 
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Table 6 – Water surplus at 75% dependability by catchment using the experimental method 

 

  

Basin Catchment Annual water surplus (M m
3 

a
-1

) at 75% dependability 

D
o

n
o

r 

Tilga 506 

Jaraikela 1,082 

Gomlai 3,128 

R
ec

ip
ie

n
t Adityapur 893 

Jamshedpur 4,538 

Ghatshila 3,991 
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Table 7 – Results of the modelling undertaken with WEAP showing annual and monthly risks 

to fulfilling catchment water requirements. 

Scenari

o 
Baseline (pre-ILR) Scenario 2 Scenario 3 

    Annual Risk Monthly Risk Annual Risk Monthly Risk Annual Risk Monthly Risk 
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of SK-Sr ILR link) is 
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Adityapur Industrial 

Development Authority 

(AIDA) and its area 

within AIDA is not 
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Therefore, AIDA is 

completely included in 

Ghatshila. 
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Highlights: 

- Growth in Interbasin Water Transfer has large scale socio-ecological implications 

- Scheme impact assessments are often highly contentious and lack public scrutiny 

- An interdisciplinary approach for evaluating IBWT using open data is developed 

- The approach is demonstrated using a case study from India 

- A new framework for assessing IBWT scheme impacts is proposed 
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