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Abstract7

Ground surface subsidence due to groundwater production is a significant problem. Many attempts

have been made to develop analytical models to forecast subsidence rates as a consequence of

groundwater production. Previous analytical solutions either make limiting assumptions about the

stress regime (e.g., radially symmetric with uniaxial strain or radially symmetric with zero incre-

mental vertical total stress) or assume that the pressure distribution within the aquifer is uniform.

Imposing assumptions about the stress regime lead to an overestimate of subsidence. Imposing a

uniform pressure assumption often leads to an underestimate of subsidence. In this article, the prin-

ciple of superposition is applied to extend a previous analytical solution, for a cylindrical uniform

pressure change, to allow for a non-uniform pressure distribution resulting from constant rate pro-

duction of a viscous fluid from a cylindrical confined aquifer of finite permeability. Results from

the analytical solution are verified by comparison with a set of fully coupled hydro-mechanical

finite element simulations. The analytical solution for subsidence directly above the production

well (or uplift above an injection well) can be written in closed-form and is straightforward to

evaluate. The equation also shows that, for many practical purposes, ground surface subsidence

is insensitive to production fluid viscosity and aquifer permeability when the aquifer radius is less
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than the aquifer depth below the ground surface.
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1. Introduction9

Ground surface subsidence due to groundwater production has been a significant problem10

around the world for many decades (Gambolati and Teatini, 2015). When water is produced from11

an aquifer, the pressure within the aquifer is reduced, leading to a reduction in effective stress,12

which results in subsidence at the ground surface. Many attempts have been made to develop13

analytical models to forecast subsidence rates as a consequence of groundwater production.14

Early models assumed radial symmetry around a groundwater production well. These models15

then either assumed that strain occurred only in the vertical direction (uniaxial strain) (Verruijt,16

1969; Bear and Corapcioglu, 1981a) or that incremental vertical total stress is zero (Verruijt, 1969;17

Bear and Corapcioglu, 1981b). Verruijt (1969) argues that the zero incremental vertical total stress18

model is analogous to assuming that the aquifer is overlain by a soft clay overburden, which offers19

negligible resistance to displacement. Both approaches lead to the elegant result that subsidence,20

at any point on the ground surface, is linearly proportional to the change in pressure in the aquifer21

immediately below.22

However, the uniaxial strain model overestimates subsidence at the ground surface because23

it neglects the way the surrounding geological media distributes deformation laterally away from24

the aquifer of concern (Wu et al., 2018). The zero incremental vertical total stress model also25
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overestimates subsidence at the ground surface because it neglects the vertical resistance of the26

overburden.27

Geertsma (1973) developed an alternative analytical solution whereby the three-dimensional28

stress distribution is resolved without invoking uniaxial strain or zero incremental vertical total29

stress assumptions. Specifically, Geertsma (1973) considered the stress, strain and displacement30

around a cylindrical region of uniform pressure change. In particular, Geertsma (1973) derived a31

closed-form equation to calculate the ground surface subsidence (induced by the pressure change)32

immediately above the center of this cylindrical region.33

Geertsma’s closed-from equation can be related to the ground surface subsidence immediately34

above a production well at the center of a cylindrical confined aquifer. However, the assumption35

of uniform pressure leads to an underestimate in ground surface subsidence in this context. This36

is because the drawdown in pressure at the production well is much more significant than at the37

far-field of the aquifer (Wu et al., 2018).38

Selvadurai and Kim (2015) sought to extend the analytical solution of Geertsma (1973) to39

allow for a non-uniform pressure distribution controlled by fluid production rate, fluid viscosity40

and aquifer permeability. However, the resulting equation for ground surface subsidence at the41

production well is significantly more complicated to evaluate, rendering it beyond application for42

most practical purposes.43

More recently, Pujades et al. (2017) developed a numerical model to look at subsidence above a44

production well in an unconfined aquifer. They found that the zero incremental vertical total stress45

model was effective at estimating the subsidence far away from the production well. But close to46

the production well, the zero incremental vertical total stress model significantly overestimates the47
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subsidence. Pujades et al. (2017) then derived an empirical correction factor based on studying a48

sensitivity analysis of their numerical model. However, a limitation of their numerical model was49

that the model domain was restricted to the extent of the aquifer. Therefore their model was unable50

to properly account for how fluid production induced deformations propagate out into laterally and51

vertically extensive geological formations surrounding the aquifer region.52

In this article, we build on the work of Geertsma (1973) to develop a closed-form equation53

for ground surface subsidence due to constant rate production of a viscous fluid from a cylindrical54

aquifer of finite permeability. This is achieved by application of the principle of superposition.55

Results from the new analytical solution are compared with equivalent results from a set of finite56

element simulations obtained using COMSOL Multiphysics v5.4.57

2. Mathematical model58

The mathematical model in this article is developed as follows. An analytical solution for59

the pressure distribution around a production well within a confined aquifer is presented. The60

original analytical solution of Geertsma (1973), for ground surface subsidence due to a cylindrical61

uniform pressure change, is presented. It is then shown how to incorporate non-uniform pressure62

distributions, resulting from constant rate production of a viscous fluid from a cylindrical aquifer63

of finite permeability, using the principle of superposition. A closed-form equation is then derived64

to calculate the ground surface subsidence directly above the production well.65

2.1. Pressure distribution in a confined aquifer66

Consider constant-rate single-phase fluid production from a vertically oriented and fully com-67

pleted production well, of infinitesimally small radius, located in the center of a homogenous,68
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isotropic, cylindrical and confined aquifer (see Fig. 1a). The pressure distribution, P [ML−1T−2],69

within the aquifer can be found from (Theis, 1935; Dake, 1983; Mijic et al., 2013)70
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
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where t [T] is time, Pi [ML−1T−2] is the uniform initial pressure of the aquifer prior to com-71

mencement of fluid production, Q [L3T−1] is the constant fluid production rate, µ [ML−1T−1] is the72

dynamic viscosity of the fluid, k [L2] is the permeability of the aquifer, H [L] is the thickness of73

the aquifer, r [L] is radial distance from the production well, S [M−1LT2] is the specific storage74

coefficient of the aquifer, R [L] is the radial extent of the aquifer, F(x) denotes the Heaviside step75

function, E1(x) = −Ei(−x) and Ei(x) is the exponential integral function and tc [T] is the charac-76

teristic time at which the pressure front, caused by the initiation of fluid production, reaches the77

boundary of the confined aquifer at r = R.78

Eq. (1) is exact for t ≫ tc and t ≪ tc but also works as an accurate approximation for t < tc79

and t > tc. However, Eq. (1) is not valid in the immediate region around tc. However, this is of80

little consequence for our subsequent results. The exact solution to this problem is provided by81

VanEverdingen (1949). However, their solution is provided as a Laplace transform, which requires82

numerical inversion, and is therefore not suitable for our subsequent analysis.83

Note that the above set of equations represents a flow model, which has been uncoupled from84

the associated geomechanical processes. However, a good approximation for the pressure distribu-85
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tion, from a fully coupled flow model, can be obtained using a specific storage coefficient derived86

assuming zero lateral strain (Gambolati et al., 2000). A recent demonstration was provided by87

(Andersen et al., 2017). Analogous to Eq. (7.90) of Jaeger et al. (2009, p. 189) and Eq. (6a) of88

Gambolati et al. (2000), such an expression takes the form89

S =
φ

K f

+
(1 − α)(α − φ)

K
+ α2Cm (2)

where φ [-] is the porosity, K f [ML−1T−2] is the bulk modulus of the fluid, α [-] is the Biot coeffi-90

cient, K [ML−1T−2] is the bulk modulus of the rock and Cm [M−1LT2] is the vertical (oedometric)91

bulk compressibility as measured in an oedometer with lateral expansion precluded, found from92

(Fjær et al., 2008, p.394)93

Cm =
1

3K

(

1 + ν

1 − ν

)

(3)

where ν [-] is Poisson’s ratio.94

The drawdown of the piezometric surface within the aquifer, s [L], can be found from95

s =
Pi − P

ρg
(4)

The characteristic time, tc, can be thought of as the time at which P = Pi at r = R for the t > tc96

expression given in Eq. (1). It follows that97

tc =
SµR2

8k
(5)
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2.2. Ground surface subsidence due to a cylindrical uniform pressure change98

The geological material surrounding the aquifer is assumed to be homogenous, isotropic, im-99

permeable and semi-infinite. Furthermore, the elastic properties of the surrounding material are100

assumed to be the same as those of the confined aquifer.101

When the change in fluid pressure within the aquifer can be assumed uniform, Eq. (1) reduces102

to103

P = Pi −
Qt

πHS R2
, 0 ≤ r ≤ R (6)

and the subsidence at the surface directly above the production well, w [L], can be found from104

(Geertsma, 1973; Fjær et al., 2008, p. 405)105

w = 2CmHα(Pi − P)(1 − ν)
(

1 −
D

√
D2 + R2

)

(7)

where D [L] is the depth of the center of the aquifer from the ground surface.106

Substituting Eq. (6) into Eq. (7) leads to107

w =
2Cmα(1 − ν)Qt

πS R2

(

1 −
D

√
D2 + R2

)

(8)

Geertsma (1973) also derived analytical solutions for displacement in the radial and vertical108

directions, ur(r, z) [L] and uz(r, z) [L], respectively, normal total stress in the radial, angular and109

vertical directions, σr(r, z) [ML−1T−2], σθ(r, z) [ML−1T−2] and σz(r, z) [ML−1T−2], respectively,110

and the stress, τrz(r, z) [ML−1T−2] for this case. Note that z [L] is depth from the ground surface111

and r [L] is, again, the horizontal distance from the center of the well. In this way it can be112
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understood that w = −uz(0, 0) (see Fig. 1b). These analytical solutions are substantially more113

complicated to evaluate as compared to Eq. (7) because they involve numerical approximations of114

several integral expressions. Nevertheless, all the mathematical expressions needed to determine115

these analytical solutions are presented in Appendix D5 of Fjær et al. (2008).116

Because the problem being solved is a linear elastic problem, all the analytical solutions pre-117

sented in Appendix D5 are linearly proportional to P − Pi. It is therefore useful to define the118

following auxiliary terms:119

w̃(R) =
w

P − Pi

, ũ j(r, z,R) =
u j(r, z,R)

P − Pi

, σ̃ j(r, z,R) =
σ j(r, z)

P − Pi

, τ̃rz(r, z,R) =
τrz(r, z)

P − Pi

(9)

where j is r for radial direction and z for vertical direction and the w, u j, σ j and τrz terms in Eq.120

(9) hereafter specifically relate to the expressions presented in Appendix D5 of Fjær et al. (2008).121

Note that we are also identifying these expressions are functions of the radius of the uniform122

pressure cylinder, R, which corresponds to the radius of the confined aquifer in this case. For123

example, from Eq. (7),124

w̃(R) = −2CmHα(1 − ν)
(

1 −
D

√
D2 + R2

)

(10)

2.3. Ground surface subsidence due to production of a viscous fluid125

The analytical solutions presented by Geertsma (1973) explicitly assumes that the pressure126

within the aquifer is uniform. However, it is possible to derive approximate solutions to allow127

for non-uniform pressures by discretising the pressure distribution and applying the principle of128

superposition as follows:129
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Let r ∈ [0,R] be discretized into N, not necessarily equally spaced, points located at rk where130

k = 1, 2, 3, . . . ,N (see Fig. 1c). In this way it can be said that:131

w ≈
N

∑

k=2

w̃(rk−1/2)(Pk−1 − Pk) (11)

132

u j(r, z) ≈
N

∑

k=2

ũ j(r, z, rk−1/2)(Pk−1 − Pk) (12)

133

σ j(r, z) ≈
N

∑

k=2

σ̃ j(r, z, rk−1/2)(Pk−1 − Pk) (13)

134

τrz(r, z) ≈
N

∑

k=2

τ̃rz(r, z, rk−1/2)(Pk−1 − Pk) (14)

where135

rk−1/2 =
rk + rk−1

2
(15)

2.4. Closed-form equation for subsidence above the production well136

The series expansion of the E1(x) function takes the form (Cooper and Jacob, 1946)137

E1

(

Sµr2

4kt

)

= −γ − ln

(

Sµr2

4kt

)

+ O

(

Sµr2

4kt

)

(16)

where γ = 0.5772 is known as the Euler-Mascheroni constant.138
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It follows that Eq. (1) can be written as (considering Cooper and Jacob, 1946)139

P(r, t) =
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where re [L] can be thought of as the radius of influence of the production well, found from140

re =

√

4kte−γ

Sµ
(18)

Because of the simple forms of Eqs. (17) and (7), an exact solution for w can be obtained by141

considering142
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∫ R
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where δ(x) is the Dirac delta function.144
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It follows that145
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and147

wD =
4πkw

QµCmα(1 − ν)
, tD =

8kt

SµR2
, ǫ =

R2

D2
(23)

It can be seen that the deviation of Eq. (21) from the original solution for a uniform pressure148

distribution, Eq. (8), is controlled by the value of tD. When tD ≫ t0D, Eq. (21) reduces to149

Eq. (8). High tD values imply high permeability, long production duration, low compressibility,150

low viscosity and/or small aquifer radius. From Eq. (22), it can be shown that t0D < 1 when151

ǫ < 3.453. It follows that if tD > 1, ground surface subsidence can be calculated to a reasonable152

accuracy using a uniform pressure distribution providing the radius of the aquifer is a lot less153

than 1.858 times the depth of the aquifer below the ground surface. This further implies that, for154

many practical purposes, ground surface subsidence is insensitive to production fluid viscosity and155

aquifer permeability when the aquifer radius is less than the aquifer depth.156

3. Finite element modeling157

Results from the analytical solution were compared with results from four equivalent finite158

element (FE) simulations, described by the parameter values given in Table 1. These simulations159
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were obtained using COMSOL Multiphysics v5.4.160

Cases 1 and 3 in Table 1 are relatively shallow scenarios with the aquifers situated at a depth of161

200 m. In contrast, Cases 2 and 4 are deeper scenarios with the aquifers situated at a depth of 1000162

m. Cases 1 and 2 are based on the Berea sandstone properties presented in Table 7.2 of Jaeger et163

al. (2009). Cases 3 and 4 are based on a softer rock with a Bulk modulus an order of magnitude164

less than that for the Berea sandstone.165

The FE simulations involved full hydro-mechanical coupling such that changes in fluid pres-166

sure result in changes in volume of the porous material and deformation whilst concomitant167

changes in stress results in a change in fluid pressure. Fluid production is specified as an out-168

ward mass flux on a vertical well segment along the radial symmetry axis. Since the formation169

surrounding the aquifer is assumed to be impervious, the aquifer has no-flow boundary condi-170

tions on all other boundaries. To simulate an infinitely large domain outside of the aquifer, the171

lateral and lower sides of the formation surrounding the aquifer is padded with infinite element172

domains. These domains have a geometrical scaling corresponding to an extent of several hundred173

kilometers, enough for the stress perturbation (caused by fluid production) not to reach the outer174

boundary of the computational model. The associated boundaries are treated as zero deformation175

boundaries. In contrast, the free surface upper boundary is treated as a zero traction boundary.176

Pressure dissipation is fast in nearly incompressible fluids and formations. Since the aquifer177

is confined, there are no particularly large gradients in the solution for the fluid pressure or the178

displacement that require a particularly fine computational grid. The mesh used therefore consists179

of a fairly uniform grid with a maximum grid size of 125 meters, mainly to ensure a high resolution180

in the output for presentation of the results.181
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The FE models were constructed using COMSOL’s core functionality and did not require the182

use of any additional application packages. The relevant equations used are described in Sections 3183

and 4 of Bjørnarå (2018). Spatial discretisation was achieved using default quadratic Lagrange el-184

ements. Solution was achieved using COMSOL’s direct solver, MUMPS (MUltifrontal Massively185

Parallel sparse direct Solver).186

4. Results187

Fig. 2 shows plots of drawdown and ground surface subsidence as a function of radial distance188

from the production well for different times. The results from the finite element simulations are189

shown as circular dots. The results from the analytical solution are shown as solid lines. Draw-190

down was calculated using Eq. (1) and subsidence was calculated using Eq. (12). To perform191

the superposition, r ∈ [R × 10−3,R] was discretised into 100 logarithmically spaced points. Log-192

arithimic spacing is required to properly capture the steep pressure gradients that occur close to193

the production well. Also shown, as circular markers, are values of subsidence directly above the194

production well, calculated using the closed-form equation given by Eq. (21).195

The results from the fully coupled hydro-mechanical finite element simulations and the an-196

alytical solution are very similar, confirming that the uniaxial strain assumption involved in the197

definition of storativity, S , in Eq. (2) is appropriate in this context, as previously shown by Gam-198

bolati et al. (2000). The results from the closed-form equation, given by Eq. (21), correspond199

increasingly well with Eq. (12) with increasing time. This is to be expected because the associ-200

ated approximation of the pressure profile, given by Eq. (17), assumes that tD ≫ 1. Despite this201

shortcoming, Eq. (21) provides very close estimates of the subsidence calculated by Eq. (12). The202
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advantage of Eq. (21) is that it is significantly more straightforward to evaluate, as compared to203

Eq. (12).204

Looking at Fig. 2a it can be seen that the radius of influence moves out from the well until205

just after 30 days, when it reaches the aquifer boundary, at a radial distance of 3000 m. After206

this point, pressure across the aquifer increases in a relatively uniform fashion. After 300 days207

of water production, the drawdown in the aquifer ranges from 8 to 12 m. For the shallow case208

(i.e., Fig. 2b), the subsidence above the well reaches a maximum value of just over 0.6 mm. This209

appears relatively uniform throughout the confined aquifer. The subsidence then decreases to zero210

at 1000 m from the edge of the aquifer. For the deeper case, the maximum subsidence is reduced211

but subsidence persists much further away from the aquifer boundary (see Fig. 2c).212

The softer rock scenarios, Cases 3 and 4, lead to less drawdown in the aquifer (see Fig. 2d).213

However, this is compensated for by a greater level of subsidence at the ground surface (compare214

Figs. 2b and e and 2c and f). It is also noted that the radius of influence takes longer to reach the215

aquifer boundary. This is due to the reduction in tc caused by the reduction in bulk modulus (recall216

Eq. (5)). The non-uniform pressure profile in the aquifer is clearly pronounced in the surface217

subsidence profile for the shallow scenario depicted in Fig. 2e. However, the subsidence profile is218

much smoother at 1000 m depth (see Fig. 2f).219

5. Conclusions220

Geertsma (1973) provided an analytical solution, which can be used to calculate the ground221

surface subsidence due to a cylindrical uniform pressure change. In this article, the principle of222

superposition was used to build on the work of Geertsma (1973) to develop an analytical solution223
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for ground surface subsidence due to constant rate production of a viscous fluid from a cylindrical224

aquifer of finite permeability. Results from the analytical solution were verified by comparison225

with a set of fully coupled hydro-mechanical finite element simulations.226

The analytical solution based on the principle of superposition requires a priori discretisation227

of the pressure distribution. However, using Geertsma’s closed-form equation to describe ground228

surface subsidence directly above the center of the cylindrical uniform pressure change, it was also229

possible to derive a simple closed-form equation to describe ground surface subsidence directly230

above the production well (or uplift directly above an injection well) within the aforementioned231

aquifer. The resulting equation relates a dimensionless subsidence to a dimensionless time, with232

just one free dimensionless parameter, which represents the ratio of the aquifer radial extent to the233

aquifer depth. Furthermore, the equation shows that, for many practical purposes, ground surface234

subsidence is insensitive to production fluid viscosity and aquifer permeability when the aquifer235

radius is less than the aquifer depth below the ground surface.236
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Figure 1: Schematic diagrams showing: a) The production well and its relation to the confined aquifer and sur-

rounding semi-infinite geological formation. b) The maximum subsidence above the production well and the vertical

displacement, uz(r, z), at the ground surface (i.e., z = 0). c) How the pressure is discretised to apply the principle of

superposition for Eqs. (11) to (14).
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c) Case 2
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d) Cases 3 and 4
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e) Case 3
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Figure 2: Plots of drawdown (s) and subsidence (−uz(r, 0)) for Cases 1 to 4 as indicated by the subtitles. The solid

lines were determined using Eq. (12). The circular dots were determined using the finite element simulations. The

subsidence values directly above the production well (w), as calculated using Eq. (21), are presented as black circular

markers.
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