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Abstract 

We sampled 22 Mesozoic dykes in eastern continental China and carried out a 

detailed study on these samples, including K-Ar and zircon U-Pb geochronology, and 

elemental and Sr-Nd-Pb-Hf isotope geochemistry. Their K-Ar and zircon ages of 

130-110 Ma are broadly consistent with the timing of the lithosphere thinning and the 
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emplacement ages of widespread granitoids in the vast region, explicitly pointing to a 

common cause in space and time. The dykes represent evolved alkaline basaltic melts 

intruding the Mesozoic granitoids. Their rare earth element (REE) and multi-element 

patterns differ from the present-day ocean island basalts (OIB), but show strong 

arc-like signatures (e.g., enrichment in Rb and Pb and depletion in Nb, Ta and Ti). 

They show high (87Sr/86Sr)i (0.7048 to 0.7103), low εNd(t) (-12.3 to -5.7), low εHf(t) 

(-16.5 to -8.0) and low (206Pb/204Pb) i (18.79-18.85). These Mesozoic dykes are best 

understood as resulting from melting of geochemically enriched sub-continental 

lithospheric mantle (SCLM), whose geochemical enrichment is consistent with prior 

metasomatism with the agent being hydrous melt coming from subduction of the 

Paleo-Pacific plate at ~120Ma or earlier. Similar to the present-day situation, the 

paleo-Pacific slab may have also existed stagnant in the mantle transition zone in the 

Mesozoic. The slab dehydrated and released water in the form of hydrous melt that 

percolated through and metasomatized the mantle lithosphere, and weakened the base 

of the lithosphere while producing basaltic melts that evolved to intermediate-felsic 

compositions of these dykes. The basaltic magmas that underplated and melted the 

lower crust to generate the widespread Mesozoic granitoids in eastern continental 

China.  

 

Key words: dykes; Petrogenesis; subduction of the paleo-pacific plate; metasomatized 

lithospheric mantle; eastern China. 

 

1. Introduction 
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The Paleozoic diamondiferous kimberlite volcanism in eastern continental China 

indicates the existence of a long-lived craton such as the North China Craton (NCC) 

with the lithosphere thickness in excess of 200 km. However, the present-day 

lithosphere thickness of 60-80 km beneath the vast region and the widespread 

magmatic activities in the Mesozoic and since then point to the lithospheric 

destructions since the Mesozoic (e.g., Wong, 1929; Menzies et al., 1993; Griffin et al., 

1998; Zheng et al., 1998; Gao et al., 2002; Zhou et al., 2002; Wu et al., 2003; Yang et 

al., 2003; Wilde et al., 2003; Zhang et al., 2004; Zhu et al., 2012; Niu et al., 2014). 

However, the exact mechanisms of the lithospheric destruction remain speculative. 

Principal mechanisms proposed include delamination (e.g., Gao et al., 2004; Wu et al., 

2005; Lin and Wang, 2006; Deng et al., 2007; Liu et al., 2008; Xu et al., 2008; 

Windley et al., 2010; Li et al., 2012; Xu et al., 2013), thermo-chemical erosion (e.g., 

Fan and Menzies, 1992; Menzies et al., 1993; Griffin et al., 1998; Zheng et al., 1998; 

Xu et al., 2004; Zheng et al., 2006, 2007; Xu et al., 2009), basal hydration-weakening 

(Niu, 2005, 2014；Niu et al., 2015) and flat subduction (Wu et al., 2017). Different 

opinions may still exist, but the effect of paleo Pacific plate subduction is now widely 

accepted. For example, the lithosphere thinning accompanied by the widespread 

volcanism during the Mesozoic is interpreted to be genetically related to dehydration 

of such a subducted slab in the mantle transition zone (Guo et al., 2014; Niu, 2005, 

2014; Niu et al, 2015; Xu, 2014; Xu et al., 2012; Zhu et al., 2012). Multiple lines of 

evidence suggest that subduction of the paleo Pacific plate strongly influenced 

geological processes in eastern continental China since the Mesozoic (Guo et al., 2014; 
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Niu, 2005, 2015; Wang et al., 2015; Wu et al., 2005; Zhou and Li, 2000; Zhu et al., 

2012). Therefore, it is imperative to objectively evaluate whether melts from the 

subducted Paleo Pacific plate may have contributed to the widespread Mesozoic 

magmatism in eastern continental China.  

The mantle-derived mafic rocks in the Mesozoic have been interpreted to be 

genetically related to the lithospheric thinning (e.g., Xu, 2001; Niu, 2005), and study 

of these rocks can help explore the timing and mechanism of lithospheric thinning. 

The Mesozoic mafic dykes are widespread in eastern continental China, and mainly 

striking NW-SE and intruding Mesozoic granitoids and old basement rocks (Dai et al., 

2016; Liu et al., 2016). The concept of basal hydration weakening that thinned the 

mantle lithosphere in eastern continental China (Niu, 2005, 2014) assumed that the 

Cretaceous mafic magmatic rocks, including the dykes we study here, resulted from 

melting the thinning mantle lithosphere. One of our current research objectives in the 

region is to test the validity of this assumption. In this paper, we present our testing 

result through studying the major element, trace element and Sr-Nd-Pb-Hf isotope 

compositions of representative Cretaceous dykes from eastern continental China. 

2. Geology and samples 

The eastern continental China includes the Northeast (NE) China, North China 

Craton (NCC), the Dabie Orogen, and the South China Cratons (SCC) (Fig. 1). NE 

China is located in the eastern segment of the Central Asian Orogenic Belt and is 

generally considered to be a tectonic collage of several microcontinental blocks (Jahn 

et al., 2000a, b, 2004; Windley et al., 2007; Li et al., 2013). The NCC is one of the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

oldest cratons in the world with an oldest zircon age record of > 3.8 Ga (Liu et al., 

1992), consisting of the eastern and western Archean blocks separated by the 1.8 Ga 

Proterozoic orogenic belt (Zhao et al., 2001; Fig. 1). 

We collected fresh and representative Cretaceous dykes from the north and 

northeast China, including diabases, gabbros and diorite. The dykes intruding the 

granitoids are well exposed (Fig. 2).  The sampled dykes run NNE, and the dyke 

thicknesses vary from 0.2 to 1.5 m (Fig. 2). The sample details are given in Appendix 

A. The dyke rocks collected in the Shandong area (SD in Fig. 1) are deep green. 

These dykes are fresh and porphyritic with ~10% olivine phenocrysts. The gabbros 

consist of 25% coarse grained phenocrysts of clinopyroxene and plagioclase, and 75% 

matrix of clinopyroxene, plagioclase, magnetite and minor biotite (Fig. 3a, b). Diorite 

of DBZ-45 (also collected in the Shandong area) mainly consists of plagioclase 

(40-50%) and hornblende (30-45%). The dykes collected in the Yanshan area (YS in 

Fig. 1) are fresh and porphyritic, consisting of plagioclase (40-50%), clinopyroxene 

(30-40%), varying amount of biotite and hornblende (1-5%), and minor disseminated 

magnetite (5%; Fig. 3c, d). With a holocrystalline/diabasic texture, the dykes from the 

Liaoning area (LN in Fig. 1) are made up of quench microlites of plagioclase, 

pyroxene, olivine and opaques with olivine phenocryst occasionally seen (Fig. 3e, f).  

 

3. Analytical methods 

3.1. K-Ar 
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Fresh basaltic samples were selected for dating. They were crushed into ~1 mm 

grains and washed in distilled water. Conventional whole-rock K-Ar dating was 

carried out at Key Laboratory of Orogenic Belts and Crustal Evolution at Peking 

University for five samples. We analyzed Ar isotopes in a VSS-RGA-10 mass 

spectrometer (1986). The data were corrected for mass discrimination, nucleogenic 

interferences, and atmospheric contamination following the procedures in K-Ar Data 

Processing 1.0. A K-Ar age value of ZBH-25 (biotite of granodiorite in Fangshan) is 

132.47Ma (Recommended value is 132.9±1.3Ma) for atmospheric argon, which is 

used for the calculation of the mass spectrometer discrimination (Sang et al., 2006). 

3.2. Zircon U-Pb  

Zircons from five samples were separated for U-Pb dating using methods of 

heavy magnetic techniques. Cathodoluminescence (CL) imaging was carried out 

using a CL spectrometer (Gatan Mini CL) equipped on a Jeol 6510 scanning electron 

microscope (SEM) at the Beijing GeoAnalysis Co., Ltd. U-Pb dating was conducted 

using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at 

the Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao. 

Zircons were ablated with a UP-193 Solid-State laser (193nm, Photon Machines.) 

using a 25 μm spot size, frequency of 4 Hz and intensity of 100% (Xiao et al., under 

review). Zircon 91500 was used as external standard. Off- line selection and 

integration of background and analyte signals, and time-drift correction and 

quantitative calibration for trace element analyses and U-Pb dating were performed by 

ICP-MS-Data-Cal (Liu et al., 2010a; Liu et al., 2010b). Concordia diagrams and 
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weighted mean age calculations were processed using Isoplot/Ex-version 4.15 

(Ludwig, 2012). 

3.3. Major and trace elements 

We chose freshest samples for geochemical analysis. After the weathered 

surfaces, pen marks and saw marks were removed, the sample chips were thoroughly 

cleaned ultrasonically with Milli-Q water, dried and then powdered using an agate 

mill in a clean environment. 

Whole-rock major and trace elements were analyzed at IOCAS, using an 

Agilent-5100 inductively coupled plasma-optical emission spectrometer (ICP-OES) 

and Agilent-7900 inductively coupled plasma mass spectrometer (ICP-MS), 

respectively. For major elements, ~50 mg sample powder was placed in a platinum 

crucible and melted at 1050 ℃ for 1 hour in a muffle furnace. Then, the crucible was 

further heated over a Bunsen burner (Dragon series) at 1000℃ to ensure all sample 

materials forming a single coherent melt drop that was finally poured/quenched into 

~50 mL 5% HNO3 solution at room temperature. The solution was then diluted into 

100 mL with Milli-Q water in clean plastic bottle for analysis. The analytical details 

are given in Appendix B. The ICP-OES analytical precision is better than 5% (RSD, 

relative standard deviation; see Appendix C for details). The values of USGS 

reference materials BCR-2, STM-2 and W-2 run with our samples are given in 

Appendix D, which are consistent with the reported reference values. For loss on 

ignition (LOI) analysis, ~500 mg samples were weighed and heated in a muffle 

furnace at 950 °C for 2 h, cooled in a desiccator, and then weighed again to calculate 
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the weight loss as the LOI.  

For trace element analysis, fifty milligram powder of each sample was dissolved 

with acid mix (1:1) of distilled HF and HNO3 in a high pressure jacket equipped 

Teflon beaker till complete digestion/dissolution. Analytical precision is better than 5% 

for most elements. During trace element analysis, USGS reference materials AGV-2 

and BCR-2 were used to monitor the analytical accuracy and precision. The values of 

AGV-2 and BCR-2 run with our samples are given in Appendix E, which are 

consistent with the reported reference values. Sample digestion and analytical details 

are given in Chen et al. (2017). 

3.4. Sr-Nd-Pb-Hf isotopes 

Whole-rock Sr-Nd-Pb-Hf isotopic analyses were done in the Radiogenic Isotope 

Facility at the University of Queensland, Australia. The rock powders were dissolved 

in a mixture of double-distilled concentrate HNO3 and HF, and dried on a hot plate at 

80 °C. After converting any fluoride to nitrate, the dried residue was dissolved with 3 

ml 2 N HNO3. 1.5 ml sample solution was loaded onto a stack of Sr-spec, Thru-spec 

and LN-spec resin columns to separate Sr, Pb, Nd and Hf, using a streamlined 

procedure modified after Mikova and Denkova (2007) and Yang et al. (2010). The 

measurement of 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf ratios was conducted in static 

mode on a Nu Plasma HR MC-ICP-MS using a modified CETAC ASX-110FR 

auto-sampler and a DSN-100 dissolvation nebulizing system. All measured 87Sr/86Sr, 

143Nd/144Nd and 176Hf/177Hf ratios were normalized to 86Sr/88Sr = 0.1194, 146Nd/144Nd 

= 0.7219 and 179Hf/177Hf = 0.7325, respectively. Analyses of NBS987 standard run 
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during the same period gave 87Sr/86Sr = 0.710249 ±17 (n = 18, 2σ). In the course of 

143Nd/144Nd and 176Hf/177Hf analysis, the in-house Nd standard, Ames Nd Metal and 

10 ppm Hf ICP solution from Choice Analytical were used as instrument drift 

monitors, respectively. This in-house Nd Metal and Hf standards were 

cross-calibrated against the JNdi-1 Nd international standard and the JMC-475 Hf 

international standard, respectively. Analyses of in-house Nd standard gave 

143Nd/144Nd = 0.511966 ± 12 (n = 24, 2σ), corresponding to a mean value of 0.282160  

± 6 (n = 16, 2σ) for JNdi-1 standard. Analyses of in house Hf standard yielded a mean 

176Hf/177Hf of 0.282146 ± 12 (n = 31, 2σ). The values of USGS reference materials 

JG-3 and BCR-2 run with our samples are given in Appendix F, which are consistent 

with the reported reference values. Analytical details are given in Guo et al. (2014). 

4. Results 

4.1. K-Ar dating 

Our K-Ar dating on representative samples (Appendix G) give emplacement 

ages of 132.5-120.0 Ma for these dykes. 

4.2. Zircon U-Pb ages 

Representative CL images of analyzed zircons and corresponding concordia 

diagrams are shown in Fig. 4. The age data are given in Appendix H.  

Zircons from dyke samples are pale green, euhedral columnar crystals (80-150 

μm long) with aspect ratios of ~1.5:1-2:1 (Fig. 4). The LA-ICP-MS U-Pb analysis 

gave variable Th (242-2508 ppm) and U (658-7565 ppm) concentrations with Th/U 

ratios of 0.25-0.67 (Appendix H), which are consistent with a magmatic origin 
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(Belousova et al., 2002; Hoskin and Schaltegger, 2003). Thus, the youngest U-Pb age 

group of the zircons represents the crystallization age. The measured 206Pb/238U ages 

for the five dyke samples are identical, yielding a weighted mean age of 128.0 ± 3.1 

Ma (1σ, MSWD = 1.9, n = 6) for sample LN14-32, 120 ± 15 Ma (1σ, MSWD = 19, n 

= 4) for sample SD14-30, 115.9 ±2.4 Ma (1σ, MSWD = 2.2, n = 9) for sample 

SD14-33, 109.1 ± 2.6 Ma (1σ, MSWD = 1.4, n = 7) for SD14-38, and 126.1 ± 1.4 Ma 

(1σ, MSWD = 1.5, n = 10) for DBZ15-47, respectively (Fig. 4). The high MSWD up 

to 19 while calculating the weighted mean age of sample SD14-30 was resulted from 

the facts that the zircon grains are few in quantity and very small in size, the core of 

the zircon was hit during analysis (Fig. 4b). These ages are taken to represent the 

intrusive age of the dykes. And the ages of other samples are list in Appendix A. 

4.3. Major elements 

Whole-rock major and trace elements are given in Table1. 

The dykes from the eastern China plot in the fields of basaltic trachyandesite and 

trachybasalt on the total alkali-silica (TAS) diagram (Fig. 5). The dykes represent 

variably evolved melts characterized by moderate silica (45.76-63.04 wt.%), high 

Al2O3 (13.00-17.50 wt.%) and low Mg# (0.47-0.54) (Mg# = molar Mg/ [Mg + Fe2+]). 

In MgO variation diagrams, the data define scattered yet linear and more or less 

continuous trends (SiO2, Al2O3, CaO, CaO/Al2O3, Cr and Ni, Fig. 6). There are 

random correlations of MgO vs. TiO2，Fe2O3 and P2O5. 

4.4. Trace elements 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

The dykes show enrichment in light rare earth elements (LREEs) ((La/Yb)N = 

7.69 to 46.85) and large ion lithophile elements (LILEs, such as Ba, Sr, Pb and K) 

without Eu anomalies (Fig. 7). These dykes show arc- like signature with negative 

HFSEs (such as Nb, Ta and Ti) anomalies (Fig. 7b), which are distinguished from 

average MORB and OIB (Sun and McDonough, 1989). These dykes have higher 

[La/Sm]N (2.3-5.1, primitive mantle normalized La/Sm) than average OIB (~2.4; Sun 

and McDonough, 1989), reflecting a highly enriched mantle source (Niu and Batiza,  

1997). They show relatively large variations in Nb/U (1.41-36.22), Ce/Pb 

(4.16-20.18), Th/U (0.46-5.00, the low Th/U of 0.46 may due to being weathered) and 

Zr/Hf (38.95-44.82). These variations were found previously in intraplate basaltic 

rocks (Dupuy et al., 1992). 

4.5. Whole rock Sr-Nd-Pb-Hf isotopes 

The isotopic data are given in Appendix I. The initial isotopic ratios are 

calculated using zircon U-Pb ages of representative sample of this study (see above). 

The dykes have present-day 87Sr/86Sr of 0.7050 to 0.7110 (initial 87Sr/86Sr [ISr] = 

0.7048 to 0.7103) (Fig. 8a). They display variably enriched Nd and Hf isotopic 

compositions (εNd(t=120Ma) = -12.3 to -5.7, εHf(t=120Ma) = -16.5 to -8.0) (Fig. 8b). 

The initial 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the dykes are 18.79-18.85, 

15.64-15.65 and 38.78-38.84, respectively (see below, Fig. 9). In the 208Pb/204Pb vs. 

206Pb/204Pb plot (Fig. 9a), the scattered linear array is significantly displaced above the 

Northern Hemisphere Reference Line (NHRL), showing the Dupal signature (Hart, 
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1984). In the 207Pb/204Pb vs. 206Pb/204Pb diagram (Fig. 9b), the scattered data array 

plot displays an array above the NHRL. The Pb isotopic compositions are comparable 

to those of the Mesozoic mafic rocks from the North China Craton (Zhang et al., 2004; 

Xie et al., 2006) although more scattered with some samples plotting beyond the array 

(Fig. 8, 9), most likely resulting from mantle source heterogeneity on varying local 

scales because these samples are from a geographically large area (see in Fig. 1). The 

contemporaneous Mesozoic granitoids (gray dots in Fig. 9) in eastern continental 

China have similar Pb isotopic compositions to our dykes (Fig. 9). 

5. Discussion 

5.1 Crust contamination vs. source enrichment 

On MgO variation diagrams (Fig. 6), all samples form a scattered negative trend 

in SiO2-MgO plot and scattered positive trends in CaO/Al2O3-MgO, Cr-MgO and 

Ni-MgO plots, which are consistent, to a first-order, with varying extent of fractional 

crystallisation dominated by olivine and clinopyroxene as the major liquidus phases. 

The lack of correlations of MgO vs. Fe2O3 and MgO vs. TiO2 disapprove fractionation 

of Fe-Ti oxides. 

Crustal contamination or magma mixing as possible processes may affect the 

compositions of erupted basaltic melts (e.g., the mafic dykes we study here) and need 

to be evaluated before discussing mantle sources and processes. To evaluate these 

processes is not straightforward here because the dykes we studied have “crust-like” 
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or “arc- like” geochemical features, e.g., negative Nb-Ta-Ti and positive Pb anomalies, 

high initial 87Sr/86Sr and low εNd(t) and εHf(t) values. Nevertheless, we show below 

that these dykes may had experienced limited crustal contamination. 

The continental crust is characterized by elevated abundances of SiO2 of 61.8 wt.% 

(on average) and large ion lithophile elements (LILEs), yet relatively depleted high 

field strength elements (HFSEs) (Rudnick and Gao, 2003) with high 87Sr/86Sr, low 

143Nd/144Nd and low 176Hf/177Hf. Also, given the relative incompatibility of DNb ≈ DTh 

< DTa ≈ DU during basaltic magmatism (Niu and Batiza, 1997; Niu and O'Hara, 2009), 

the dykes show Ta* and Nb* closely resemble those of the BCC and IAB, but 

significantly differ from the MORB and OIB, suggesting the effect of possible crustal 

contamination (Fig. 10). However, the poor correlations between SiO2 (except the two 

samples of SiO2 > 60 wt.%) and εNd(t), εHf(t) and (206Pb/204Pb)i (Fig. 11) indicate that 

crustal contamination, if any, is insignificant. Thus, the apparently contradictory 

implications (Figs. 10 and 11) requires an open-minded consideration. Additionally, 

the mafic dykes display high concentrations of Sr (501–1569 ppm) and Ba (507–2326 

ppm) that are much higher than the crustal values of the BCC (Sr = 320 ppm; Ba = 

456 ppm; Rudnick and Gao, 2003) and hence these data exclude crustal assimilation 

to have played a significant role in the petrogenesis. The negative Nb* and Ta* 

anomalies observed in Fig. 10 must have been inherited from sources or source 

histories. 

5.3. Modification of the mantle source by subducted components 
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The lithospheric mantle is cold and isotopically enriched with high 87Sr/86Sri and 

low ɛNd(t) and ɛHf(t) because of its low-degree melt metasomatism history and 

long-time isolation from the convective mantle. Relatively high 87Sr/86Sr (0.7048 to 

0.7103) and 206Pb/204Pb (18.79-18.85) and low εNd(t) (-12.3 to -5.7) and εHf(t) (-16.5 to 

-8.0) of these dykes are consistent with their derivation from the ancient fertile 

lithospheric mantle. Meanwhile, the arc- like elemental signatures of these dykes, 

including the enrichment in LREEs and LILEs and depletion in HFSEs (negative Nb, 

Ta, Zr, Hf and P anomalies) could be explained by two possible petrogenetic models: 

(1) an enriched mantle domain metasomatized by a fluid from subducted plate (Huang 

et al., 2012; Liang et al., 2017, 2018); (2) mantle source region contaminated by 

recycled continental crust materials (Ma et al., 2016). As crustal contamination was 

not an important process during emplacement of the dykes (see above), the spatial 

geochemical variations shown in Figs. 8, 9, 11 primarily represent a real variation of 

the ratios for the source mantle. In addition, all these dykes plot along the mantle 

array in the Hf-Nd isotopic space (Fig. 8 b), suggesting that the mantle source isotopic 

variation is largely controlled by simple magmatic processes. 

Ayers (1998) suggested that subduction-zone hydrous fluids have significantly 

low Nb/U ratio, which was ascribed to the transfer of significant amounts of LILE but 

not HFSE into the slab-derived hydrous fluid. The HFSEs are more likely to be stored 

in residual rutile and ilmenite that persist in the subducted slab (Ryerson and Watson, 

1987) while fluid-mobile incompatible trace elements are lost during the dehydration. 

Thus, fluids produced at the sub-arc depths would be characterized by enrichment in 
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fluid-mobile incompatible trace elements such as LILE and Pb but depletion in HFSE 

such as Nb and Ta (Ringwood, 1990; Zheng, 2012; Xu and Zheng, 2017). The relative 

Nb-Ta-Ti depletion in the Mesozoic dykes cannot be interpreted as the presence of 

rutile as a residual phase because (1) the rutile residue requires the source rock to be 

basaltic (e.g., eclogite); (2) partial melting of eclogites cannot produce basaltic melts 

we studied here; (3) rutile has very high solubility in silicate melt and cannot exist as 

a residual phase during basalt melting (Ryerson and Watson, 1987). Hence, 

fluid-related metasomatism cannot explain the isotopic enrichment. 

Beneath eastern continental China, the subducted paleo-Pacific plate, which can 

release water as a result of thermal equilibrium with the ambient mantle (Niu, 2005, 

2014), has been detected to lie horizontally in the mantle transition zone (410-660 km) 

in Cenozoic (Kárason and van der Hilst, 2000; Zhao, 2004). It should be noted that 

the effect of transition-zone slab dehydration differs from subduction-zone 

metamorphic dehydration in triggering arc magmatism. The transition-zone 

dehydration is a magmatic process producing hydrous melt that rises and weakens the  

base of the lithosphere (Niu, 2005).  

The mantle metasomatism has been widely used to explain the geochemically 

enriched signatures of the cratonic lithospheric mantle (e.g., Hawkesworth et al., 1990; 

Lloyd and Bailey, 1975). For example, mantle metasomatism might explain the large 

negative εNd(t) and εHf(t) values of the mafic dykes. While the sub-continental mantle 

lithosphere (SCLM) which were subjected to previous melt extraction is likely 
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depleted in major elements (i.e., high Mg#, low Al2O3 and high CaO/Al2O3), it can be 

re-enriched in terms of incompatible elements throughout its long histories via mantle 

metasomatism (e.g., O'Reilly and Griffin, 1988), similar to the processes taking place 

at the lithosphere-asthenosphere boundary beneath ocean basins (Niu and O'Hara, 

2003; Niu and Green, 2018) or in a mantle wedge environment (Donnelly et al., 2004). 

The metasomatism would not significantly affect the major elements, but may result 

in enrichments in volatiles and the more incompatible elements, leading to enriched 

isotopic signatures (e.g., the elevated ratios of Rb/Sr, U/Pb, Th/Pb, Nd/Sm and Hf/Lu, 

radiogenic Sr, Pb isotopes and unradiogenic Nd, Hf isotopes; Niu, 2005). Hence, the 

mantle metasomatism can explain the isotopically enriched signatures in the mafic 

dykes (i.e., high 87Sr/86Sr, low εNd and εHf). 

Niu (2005, 2014) suggested that the water released from the subducted oceanic 

lithosphere in the mantle transition zone (410-660Km) beneath eastern China will rise 

in the form of hydrous melt through the upper asthenospheric mantle and reach the 

lithosphere. Following these interpretations, we propose that the dykes in eastern 

continental China were derived from partial melting of the sub-continental 

lithospheric mantle (SCLM) refertilized by slab derived fluids in the form of hydrous 

melt, which are consistent with our data. 

5.4 Geodynamic implications 

The rapid delamination, thermal erosion and flat subduction models for 

interpreting the NCC destructions since the Mesozoic are physically problematic (Niu 
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et al., 2015). There are many lines of evidence suggest that the presence of the similar 

transition zone slab back in the Mesozoic as indicated by the widespread Cretaceous 

magmas throughout eastern China from NE to SE, which marks the presence of an 

active continental margins related to northwestward subduction of the paleo-Pacific 

seafloor (Niu, 2014; Niu et al., 2015). The subducted Pacific slab beneath eastern 

China is shown to be stagnant in the mantle transition zone on tomographic image 

(Huang and Zhao, 2006). This transition zone dehydration process will facilitate the 

production of hydrous melt that ascends and migrates upwards to weaken the base of 

the ancient lithosphere by hydration, which can effectively convert the basal 

lithospheric mantle into the asthenospheric mantle. This is in effect the process of 

lithosphere thinning (Niu, 2005), accompanied by the surface volcanism with the 

ascending hydrous melt assimilated with the metasomatic components in the prior 

lithosphere to form geochemically enriched basaltic melts (Niu, 2005), i.e., the mafic 

melts in eastern continental China of our study. To be specific, recent studies revealed 

that the lithospheric mantle beneath the NCC was more hydrous (> 1000 ppm) at 

~125 Ma, which is significantly higher than H2O contents of the lithospheric mantle 

in the Late Cretaceous and the Cenozoic (Li et al., 2015). Therefore, we suggest that 

the slab-derived hydrous fluid in the form of hydrous melt from the subducted 

paleo-Pacific plate triggered the partial melting of the metasomatized mantle and 

resulted in the magmatism in eastern continental China (Kuritani et al., 2011; 

Sakuyama et al., 2013). Previous subduction- induced trace element enrichment may 

also exist, but it might be overprinted or intensively modified by such a westward 
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subduction event. The slab-derived water in the form of incipient hydrous melt 

percolates upwards, metasomatizes the upper mantle, and weakens/converts the basal 

lithosphere into asthenosphere accompanied by melting of the being converted 

lithosphere/asthenosphere to produce voluminous mafic magmas (Fig. 12). Mesozoic 

lithosphere thinning in eastern continental China is best explained by a process that 

“transformed” the basal portion of the lithosphere into convect ive asthenosphere by 

hydration. The Mesozoic volcanism (mafic magmas) may be genetically associated 

with the lithospheric thinning because the basaltic source is ancient isotopically 

enriched (εNd < 0, εHf < 0) lithosphere which had been converted into asthenosphere 

with the melts undergoing crystallization to evolve into some of the more felsic dykes. 

This mafic magmas underplated the lower crust, causing partial melting to generate 

the widespread granitoids throughout eastern continental China in the Cretaceous. 

6. Conclusions 

(1) The K-Ar and zircon ages indicate that the dykes from eastern continental 

China we study are of Early Cretaceous age (130-110Ma), broadly synchronous with 

the massive emplacement of granitic plutons in the region, ultimately as the 

consequence of lithosphere thinning. 

(2) The dykes have arc- like magmatic characteristics with enrichment in LILEs 

and LREEs, high (87Sr/88Sr)i, low εNd(t) and the εHf(t), pointing to their parental 

magma derivation from geochemically enriched mantle lithosphere. During ascent, 

these magmas underwent fractional crystallisation of olivine and clinopyroxene with 

limited crustal contamination. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

(3) The geochemical enrichment of the mantle lithosphere as the source of 

magmas parental to these dykes resulted from ancient metasomatism most likely 

caused by water (hydrous melt) released from the subduction of the paleo-Pacific slab 

in the mantle transition zone or even earlier events.  

(4) The basaltic melts rise, underplate/intrude the lower crust en route to the 

surface (the Mesozoic basalts/ minor andesites with ‘‘arc’’ signature), and cause 

crustal melting for the observed granitoid magmatism in eastern continental China.  In 

fact, the widespread Mesozoic granitoids in eastern continental China all resulted 

from crustal melting induced by mantle derived melts, ultimately associated with the 

lithosphere thinning. 
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Fig. 1. (a) Sketch map of major tectonic divisions of the eastern continental China and 

the distribution of the Mesozoic dykes. WB, TNCO and EB denote three 

divisions of the North China Craton into the Western Block, Trans-North China 

Orogen and Eastern Block, respectively (Zhao et al., 2001). NSGL indicates the 

North-South Gravity Lineament. Modified after Guo et al. (2014). 

Fig. 2. Outcrop of the Cretaceous dykes in eastern China. 

Fig. 3. Photomicrographs of representative dykes. (a) Sample SD14-32, XPL; (b) 

sample SD14-71, XPL; (c) sample YS14-31, XPL; (d) sample YS14-33, XPL; (e) 

sample LN14-40, XPL and (f) sample LN14-40, PPL. Cpx-clinopyroxene; Pl- 

plagioclase; Bt-biotite; Ol-olivine. 

Fig. 4. Concordia diagrams of dated zircons from sample (a) LN14-32 (diabase), (b) 

SD14-30 (gabbro), (c) SD14-33 (gabbro), (d) SD14-38 (gabbro) and (e) 

DBZ15-47 (diorite) of the Cretaceous dykes. The weighted mean 206Pb/238U age 

corresponds to the red circle analyses. 

Fig. 5. The K2O + Na2O vs. SiO2 diagram showing compositions of the Cretaceous 

dykes. LN-dykes in Liaoning, YS-dykes in Yanshan, SD-dykes in Shandong. 

Fig. 6. MgO variation diagrams of the Cretaceous dykes. LN-dykes in Liaoning, 

YS-dykes in Yanshan, SD-dykes in Shandong. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Fig. 7. (a) Chondrite-normalized rare earth element (REE) and (b) Primitive mantle 

(PM) normalized multi-element diagrams of the dykes. Average compositions of 

ocean island basalts (OIBs), bulk continental crust (BCC), and N-MORB, 

Cenozoic basalt compositions are also plotted for comparison. Chondrite, 

primitive mantle, N-MORB and OIB data are from Sun and McDonough (1989), 

BCC data are from Rudnick and Gao (2003). Cenozoic basalt data are from 

Sakuyama et al. (2013). 

Fig. 8. (a) εNd(t=120Ma) vs. initial 87Sr/86Sr and (b) εHf(t=120Ma) vs. εNd(t=120Ma) 

diagrams showing the dykes. The line for Hf-Nd mantle array is from Vervoort et 

al. (1999). LN-dykes in Liaoning, YS-dykes in Yanshan, SD-dykes in Shandong. 

Fig. 9. Plots of 206Pb/204Pb vs. (a) 207Pb/204Pb and (b) 208Pb/204Pb ratios of the dykes. 

The NHRL and are from Barry and Kent (1998), Zou et al. (2000) and Hart 

(1984). NHRL: northern hemisphere reference line. The gray dots represent the 

contemporaneous granitoids of eastern China (Hong et al., 2018). ThePb isotopes 

of mafic rocks of North China craton are from Zhang et al. (2004) and Xie et al. 

(2006). LN-dykes in Liaoning, YS-dykes in Yanshan, SD-dykes in Shandong. 

Fig. 10. Diagram of Ta* vs. Nb* for the dykes (after Niu and Batiza, 1997). 

Compared with common basalts, the dikes have Ta and Nb deficiencies, 

resembling continental crust and IAB. Data of primitive mantle and average 

oceanic basalts (OIB, N-MORB) are from Sun and McDonough (1989). BCC 

composition is from Rudnick and Gao (2003). LN-dykes in Liaoning, YS-dykes 
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in Yanshan, SD-dykes in Shandong. 

Fig. 11. (a) (87Sr/86Sr)i, (b) εNd(t), (c) εHf(t) and (d) (206Pb/204Pb)i vs. SiO2 diagrams of 

the Cretaceous dykes from the eastern China. The poor correlations between 

SiO2 and (87Sr/86Sr)i, εNd(t), εHf(t) as well as (206Pb/204Pb)i clearly imply that there 

was little to no crustal contamination during the ascent of magmas. LN-dykes in 

Liaoning, YS-dykes in Yanshan, SD-dykes in Shandong. 

Fig. 12.  A possible model showing the generation of dykes in eastern China (modified 

from Niu et al., 2015). The stagnant Pacific plate in the mantle transition zone 

(410-660 km) experiences isobaric heating and dehydration with time (Niu, 2005; 

Niu et al., 2015). The water so released reduces both the viscosity and density of 

the asthenospheric mantle above, forming hydrous melts. The latter, when rising 

at the base of the lithosphere, further hydrates the lithosphere and “converts” the  

basal portions into convective asthenosphere while producing our enriched 

basaltic melts with εNd <0, εHf <0. Hence, the lithospheric thinning and enriched 

Mesozoic basaltic volcanism are both the response to the hydration of the basal 

lithosphere with the water ultimately derived from “ancient” subducted oceanic 

lithosphere (slabs) lying within the transition zone. 

Appendixes 

Appendix A: Sample locations and the ages of the dykes in the eastern China. 

 

Appendix B: Our analysis conditions, including the optimal detection wavelength, 
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test conditions and calibration samples.  

Appendix C: Major elements analyses at the IOCAS for the USGS reference material. 

Appendix D: Bulk-rock major elements analyses at the IOCAS for the USGS 

reference material BCR-2, STM-2 and W-2. 

Appendix E: Bulk-rock trace elements analyses at the IOCAS for the USGS 

reference material BCR-2 and AGV-2. 

Appendix F: Sr-Nd-Pb-Hf isotope analyses at the UQ for the USGS reference 

material BCR-2 and JG-3. 

Appendix G: Whole-rock K-Ar dates for the dykes from the eastern China. 

Appendix H: LA-ICP-MS U-Pb zircon data of the dykes in eastern China. 

Appendix I: a. Whole-rock Sr-Nd-Hf isotopic composition of the dykes from the 

eastern China. b. Whole-rock Pb isotopic composition of the dykes from the 

eastern China. 

 

Table 1. Major and trace elements  composition of the dykes in eastern China. 
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REP: replicate sample. LOI is loss on ignition. 
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Highlights 

 Our K-Ar and zircon dates indicate that the dykes from the eastern China 

occurred in the Early Cretaceous (130-110Ma). 

 (2) The dykes resulted from partial melting of metasomatized lithospheric 

mantle. 

 We interpret this volcanism as indicating the lithosphere thinning in the 

eastern China. 
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