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Abstract 

Here we further demonstrate asphaltene to be the main carrier of Re and Os in crude oil and additionally show that 

generally the less soluble fractions of asphaltene contain higher concentrations of Re and Os, with the 
187

Os/
188

Os 

and 
187

Re/
188

Os values showing different trends between oils. These observations are considered as evidence of the 

existence of different Re and Os carriers in crude oil. The multiple heteroatomic ligands and porphyrins proposed as 

Re and Os hosts in crude oil are likely present as free molecules, initially absorbed and occluded in the asphaltene 

aggregates and co-precipitate with asphaltene in response to the addition of n-alkanes. The Re-Os elemental and 

isotopic systematic behaviour revealed herein are interpreted to be the result of the involvement of Re and Os 

carriers in the aggregation and precipitation of asphaltene, and the chemical make-up of each particular crude oil.  

Asphaltene and maltene separated by a series of different alkanes show that asphaltene yields decrease from n-

pentane to n-heptane and then tend to stay stable until n-decane. The 
187

Os/
188

Os values of the series of asphaltenes 

are extremely similar for each oil sample, inhibiting the possibility of determining any Re-Os dates with the 

asphaltenes of a single crude oil. In contrast, the maltene fractions exhibit Re-Os isotopic variation. Nevertheless, 

only the maltenes of one oil defined a reasonable isochron with an age similar to that of source rock. As such, this 

study highlights the need for a greater understanding in order to determine whether, and in what cases, fractions 

separated from a single crude oil by different alkanes can provide meaningful Re-Os ages. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

Highlights: 

 The Re and Os concentrations of the progressively precipitated asphaltene fractions generally decrease with 

the increase of n-heptane in its mixture with DCM. 

 The 
187

Os/
188

Os and 
187

Re/
188

Os of the progressively precipitated asphaltene fractions show different trends 

between oils. 

 Single oil separation into fractions using different alkanes may not always be able to yield meaningful 

chronological data.   
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1 Introduction 
The presence of rhenium (Re) and osmium (Os) in measurable concentrations in many bitumen and crude oil 

samples, typically > 1 ppb (parts per billion of mass, ng/g) Re and > 30 ppt (parts per trillion of mass, pg/g) Os, has 

been known for several decades (Poplavko et al., 1974; Barre et al., 1995; Selby et al., 2007). As a result, this has 

opened the possibility that the Re-Os geochronometer may provide timing constraints for key petroleum events, e.g., 

crude oil generation, thermochemical sulphate reduction and thermal cracking, and also that Os isotopes 

(
187

Os/
188

Os) may serve as source tracers of the oil (Selby et al., 2005; Selby & Creaser, 2005; Finlay et al., 2011; 

Finlay et al., 2012; Lillis & Selby, 2013; Cumming et al., 2014; Ge et al., 2016; Ge et al., 2017a; Ge et al., 2017b; 

Liu et al., 2018). Thus far, the validation of Re-Os crude oil and bitumen dates are commonly achieved through the 

comparison with the established chronologies of the studied petroleum systems, e.g. basin modelling, apatite fission 

track and Ar-Ar dates. Therefore, it is now critical to enhance the understanding of the elemental and isotopic 

systematics and the geochemical behaviour of Re and Os in crude oil for the interpretation and further application of 

Re-Os geochronometer to petroleum systems.  

 

It has been shown that the asphaltene fraction isolated from crude oil by the addition of n-alkanes (e.g. n-pentane 

and n-heptane) is the main carrier of Re (> 90%) and Os (> 83%) in crude oil (Selby et al., 2007; Rooney et al., 

2012; Georgiev et al., 2016; Liu & Selby, 2018). As a result, the Re-Os isotopic systematics (i.e. the 
187

Re/
188

Os and 

187
Os/

188
Os values, ratio of the number of atoms) of the whole oil are predominantly determined by the asphaltene 

fraction (Selby et al., 2007; Liu & Selby, 2018). The exact binding locations of both Re and Os in the asphaltene and 

maltene fractions still remain mostly unknown, although previous studies have proposed that Re and Os are present 

in the form of metalloporphyrins or to be bound by heteroatom ligands (Miller, 2004; Selby et al., 2007; Rooney et 

al., 2012; DiMarzio et al., 2018). 

 

The typical models of the molecular structure of asphaltene consist of a single polycyclic aromatic hydrocarbon core 

known as the island or continental type (Mullins, 2010), or multiple alkyl-bridged aromatic cores known as the 

archipelago type (Strausz et al., 1992; Murgich et al., 1999; Chacón-Patiño et al., 2017) with pendant alkyl chains 

and functional groups. The asphaltene molecules tend to aggregate even at low concentrations (50-100 mg/l) in 

solvents like toluene (Durand et al., 2010; Mullins et al., 2012; Yarranton et al., 2013), forming structures which 

could occlude and adsorb surrounding molecules. Asphaltene precipitation occurs in response to the changes in 

physical and chemical conditions within the petroleum system, e.g., pressure decrease and component changes, 

including gas (CH4 and CO2) injection and oil mixing (Buenrostro-Gonzalez et al., 2004; Subramanian et al., 2016). 

To date, the studies of Re-Os elemental and isotopic systematics have been conducted on sequentially precipitated 

fractions from asphaltenes (Mahdaoui et al., 2013; DiMarzio et al., 2018). For the two samples studied by Mahdaoui 

et al. (2013), sequential precipitation of asphaltenes was conducted with a mixture of dichloromethane (CH2Cl2, 

DCM) and n-heptane or n-pentane. The Re and Os concentrations of the progressively precipitated asphaltene 

fractions decrease throughout the process, however both the ratios of the Re/Os and 
187

Os/
188

Os of the fractions 

remain nearly constant. (DiMarzio et al., 2018) utilized two different mixtures, n-heptane-DCM and acetone-
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toluene, for the sequential precipitation of two aliquots of the same asphaltene from a heavy oil sample. This study 

showed that the highest Re and Os concentrations are observed in the intermediate soluble fraction separated by n-

heptane-DCM, and the most insoluble fraction separated by acetone-toluene with a few exceptions. In contrast to the 

study of Mahdaoui et al. (2013), the 
187

Re/
188

Os values of the fractions separated by acetone-toluene fluctuate 

throughout the progressive precipitation, with the corresponding 
187

Os/
188

Os compositions of the fractions remaining 

fairly constant throughout. For the fractions separated by n-heptane-DCM, 
187

Re/
188

Os increases, and 
187

Os/
188

Os 

increases at first and then decreases throughout the progressive precipitation. 

 

The substitution of the analysis of some low Re and Os bearing crude oils with its more Re-Os enriched asphaltene 

fraction for better measurement precision and applying a sampling methodology of multiple samples over large 

distances for Re-Os dating of petroleum systems has been applied (Finlay et al., 2011; Lillis & Selby, 2013; 

Cumming et al., 2014; Liu et al., 2018). In contrast, a new sampling methodology for Re-Os dating of crude oil was 

proposed to avoid the potential disadvantages of using multiple crude oil samples from a large geographic area, e.g. 

different sources, different generation and migration ages, and different secondary/alteration histories (Georgiev et 

al., 2016). The new sampling methodology was used to conduct Re-Os analyses on multiple asphaltene and maltene 

fractions separated from a single crude oil sample with n-pentane, n-hexane, n-heptane and n-decane with the 

objective of obtaining a spread in Re-Os isotopic compositions sufficient to develop an isochron. Applied in the 

Gela oilfield of Italy, the Re-Os dates were defined by the maltene fractions of an oil sample from the Streppenosa 

Formation (~ 200 Ma) and by the crude oil and asphaltene fractions of another two oils from the Noto and Sciacca 

Formations (~ 28 Ma). These Re-Os dates are interpreted to reflect the timing of oil generation (Georgiev et al., 

2016). 

 

Although the previous studies have greatly increased the knowledge of the Re-Os systematics within crude oil and 

asphaltene, the current understanding may be limited by the small number of samples employed, the substantial 

complexity and diversity of worldwide crude oils, and the interpretation of current data. Further, the ability of the 

single oil Re-Os dating method to determine geological age also requires further examination before extensive 

application. In this study, the Re-Os elemental and isotopic systematics of six different crude oils were inspected by 

separating them into two sets of fractions with two different methodologies: 1) fractionating bulk asphaltene 

progressively with the increase of n-heptane percentage in its mixture with DCM, and, 2) separating whole oil into 

asphaltene and maltene fractions using a series of n-alkane solutions (from n-C5 to n-C10) with DCM-methanol. This 

study illustrates the observed decrease of Re and Os concentrations and the different trends in the
 187

Re/
188

Os and 

187
Os/

188
Os compositions throughout the progressive precipitation for each of the six samples studied. This study 

also suggests that the Re-Os elemental and isotopic systematics are closely related to the aggregation and 

precipitation process of the asphaltene. It is observed that the variation of Re-Os isotopic compositions of the 

maltene fractions separated by the series of n-alkane solutions is more prominent than that of the asphaltene 

fractions. However, given the data of the six oils studied here, the Re-Os systematics of either the asphaltene or the 

maltene fractions of a single crude oil cannot consistently yield geologically meaningful dates. This finding does not 
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support the widespread application of the Re-Os system to obtain chronological information from individual crude 

oils.  

2 Samples and analytical protocols 

2.1 The samples 
Six crude oils of different geographic origins are used in this study, of which the Derby, Federal, Purisima and 

Viking-Morel oil samples were obtained from the U.S. Geological Survey (USGS) oil library in Denver, Colorado, 

the Persian oil was provided by Centre Scientifique et Technique Jean Féger (CSTJF) of the TOTAL petroleum 

company, the RM8505 was ordered from the U.S. National Institute of Standards and Technology (NIST) and has 

recently been developed as a reference material for Re-Os hydrocarbon analysis (Liu & Selby, 2018). 

 

The Derby oil (108.55°W, 42.69°N) is recovered from the Permian Phosphoria Formation of Derby field, Wind 

River basin, Wyoming, USA. The oil is sourced from the Permian Phosphoria Formation in the Idaho/Wyoming part 

of the thrust belt and migrated long distances into the central Wyoming (Kirschbaum et al., 2007). The oil is 

characterised by Type II-S kerogen. The timing of generation and migration of the Phosphoria oil from the Idaho-

Wyoming border has been proposed to be prior to the Laramide Orogeny (70 Ma) before it blocked the migration 

pathway (Sheldon, 1967; Stone, 1967; Kirschbaum et al., 2007). The onset of generation for the Derby oil is 

considered to be similar to that of the Bighorn basin Phosphoria petroleum system (~ 200 Ma; Lillis & Selby, 2013). 

This oil has an asphaltene content of 6%. 

 

The Federal oil (106.78°W, 42.86°N) is recovered from the Pennsylvanian Tensleep Formation of South Casper 

Creek field, Wind River basin, Wyoming, USA. Similar to the Derby oil, the Federal oil is also sourced from the 

Permian Phosphoria Formation, being generated from the Late Triassic (~ 200 Ma), but before the Laramide 

Orogeny (Kirschbaum et al., 2007; Lillis & Selby, 2013). The oil is also considered to have migrated a significant 

distance (≥150 km). The Federal oil possesses an API gravity of 12°, sulphur content of 4.5% and asphaltene content 

of 12%. 

 

The Viking-Morel oil (105.06°W, 44.58°N) is recovered from the Pennsylvanian-Permian Minnelusa Formation of 

Morel field, Powder River basin, Wyoming, USA. The oil is locally sourced from the Minnelusa Formation 

containing Type II medium sulphur kerogen (Clayton et al., 1992). The timing of oil generation is not known, but is 

presumed to be during the Cretaceous. The oil has an API gravity of 25°, sulphur content of 3.3% and asphaltene 

content of 9%. 

 

The Purisima oil (120.42°W, 34.72°N) is recovered from the Miocene Monterey Formation of Lompoc field, Santa 

Maria basin, California, USA. The oil is considered to have been generated during the last 5 million years from the 

Miocene Monterey Formation which is characterized by Type II-S kerogen (Isaacs & Rullkötter, 2001). The oil has 
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an API gravity of 22° and asphaltene content of 16%. It is observed that the oil sample contains water which cannot 

be removed completely by centrifuging. 

 

The Persian oil is from a Cenomanian carbonate reservoir in the Persian Gulf. The oil source rock is probably of 

Cretaceous and/or Late Jurassic marine origin with Type II-S kerogen (Alsharhan & Nairn, 1997). This oil has a 

total asphaltene content of 6%. 

 

The RM8505 oil is a Venezuelan crude oil. No further geological details of the origin are available from the 

provider NIST. The predominant source units of crude oil in Venezuela are the Upper Cretaceous (Cenomanian-

Turonian-Coniacian, 100 – 86 Ma) La Luna Formation (mainly Type II kerogen) and its age equivalents, with only 

minor contributions from Palaeocene, Eocene and Miocene source rocks (James, 1990, 2000; Summa et al., 2003). 

The majority of oil generation of the La Luna Formation is considered to have occurred since the Miocene (< 23 

Ma), although oil generation is noted to have started as early as the Early Eocene (56 Ma) (James, 2000; Summa et 

al., 2003). This oil has an asphaltene content of ~ 13% (Liu & Selby, 2018).  

2.2 Sample preparation 
For each oil sample, Re-Os measurements were made on the whole oil, n-heptane separated bulk asphaltene and 

maltene, the progressively precipitated fractions of asphaltene via the mixture of n-heptane and dichloromethane 

(DCM), and the asphaltene and maltene fractions separated by a series of n-alkane-DCM-methanol solutions. 

 

Asphaltene and maltene were initially separated by a 40:1 n-heptane protocol from crude oils (Speight, 2004; Selby 

et al., 2007). In brief, ca. 40 ml of n-heptane per gram of crude oil was thoroughly mixed with the crude oil. The 

mixture was put on a rocker overnight (for at least 16 hours) and then centrifuged for 20 minutes at 4000 rpm 

(revolutions per minute), equivalent of ca. 1600 g. The supernatant consisting of the n-heptane and soluble maltene 

fraction was decanted into a pre-weighed glass vial, and the n-heptane was evaporated at 80 °C to recover the 

maltene fraction for Re-Os analyses. The precipitated asphaltene at the bottom of the centrifuge tube was also 

collected into pre-weighed glass vial with ≤1 ml chloroform. The chloroform was evaporated at 60 °C to recover the 

asphaltene fraction.  An aliquant of the bulk asphaltene (ca. 250 mg) was set aside for Re-Os analysis, the remaining 

asphaltene fraction was used for progressive precipitation experiments (see below).  

 

The progressive precipitation of asphaltene was achieved by using a binary mixture of DCM as the solvent and n-

heptane as the precipitant (Figure 1) (Nalwaya et al., 1999; Kaminski et al., 2000; Mahdaoui et al., 2013). 

Precipitation of asphaltene occurs in response to the step-by-step increase of the percentage (5 volume % per step) 

of n-heptane in the binary mixture. The amount of asphaltene used for the progressive precipitation ranged between 

2 and 4 g. The n-heptane-DCM mixture volumes are kept the same for every step (50, 200 and 250 ml for different 

samples, Table 1). The bulk asphaltene fraction was firstly dissolved in DCM which was followed by the addition of 

n-heptane. The mixture was then left on a rocker overnight and centrifuged at 4000 rpm for 20 minutes. After 

centrifuging, the supernatant was decanted and the precipitate, if there was any, was collected into pre-weighed glass 
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vials with ≤1 ml chloroform and dried at 60 °C. The DCM and n-heptane were extracted from the supernatant to 

recover the soluble fraction of asphaltene using a rotary evaporator (40 °C water-bath and 200 - 50 mBar 

pressure).The recovered soluble fraction of asphaltene would be used for the following step with 5% (volume) more 

of n-heptane in the DCM and n-heptane solution (Figure 1). The last steps used 100% n-heptane. Starting from an n-

heptane: DCM ratio of 50:50, the first precipitations of the six bulk asphaltenes were observed on the ratio of 65:35 

or 70:30 (Table 1). The asphaltene (g) to DCM (ml) ratios are generally from 0.01 to 0.02, with the exception of ~ 

0.05 for the RM8505 sample. 

 

Each of the same six crude oils was also separated into a series of asphaltene fractions and a series of maltene 

fractions with the n-alkane solutions, i.e. n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane (i.e. n-

C5, n-C6, n-C7, n-C8, n-C9 and n-C10) using the protocol presented by Weiss et al. (2000) and applied by Georgiev et 

al. (2016). In brief, 3 ml DCM-methanol (93:7 v/v) was added to ~ 1 gram of oil to dissolve the oil. Then the n-

alkane (40 ml/g oil) was added and the mixture was then put on a rocker overnight for at least 16 hours. The 

asphaltene was separated by centrifuging the mixture at 4000 rpm for 20 minutes. The same 3 ml DCM-methanol 

and 40 ml n-alkane procedure was repeated on the isolated asphaltene to remove any co-precipitates (Gürgey, 1998; 

Alboudwarej et al., 2001; Álvarez et al., 2015; Georgiev et al., 2016). The n-alkane-DCM-methanol-asphaltene 

solution was left on a rocker overnight for at least 16 hours and then centrifuged. The precipitated asphaltene was 

removed to a pre-weighed glass vial using chloroform, and then evaporated at 60 °C. The supernatant was added to 

the supernatant from the first step and the n-alkane, DCM and methanol were removed using a rotary evaporator (30 

- 70 °C water-bath and 400 - 30 mBar pressure) to fully recover the maltene fraction. The maltene was also collected 

with chloroform and placed into a pre-weighed glass vial, with the chloroform evaporated at 60 °C. 

2.3 Re-Os analyses of the samples 
The Re-Os analyses were conducted by Isotope Dilution – Negative Thermal Ionisation Mass Spectrometry (ID-

NTIMS) at the Durham Geochemistry Centre at Durham University in the Source Rock and Sulfide Geochronology 

and Geochemistry, and Arthur Holmes Laboratories (Selby et al., 2007). With the exception of asphaltene fractions 

that dried to a solid (i.e. could be powdered in an agate pestle and mortar), all samples were loaded into Carius tubes 

in ≤1 ml of chloroform or DCM, which was then evaporated at 60˚C overnight. The sample was digested by inverse 

aqua regia (3 ml 12 N HCl + 6 ml 15.5 N HNO3) and equilibrated with a mixed tracer solution of 
185

Re and 
190

Os at 

220°C for 24 hours. The Os was extracted from the digested sample by solvent extraction using chloroform, and 

back extracted in 3 ml of 9N HBr, and then further purified by CrO3-H2SO4-HBr micro-distillation. The Re was 

purified by HCl-HNO3 based anion exchange chromatography. Both the Re and Os purified fractions were loaded on 

Ni and Pt wire filaments, respectively, and measured for their isotopic composition by NTIMS, using static 

collection by Faraday cups and peak-hopping mode on a secondary electron multiplier, respectively.  

 

The total Re-Os measurement procedural blanks during the study are 1.63 ± 0.67 picograms for Re and 65 ± 13 

femtograms for Os, with an average 
187

Os/
188

Os of 0.23 ± 0.02 (2 SD, n = 8). The blank represents up to 0.12 and 

0.93 % of the Re and Os budget of the asphaltene fractions, respectively. For the maltene fraction, the blank Re and 
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Os concentration represents, on average, 0.7 and 3.0 % and up to 3.8 and 9.2 %, respectively (Supplementary 

Material 1 & 2). The average 
187

Os/
188

Os value of the in-house Os standard, DROsS, is 0.1611 ± 0.0004 (1SD, n = 

126). The average 
185

Re/
187

Re value of the Re standard, ReStd, is 0.5989 ± 0.0019 (1SD, n = 116). The 
185

Re/
187

Re 

value of 0.5974 (Gramlich et al., 1973) is used for the Re sample mass fractionation correction. Data reduction 

includes the instrumental mass fractionation, isobaric oxygen interference and contribution of blanks and the tracer 

solution. The final expanded (k = 2) combined standard uncertainties of the results include the fully propagated of 

uncertainties of sample-weighing, tracer calibration, blank abundances and isotope compositions, and the 

intermediate precision of the results of repeated measurements on the Re and Os reference solutions. 

3 Results 

3.1 The progressive precipitation of asphaltene and the separation of crude oil by n-

alkanes 
The six crude oils used in this study possess between 5.7 and 16.1% bulk asphaltene as separated by n-heptane 

(Table 1). Maltene fractions were only partially collected for Re-Os analyses for most oil samples, thus no maltene 

mass fractions are available. However, RM8505 has been thoroughly studied in regard to its asphaltene and maltene 

yields in a previous study (Liu & Selby, 2018). 

 

For the progressive precipitation of asphaltene via n-heptane-DCM solutions, four of the samples precipitated the 

first fractions of asphaltene from an n-heptane-DCM ratio of 65:35 (Federal, Persian, Purisima and Viking Morel). 

Asphaltenes of both the Derby and RM8505 oil first precipitated with an n-heptane-DCM ratio of 70:30. The 

progressively precipitated fractions of the asphaltene account for 2 to 22% of the original bulk asphaltene, with the 

exception of the first precipitation of RM8505, which accounts for 54% of the bulk asphaltene (Table1; Figure 2). 

From 7 to 23% of the original asphaltene are still soluble in 100% n-heptane at the last step of the progressive 

precipitation. All of the progressively precipitated asphaltene fractions account for ca. 96 to 102% of the mass of the 

originally employed bulk asphaltene for the six samples (Table 1). The physical appearance of the fractions of 

asphaltene changes gradually from hard shiny black particles to amorphous dull brown powder and highly viscous 

fluids (the last 100% n-heptane soluble fraction) throughout the progressive precipitation, which is identical to what 

has been observed by previous studies, e.g., Nalwaya et al. (1999) and (DiMarzio et al., 2018). 

 

Four of the six oils (Derby, Federal, Viking Morel, Persian) separated using a n-alkane-DCM-methanol solution 

show a general decrease in asphaltene yields with the increase of n-alkane chain length from n-C5 to n-C7, with 

similar yields from n-C7 to n-C10 (Figure 3; Table 2). The exceptions are for the oil samples Purisima and RM8505, 

which show a decrease in asphaltene yields from n-C5 to n-C7, with a slight increase for n-C8 and lower values for n-

C9 that are similar to yields of n-C7, and finally show a greater yield for n-C10 (Table 2; Figure 3). The majority of 

the asphaltene yields from the n-alkane-DCM-methanol solutions are lower than those obtained using solely n-

heptane (cf. Tables 1 and 2), e.g. n-pentane 10.6% and n-heptane 7.8% asphaltene yields for the Federal oil with the 
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application of DCM-methanol versus 11.9% asphaltene obtained solely by n-heptane. The difference in asphaltene 

yields is attributed to the use of DCM-methanol, especially the DCM.  The maltene yields are almost identical with a 

slight increase. in general, from n-C5 to n-C10 for the Persian, RM8505 and Viking-Morel oil samples: ~ 70% for 

Persian oil, ~ 88% for the RM8505 oil and ~ 75% for Viking-Morel oil (Figure 3; Table 2). For the Derby sample, 

the maltene yields are around 82% from n-C7 to n-C9 with a slight increase to 84% using n-C10 and as high as 10% 

variations using n-C5 and n-C6. For the Federal sample, ca. 14% increase in the maltene yields is observed when 

using n-C6 compared to using n-C5. From n-C6 to n-C10 the maltene yields of Federal oil are approximately 80%. 

Variation of maltene yields from ca. 35% to 50% is observed for Purisima oil owing mostly to the water contents in 

the crude oil.  

 

The less than 100% total yields of asphaltene and maltene can be accounted for by the loss of any volatile phase and 

sometimes water in the oil, plus weighing error propagation. For example, 4.4% of the mass was lost by heating 0.3 

g of RM8505 crude oil at 80 °C for 10 days (Liu & Selby, 2018). The reduced loss of RM8505 in this study (4.2%) 

compared to the average loss (7.9%) during the n-heptane separation of asphaltene and maltenes by Liu and Selby 

(2018) on the same oil could be attributed to the use of rotary evaporator rather than heating via a hot plate to 

recover the maltene from n-heptane and n-alkane-DCM-methanol solutions. Further, water present in the oil 

samples, e.g. Purisima, may have only been partially removed by centrifuging. As such variable amounts of water 

present in the oil may have contributed to the inconsistency of the asphaltene and maltene yields and mass balance 

of the separation. 

3.2 Re and Os elemental concentrations and distribution in the fractions of oil 

3.2.1 Re-Os data of whole oil and asphaltene and maltene separated by n-heptane 

The six crude oil samples contain relatively large ranges in Re and Os concentration and isotopic composition. Data 

are reported in Tables 3-8. The six whole oils possess 2 to 12 ppb Re and 12 to 173 ppt Os. The bulk separated 

asphaltene fractions contain 15 to 164 ppb Re and 147 to 1826 ppt Os, whereas the bulk separated maltenes contain 

only 0.3 to 1.6 ppb Re and 4 to 31 ppt Os.  

3.2.2 Re-Os data of the progressively precipitated fractions of asphaltene 

During the progressive precipitation of asphaltene using the n-heptane-DCM protocol, the earlier precipitated 

fractions generally contain higher Re and Os concentrations (Table 3- 8; Figures 4 - 5). The exceptions are the Re 

and Os concentrations for the first precipitated fractions of the Persian and Viking-Morel oil samples and the Re 

concentration for the first precipitated fraction of the Purisima sample. A large portion of the first precipitated 

fraction of Persian asphaltene does not dissolve in CHCl3 during transfer to the Carius tube for Re-Os analysis, This 

CHCl3 non-soluble material appears as both a white powder and white needles. This material could be salts or wax 

which could possess limited Re and Os.  

 

In general, the concentrations of the most Re and Os enriched first or second asphaltene precipitates (i.e. at n-

heptane-DCM ratios of 65:35 and/or 70:30) are 1.4 to 2.7 times that of the original bulk asphaltene isolated solely by 
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n-heptane. The Re and Os concentrations of the precipitates of the last steps of the progressive precipitation are 0.3 

to 0.6 times that of the original bulk asphaltene. The Re and Os concentrations of the 100% n-heptane soluble 

fractions are lower than all the precipitated fractions, but higher than the maltenes isolated solely by n-heptane. It is 

observed that the Re and Os concentrations decrease in similar ways for the Federal, Persian and Viking-Morel 

samples with the Re decreasing slightly faster than Os. For the Derby sample, Re and Os decrease at the same rate.  

For the RM8505 sample, the Re decreases much faster than Os. For the Purisima sample, Os decreases faster than 

Re. 

 

The mass balance of the Re and Os concentrations during the progressive precipitation is calculated (Table 9). The 

total Re, 
192

Os (representing unradiogenic
 
Os) and radiogenic 

187
Os of all the fractions of asphaltene account for 

approximately 100% of their contents in the original bulk asphaltenes for the Derby, RM8505 and Viking-Morel 

samples. The less than 100% recovery rates of the Federal and Persian samples could be accounted for by the 

weighing errors of the fractions and possible loss of sample during the analytical protocol, especially for the Re and 

Os more abundant fractions. The 101% recovered Re and ~ 110% recovered 
192

Os and 
187

Os of the Purisima could 

be the contamination of Os from the sample preparation and/or Re-Os measurement processes, or it could be related 

to weighing error of the Re and Os more abundant fractions and loss of Re.  

3.2.3 Re-Os data of the n-alkane-DCM-methanol separated asphaltenes and maltenes 

Compared to the asphaltene and maltene fractions separated solely by n-heptane, the asphaltenes and maltenes 

separated by the n-alkanes plus DCM and methanol protocol are generally more enriched in Re and Os, with the 

exception of asphaltenes isolated using n-C5 and n-C6 from the Derby oil (Tables 3, 10 and 11; Figures –6 - 8). The 

enhanced concentrations are attributed to the reduced yields of asphaltene. The Re and Os concentrations of n-

alkanes asphaltenes can be as high as 1.6 times that of the n-heptane only isolated asphaltenes (e.g., in the case of n-

C7 asphaltene from RM8505 and n-C9 asphaltene from Purisima oil). The Re and Os concentrations of the n-alkane-

DCM-methanol isolated maltenes can be as high as 5 (RM8505, n-C10) and 3 (Viking-Morel, n-C10) times that of the 

n-heptane isolated maltene fractions. 

 

The Re and Os concentrations of the asphaltenes generally increase with the increase in chain length of the 

precipitant n-alkane except for the Viking-Morel sample, especially from n-C5 to n-C7 (Table 10; Figure 6). For 

almost all of the six oil samples, the Re and Os concentrations of the maltenes increase with the increase in chain 

length of the precipitant n-alkanes (Table 11; Figures –7 - 8), except for the Derby and Federal samples from n-C8 

maltene onwards, which are very similar. The mass balance of the Re and Os for the separation of asphaltene and 

maltene using the n-alkane-DCM-methanol solution is calculated according to their mass fractions (Supplementary 

Material 1). The total Re and Os contents of the pairs of asphaltene and maltene are in general comparable to those 

of the original whole oil with the differences generally within 10% for the Derby, Federal, Persian and Viking-Morel 

oil samples despite the various loss of sample. The total Re and Os contents of the pairs of asphaltene and maltene 

of the Purisima oil are variable and show up to 43% Re and 33% Os less than the measured whole oil, which are not 

surprising if consider the variable loss of up to 55% of sample during separation which could relate to the low Re 
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and Os concentration within water and volatile fractions. The total Re and Os contents of the asphaltene and maltene 

pairs of RM8505 are ~2.2 to 2.8 ppb Re and ~28 to 30 ppt Os. These values are higher than the whole oil analyzed 

previously in this laboratory (~1.7 to 2.2 ppb Re and ~21 to 27 ppt Os, n = 18; Liu and Selby (2018)), however, 

similar to the two analyses reported by Georgiev et al. (2016) (~2.3 ppb Re and ~31 and 29 ppt Os). This may be 

explained by the heterogeneity of crude oil Re-Os systematics (Liu & Selby, 2018). 

3.3 Re-Os isotopic systematics 

3.3.1 Re-Os isotopic compositions of whole oil and asphaltene and maltene separated by n-

heptane  

The six oil samples exhibit a large spread in Re-Os isotopic compositions (Tables 3 - 8; Figures 4, 5, 9 and 10). The 

187
Re/

188
Os values of the six oils vary from 454 (RM8505) to 1589 (Persian) and the 

187
Os/

188
Os compositions vary 

from 0.96 (Purisima) to 4.22 (Federal). The asphaltene 
187

Re/
188

Os values and 
187

Os/
188

Os compositions, although 

similar, are generally higher and more radiogenic than that of the whole oil (Tables 3 - 8; Figures 4, 5, 9 and 10). In 

contrast, the maltene fractions possess lower 
187

Re/
188

Os values and less radiogenic 
187

Os/
188

Os compositions than 

those of the whole oil and asphaltenes (Tables 3 - 8; Figures 4, 5, 9 and 10). The 
187

Re/
188

Os values of the bulk-

separated six asphaltene samples are from 496 (Viking-Morel) to 2066 (Persian) and the 
187

Os/
188

Os compositions 

vary from 0.98 (Purisima) to 4.23 (Federal). The 
187

Re/
188

Os values of the bulk separated six maltene samples vary 

from 183 (RM8505) to 594 (Federal) and the 
187

Os/
188

Os compositions vary from 0.71 (Purisima) to 3.59 (Federal). 

3.3.2 Re-Os isotopic compositions of the progressively precipitated fractions of asphaltene 

 

The Re-Os isotopic compositions of the progressively precipitated asphaltene fractions from n-heptane-DCM 

solutions exhibit unique characteristics for each of the six samples (Tables 3 - 8; Figures 4, 5, 9 and 10). For 

example, both of the 
187

Re/
188

Os and 
187

Os/
188

Os are similar for the Derby samples except for the last two fractions 

(Figure 4). The Re-Os compositions for the RM8505 samples show a linear-like distribution in 
187

Re/
188

Os-

187
Os/

188
Os space (Figure 10), i.e. simultaneous decrease of 

187
Re/

188
Os and 

187
Os/

188
Os throughout the progressive 

precipitation process (Figure 5). For the Viking-Morel samples, the 
187

Re/
188

Os decreases and the 
187

Os/
188

Os 

remains almost constant throughout the progressive precipitation. 

 

The expected 
187

Re/
188

Os and 
187

Os/
188

Os for the original bulk asphaltenes calculated from the progressively 

precipitated fractions of asphaltenes for Derby, RM8505 and Viking-Morel samples are identical with their bulk 

asphaltenes (Table 9). Together with their good mass balance presented in Section 3.2.2, chances of high blank or 

contamination contribution are low for these samples.  

 

The expected 
187

Re/
188

Os and 
187

Os/
188

Os of Persian samples are slightly lower than those of the bulk asphaltene’s 

which may suggest higher than normal blank with less radiogenic Os than the samples. The Persian oil shows a 

negative distribution in 
187

Re/
188

Os-
187

Os/
188

Os space (Figure 4 and Figure 9), i.e. decreasing 
187

Re/
188

Os and 

increasing 
187

Os/
188

Os throughout the progressive precipitation. 
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The expected 
187

Re/
188

Os for Federal sample and 
187

Os/
188

Os for Purisima sample are identical to the measurement 

on their original asphaltenes. Throughout the progressive precipitation, the 
187

Re/
188

Os for Federal samples decrease 

in general similar to the RM8505 and Viking-Morel samples. The 
187

Os/
188

Os for Purisima samples are similar, as 

shown for the Derby and Viking-Morel samples. However, poor there is poor agreement between the expected and 

measured 
187

Os/
188

Os for Federal sample and 
187

Re/
188

Os for Purisima sample (Table 9). Throughout the progressive 

precipitation, the 
187

Os/
188

Os for Federal samples apparently vary and are lower than the bulk asphaltene 
187

Os/
188

Os. 

This is could be the result of contamination by less radiogenic Os or loss of 
187

Os. The 
187

Re/
188

Os for Purisima 

sample increase throughout the progressive precipitation, which is different with all the other five samples in this 

study. This could be a true trend, or maybe relate to the undervaluation of Re or overvaluation of Os of the first few 

fractions. 

 

3.3.3 Re-Os isotopic compositions of asphaltenes and maltenes separated by n-alkanes 

 

The 
187

Os/
188

Os values of the asphaltenes separated by the n-alkane-DCM-methanol protocol for the same oil sample 

are very similar to each other and to that of the bulk separated asphaltene by n-heptane (Figures 9 – 10; Table 10). 

The exception is the Persian samples for which the variations of 
187

Os/
188

Os are beyond the measurement 

uncertainties and the 
187

Os/
188

Os are lower than obtained for the n-heptane asphaltene. There is also a trend of 

increasing 
187

Os/
188

Os for the RM8505 samples although they are within measurement uncertainties. The 
187

Re/
188

Os 

values of the asphaltene fractions are variable with the highest values to be from 105% to 112% of the lowest values. 

These values are higher than the whole oils and the n-heptane only separated asphaltenes for four of the six samples. 

 

The 
187

Os/
188

Os compositions of the maltene fractions separated by the n-alkane-DCM-methanol protocol for the 

same oil sample are, including uncertainties, very similar (Figures 7 – 10; Table 11). These values are lower than 

that of the whole oil. A trend to slightly more radiogenic 
187

Os/
188

Os values for the maltene fractions especially 

recovered from n-C5 to n-C7 solutions is observed for most oils, with the exception of the Viking-Morel oil sample 

(Figures 7 - 8). Most of the 
187

Re/
188

Os values of the maltene fractions are higher than that of the bulk maltene from 

the n-heptane separation, but lower than the values for the whole oil. A general trend increasing 
187

Re/
188

Os values is 

observed for the maltene fractions precipitated from n-C5 to n-C8, n-C9 and even n-C10. 

 

The expected whole oil 
187

Re/
188

Os and 
187

Os/
188

Os calculated from the asphaltene and maltenes are basically 

identical to the results of Re-Os measurements on the whole oils (Supplementary Material 1). The expected 

187
Os/

188
Os of Federal and RM8505 samples are lower than the measured whole oils (ca. 3.95 vs 4.22 and ca. 1.4 vs 

1.54, respectively). The expected Persian whole oil 
187

Re/
188

Os are higher than the measured result on whole oil 

while the expected Purisima 
187

Re/
188

Os are lower than the measured result. Contaminations and weighing errors can 

play more significant role on these small samples with regard to sample mass and Re and Os concentrations. Both of 
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the expected whole oil 
187

Re/
188

Os and 
187

Os/
188

Os match well with the measured values on the whole oils for Derby 

and Viking-Morel samples. 

In fact, in terms of mass balance the Re-Os isotope data of the whole oil should be on the line defined by the 

asphaltene and maltene fractions, if measured precisely and accurately. Maltene is more difficult to measure than the 

asphaltene and whole oil – blank correction or other errors play a more significant role for maltene. Besides accurate 

and precise measurements, heterogeneity can also lead to the deviation of crude oil data point from the line defined 

by the asphaltene and maltene (Liu & Selby, 2018) which is another form of the multiple crude oil samples 

methodology. For most of the samples in this study, the whole oil data points are between the asphaltene clusters 

and maltene clusters (Figures 9 – 10). 

4 Discussion 

4.1 The residence of Re and Os in crude oil and asphaltene 

4.1.1 Asphaltene is the main carrier of Re and Os of crude oil 

The Re-Os analyses of the asphaltene and maltene fractions separated by both solely n-heptane and n-alkane-DCM-

methanol solutions in this study support that the asphaltene is the main carrier of Re and Os in the majority of crude 

oils (Selby et al., 2007; Rooney et al., 2012; Cumming et al., 2014; Georgiev et al., 2016; DiMarzio et al., 2018; 

Liu & Selby, 2018). When separated by solely n-heptane, the asphaltene fractions of the six oil samples in this study 

account for ≥ 78% Re (of Derby oil sample) and ≥ 73% Os (of Derby oil sample) of the original whole oils 

(Supplementary Material 2). These values are lower than previously reported (> 90% Re and 83% Os; Selby et al., 

2007). When separated by n-alkane-DCM-methanol solutions, the asphaltene fraction accounts for more than 52% 

Re (of Purisima oil sample separated with n-heptane) and 58% Os (of Federal oil sample separated with n-decane; 

Supplementary Material 1), which are comparable to the division of the Streppenosa asphaltenes in Georgiev et al. 

(2016), i.e. 55-79% Re and Os.  

 

However, the remaining n-heptane maltene fractions, which account for the majority of the mass of whole oil, 

although the exact mass fractions were not obtained for the majority of the six oil samples, contain much less Re and 

Os than the asphaltenes. Similarly, the n-alkane-DCM-methanol maltenes contain less Re and Os than their 

corresponding asphaltenes (Supplementary Material 1), although generally more than the n-heptane maltene 

fractions.  

 

4.1.2 The state of molecules containing Re and Os in crude oil and the role of asphaltene  

Multiple heteroatomic complexes and stable porphyrins are proposed to be the hosts of Re and Os in crude oil 

(Selby & Creaser, 2003; Miller, 2004; Selby et al., 2007). The amounts and kinds of these Re and Os containing 

compounds in the crude oils should also depend on the origin, maturity and migration and alteration processes, etc. 

Based on the understanding of asphaltene aggregation behaviour, we propose that in the DCM solution of asphaltene 
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and in the crude oil, Re and Os can both exist as metals bound by multiple heteroatomic complexes (including 

metalloporphyrins and single asphaltene molecules) in free state and such metal complexes associated with 

asphaltene aggregates by occlusion and adsorption. 

 

It is possible that the Re and Os bearing species in crude oil can be adsorbed and occluded into the asphaltene 

aggregates like many other compounds (Mujica et al., 2000; Liao et al., 2005; Liao et al., 2006a, 2006b; Liao et al., 

2009; Acevedo et al., 2012; Derakhshesh et al., 2013; Zhao et al., 2013; Liu et al., 2015; Castillo & Vargas, 2016; 

Snowdon et al., 2016; Evdokimov et al., 2017). The molecules absorbed at the periphery of asphaltene aggregates, 

i.e. those that are loosely packed, are liable to be exchanged with the outside bulk phase. This is in contrast to the 

tightly bound molecules of the interior of the asphaltene aggregate that are occluded and cannot be exchanged and 

can remain stable and be preserved in crude oil over geological time (Liao et al., 2005). The occluded molecules can 

be preserved and protected from secondary alteration of crude oil through geological time, e.g. biodegradation (Liao 

et al., 2006a; Snowdon et al., 2016; Cheng et al., 2017). The occluded molecules can be influenced by thermal stress 

like the absorbed molecules, but their interchange is considered to be limited. This means that in the asphaltene 

aggregates the loosely packed Re and Os bearing compounds may be liable to exchange with the surrounding 

molecules, whereas the tightly packed occluded Re and Os molecules could be well-preserved through geological 

times and geological changes. 

 

Consistent with previous studies (Mahdaoui et al., 2013; DiMarzio et al., 2018), we observe that the progressive 

precipitation separates different chemical groups of bulk asphaltene with different Re and Os concentrations for the 

six samples. Specifically, the earlier precipitated fractions have higher Re and Os concentrations, except the first 

precipitated fractions of Persian and Viking-Morel oils (Figures 4- 5). Polarity, aromaticity, 

aggregate/molecular/aromatic core sizes and mainly van der Waals interactions have been shown in several studies 

to define the differences among the separated fractions of asphaltene (Buckley & Fuels, 1999; Groenzin et al., 2003; 

Porte et al., 2003; Speight, 2004), however, how these properties relate to Re and Os concentrations remains 

unknown. Nevertheless, other possible reasons for the observed decrease of Re and Os concentrations in this study 

could be the decrease in the concentration of the Re and Os carrying molecules and the decreased ability of 

asphaltene molecules to co-precipitate with these molecules. However, such an assumption requires that the Re and 

Os are not linked with a given fraction of asphaltene prior to precipitation, In this case, the isochron using such a 

fractionation is no longer meaningful.   

4.2 Implications from the Re-Os isotopic systematics of various fractions of crude oil  
For all of the six crude oil samples in this study, differences in the 

187
Re/

188
Os and 

187
Os/

188
Os compositions exist 

among the whole oil, bulk asphaltene and maltene fractions separated solely by n-heptane, progressively precipitated 

asphaltene fractions by n-heptane-DCM solutions, and the asphaltene and maltene fractions separated by n-alkane-

DCM-methanol solutions (Figures 4, 5 and 7 - 10). 

The different decrease rates of the Re and Os concentrations are also reflected in the 
187

Re/
188

Os ratios (Figures 4 - 

5), except for the Derby samples for which the first six fractions have similar 
187

Re/
188

Os values. The 
187

Re/
188

Os 
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values generally decrease throughout the progressive precipitation or for a few fractions, for the Federal, Persian, 

RM8505 and Viking-Morel oil samples (Tables 3 - 8; Figures 4 - 5). In contrast, the 
187

Re/
188

Os values increase 

throughout the progressive precipitation for the Purisima oil sample, with the exception of the last soluble fraction in 

100% n-heptane. Despite the imperfect mass balance of Federal, Persian and Purisima samples and the similar 

187
Re/

188
Os of Derby samples, difference in 

187
Re/

188
Os among the progressively precipitated fractions of asphaltenes 

is clearly shown in this study by at least the RM8505 and Viking-Morel samples. This indicates the presence of 

different Re and Os bearing complexes which leads to the discrepancy of their behaviour throughout the progressive 

precipitation.  

 

Although slight differences exist, the 
187

Os/
188

Os compositions of the progressively precipitated asphaltene fractions 

are quite similar (overlapping within uncertainty) for each of the Derby, Purisima, and Viking-Morel samples 

(Figures 9 - 10). The similarity of the 
187

Re/
188

Os and 
187

Os/
188

Os of the progressively precipitated fractions of Derby 

asphaltene (Table 3; Figure 9) may suggest a complete exchange of the Re and Os bearing entities in crude oil. The 

parent 
187

Re is expected to co-vary with its daughter 
187

Os. However, the decrease of the 
187

Re/
188

Os of Viking-

Morel asphaltene fractions is not coupled with apparent decrease of the 
187

Os/
188

Os. This relationship may be due to 

the oil being too young or the spread of 
187

Re/
188

Os values of the fractions being too limited to generate discernible 

differences of 
187

Os/
188

Os among the fractions of asphaltene. However, it could also be that the radiogenic 
187

Os 

decouples from the parent 
187

Re and behaves similarly to the other Os atoms of the sample. Although being 

compromised by the imperfect mass balance, the Persian and Purisima samples may also exhibit evidence of the 

decoupling of radiogenic 
187

Os from the parent 
187

Re. The Persian samples show decreasing 
187

Re/
188

Os with 

increasing 
187

Os/
188

Os, whereas the Purisima samples show increasing 
187

Re/
188

Os with unchanging 
187

Os/
188

Os 

throughout the progressive precipitation. 

 

Coupled with the decrease in 
187

Re/
188

Os values with the progressive precipitation is also a trend to less radiogenic 

187
Os/

188
Os compositions for the RM8505 oil sample, which is also true for the Federal sample in general (Figures 9 

- 10). As such, the radiogenic 
187

Os is proportional to the parent 
187

Re rather than the inherent Os. This behaviour 

suggests that the majority of the radiogenic 
187

Os is likely still in the same/similar complexation location as the 

parent 
187

Re following the beta decay. This scenario is most likely to happen when the Re is predominantly housed 

tightly in the asphaltene aggregates and protected from any exchanges by occlusion, rather than in the adsorbed 

molecules where exchange of ions is labile, or in the free metalloporphyrins or other heteroatomic complexes. In 

contrast, the Re in the Derby, Purisima and Viking-Morel oil samples could possibly be predominantly in the 

multiple heteroatomic complexes as free molecules.  

 

The unique characteristics exhibited by each of the six samples can possibly be attributed to their unique nature or 

the influence of separation based on experimental procedures. The nature of crude oil includes the organic matter 

type, maturity and alteration processes, etc., which may determine whether the Re and Os will be in the closed 
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asphaltene aggregates or in the free molecules. The influence of experimental procedures can be examined with 

repeated experiments taken on the same sample, which is beyond the scope of this present study. 

4.3 Implications for Re-Os geochronology from the separation of crude oil 

4.3.1 The Re-Os geochronology information obtained from the oil fractions of this study  

In the study of Georgiev et al. (2016), the Re-Os data of the fractions of a single oil were interpreted to determine 

Re-Os ages which define the timing of oil generation. Here, we discuss the application of the Re-Os isotope 

systematics of the asphaltene and maltene fractions separated by n-alkane-DCM-methanol solutions for 

geochronology to the six crude oil samples in this study. In addition, we discuss the Re-Os geochronology with the 

n-heptane separated fractions (whole oil, bulk asphaltene, bulk maltene) and the progressively precipitated fractions 

of asphaltene by n-heptane-DCM solutions. Combinations of the progressively precipitated fractions of asphaltenes 

were also explored for geochronology – meaning in the Re-Os data set more than two samples define a best-fit line 

in 
187

Re/
188

Os vs 
187

Os/
188

Os space (Figure 9 - 10). The regression analysis using Isoplot v. 4.15 (Ludwig, 2012) of 

the Re-Os isotopic data for these fractions for all oil samples are listed in Table 12 - 13.  

 

No matter what combination of the crude oil fraction Re-Os data is used, no meaningful geological dates can be 

obtained systematically for every oil sample (Table 12 - 13). This means that even if a set of fractions of a crude oil 

can yield a meaningful age, it is not guaranteed for other crude oils with same combination of the fractions of crude 

oil. Furthermore, no consistent Re-Os ages can be obtained for a crude oil by all the shown combinations of the 

fractions in Tables 12 - 13. Additionally, the large uncertainty of most of the obtained dates also reduces their 

credibility. The most precise date values are obtained by the progressively precipitated fractions of asphaltene of 

sample RM8505 (98.4 ± 9.5 Ma; Table 12), by the asphaltenes and maltenes plus whole oil (30.1 ± 4.3 Ma; Table 13) 

and by the maltene fractions (27.3 ± 8.7 Ma; Table 13) separated by n-alkane-DCM-methanol solutions for the 

Purisima sample. For both oils the dates obtained are close to the deposition age of their source rocks (James, 1990, 

2000; Isaacs & Rullkötter, 2001; Summa et al., 2003), respectively, rather than the timing of oil generation. The Re-

Os data of a few fractions of the progressively precipitated asphaltene fractions of Derby and Purisima samples 

define Re-Os dates of 170 ± 50 Ma and 5.5 ± 2.5 Ma, respectively, which are close to their known (Lillis & Selby, 

2013) or estimated oil generation age. However, such combinations cannot yield geologically meaningful Re-Os 

ages for the other samples of this study. The dates yielded from the asphaltene and maltene (n-alkane-DCM-

methanol) fractions plus whole oil for the Derby (96 ± 43 Ma) and Federal (67 ± 22) samples seem to be close to 

their possible oil generation age (before Laramide Orogeny, 70 Ma; Sheldon, 1967; Stone, 1967; Kirschbaum et al., 

2007), where the date (83 ± 20 Ma) determined for the RM8505 samples is close to both the potential source rock 

age (La Luna Formation; Cenomanian-Turonian-Coniacian, 100 – 86 Ma) and the earliest oil generation age (James, 

2000; Summa et al., 2003). 
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4.3.2 Implications for Re-Os geochronology utilizing the progressive precipitation of 

asphaltene 

The observation of the similar Re/Os and 
187

Os/
188

Os for the majority of the asphaltene fractions (Mahdaoui et al., 

2013) led to the conclusion that the sequential loss of asphaltene in natural petroleum systems will not greatly 

change the Re-Os isotopic systematics of crude oil, and thus will not impede the application of Re-Os 

geochronology on petroleum samples. In contrast, changes of both
 187

Re/
188

Os and 
187

Os/
188

Os compositions, either 

slightly or appreciably, are observed for most of the six samples of this study during the progressive precipitation 

with similar mixture of DCM and n-heptane versus DCM and n-pentane for some samples in Mahdaoui et al. 

(2013). In the situation for which a difference exists in the 
187

Re/
188

Os and/or 
187

Os/
188

Os composition among the 

solubility classes of asphaltene, the precipitation of fractions will lead to the change of 
187

Re/
188

Os and/or 

187
Os/

188
Os compositions of the remaining oil. The effect of precipitation will depend on the degree of the loss of 

asphaltene, the relative concentrations of Re and Os in the precipitates to the remaining fraction and how different 

the isotopic systematics are between the two. A similar observation is also made by (DiMarzio et al., 2018), who 

showed for an oil sample from Italy, that the progressive precipitation of asphaltenes changes the 
187

Re/
188

Os of a 

heavy crude oil. 

The establishment of an isochron with the fractionation of a single asphaltene sample is conditioned on the premise 

that the exchange of Re and Os among the fractions of asphaltene has never happened, i.e. there are closed 

reservoirs with regard to Re and Os within the asphaltene with identical initial 
187

Os/
188

Os, and the fractionation 

protocol can cleanly separate these reservoirs. The decay of 
187

Re to 
187

Os should also be constrained by these 

reservoirs. This is only the case when all the Re and Os are occluded and protected from exchange in asphaltene 

aggregates. This situation will yield the Re-Os age of the asphaltene aggregates formation. If Re and Os are 

predominantly in the forms liable to exchange among asphaltene fractions, i.e. there is no closed reservoir, the zero 

age will be maintained as long as the exchange continues. In this case, precipitation of asphaltene may trigger the 

Re-Os chronometer. But if we are not sure of the occurrence of exchange and to what extent the exchange is, the 

interpretation of any Re-Os dates obtain by the fractions of asphaltene may be false. Furthermore, the Re-Os 

systematics within crude oil could also be affected by alteration. This should be taken into consideration when 

evaluating the validity of Re-Os dates from fractions of a single oil. 

4.3.3 Implications for Re-Os geochronology from the asphaltene and maltene fractions 

separated by n-alkane-DCM-methanol solution 

The asphaltene yields are shown to decrease with the increase of n-alkane C number in some studies (Buenrostro-

Gonzalez et al., 2004; Georgiev et al., 2016). However, in some other studies (Figure 1, Mitchell & Speight, 1973; 

Figure 6, Corbett & Petrossi, 1978) and this study, the asphaltene yields decrease from n-C5 to n-C7, and then level 

off from approximately n-C7 onwards to n-C10. The unchanging yields reduce the possibility of creating spread in 

Re-Os isotopic ratios of the asphaltenes (Table 10) as well as the maltenes (Table 11; Figures 7 – 8). The maltene 

yields vary according to the change of asphaltene yields, the loss of volatile fractions and the influence of water 

contents (e.g. the Purisima sample). The variation of Re-Os isotopic ratios of the maltenes depend on the transfer of 

the reduced asphaltene yields with different Re-Os isotopic ratios into the maltene fractions.  
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Additionally, the different asphaltene yields have limited influence on the asphaltene Re-Os elemental and isotopic 

systematics.  When the asphaltene yields decrease, the Re and Os concentrations of the asphaltenes increase with the 

187
Os/

188
Os remaining almost unchanged with the maximum/minimum for each oil to be 100.2%, 100.8%, 106.8%, 

101.7%, 103.8% and 100.2%, respectively, and the 
187

Re/
188

Os show relatively small change with the 

maximum/minimum for each oil to be 104.9%, 104.9%, 105.8%, 111.7%, 106.2% and 107.6%, respectively. As 

stated in section 4.3.1 and shown in Figures 9 – 10 and Table 13, the 
187

Re/
188

Os and 
187

Os/
188

Os of the n-alkane 

asphaltene fractions for five of the six samples cannot define a meaningful Re-Os age. These asphaltenes yield close 

to 0 ages, which is the results of their similar 
187

Os/
188

Os, with large uncertainties. The exception is for the RM8505 

samples yielding an imprecise age of 65 ± 47 Ma which is close to the oil generation age  (James, 2000; Summa et 

al., 2003).The change in the Re-Os elemental and isotopic systematics of the maltene fractions by different n-alkane 

is more prominent than for the asphaltene fractions (Table 11; Figures 7 – 10). This is because the maltene fractions 

normally contain much less Re and Os than the asphaltene, leaving them easier to be affected by the change of 

components.  The variation of maltenes’ isotope composition for the six oil samples, expressed as 

maximum/minimum, are 122.4%, 139.3%, 177.2%, 206.6%, 182.4% and 119.5%, respectively for  
187

Re/
188

Os and 

107.9%, 116.6%, 120.4%, 148.3%, 119.3% and 103.6%, respectively for 
187

Os/
188

Os using different n-alkanes as 

precipitant. However, only the Purisima maltene fractions yield a Model 1 best-fit line giving a Re-Os date of 27.3 ± 

8.7 Ma, which is close to the age of the source rock (Table 13; Figure 10). None of the remaining maltene fractions 

yield any meaningful Re-Os dates (Table 13).  

 

The asphaltenes and maltenes plus whole oil of Purisima and RM8505 samples define best-fit lines giving Re-Os 

dates of 30.1 ± 4.3 Ma and 83 ± 20 Ma, respectively which are close to the ages of their source rocks (Table 13). 

Same combinations of samples define a Re-Os date covering the end of the generation age for the Derby and Federal 

samples. However, the asphaltene and maltene fractions are basically two distinct clusters with very limited spread 

for the asphaltene clusters and the overlap of the maltenes.  

 

The same conclusions based on the six oil samples of this study are also basically true for the three samples of 

Georgiev et al. (2016). The Re-Os isotopic systematics of the asphaltene series of each of the three samples are very 

similar and cannot determine any geologically meaningful Re-Os dates. Only the maltene fractions of one out of the 

three oil samples were able to define a Re-Os date that was interpreted as the best estimate of the oil generation age 

by the authors which is also close to the source rock age. 

 

4.3.4 Implications on the use of asphaltene as substitution of whole oil 

 

The differences of the Re-Os isotopic compositions between the whole oil and its asphaltene depend on the maltene 

Re and Os contents and the difference of Re-Os isotopic compositions between maltene and asphaltene. More 

studies are revealing the difference of the Re-Os isotopic compositions between the asphaltenes and their whole oils 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

and that the maltene fractions account for significant portions of the Re and Os in some oils (Selby et al., 2007; 

Georgiev et al., 2016; this study). Meanwhile, using the Re and Os more concentrated in the entire asphaltene 

fraction as substitution of the whole oil for Re-Os geochronology may still be an option in the situation when precise 

data are required, but cannot be obtain for low Re and Os concentration crude oils. For example, the Unitied 

Kingdom Atlantic Margin oils (Finlay et al., 2011) and Western Canada Sedimentary Basin Duvernay Formation 

sourced oils (Liu et al., 2018) have low Re and Os concentrations and thus their asphaltene fractions were analyzed 

instead for Re-Os isotopic systematics to obtain more precise data. The date defined by the asphaltene Re-Os data 

corresponds well with the oil generation timing according to Ar-Ar geochronology and basin modeling. Compared 

to whole oil, utilizing asphaltene can increase the precision of Re-Os data and potentially the Re-Os age. 

 

5 Conclusions 
In this study, Re-Os measurements were made on six crude oil samples and their fractions. The crude oils were 

firstly separated by n-heptane into asphaltene and maltene fractions and then the asphaltene fractions were further 

separated by progressive precipitation using mixtures of dichloromethane and n-heptane. The crude oils were also 

separated into asphaltene and maltene fractions by n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane 

with dichloromethane and methanol. 

 

Consistent with previous studies, asphaltene fractions are the main carrier of Re and Os in crude oil, no matter if 

separated solely by n-heptane or by n-alkane-dichloromethane-methanol solutions. The Re and Os concentration of 

the fractions of asphaltene decreases throughout the progressive precipitation, with the exception to the first 

precipitates containing inorganic salts or wax for the Federal, Persian and Viking-Morel oil samples. Throughout the 

progressive precipitation, both the 
187

Re/
188

Os and the 
187

Os/
188

Os values can remain constant, decrease or increase 

in general for the six samples – no consistent pattern is observed, which means that such properties are dependent on 

the nature of particular oil, e.g. origin, maturity and alteration. Based on the proposed binding sites of Re and Os in 

crude oil and the structure of asphaltene, we suggest that the Re and Os in crude oil are to be bound in multiple free 

compounds, e.g. stable porphyrins and molecules with heteroatomic ligands, and such molecules occluded/absorbed 

in the asphaltene aggregate structure. Further, we consider that Re and Os can slightly decouple throughout the 

progressive precipitation and that the radiogenic 
187

Os can also decouple from the parent 
187

Re. 

 

Although heterogeneity of 
187

Re/
188

Os and 
187

Os/
188

Os between the components of a crude oil is observed by 

fractionation in this study, no consistent combinations of the fractions of a single crude oil, either from the 

separation of whole oil by n-alkanes or from the progressive precipitation of asphaltene, can consistently yield a 

geologically meaningful Re-Os age for every one of the six oil samples of this study. Therefore, the extensive use of 

single oils to obtain meaningful geological dates related to a petroleum system may not be readily viable with the 

current understanding of the Re-Os systematics of the fractions of crude oil and the currently proposed fractionation 
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methods. Moreover, in place of whole oil Re-Os analysis for geochronology, utilizing Re-Os data obtained from the 

whole oil asphaltene fraction may still provide valuable geochronological information of a petroleum system.   
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Figure 1 scheme of asphaltene progressive precipitation 

Figure 2 mass percentages of the progressively precipitated fractions of asphaltenes 

Figure 3 mass percentages of the asphaltene and maltene fractions separated by n-alkanes from the crude 

oils 

Figure 4 Re-Os concentrations and isotopic ratios of the progressively precipitated fractions of Derby, 

Federal and Persian asphaltenes  

Figure 5 Re-Os concentrations and isotopic ratios of the progressively precipitated fractions of Purisima, 

RM8505 and Viking-Morel asphaltenes 

Figure 6 Re and Os concentrations of asphaltenes separated from all the six crude oil samples with 

different n-alkanes 

Figure 7 Re-Os concentrations and isotopic ratios of the maltenes separated from Derby, Federal and 

Persian samples with different n-alkanes 

Figure 8 Re-Os concentrations and isotopic ratios of the maltenes separated from Purisima, RM8505 and 

Viking-Morel samples with different n-alkanes 

Figure 9 the progressively precipitated asphaltene fractions and the asphaltene and maltene fractions 

separated by n-alkanes of the Derby, Federal and Persian samples in 
187

Re/
188

Os-
187

Os/
188

Os space 

Figure 10 the progressively precipitated asphaltene fractions and the asphaltene and maltene fractions 

separated by n-alkanes of the Purisima, RM8505 and Viking-Morel samples in 
187

Re/
188

Os-
187

Os/
188

Os 

space 
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Table 1 Details of the bulk asphaltenes, solvent-precipitant volume and the progressively precipitated fractions of the bulk 

asphaltenes of the six crude oil samples 

 Sample bulk 
asphalte

ne 
percenta

ge 

asphalten
e used for 
progressi

ve 
precipitati

on (g) 

DCM 
+ n-C7 
volu
me 

(mL) 

asphaltene fractions (n-C7: DCM) (g) sum 
(g) 

65:35 70:30 75:25 80:20 85:15 90:10 95:5 100:0  solubl
e 

Derby 5.8% 3.96204 250 NA 0.739
68 

0.801
36 

0.482
41 

0.375
25 

0.457
20 

0.203
23 

0.556
05 

0.356
44 

3.971
62 

Federal 11.9% 1.45679 200 0.184
59 

0.318
73 

0.044
27 

0.122
73 

0.119
01 

0.132
84 

0.097
37 

0.122
85 

0.338
88 

1.481
27 

Persian 5.7% 4.09564 250 0.223
40 

0.502
25 

0.801
15 

0.656
27 

0.594
51 

0.195
63 

0.481
68 

0.363
09 

0.281
53 

4.099
51 

Purisima 16.1% 2.22246 200 0.035
24 

0.364
20 

0.283
43 

0.154
42 

0.357
88 

0.207
01 

0.243
28 

0.256
17 

0.366
64 

2.268
27 

RM8505 13.0% 2.57996 50 NA 1.399
20 

0.195
64 

0.207
67 

0.084
68 

0.120
89 

0.056
08 

0.047
85 

0.374
02 

2.486
03 

Viking-
Morel 

8.6% 2.64352 200 0.178
63 

0.429
97 

0.309
98 

0.365
98 

0.212
18 

0.249
13 

0.136
62 

0.232
13 

0.567
25 

2.681
87 

 

DCM: dichloromethane 
NA: not available 

 

Table 2 The separation of crude oils by n-alkanes (n-C5, n-C6, n-C7, n-C8, n-C9 and n-C10) and 
DCM-methanol of the six crude oil samples 

Alkanes Oil (g) Asphalene (g) Asphaltene (%) Maltene (g) Maltene (%) Asphaltene + 
maltene 

Lost (%) 

 Derby oil       

n-C5 0.99496 0.06312 6.3% 0.75895 76.3% 82.6% 17.4% 

n-C6 0.99726 0.04972 5.0% 0.70854 71.0% 76.0% 24.0% 

n-C7 1.01089 0.05117 5.1% 0.82369 81.5% 86.5% 13.5% 

n-C8 1.12069 0.05545 4.9% 0.91910 82.0% 87.0% 13.0% 

n-C9 1.11289 0.05437 4.9% 0.91384 82.1% 87.0% 13.0% 

n-C10 1.01597 0.04958 4.9% 0.85195 83.9% 88.7% 11.3% 

 Federal oil      

n-C5 0.98687 0.10435 10.6% 0.62743 63.6% 74.2% 25.8% 

n-C6 1.00850 0.08491 8.4% 0.79873 79.2% 87.6% 12.4% 

n-C7 0.96435 0.07498 7.8% 0.77333 80.2% 88.0% 12.0% 

n-C8 0.96546 0.07049 7.3% 0.77422 80.2% 87.5% 12.5% 

n-C9 0.96236 0.07123 7.4% 0.77299 80.3% 87.7% 12.3% 

n-C10 1.03674 0.07468 7.2% 0.82562 79.6% 86.8% 13.2% 
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 Persian oil      

n-C5 0.99286 0.05135 5.2% 0.68212 68.7% 73.9% 26.1% 

n-C6 0.99885 0.04280 4.3% 0.68706 68.8% 73.1% 26.9% 

n-C7 1.00035 0.03586 3.6% 0.69802 69.8% 73.4% 26.6% 

n-C8 1.00058 0.03527 3.5% 0.68989 68.9% 72.5% 27.5% 

n-C9 1.00015 0.03465 3.5% 0.68988 69.0% 72.4% 27.6% 

n-C10 0.99429 0.03453 3.5% 0.69784 70.2% 73.7% 26.3% 

 Purisima oil      

n-C5 1.00860 0.12887 12.8% 0.47412 47.0% 59.8% 40.2% 

n-C6 1.01059 0.11445 11.3% 0.52489 51.9% 63.3% 36.7% 

n-C7 1.00100 0.07989 8.0% 0.38971 38.9% 46.9% 53.1% 

n-C8 1.00107 0.08107 8.1% 0.42302 42.3% 50.4% 49.6% 

n-C9 1.03770 0.08064 7.8% 0.45279 43.6% 51.4% 48.6% 

n-C10 1.00403 0.10430 10.4% 0.34919 34.8% 45.2% 54.8% 

 RM8505       

n-C5 1.00373 0.09846 9.8% 0.87147 86.8% 96.6% 3.4% 

n-C6 1.19398 0.10209 8.6% 1.04103 87.2% 95.7% 4.3% 

n-C7 0.90893 0.06147 6.8% 0.80135 88.2% 94.9% 5.1% 

n-C8 0.98300 0.08358 8.5% 0.86275 87.8% 96.3% 3.7% 

n-C9 0.97629 0.06405 6.6% 0.85379 87.5% 94.0% 6.0% 

n-C10 1.06586 0.08740 8.2% 0.94822 89.0% 97.2% 2.8% 

 Viking-Morel oil      

n-C5 0.99882 0.08070 8.1% 0.72507 72.6% 80.7% 19.3% 

n-C6 1.00929 0.06901 6.8% 0.75534 74.8% 81.7% 18.3% 

n-C7 1.00585 0.06473 6.4% 0.75360 74.9% 81.4% 18.6% 

n-C8 1.01179 0.06374 6.3% 0.75964 75.1% 81.4% 18.6% 

n-C9 1.05958 0.06287 5.9% 0.79222 74.8% 80.7% 19.3% 

n-C10 1.00253 0.05951 5.9% 0.75509 75.3% 81.3% 18.7% 

Samples are represented by the alkanes used for the separation of asphaltene and maltene 
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Table 3 Re-Os data synopsis and mass balance for the progressively precipitated asphaltene fractions 
and the whole oil, n-heptane asphaltene and maltene for the Derby oil sample. 

Sampl
e 

a
 

Re 
(ppb) 

u Os 
(ppt) 

u 
192

Os 
(ppt) 

u 
187

Os 
(ppt) 

u 
187

Re/
188

Os 
u 

187
Os/

188

Os 
u rh

o 

70:30 244.6 0.7 2754.1 15.
9 

832.2 3.
5 

771.7 3.
2 

585 3 2.93 0.0
2 

0.6
1 

75:25 219.3 0.6 2404.0 14.
4 

723.0 3.
2 

681.9 2.
9 

603 3 2.99 0.0
2 

0.6
1 

80:20 196.1 0.5 2142.1 12.
9 

643.5 2.
9 

609.3 2.
7 

606 3 3.00 0.0
2 

0.6
2 

85:15 177.7 0.5 1925.5 11.
9 

578.8 2.
7 

546.8 2.
5 

611 3 2.99 0.0
2 

0.6
3 

90:10 145.2 0.4 1609.0 9.5 483.5 2.
1 

457.3 1.
9 

597 3 2.99 0.0
2 

0.6
2 

95:5 125.5 0.3 1389.0 8.5 418.8 1.
9 

391.5 1.
7 

596 3 2.96 0.0
2 

0.6
2 

100:0 65.4 0.2 773.3 4.6 233.2 1.
0 

218.0 0.
9 

558 3 2.96 0.0
2 

0.6
3 

soluble 
b
 

8.21 0.0
3 

107.5 1.3 32.4 0.
6 

30.3 0.
3 

504 9 2.96 0.0
6 

0.8
2 

whole 
oil 

12.16 0.0
3 

144.1 2.0 43.8 0.
8 

39.9 0.
7 

553 1
1 

2.88 0.0
8 

0.7
1 

asphalt
ene 

164.4 0.4 1825.7 11.
1 

548.6 2.
5 

519.0 2.
3 

596 3 2.99 0.0
2 

0.6
3 

maltene 1.18 0.0
1 

17.9 0.6 5.4 0.
4 

5.1 0.
2 

438 3
1 

3.01 0.2
4 

0.8
5 

u: expanded (k = 2) combined standard uncertainties which include the uncertainties in weighing, blank 
correction and spike calibrations, mass spectrometry measurements of Re and Os, and      the 
intermediate precision of the results of repeated measurements of Re and Os reference solutions. 
rho: error correlation value between 187Re/188Os and 187Os/188Os.            
a: the progressively precipitated fractions of asphaltene are represented by the ratio of n-heptane to 
DCM applied in that step.      
b: this is the fraction still soluble in the 100% n-heptane in the last step of progressive precipitation.         
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Table 4 Re-Os data synopsis and mass balance for the progressively precipitated asphaltene 
fractions and the whole oil, n-heptane asphaltene and maltene for the Federal oil sample. 
Sampl

e 
a
 

Re 
(ppb) 

u Os 
(ppt) 

u 
192

Os 
(ppt) 

u 
187

Os 
(ppt) 

u 
187

Re/
188

Os 
u 

187
Os/

188

Os 
u rh

o 

65:35 96.2 0.2 567.3 4.
1 

153.0 0.
9 

202.8 0.
9 

1250 8 4.19 0.0
3 

0.7
1 

70:30 84.5 0.4 509.8 4.
5 

138.0 1.
1 

181.1 1.
2 

1218 1
1 

4.15 0.0
4 

0.7
0 

75:25 81.7 0.3 531.5 6.
5 

147.5 2.
3 

180.1 1.
9 

1101 1
7 

3.86 0.0
7 

0.8
1 

80:20 67.2 0.2 449.1 4.
2 

124.2 1.
2 

153.3 1.
2 

1077 1
0 

3.91 0.0
5 

0.7
5 

85:15 67.6 0.3 450.9 8.
3 

122.3 3.
5 

159.6 3.
3 

1100 3
1 

4.13 0.1
4 

0.8
0 

90:10 50.2 0.1 355.0 3.
7 

98.5 1.
1 

120.4 1.
1 

1014 1
2 

3.87 0.0
6 

0.7
5 

95:5 43.1 0.2 319.2 5.
5 

89.5 2.
2 

105.9 2.
2 

958 2
4 

3.75 0.1
2 

0.7
5 

100:0 26.9 0.1 201.2 3.
6 

53.2 1.
4 

74.4 1.
5 

1005 2
6 

4.42 0.1
5 

0.7
8 

soluble 
b
 

3.19 0.0
2 

30.2 1.
4 

8.4 0.
8 

10.2 0.
8 

755 7
0 

3.83 0.4
7 

0.7
5 

whole 
oil 

8.02 0.0
3 

55.3 1.
0 

14.9 0.
4 

19.8 0.
4 

1071 2
9 

4.22 0.1
4 

0.7
9 

asphalt
ene 

59.5 0.2 386.6 3.
1 

103.9 0.
7 

139.0 0.
7 

1138 8 4.23 0.0
4 

0.7
4 

maltene 1.11 0.0
1 

13.0 0.
7 

3.7 0.
4 

4.2 0.
3 

594 6
7 

3.59 0.5
0 

0.8
1 

u: expanded (k = 2) combined standard uncertainties which include the uncertainties in weighing, blank 
correction and spike calibrations, mass spectrometry measurements of Re and Os, and      the 
intermediate precision of the results of repeated measurements of Re and Os reference solutions. 
rho: error correlation value between 187Re/188Os and 187Os/188Os.            
a: the progressively precipitated fractions of asphaltene are represented by the ratio of n-heptane to 
DCM applied in that step.       
b: this is the fraction still soluble in the 100% n-heptane in the last step of progressive precipitation.         

 

 

Table 5 Re-Os data synopsis and mass balance for the progressively precipitated asphaltene 
fractions and the whole oil, n-heptane asphaltene and maltene for the Persian oil sample. 
Sampl

e 
a
 

Re 
(ppb) 

u Os 
(ppt) 

u 
192

Os 
(ppt) 

u 
187

Os 
(ppt) 

u 
187

Re/
188

Os 
u 

187
Os/

188

Os 
u rh

o 

65:35 15.9 0.1 55.7 1.
3 

17.2 0.
9 

14.7 0.
2 

1836 90 2.70 0.1
4 

0.9
8 

70:30 79.5 0.2 239.4 1.
6 

73.3 0.
4 

64.7 0.
3 

2156 14 2.79 0.0
2 

0.7
1 

75:25 66.8 0.2 202.3 1.
3 

61.3 0.
3 

56.3 0.
2 

2170 13 2.91 0.0
2 

0.7
2 

80:20 62.4 0.2 195.0 1.
4 

59.0 0.
4 

54.4 0.
3 

2105 15 2.92 0.0
3 

0.7
5 
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85:15 48.1 0.1 157.8 1.
3 

47.2 0.
4 

45.3 0.
3 

2026 17 3.03 0.0
3 

0.7
7 

90:10 42.3 0.1 147.2 1.
3 

43.8 0.
4 

42.9 0.
3 

1922 20 3.10 0.0
4 

0.7
7 

95:5 31.3 0.1 124.7 1.
2 

36.5 0.
4 

37.8 0.
3 

1708 20 3.28 0.0
5 

0.7
7 

100:0 12.60 0.0
3 

64.1 0.
8 

18.6 0.
4 

19.8 0.
2 

1347 26 3.36 0.0
7 

0.8
6 

soluble 
b
 

2.07 0.0
1 

21.2 0.
5 

6.4 0.
3 

5.8 0.
1 

641 29 2.88 0.1
4 

0.9
4 

whole 
oil 

2.83 0.0
2 

11.5 0.
4 

3.5 0.
3 

3.0 0.
1 

1589 13
6 

2.69 0.2
5 

0.9
0 

asphalt
ene 

49.9 0.1 160.6 1.
2 

48.0 0.
4 

46.1 0.
2 

2066 16 3.04 0.0
3 

0.7
9 

maltene 0.34 0.0
1 

4.3 0.
4 

1.4 0.
3 

1.0 0.
1 

488 10
5 

2.21 0.5
1 

0.9
1 

u: expanded (k = 2) combined standard uncertainties which include the uncertainties in weighing, blank 
correction and spike calibrations, mass spectrometry measurements of Re and Os, and      the 
intermediate precision of the results of repeated measurements of Re and Os reference solutions. 
rho: error correlation value between 187Re/188Os and 187Os/188Os.            
a: the progressively precipitated fractions of asphaltene are represented by the ratio of n-heptane to 
DCM applied in that step.       
b: this is the fraction still soluble in the 100% n-heptane in the last step of progressive precipitation.         

 

 

 

Table 6 Re-Os data synopsis and mass balance for the progressively precipitated asphaltene 
fractions and the whole oil, n-heptane asphaltene and maltene for the Purisima oil sample. 

Sampl
e 

a
 

Re 
(ppb) 

u Os 
(ppt) 

u 
192

Os 
(ppt) 

u 
187

Os 
(ppt) 

u 
187

Re/
188

Os 
u 

187
Os/

188

Os 
u rh

o 

65:35 119.7 0.4 558.0 3.
4 

208.2 1.
8 

62.1 0.4 1144 10 0.95 0.0
1 

0.7
4 

70:30 125.4 0.3 518.1 2.
1 

192.9 0.
8 

58.6 0.2 1294 6 0.96 0.0
1 

0.6
2 

75:25 105.1 0.3 397.7 1.
8 

147.9 0.
8 

45.4 0.2 1414 9 0.97 0.0
1 

0.6
9 

80:20 92.6 0.2 359.6 1.
4 

134.6 0.
6 

38.9 0.2 1369 7 0.92 0.0
1 

0.6
4 

85:15 56.3 0.1 197.3 1.
0 

73.4 0.
5 

22.4 0.1 1526 11 0.96 0.0
1 

0.7
4 

90:10 38.3 0.1 130.4 0.
8 

48.6 0.
4 

14.6 0.1 1567 14 0.95 0.0
1 

0.8
3 

95:5 42.9 0.1 141.3 5.
4 

52.4 4.
5 

16.5 1.3 1630 14
0 

1.00 0.1
2 

0.7
3 

100:0 16.23 0.0
8 

52.6 2.
4 

19.5 2.
0 

6.2 0.5 1658 17
3 

1.01 0.1
3 

0.7
8 

soluble 
b
 

1.39 0.0
4 

6.9 0.
9 

2.6 0.
8 

0.7 0.1 1056 32
8 

0.80 0.2
7 

0.9
2 

whole 
oil 

12.09 0.0
4 

41.3 0.
5 

15.4 0.
4 

4.6 0.1 1564 38 0.96 0.0
3 

0.8
0 
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asphalt
ene 

61.2 0.2 209.6 1.
1 

77.9 0.
5 

24.0 0.1 1562 11 0.98 0.0
1 

0.7
4 

maltene 0.59 0.0
1 

6.1 0.
3 

2.3 0.
3 

0.52 0.0
3 

502 60 0.71 0.0
9 

0.8
8 

u: expanded (k = 2) combined standard uncertainties which include the uncertainties in weighing, blank 
correction and spike calibrations, mass spectrometry measurements of Re and Os, and      the 
intermediate precision of the results of repeated measurements of Re and Os reference solutions. 
rho: error correlation value between 187Re/188Os and 187Os/188Os.            
a: the progressively precipitated fractions of asphaltene are represented by the ratio of n-heptane to 
DCM applied in that step.     
b: this is the fraction still soluble in the 100% n-heptane in the last step of progressive precipitation.         

 

 

 

Table 7 Re-Os data synopsis and mass balance for the progressively precipitated asphaltene 
fractions and the whole oil, n-heptane asphaltene and maltene for the RM8505 oil sample. 
Sampl

e 
a
 

Re 
(ppb) 

u Os 
(ppt) 

u 
192

Os 
(ppt) 

u 
187

Os 
(ppt) 

u 
187

Re/
188

Os 
u 

187
Os/

188

Os 
u rh

o 

70:30 20.73 0.0
8 

197.9 1.
8 

67.7 0.
8 

36.6 0.
4 

609 8 1.71 0.0
3 

0.6
9 

75:25 14.73 0.0
6 

160.4 1.
8 

55.9 0.
9 

27.2 0.
4 

524 9 1.54 0.0
4 

0.7
0 

80:20 11.96 0.0
5 

142.8 1.
8 

50.2 1.
0 

23.3 0.
5 

474 1
0 

1.47 0.0
4 

0.7
0 

85:15 9.90 0.0
8 

126.6 2.
7 

44.8 1.
9 

19.8 0.
8 

439 1
9 

1.40 0.0
8 

0.7
1 

90:10 7.24 0.0
5 

104.2 3.
9 

37.1 3.
0 

15.8 1.
3 

388 3
2 

1.35 0.1
5 

0.7
1 

95:5 5.71 0.1
1 

98.9 3.
7 

36.1 3.
0 

13.1 1.
0 

315 2
7 

1.15 0.1
3 

0.7
0 

100:0  4.07 0.1
3 

81.5 3.
2 

29.5 2.
6 

11.3 0.
9 

275 2
5 

1.21 0.1
4 

0.6
9 

soluble 
b
 

0.43 0.0
4 

15.2 0.
6 

5.6 0.
5 

1.9 0.
2 

151 1
9 

1.07 0.1
3 

0.5
5 

whole 
oil 

1.88 0.0
4 

23.6 0.
9 

8.2 0.
7 

4.0 0.
3 

454 4
1 

1.54 0.1
8 

0.7
2 

asphalt
ene 

14.56 0.0
6 

147.5 1.
9 

50.8 1.
1 

26.4 0.
5 

570 1
2 

1.65 0.0
5 

0.7
1 

maltene 0.27 0.0
4 

8.2 0.
4 

3.0 0.
4 

1.2 0.
1 

183 3
5 

1.24 0.1
8 

0.5
4 

u: expanded (k = 2) combined standard uncertainties which include the uncertainties in weighing, blank 
correction and spike calibrations, mass spectrometry measurements of Re and Os, and      the 
intermediate precision of the results of repeated measurements of Re and Os reference solutions.  
rho: error correlation value between 187Re/188Os and 187Os/188Os.            
a: the progressively precipitated fractions of asphaltene are represented by the ratio of n-heptane to 
DCM applied in that step.       
b: this is the fraction still soluble in the 100% n-heptane in the last step of progressive precipitation.         
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Table 8 Re-Os data synopsis and mass balance for the progressively precipitated asphaltene 
fractions and the whole oil, n-heptane asphaltene and maltene for the Viking-Morel oil sample. 
Sampl

e 
a
 

Re 
(ppb) 

u Os 
(ppt) 

u 
192

Os 
(ppt) 

u 
187

Os 
(ppt) 

u 
187

Re/
188

Os 
u 

187
Os/

188

Os 
u rh

o 

65:35 178.8 0.5 2288.7 12.
5 

686.5 2.
5 

653.5 2.
4 

518 2 3.01 0.0
2 

0.5
8 

70:30 201.5 0.5 2575.3 13.
9 

772.8 2.
7 

734.5 2.
6 

519 2 3.01 0.0
2 

0.5
8 

75:25 191.8 0.5 2472.3 13.
4 

742.5 2.
7 

703.7 2.
5 

514 2 3.00 0.0
2 

0.5
8 

80:20 167.7 0.4 2207.5 12.
2 

663.3 2.
5 

627.4 2.
4 

503 2 2.99 0.0
2 

0.5
9 

85:15 147.2 0.4 1999.1 11.
3 

600.9 2.
4 

567.7 2.
2 

487 2 2.99 0.0
2 

0.6
0 

90:10 122.3 0.3 1743.9 10.
4 

524.5 2.
3 

494.4 2.
1 

464 2 2.98 0.0
2 

0.6
2 

95:5 100.2 0.3 1477.7 9.9 443.9 2.
4 

420.3 2.
2 

449 3 3.00 0.0
2 

0.6
4 

100:0 63.9 0.2 997.6 8.8 301.5 2.
6 

279.5 2.
4 

422 4 2.93 0.0
4 

0.6
8 

soluble 
b
 

8.91 0.0
3 

153.5 1.5 46.1 0.
5 

43.7 0.
4 

385 4 3.01 0.0
4 

0.7
4 

whole 
oil 

12.33 0.0
3 

173.3 2.3 52.1 0.
9 

49.1 0.
8 

471 8 2.98 0.0
7 

0.7
1 

asphalt
ene 

129.9 0.3 1736.8 9.6 521.0 1.
9 

495.8 1.
8 

496 2 3.01 0.0
2 

0.5
8 

maltene 1.57 0.0
1 

31.2 0.8 9.5 0.
5 

8.6 0.
3 

330 1
7 

2.85 0.1
8 

0.7
6 

u: expanded (k = 2) combined standard uncertainties which include the uncertainties in weighing, blank 
correction and spike calibrations, mass spectrometry measurements of Re and Os, and      the 
intermediate precision of the results of repeated measurements of Re and Os reference solutions.  
rho: error correlation value between 187Re/188Os and 187Os/188Os.            
a: the progressively precipitated fractions of asphaltene are represented by the ratio of n-heptane to 
DCM applied in that step.       
b: this is the fraction still soluble in the 100% n-heptane in the last step of progressive precipitation.         

 

 

 

 
 
 
 
 
 
 
 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 
 
Table 9 the recovered Re and Os in concentrations and percentages and expected isotopic ratios of the 
progressive precipitation of asphaltenes 

Sampl
e 

mass 
(%) 

a
 

Re 
(ppb) 

b
 

192
Os 

(ppt) 
b
 

187
Os 

(ppt) 
b
 

Re 
c
 

192

Os 
c
 

187

Os 
c
 

187
Re/

18

8
Os 

d
 

187
Re/

18

8
Os i 

e
 

187
Os/

18

8
Os 

d
 

187
Os/

18

8
Os i 

e
 

Derby 100.2 163.8 547.7 514.1 10
0% 

100
% 

99% 595 596 2.97 2.99 

Federal 101.7 54.8 95.9 123.4 92
% 

92% 89% 1137 1138 4.07 4.23 

Persian 100.1 47.6 46.7 43.7 95
% 

97% 95% 2029 2066 2.96 3.04 

Purisim
a 

102.1 61.7 87.9 26.7 10
1% 

113
% 

111
% 

1397 1562 0.96 0.98 

RM850
5 

96.4 14.2 50.4 26.0 98
% 

99% 98% 563 570 1.63 1.65 

Viking-
Morel 

101.5 126.6 508.0 480.8 97
% 

97% 97% 496 496 3.00 3.01 

a: recovery of the mass of the fractions, the ratio of the total mass of all the fractions to the original bulk 
asphaltene used;     
b: recovered concentrations of Re, common Os (represented by 192Os) and 187Os; the total of Re (, 192Os 
and 187Os) concentrations of each fraction multiply by their mass percentages of the original bulk 
asphaltenes 
c: recovered concentrations of Re, common Os (represented by 192Os) and 187Os divided by the 
concentrations of the original bulk asphaltenes;       
d: expected bulk asphaltene isotopic ratios from the Re-Os measurements of all the fractions;           
e: measured bulk asphaltene isotopic ratios.               
 

 

Table 10 Re-Os data synopsis for the asphaltene fractions separated by n-alkane-DCM-methanol from 

the six oil samples 

Sample Re 
(ppb) 

± Os 
(ppt) 

± 
192

Os 
(ppt) 

± 
187

Os 
(ppt) 

± 
187

Re/
188

Os 
± 

187
Os/

188

Os 
± rh

o 

Derby 
oil  

             

n-C5 152.7 0.
4 

1709.0 10.
2 

514.3 2.
3 

483.8 2.
1 

590 3 2.98 0.0
2 

0.6
1 

n-C6 154.9 0.
4 

1745.1 10.
7 

525.5 2.
5 

493.3 2.
2 

586 3 2.97 0.0
2 

0.6
3 

n-C7 169.4 0.
6 

1820.0 11.
2 

548.0 2.
6 

514.8 2.
3 

615 4 2.97 0.0
2 

0.5
9 

n-C8 168.0 0.
5 

1860.7 11.
4 

560.0 2.
6 

526.8 2.
4 

597 3 2.98 0.0
2 

0.6
2 

n-C9 168.8 0.
5 

1822.0 11.
2 

548.5 2.
6 

515.5 2.
3 

612 3 2.97 0.0
2 

0.6
3 

n-C10 166.0 0.
5 

1786.4 11.
0 

537.9 2.
6 

505.2 2.
3 

614 3 2.97 0.0
2 

0.6
2 

Federal              
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oil 

n-C5 66.5 0.
2 

395.2 3.2 106.9 0.
7 

140.7 0.
8 

1238 9 4.17 0.0
4 

0.6
8 

n-C6 74.1 0.
2 

440.7 3.7 119.2 0.
9 

156.7 1.
0 

1236 1
0 

4.16 0.0
4 

0.7
2 

n-C7 73.3 0.
2 

450.2 4.0 121.9 1.
0 

160.0 1.
1 

1196 1
0 

4.15 0.0
4 

0.7
3 

n-C8 77.9 0.
2 

455.5 4.0 123.5 1.
0 

161.3 1.
1 

1255 1
1 

4.13 0.0
4 

0.7
2 

n-C9 75.4 0.
2 

443.6 3.9 120.2 1.
0 

157.4 1.
1 

1249 1
1 

4.15 0.0
4 

0.7
4 

n-C10 72.8 0.
2 

442.3 3.9 119.9 1.
0 

156.7 1.
1 

1209 1
0 

4.14 0.0
4 

0.7
3 

Persian 
oil 

             

n-C5 51.1 0.
1 

163.7 2.0 49.4 0.
9 

46.0 0.
4 

2058 3
8 

2.94 0.0
6 

0.8
9 

n-C6 57.8 0.
2 

181.2 2.2 55.0 1.
1 

50.3 0.
4 

2090 4
1 

2.89 0.0
6 

0.9
0 

n-C7 60.1 0.
2 

197.5 2.5 60.2 1.
3 

54.2 0.
5 

1989 4
1 

2.85 0.0
6 

0.9
1 

n-C8 64.4 0.
2 

206.7 2.9 63.5 1.
6 

55.3 0.
5 

2018 5
0 

2.76 0.0
7 

0.9
3 

n-C9 64.4 0.
2 

200.1 2.6 60.9 1.
3 

55.1 0.
5 

2103 4
5 

2.86 0.0
7 

0.9
1 

n-C10 63.9 0.
2 

200.4 2.6 61.3 1.
3 

54.4 0.
5 

2075 4
4 

2.81 0.0
6 

0.9
1 

Purisima 
oil 

             

n-C5 70.2 0.
2 

253.7 1.2 94.3 0.
6 

29.0 0.
1 

1480 9 0.97 0.0
1 

0.7
0 

n-C6 75.7 0.
2 

291.0 1.4 108.2 0.
6 

33.2 0.
2 

1392 9 0.97 0.0
1 

0.7
0 

n-C7 79.5 0.
2 

308.2 1.6 114.7 0.
8 

35.0 0.
2 

1378 1
0 

0.97 0.0
1 

0.7
4 

n-C8 84.3 0.
2 

321.2 1.7 119.6 0.
8 

36.4 0.
2 

1402 1
0 

0.96 0.0
1 

0.7
2 

n-C9 95.7 0.
5 

333.7 1.7 124.2 0.
8 

37.9 0.
2 

1533 1
3 

0.97 0.0
1 

0.6
0 

n-C10 76.2 0.
2 

296.6 2.6 110.5 1.
6 

33.4 0.
4 

1372 2
0 

0.96 0.0
2 

0.7
8 

RM8505              

n-C5 19.4 0.
1 

189.4 1.9 65.8 1.
0 

32.7 0.
5 

586 9 1.57 0.0
3 

0.7
3 

n-C6 20.4 0.
1 

197.3 2.0 68.4 1.
0 

34.4 0.
5 

593 9 1.59 0.0
3 

0.7
2 

n-C7 23.3 0.
1 

216.6 2.3 74.9 1.
2 

38.1 0.
5 

619 1
0 

1.61 0.0
3 

0.7
5 

n-C8 18.8 0.
1 

174.0 1.9 60.1 1.
0 

31.0 0.
5 

622 1
1 

1.63 0.0
4 

0.7
2 

n-C9 23.0 0. 213.2 2.3 73.8 1. 37.4 0. 619 1 1.61 0.0 0.7
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1 2 5 0 3 5 

n-C10 18.8 0.
1 

177.7 1.9 61.4 1.
0 

31.3 0.
4 

608 1
0 

1.61 0.0
3 

0.7
4 

Viking-Morel oil             

n-C5 143.9 0.
5 

1825.5 10.
8 

548.3 2.
4 

519.4 2.
2 

522 3 3.00 0.0
2 

0.5
5 

n-C6 153.9 0.
4 

1916.6 11.
6 

575.5 2.
6 

545.9 2.
4 

532 3 3.00 0.0
2 

0.6
0 

n-C7 158.0 0.
5 

1896.0 11.
5 

569.4 2.
6 

539.7 2.
4 

552 3 3.00 0.0
2 

0.5
8 

n-C8 152.7 0.
5 

1891.6 11.
5 

568.2 2.
6 

538.2 2.
4 

535 3 3.00 0.0
2 

0.6
0 

n-C9 159.0 0.
6 

1875.1 11.
4 

563.1 2.
6 

533.7 2.
4 

562 3 3.00 0.0
2 

0.5
7 

n-C10 153.0 1.
1 

1858.4 11.
4 

558.3 2.
6 

528.4 2.
4 

545 5 3.00 0.0
2 

0.3
8 

Samples are represented by the alkanes used for the separation of asphaltene and maltene       
 

 

 

Table 11 Re-Os data synopsis for the maltene fractions separated by n-alkane-DCM-methanol 

from the six oil samples 

Sampl
e  

Re 
(ppb

) 

± Os 
(ppt

) 

± 
192

O
s 

(ppt) 

± 
187

O
s 

(ppt) 

± 
187

Re/
188

O
s 

± 
187

Os/
188

O
s 

± rho 

Derby 
oil  

             

n-C5 1.81 0.0
1 

27.9 1.
2 

8.8 0.
8 

7.0 0.
6 

410 36 2.54 0.3
0 

0.7
3 

n-C6 2.61 0.0
1 

36.6 1.
5 

11.4 1.
0 

9.5 0.
8 

457 39 2.64 0.3
1 

0.7
3 

n-C7 3.42 0.0
3 

46.1 2.
0 

14.3 1.
2 

12.1 1.
0 

476 41 2.68 0.3
2 

0.7
3 

n-C8 3.79 0.0
2 

48.7 2.
0 

15.1 1.
3 

12.7 1.
0 

499 42 2.67 0.3
1 

0.7
2 

n-C9 3.63 0.0
2 

47.9 2.
0 

14.8 1.
2 

12.6 1.
0 

488 41 2.70 0.3
1 

0.7
2 

n-C10 3.71 0.0
2 

47.8 2.
0 

14.7 1.
2 

12.7 1.
0 

502 42 2.74 0.3
2 

0.7
2 

Federal 
oil 

             

n-C5 1.33 0.0
1 

15.6 0.
8 

4.6 0.
5 

4.6 0.
4 

576 61 3.20 0.4
3 

0.7
9 

n-C6 2.10 0.0
2 

20.6 1.
0 

5.8 0.
6 

6.7 0.
5 

716 71 3.62 0.4
6 

0.7
7 

n-C7 2.55 0.0
2 

22.5 1.
1 

6.3 0.
6 

7.4 0.
6 

803 76 3.73 0.4
6 

0.7
6 

n-C8 3.04 0.0
2 

28.2 1.
3 

8.1 0.
7 

8.9 0.
7 

743 67 3.46 0.4
2 

0.7
4 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

n-C9 3.01 0.0
2 

26.5 1.
2 

7.5 0.
7 

8.6 0.
7 

795 72 3.60 0.4
4 

0.7
4 

n-C10 3.20 0.0
2 

28.2 1.
3 

8.0 0.
7 

9.2 0.
7 

799 72 3.64 0.4
4 

0.7
4 

Persian 
oil 

             

n-C5 0.57 0.0
1 

4.7 0.
4 

1.5 0.
3 

1.1 0.
1 

746 15
5 

2.22 0.4
9 

0.9
2 

n-C6 0.86 0.0
1 

5.5 0.
4 

1.8 0.
3 

1.3 0.
1 

967 17
0 

2.32 0.4
5 

0.9
0 

n-C7 1.20 0.0
1 

6.6 0.
4 

2.0 0.
3 

1.7 0.
1 

1168 18
5 

2.60 0.4
6 

0.8
8 

n-C8 1.22 0.0
1 

6.5 0.
4 

2.0 0.
3 

1.7 0.
1 

1203 19
0 

2.63 0.4
7 

0.8
8 

n-C9 1.25 0.0
1 

7.3 0.
4 

2.3 0.
3 

1.9 0.
2 

1092 16
3 

2.60 0.4
4 

0.8
7 

n-C10 1.45 0.0
1 

7.1 0.
4 

2.2 0.
3 

1.8 0.
2 

1322 20
4 

2.67 0.4
7 

0.8
8 

Purisim
a oil 

             

n-C5 0.70 0.0
1 

7.7 0.
4 

3.0 0.
4 

0.4 0.
0 

456 58 0.47 0.0
8 

0.7
7 

n-C6 1.13 0.0
1 

7.1 0.
4 

2.8 0.
4 

0.6 0.
1 

812 10
9 

0.63 0.1
0 

0.8
1 

n-C7 1.40 0.0
1 

8.2 0.
4 

3.2 0.
4 

0.7 0.
1 

880 10
8 

0.65 0.1
0 

0.8
0 

n-C8 1.48 0.0
1 

8.5 0.
4 

3.3 0.
4 

0.7 0.
1 

902 10
8 

0.68 0.1
0 

0.7
9 

n-C9 1.83 0.0
1 

10.0 0.
5 

3.9 0.
4 

0.8 0.
1 

943 10
6 

0.69 0.1
0 

0.7
9 

n-C10 1.31 0.0
2 

7.5 0.
4 

2.9 0.
4 

0.6 0.
1 

904 12
4 

0.66 0.1
1 

0.8
2 

RM8505              

n-C5 0.75 0.0
1 

12.2 0.
5 

4.5 0.
5 

1.5 0.
1 

331 34 1.05 0.1
4 

0.7
7 

n-C6 0.58 0.0
1 

12.9 0.
6 

4.7 0.
5 

1.7 0.
1 

244 25 1.17 0.1
5 

0.7
6 

n-C7 0.81 0.0
2 

15.8 0.
7 

5.7 0.
6 

2.2 0.
2 

281 30 1.22 0.1
6 

0.7
7 

n-C8 0.92 0.0
2 

16.6 0.
8 

6.0 0.
6 

2.3 0.
2 

307 33 1.23 0.1
6 

0.7
7 

n-C9 1.20 0.0
2 

17.1 0.
8 

6.2 0.
6 

2.4 0.
2 

387 40 1.22 0.1
6 

0.7
7 

n-C10 1.39 0.0
2 

17.3 0.
8 

6.2 0.
6 

2.5 0.
2 

445 45 1.25 0.1
6 

0.7
7 

Viking-Morel oil             

n-C5 2.04 0.0
2 

37.3 1.
6 

11.4 1.
0 

10.2 0.
8 

356 31 2.83 0.3
3 

0.7
3 

n-C6 3.24 0.0
2 

60.7 2.
6 

18.5 1.
5 

16.5 1.
3 

348 29 2.82 0.3
3 

0.7
1 

n-C7 4.39 0.0 70.8 3. 21.4 1. 19.7 1. 408 34 2.92 0.3 0.7
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2 0 8 6 4 1 

n-C8 4.63 0.0
2 

73.3 3.
1 

22.4 1.
8 

19.9 1.
6 

411 34 2.82 0.3
2 

0.7
1 

n-C9 5.35 0.0
2 

84.3 3.
5 

25.6 2.
1 

23.3 1.
9 

416 34 2.88 0.3
3 

0.7
1 

n-C10 5.82 0.0
3 

95.2 4.
0 

28.9 2.
4 

26.2 2.
1 

400 33 2.87 0.3
3 

0.7
1 

Samples are represented by the alkanes used for the separation of asphaltene and maltene 
 
 
 
 
 
Table 12 Geochronology of the fractions of asphaltenes of the six crude oil samples in this study 
Sample source rock oil 

generati
on 

asphaltene fractions by progressive 
precipitation (n = 8 or 9) 

selection of 
asphaltene fractions 

Derby Permian  
Phosphoria 
Formation 

since 
Late 
Triassic 
and 
before 
Laramide 
orogeny 

Isoplot Model III,  
26 ± 43 Ma (Osi = 2.71 ± 0.42, MSWD = 
5.3) 

70:30, 75:25, 80:20, 
95:5; Model I,  
170 ± 50 Ma (Osi = 
1.27 ± 0.50, MSWD = 
0.5) 

Federal Permian  
Phosphoria 
Formation 

since 
Late 
Triassic 
and 
before 
Laramide 
orogeny 

Isoplot Model III,  
43 ± 82 Ma (Osi = 3.3 ± 1.5, MSWD = 18) 

excluding 85:15, 100:0 
and soluble; Model III, 
91 ± 35 Ma (Osi = 2.28 
± 0.65, MSWD = 4.5) 

Persian Cretaceous and/or 
Late Jurassic 

unknown Isoplot Model III,  
-6 ± 23 Ma (Osi = 3.17 ± 0.72, MSWD = 
36) 

/ 

Purisima Miocene  
Monterey Formation 

in the 
last five 
million 
years 

Isoplot Model III,  
2.8 ± 7.7 Ma (Osi = 0.89 ± 0.18, MSWD = 
32) 

65:35, 70:30, 75:25; 
Model I,  
5.5 ± 2.5 Ma (Osi = 
0.84 ± 0.06, MSWD = 
0.4) 

RM8505 Upper Cretaceous  
La Luna Formation 
(Presumably) 

since 
Miocene 

Isoplot Model I,  
98.4 ± 9.5 Ma (Osi = 0.70 ± 0.09, MSWD = 
1.9) 

/ 

Viking-
Morel 

Pennsylvanian-
Permian  
Minnelusa Formation 

unkown Isoplot Model III,  
17 ± 11 Ma (Osi = 2.9 ± 0.1, MSWD = 2) 

/ 

 

 

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 

 

Table 13 Geochronology of the asphaltene and maltene fractions of the six crude oil samples in this study 

Sam
ple 

source rock oil 
gene
ratio
n 

asphaltene and 
maltene (n-
heptane), crude 
oil 

Asphaltenes 
separated by n-
alkanes (n = 6) 

Maltenes 
separated by 
n-alkanes (n = 
6) 

Asphaltenes and maltenes 
separated by n-alkanes 
plus crude oil (n = 13) 

Der
by 

Permian  
Phosphoria 
Formation 

since 
Late 
Trias
sic 
befo
re 
Lara
mide 
orog
eny 

Isoplot Model III,  
-5 ± 790 Ma (Osi 
= 3.0 ± 7.4, 
MSWD = 6.0) 

Isoplot Model I,  
-3 ± 39 Ma (Osi 
= 3.00 ± 0.39, 
MSWD = 0.09) 

Isoplot Model 
I,  
110 ± 200 Ma 
(Osi = 1.8 ± 1.6, 
MSWD = 0.04) 

Isoplot Model III,  
96 ± 43 Ma (Osi = 2.00 ± 
0.43, MSWD = 2.1) 

Fed
eral 

Permian  
Phosphoria 
Formation 

since 
Late 
Trias
sic 
befo
re 
Lara
mide 
orog
eny 

Isoplot Model I,  
61 ± 44 Ma (Osi = 
3.07 ± 0.83, 
MSWD = 0.86) 

Isoplot Model I,  
-6 ± 50 Ma (Osi 
= 4.3 ± 1.0, 
MSWD = 0.55) 

Isoplot Model 
I,  
113 ± 110 Ma 
(Osi = 2.1 ± 1.3, 
MSWD = 0.25) 

Isoplot Model III,  
67 ± 22 Ma (Osi = 2.80 ± 
0.44, MSWD = 2.5) 

Pers
ian 

Cretaceous 
and/or Late 
Jurassic 

unkn
own 

Isoplot Model I,  
35 ± 14 Ma (Osi = 
1.82 ± 0.48, 
MSWD = 0.71) 

Isoplot Model 
III,  
18 ± 120 Ma 
(Osi = 2.2 ± 4.1, 
MSWD = 3.5) 

Isoplot Model 
I,  
51 ± 46 Ma 
(Osi = 1.59 ± 
0.85, MSWD = 
0.16) 

Isoplot Model III,  
21 ± 11 Ma (Osi = 2.12 ± 
0.37, MSWD = 2.6) 

Puri
sima 

Miocene  
Monterey 
Formation 

in 
the 
last 
five 
milli
on 
years 

Isoplot Model I,  
14.4 ± 4.5 Ma 
(Osi = 0.60 ± 0.12, 
MSWD = 3.5) 

Isoplot Model I,  
0.4 ± 3.4 Ma 
(Osi = 0.96 ± 
0.08, MSWD = 
1.4) 

Isoplot Model 
I,  
27.3 ± 8.7 Ma 
(Osi = 0.26 ± 
0.12, MSWD = 
0.07) 

Isoplot Model III,  
30.1 ± 4.3 Ma (Osi = 0.24 ± 
0.09, MSWD = 24) 

RM8
505 

Upper 
Cretaceous  
La Luna 
Formation 
(Presumabl
y) 

since 
Mioc
ene 

Isoplot Model I,  
62 ± 25 Ma (Osi = 
1.06 ± 0.23, 
MSWD = 0.03) 

Isoplot Model I,  
65 ± 47 Ma (Osi 
= 0.94 ± 0.47, 
MSWD = 0.64) 

Isoplot Model 
I,  
6 ± 58 Ma (Osi 
= 1.15 ± 0.33, 
MSWD = 1.3) 

Isoplot Model III,  
83 ± 20 Ma (Osi = 0.76 ± 
0.18, MSWD = 2.3) 

Viki
ng-
Mor
el 

Pennsylvani
an-Permian  
Minnelusa 
Formation 

unko
wn 

Isoplot Model I,  
59 ± 57 Ma (Osi = 
2.52 ± 0.47, 
MSWD = 0.02) 

Isoplot Model I,  
0 ± 34 Ma (Osi = 
3.00 ± 0.30, 
MSWD = 0.08) 

Isoplot Model 
I,  
40 ± 280 Ma 
(Osi = 2.6 ± 1.8, 
MSWD = 0.06) 

Isoplot Model I,  
16 ± 25 Ma (Osi = 2.86 ± 
0.22, MSWD = 0.36) 
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