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We present a prescription for using the a central charge to determine the flow of a strongly coupled
supersymmetric theory from its weakly coupled dual. The approach is based on the equivalence of the
scale-dependent a parameter derived from the four-dilaton amplitude with the a parameter determined from
the Lagrange multiplier method with scale-dependent R charges. We explicitly demonstrate this
equivalence for massive free N ¼ 1 superfields and for weakly coupled SQCD.
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I. INTRODUCTION

Renormalization group (RG) flow of quantum field
theories (QFTs) is thought to be irreversible. In two
dimensions, this irreversibility is encompassed by the
Zamalodchikov c-theorem, which states that one can define
a monotonically decreasing parameter that interpolates
between the central charges c [1] of two conformal theories
related by an RG flow. An equivalent parameter in four
dimensions is Cardy’s proposal of the a anomaly, the
coefficient of the Euler density in the trace of the energy
momentum tensor [2].
In a remarkable paper [3], Komargodski and Schwimmer

(KS) produced a general form for this coefficient to show that
its value will inevitably decrease if a system goes from a UV
to an IR fixed point. The method that was used in [3] is a
cousin of ’t Hooft anomaly matching, in the sense that a
spectator dilaton field is introduced that compensates the
anomaly and restores exact Weyl symmetry at all scales,
which is spontaneously broken by a dilatonVEV.Using such
a setup, thea parameter can be deduced from the four-dilaton
amplitude. The change in the a parameter between fixed
points, aIR − aUV , is then found to be always negative by
relating it via the optical theorem to the cross section. Thus,
theweak form of the a-theorem, that its valuewill decrease if
a system flows from a UV fixed point to an IR one, can be
considered proven. However, the strong version, namely that

there exists a monotonically decreasing a function with
unambiguous physical meaning all along the flow, appears to
be still open because of the presence of scheme-dependent β2

terms in the four dilaton amplitude, as discussed in [4–6].
Indeed, Jack and Osborn [7–9] showed the existence of a

function â related to a through the beta functions, that
coincides with it at fixed points and that flows with energy
scale μ as

μ
dâ
dμ

¼ χIJβ
JβI; ð1:1Þ

where βI are the beta functions of couplings λI , and χIJ is a
metric on the space of couplings. The problem of proving
the monotonicity of the function â (and, hence, the
irreversibility of RG flow) is then reduced to one of
proving the positive-definiteness of the metric χ on the
space of functions. This problem remains to be solved (for a
review see e.g., [10]).
Our purpose here is to point out that the parametric

closeness of a and â suggests a method of tracking the
approximate flow of a strongly coupled theory. Indeed,
generally, for flow between nearby fixed points, it seems
natural to attempt a perturbative expansion in terms of the
beta functions rather than in terms of any couplings [11]. In
this article, we explore the a parameter as the basis for such
an approach, showing howone can use it to follow the flowof
arbitrarily strongly coupled SQCD theories between fixed
points.
Central to this approach is of course the fact that it is

already known how to map the particle content of strongly
coupled “electric” SQCD theories to weakly coupled
“magnetic” ones via Seiberg duality [12,13]. Thus, one
can already determine all the discrete parameters of
strongly coupled theories, as well as much of their
holomorphic data, even when they are away from fixed
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points. The question we will address here is how one can
also determine the flow of the coupling in the strong theory,
up to the aforementioned corrections of order β2, by
mapping from the weak theory.
The approach continues in the spirit of ’t Hooft anomaly

matching, by considering the flow of the a parameter. In
order to define such a flow, we will use the KS determi-
nation of a which involves a certain integration of the four-
dilaton amplitude over the Mandelstam variable [14]

aUV − aKSðμÞ ¼
f4

4π

Z
s>μ2

ImAðsÞ
s3

ds; ð1:2Þ

where f is the dilaton decay constant and s is the
Mandelstam variable, and where we impose an IR cutoff
on the integral, s > μ2, in order to generate a running a
parameter, which we denote aKSðμÞ. The cutoff induced
scale dependence in the a parameter interpolates its value
smoothly and monotonically between its fixed point values.
If one supposes that there exist dual descriptions of the
entire flow between the UV and IR fixed points, then the
flow induced in the a parameter in the dual theories is
identical by the above prescription.
The route from the a parameters to the couplings is via

R-charges and, hence, anomalous dimensions. Indeed, at
the fixed points there already exist well known relations
between the anomalous dimensions of fields, their
R-charges (via the superconformal field theory), and the
a and c parameters. The latter relations e.g., take the form1

ã ¼ 3TrR3 − TrR; c̃ ¼ 9TrR3 − 5TrR; ð1:4Þ

where here R denotes the charges of states contributing to
the ’t Hooft anomalies (i.e., it would be R − 1 if the
superfield has charge R).
Thus, one prescription for defining a set of R-charges

along the flow is to continue to solve (1.4) for RðμÞ away
from the fixed points, using aKSðμÞ as defined in (1.2). We
should stress that such a prescription (and the anomalous
dimensions it gives rise to) corresponds to a choice of
renormalization scheme. However, as the right-hand side of
(1.2) is the integral of a physical quantity (namely, by the
optical theorem, the four-dilaton cross section) this par-
ticular choice has a physical meaning which is similar to
that of the “sliding scale” scheme [15,16]. Moreover, it is
independent of perturbation theory, so it has the same
interpretation irrespective of whether one is using the
electric or magnetic formulation.

A second reason to favor “flowing” R-charges defined in
such a way is that they appear to coincide with those of the
Lagrange-multiplier method suggested by Kutasov
[17,18].2 The starting point of our discussion will be to
demonstrate this unexpected equivalence, for flows near
fixed points in the Banks-Zaks limit. This gives some
physical meaning to the Lagrange-multiplier method when
the theory is strongly coupled. Remarkably the RG-scheme
implicit in applying (1.4) to (1.2), appears to correspond
to that implicit in the Lagrange-multiplier technique.3

Consequently one can determine the R-charges of the
strongly coupled theory from those of the weakly coupled
theory, by way of the matched a parameters, which have a
well-defined physical meaning in terms of the four-dilaton
amplitude, independent of whether the description is
strongly or weakly coupled. From there it is straightforward
to determine the anomalous dimensions; hence, the NSVZ
beta function, and ultimately the gauge coupling in the
strongly coupled description.

II. DILATON SCATTERING a VERSUS
LAGRANGE MULTIPLIER a

Let us begin by showing (in the Banks-Zaks limit) that the
aðμÞ parameter one extracts for SQCD at scale μ along the
flow between two fixed points using the KS definition [14]
coincides with the Lagrange multiplier a parameter of [17].
First consider aKSðμÞ in more detail. The prescription of

(1.2) can be understood in terms of the contour integral of
A=s3 around the loop shown in Fig. 1, where the radius
of the inner contour is μ2. The amplitude in this integral
is treated as holomorphic in the upper half-plane of
complex s, with branch cuts arranged along the real axis.
The integral in (1.2) corresponds to going along the I2
portion of the contour above the branch cuts of the
amplitude which run along the real axis to plus infinity
in the s channel (and minus infinity in the u-channel). In the
IR, the amplitude behaves as

AðsÞ ¼ 8ðaUV − aIRÞ
s2

f4
þO

�
m2ð4−ΔIRÞsΔIR−2

f4

�
; ð2:1Þ

where ΔIR > 4 is the lowest dimension of the irrelevant
operators (of the dilaton) in the IR theory, and hence m is
the scale of the relevant operators that we added into the
UV theory that generated them upon integrating out
degrees of freedom. In the limit that μ → 0, we may simply
neglect the terms with inverse powers of m (along with I3
which tends to zero) and performing the integral find by
Cauchy’s theorem [4],

1Here and in the following we will interchangeably use a and ã
related by

a ¼ 3

32ð4πÞ2 ã: ð1:3Þ

2This method relies on there being a Lagrangian description of
the theory, which will be assumed in the following.

3If along the flow a gauge invariant operator becomes free, a
new accidental symmetry arises and one should properly define
aKðμÞ along the lines of [19].
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−I1 ¼
8πðaUV − aIRÞ

f4
¼ I2 ¼ 2

Z
∞

0

ds
ImAðsÞ

s3
; ð2:2Þ

where we also require Schwartz reflectivity of the ampli-
tude (namely AðsÞ ¼ Aðs̄Þ). This (by way of the optical
theorem) is enough to establish the weak a-theorem.
By contrast at finite μ the answer for I1 is, of course, μ

dependent. To demonstrate what happens let us first revisit
the simple example of free scalar fields of massm discussed
in [3]. Using standard perturbation theory (with the con-
ventions of [3]) their contribution to the four-dilaton
amplitude is found to be

A ¼ −240ðaUV − aIRÞ

×
m4

f4

Z
1

0

dxðlogðm2 − sxð1 − xÞÞ

þ logðm2 þ sxð1 − xÞÞÞ þ const; ð2:3Þ

where we assume only these fields contribute to
aUV − aIR. The constant term is independent of s and
contains counter-terms to remove infinities, but it is not
important for the discussion. Expanding the logarithms in
s=m2 and performing the x integral gives the leading
contribution in (2.1) (which can be used to check the
prefactor). Alternatively, we note that the new absorptive
contribution to A comes from the region of the integral
where the argument of the first logarithm is negative,
sxð1 − xÞ > m2. Taking s → sþ iϵ in order to be above the
branch cuts, we find

ImA ¼ 240πðaUV − aIRÞ
m4

f4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

q
: ð2:4Þ

Inserting this into the integral I2 with a cutoff then gives a
running a parameter

aUV − aKSðμÞ ¼
f4

4π

Z
s>μ2

ImAðsÞ
s3

ds;

¼ ðaUV − aIRÞð1 − ρðμ=2mÞÞ; ð2:5Þ

where

ρðxÞ ¼
(
ð1 − x−2Þ3=2

�
1þ 3

2
x−2

�
; x ≥ 1

0 ; x ≤ 1:
ð2:6Þ

For later comparison, it is useful to rearrange the
expression as

aKS ¼ aIR þ ðaUV − aIRÞρðμ=2mÞ; ð2:7Þ

making it clear that ρðμ=2mÞ correctly scales the contri-
butions of the scalars to the aKS parameter continuously
and monotonically, with ρ ¼ 0 at μ ¼ 2m to ρ ¼ 1 at
μ → ∞. Thus, we may interpret the KS integral of (1.2) as
simply counting the imaginary (absorptive) contributions to
the amplitude from states that are able to go on shell when
s > μ2 (a useful reference in this context is [20]).
In order to compare the running aKS derived above with

the continuously varying aK function devised for SUSY
theories in [17], we need to extend the simple case above to
N ¼ 1 SUSY. Consider the free field theory, consisting
of Nf pairs of superfields Φa and Φ̃a, a ¼ 1…Nf. The
Lagrangian of [3] can be made supersymmetric in the
obvious way, by coupling the fields in a superpotential
mass-termW ⊃ mΩΦ̃IΔf×Δf

Φ, whereΩf is the canonically
normalized dilaton superfield with hΩi ¼ 1. This gives a
supersymmetry preserving mass m to Δf pairs of super-
fields. (As the superpartner of the dilaton does not appear in
any loops of interest, we can ignore it.)
The amplitude is, of course, augmented by superpartner

diagrams, but now supersymmetry guarantees that the
coefficient of terms such as (2.3) vanish because, otherwise
(as these terms are not zero in the limit of vanishing
external momenta and finite f), they would signal a
renormalization of the superpotential. The nonvanishing
terms of interest are, in the standard Passarino-Veltman
notation, of the form sB0ðs;m2; m2Þ and friends. Thus, the
contributions of interest are of the form

A ¼ −24ðaUV − aIRÞ
m2s
f4

Z
1

0

dxðlogðm2 − sxð1 − xÞÞ

− logðm2 þ sxð1 − xÞÞÞ þ const; ð2:8Þ

where as before the second term is really the uMandelstam
variable with t → 0.
Following the above treatment of the massive scalar, we

deduce a running aKS from the absorptive part which is

ImA ¼ 24πðaUV − aIRÞ
m2

f4
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

q
: ð2:9Þ

Inserting this into (1.2) then gives (2.7), but with a modified
scaling function,

FIG. 1. Contour for aKSðμÞ.
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ρðxÞ ¼
� ð1 − x−2Þ3=2 ; x ≥ 1

0 ; x ≤ 1:
ð2:10Þ

Let us now compare this expression with the aK function
of [17]. The Lagrange multiplier method for this simple
case goes as follows. In general, the running a parameter is
defined by adding a Lagrange multiplier for each relevant
operator. In this case, there is only one of them, which
imposes the constraint from the mass term. The a-function
is therefore given simply by

ãK ¼ ðNf − ΔfÞ½3ðR − 1Þ3 − ðR − 1Þ�
þ Δf½3ðr − 1Þ3 − ðr − 1Þ� þ λΔf½r − 1�; ð2:11Þ

where R is the R-charge of the Nf − Δf chiral superfields
that remain massless and r is the R-charge of the last Δf

flavors, which is considered to be a function of the energy
scale. Thus, the R-symmetry we are following along the
flow is a linear combination of the superconformal
R-symmetry of the deep UV and the SUðNfÞ × SUðNfÞ
flavor symmetry with which it mixes because of the
mass-term (specifically the diagðΔfINf−Δf

;ðΔf−NfÞIΔf
Þ

component).4

One first solves to maximize the a function with respect
to unfixed R-charges, ∂a

∂r ¼ ∂a
∂R ¼ 0. In the absence of the

mass-term constraint, this simply chooses the free-field
value of 2=3 for both R and r. However, at arbitrary
Lagrange multiplier values one finds

R ¼ 2=3;

r ¼ 1 −
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p

3
: ð2:12Þ

The case where λ ¼ 0 corresponds to R ¼ r ¼ 2=3 in the
deep UV, while λ ¼ 1 corresponds to r ¼ 1, which is the
value forced upon it by the mass-term in the deep IR.
Substituting these values into ãK we have ãUV ¼ 2

9
Nf and

ãIR ¼ 2
9
ðNf − ΔfÞ, and a running a parameter given by

ãK ¼ ãIR þ ðãUV − ãIRÞð1 − λÞ32: ð2:13Þ

Comparison with (2.10) shows that the two a functions
precisely coincide if one makes the identification λ≡ 4m2

μ2
.

Note that the a functions in the supersymmetric case match
essentially because of the nonrenormalization theorem, and
that as usual the Lagrange multiplier is essentially the
“coupling” that induces the flow.
For the SUSY gauge theories of interest the situation is

more complicated but the interpretation is always the same;
namely aKS counts the physical states that are able to

contribute to the absorptive part of the four-dilaton ampli-
tude.MeanwhileaK tracks themixingof theUVR-symmetry
with flavor symmetry along the flow [18].Wewill now show
that at weak coupling, close to the Caswell-Bank-Zaks fixed
point, they are equivalent in this case as well.5

Consider SQCD with Nf flavors of quarks Q and Q̃
flowing from the asymptotically free theory to the fixed
point. The aKS parameter was derived in terms of the gauge
coupling in [14];

aKSðμÞ ¼ aUV − N2
c

128π2

Z
∞

g−2ðμÞ

dλ
λ2

βλ; ð2:14Þ

where λ ¼ 1=g2. In the limit μ → 0, this expression reduces
to Eq. (3.12) of [14]. Using

b2 ¼
NcNf

ð8π2Þ2 ; g2� ¼
8π2

Nf
ϵ; ð2:15Þ

where

ϵ ¼ 3Nc − Nf

Nc
≪ 1; ð2:16Þ

the integral gives

aKSðμÞ ¼ aUV − N3
cNf

32ð8π2Þ3 g
2ðμÞð2g2� − g2ðμÞÞ; ð2:17Þ

with g2ðμÞ being a solution of the two-loop RGE,

dg2

d log μ
¼ b2g4ðg2 − g2�Þ: ð2:18Þ

Again, we can compare this parameter to the continu-
ously varying aK-function of [17]. In an SUðNÞ gauge
theory, it can be written in generality as

ãK ¼ 2ðN2
c − 1Þ þ

X
i

jrijða1ðRiÞ − ðRi − RIR
i Þa01ðRiÞÞ;

ð2:19Þ

where jrij is the dimension of the representation ri, the
prime means derivative with respect to R and where

a1ðrÞ≡ 3ðr − 1Þ3 − ðr − 1Þ: ð2:20Þ

In the case of electric SQCD, this gives

4This is true for Δf < Nf: when Δf ¼ Nf there is, of course,
no relevant R-symmetry left.

5It would be interesting to look for reasons behind this
equivalence that are valid beyond weak coupling, along the lines
of [21,22]. For the present work the equivalence in the weakly
coupled theories is sufficient.
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ãKðμÞ¼ 2ðN2
c−1Þþ2NcNfða1ðRQÞ− ðRQ−R�

QÞa01ðRQÞÞ:
ð2:21Þ

In order to compare with aKS, we relate the R-charges to the
anomalous dimensions through

RQ ¼ 2

3

�
1þ γQ

2

�
: ð2:22Þ

This equation holds along the flow, but only at the endpoints
of the flow does RQ coincide with the respective super-
conformal R-charges of the fixed points. The anomalous
dimension can be perturbatively calculated at one loop as

γQ ¼ −
Nc

8π2
g2; ð2:23Þ

and then using

RUV
Q ¼ 2

3
; R�

Q ¼ 1 −
Nc

Nf
; ð2:24Þ

we easily find the same leading contribution as that in (2.17),
and hence aK ≡ aKS as we wished to prove.
At this point one could ask, what is the meaning of

equating a scheme-independent quantity such as aKSðμÞ
with a scheme-dependent one such as aKðμÞ. This is, of
course, what we always do when we calculate a cross
section (in which we are bound to choose a scheme), and
compare it to its (scheme-independent) measured value.
The theoretical result becomes scheme independent only
when all terms in perturbation theory are taken into
account, but never at finite order. Therefore the equivalence
is only a perturbative one. Nevertheless as we shall now
show, what it does do is allow us to develop a perturbative
description of the flow in a strongly coupled theory.

III. A PERTURBATIVE CALCULATION
OF A NONPERTURBATIVE FLOW

We now wish to explore how this equivalence can be
used to determine the gauge coupling flow in a strongly
coupled description. To do so we will consider a strongly
coupled SQCD (in the conformal window) when one
invokes a flow by adding a mass term for one flavor,
and will make use of the well-known duality between this
theory and Higgsing in a weakly coupled magnetic
description, described in [12].6

The original electric SQCD theory is an N ¼ 1 SUðNcÞ
theory with Nf þ 1 flavors of Q and Q̃ quarks and anti-
quarks. We add a mass-term of the form

We ¼ mQNfþ1Q̃
Nfþ1 ð3:1Þ

in its superpotential. In the IR, i.e., at energy below m, it
flows to a new theory with Nf flavors; hence, effectively,
there is a UV fixed point with Nf þ 1 flavors at energy
above m, and an IR fixed point with Nf flavors. If we take
2Nf ¼ 3Nc þ 1 then the theory is expected to be strongly
coupled for large Nc all along the flow.
Meanwhile the magnetic description is an SUðÑc þ 1Þ

theory with Ñc ¼ Nf − Nc and, as well as Nf þ 1 flavors
of quarks q and q̃, it contains an elementary ðNf þ 1Þ ×
ðNf þ 1Þ meson Φ formed from a composite of the electric
quarks, which we will take to be Φ≡ 1

ΛQ · Q̃ where Λ is
the dynamical scale of the theory, and a superpotential

Wm ¼ mΛΦNfþ1

Nfþ1 þ ỹΦq̃ · q; ð3:2Þ

whose first term derives from the mass-term, and where the
Yukawa coupling is ỹ ¼ Λ=Λ̂ with Λ̂ ∼ Λ. The magnetic
theory which has Nf ¼ 3Ñc − 1 is arbitrarily weakly
coupled, so its flow can be followed perturbatively. In
particular the linear meson term in the superpotential
causes a Higgsing down to SUðÑcÞ. For completeness
we summarize the flows as seen in the two dual theories in
Table I, where the RG scale is defined with respect to m,
that is

t≡ log ðμ=mÞ: ð3:3Þ

We can easily determine the difference between the UV
and IR a-central charges

ãUV − ãIR ¼ 2NcðNf þ 1Þa1ð1 − Nc=ðNf þ 1ÞÞ
− 2NcNfa1ð1 − Nc=NfÞ

¼ 6N2
cð2Nf þ 1Þ

N2
fðNf þ 1Þ2 ; ð3:4Þ

which is positive for all Nf > 0, and thus the weak
a-theorem is satisfied.
As discussed, our aim is to determine the gauge coupling

for the original strongly coupled electric theory. In order to do
this, we first consider in detail the dual of the UV theory, and
the dual of the IR theory, both of which are known. By
choosing Nf ≈ 3Ñc and large Ñc ≡ Nf − Nc, the magnetic
theory7 is made perturbative both in the UV and the IR so

TABLE I. The dual theories considered in the text with
Nc ¼ Nf − Ñc. We consider throughout the case of
Nf ¼ 3

2
Nc þ 1

2
¼ 3Ñc − 1.

IRðt < 0Þ UVðt > 0Þ
Magnetic Theory Nf flavors Nf þ 1 flavors

Ñc colors Ñc þ 1 colors
Electric Theory Nf flavors Nf þ 1 flavors

Nc colors Nc colors

6For a pedagogical description of such a setup, see e.g., [23].
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we can calculate its flowwith good accuracy along thewhole
RG trajectory. As we also know the (in principle non-
perturbative) interacting electric theories in both the UV
and the IR, we assume that the flow of the magnetic theory is
dual to that of the strongly coupled electric theory along the
whole trajectory.
Before entering into the explicit computation, let us

clarify the idea and the procedure we will follow. The
magnetic theory is perturbative and is, thus, under control
in the whole region between the deep UV (μ ¼ þ∞,
t ¼ þ∞) and the deep IR (μ ¼ 0, t ¼ −∞). The gauge
and Yukawa couplings are continuous along the whole
flow, while the two beta functions and the two anomalous
dimensions are, due to the mass-independent character of
the NSVZ scheme, discontinuous at the explicit quark mass
scale (μ ¼ m, t ¼ 0).
However, in one half of the flow (μ < m) we are able to

use the a parameters to track (perturbatively and in the
NSVZ scheme) the evolution of the strongly coupled theory
from that in the weakly coupled one. In particular, the
electric theory is nonperturbative and what we know from
Seiberg duality is that it is equivalent to the magnetic theory
at μ ¼ m (t ¼ 0), which becomes the “new” UV, and in the
deep IR at μ ¼ 0 (t ¼ −∞). By continuity8 we assume that
the perturbative magnetic and nonperturbative electric
theories are dual between these two endpoints. In this
region, the physical quantity aKS is by definition the same
in the magnetic and electric theory, and as motivated in the
previous section, we equate aK and aKS, allowing us to
explicitly calculate the central charge in the whole energy

range 0 < μ < m in the magnetic theory, as a perturbative
function of the gauge and Yukawa coupling constants. This
(via the equivalence of the a parameters) yields the non-
perturbative R-charges and, hence, anomalous dimensions
of the strongly coupled electric theory, which in turn yields
the explicit numerical solution of the RGE for the electric
gauge coupling constant.

A. UV (0 < t < ∞): Magnetic theory

We start in the UV with the magnetic theory, which is an
SU(Ñc þ 1) gauge theory with Nf þ 1 quarks qþ q̃ and
ðNf þ 1Þ2 singlet meson fields with the superpotential of
(3.2). We will work in terms of

α̃g ≡ ðÑc þ 1Þg̃2
ð4πÞ2 ; α̃y ≡ ðÑc þ 1Þỹ2

ð4πÞ2 : ð3:5Þ

The theory is asymptotically freewhenNf þ 1 ¼ 3Ñc since

b1 ¼ 3ðÑc þ 1Þ − ðNf þ 1Þ ¼ 3; ð3:6Þ

and at t → ∞ all couplings go to zero. For μ ≫ Λ, the
one-loop approximation is sufficient, and one has the
usual evolution with dynamical scale given by
Λ≡ μ exp ð− 1

2b1α̃gðμÞÞ. Towards the IR the flow approaches

a Banks-Zaks fixed point that for larger Ñc becomes
increasingly perturbative. Indeed, the two-loop RGEs (see
e.g., [11,24]) give the fixed points to be at

α̃gð0þÞ ¼
ð2 Nfþ1

Ñcþ1
þ 1ÞðNfþ1

Ñcþ1
− 3Þ

6þ 8
Nfþ1

Ñcþ1
− 4ðNfþ1

Ñcþ1
Þ2 þ 2

Nfþ1

ðÑcþ1Þ3
⟶
Nf→3Ñc−1 7

2Ñc
þ 43

2Ñ2
c
þOð1=Ñ3

cÞ;

α̃yð0þÞ ¼
2ð1 − 1

ðÑcþ1Þ2Þð
Nfþ1

Ñcþ1
− 3Þ

6þ 8
Nfþ1

Ñcþ1
− 4ðNfþ1

Ñcþ1
Þ2 þ 2

Nfþ1

ðÑcþ1Þ3
→
Nf→3Ñc−1 1

Ñc
þ 7

Ñ2
c
þOð1=Ñ3

cÞ: ð3:7Þ

Defining

ΔðþÞ
g̃ ðtÞ ¼ α̃gðtÞ − α̃gð0þÞ; ΔðþÞ

ỹ ðtÞ ¼ α̃yðtÞ − α̃yð0þÞ; ð3:8Þ
the two-loop RGEs can be rephrased as

dα̃gðtÞ
dt

¼ −2α̃2gðtÞ ×
��

6 − 4
Nf þ 1

Ñc þ 1
þ 2

Nf þ 1

ðÑc þ 1Þ3
�
ΔðþÞ

g̃ ðtÞ þ 2

�
Nf þ 1

Ñc þ 1

�
2

ΔðþÞ
ỹ ðtÞ

	
;

dα̃yðtÞ
dt

¼ 2α̃yðtÞ ×
�
−2

�
1 −

1

ðÑc þ 1Þ2
�
ΔðþÞ

g̃ ðtÞ þ
�
2
Nf þ 1

Ñc þ 1
þ 1

�
ΔðþÞ

ỹ ðtÞ
	
: ð3:9Þ

The terms proportional to α̃gð0þÞ and α̃yð0þÞ in these expressions are the one-loop terms, while the remaining terms are
two-loop.

7It is convenient to take the magnetic theory to be perturbative as then only one coupling—the electric gauge coupling—is
nonperturbative and, thus, the matching of a parameters determines it uniquely.

8For a discussion on this point see e.g., [23].
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Finally, we can calculate the R-charges at the t ¼ 0þ
fixed point,

Rqð0þÞ¼ 1−
Ñcþ1

Nfþ1
; RΦð0þÞ¼ 2−2Rqð0þÞ; ð3:10Þ

which are perturbative (free) Rq ¼ RΦ ¼ 2=3 in the large
Ñc limit with Nf → 3Ñc − 1, in accord with the magnetic
theory being parametrically perturbative for all positive t.

B. UV (0 < t < ∞): Electric theory

Apart from the far UV (as it is also asymptotically free),
the form of the electric dual theory is known only in the
t → 0þ limit, where it is an SUðNcÞ gauge theory with
Nf þ 1 quarks Qþ Q̃ and vanishing superpotential. In the
same limit, the fixed point determines the value of the
R-charge:

RQð0þÞ ¼ 1 −
Nc

Nf þ 1
: ð3:11Þ

In the large Nc limit (as we haveNf ¼ 3
2
Nc þ 1), this value

is clearly interacting, RQ → 1=3, in accord with the
composite object Q · Q̃ becoming free. We do not know
the value of the electric gauge coupling at other values of t.

C. IR ( −∞ < t < 0): Magnetic theory

We now turn to the flow of interest, towards the IR, for
t < 0. Here the magnetic theory is an SU(Ñc) gauge theory
with Nf quarks qþ q̃ and Nf × Nf gauge singlet mesons,
which for convenience we continue to call Φ. At t ¼ 0 the
boundary conditions of the couplings,

α̃g ≡ Ñcg̃2

ð4πÞ2 ; α̃y ≡ Ñcỹ2

ð4πÞ2 ; ð3:12Þ

are determined by continuity,9

α̃gð0−Þ ¼
Ñc

Ñc þ 1
α̃gð0þÞ;

α̃yð0−Þ ¼
Ñc

Ñc þ 1
α̃yð0þÞ: ð3:13Þ

The flow of the magnetic theory can be determined
perturbatively from the RGEs. Defining

Δð−Þ
g̃ ðtÞ ¼ α̃gðtÞ − α̃gð−∞Þ;

Δð−Þ
ỹ ðtÞ ¼ α̃yðtÞ − α̃yð−∞Þ; ð3:14Þ

where the new fixed point is at

α̃gð−∞Þ ¼
ð2 Nf

Ñc
þ 1ÞðNf

Ñc
− 3Þ

6þ 8
Nf

Ñc
− 4ðNf

Ñc
Þ2 þ 2

Nf

Ñ3
c

⟶
Nf→3Ñc−1 7

6Ñc
þ 25

9Ñ2
c
þOð1=Ñ3

cÞ;

α̃yð−∞Þ ¼
2ð1 − 1

Ñ2
c
ÞðNf

Ñc
− 3Þ

6þ 8
Nf

Ñc
− 4ðNf

Ñc
Þ2 þ 2

Nf

Ñ3
c

⟶
Nf→3Ñc−1 1

3Ñc
þ 8

9Ñ2
c
þOð1=Ñ3

cÞ; ð3:15Þ

they are

dα̃gðtÞ
dt

¼ −2α̃2gðtÞ ×
��

6 − 4
Nf

Ñc
þ 2

Nf

Ñ3
c

�
Δð−Þ

g̃ ðtÞ þ 2

�
Nf

Ñc

�
2

Δð−Þ
ỹ ðtÞ

	
;

dα̃yðtÞ
dt

¼ 2α̃yðtÞ ×
�
−2

�
1 −

1

Ñ2
c

�
Δð−Þ

g̃ ðtÞ þ
�
2
Nf

Ñc
þ 1

�
Δð−Þ

ỹ ðtÞ
	
: ð3:16Þ

The evolution is shown in Fig. 2 for Ñc ¼ 100 and Nf ¼ 3Ñc − 1.
It is useful to explicitly express the flowing R-charges in terms of the couplings. This we can do because the theory is

perturbative (approximately, order by order in perturbation theory). From the usual definition of the NSVZ beta function
and the relation in (2.22), we have

βðα̃gÞ ¼ −6α̃2gfðα̃gÞ
�
1þ Nf

Ñc
ðRq − 1Þ

�
;

βðα̃yÞ ¼ 3α̃yð2Rq þ RΦ − 2Þ; ð3:17Þ

9Note that we are using the NSVZ scheme which is a mass-independent scheme: this means that the perturbative gauge couplings are
continuous passing the mass scale, while the beta functions or anomalous dimensions are not. The apparent discontinuity in (3.13) is
clear from the way the coupling constants are defined in (3.12), i.e., with the discontinuity being in the number of colors.
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with

fðxÞ≡ 1

1 − 2x
: ð3:18Þ

Comparison with the rhs of (3.16) gives

RqðtÞ−Rqð−∞Þ¼−
2

3

�
1−

1

Ñ2
c

�
Δð−Þ

g̃ þ2

3

Nf

Ñc
Δð−Þ

ỹ þOðΔ2Þ;

RΦðtÞ−RΦð−∞Þ¼2

3
Δð−Þ

ỹ þOðΔ2Þ: ð3:19Þ

Their evolution for t < 0 is shown in Fig. 3. Note that
although we do not display them explicitly, the order Δ2

terms as derived from Eq. (3.17) are actually required later

in order to get consistent convergence to the IR fixed point
in the strongly coupled description.

D. IR (−∞ < t < 0): Electric theory

Up to this point, for t < 0, everything has been pertur-
bative. Now let us now consider the original electric
theory in the range −∞ < t < 0. In the limit t → −∞,
the theory is SUðNcÞ SQCD with Nf quarksQþ Q̃ and no
superpotential.
Let us assume that the same pair of dual theories

describe the physics along the whole RGE running. As
the parameter aKS is a function of the amplitude its
definition is independent of which description is being
used and, hence, its value in the electric and magnetic
theories is the same all along the flow.

FIG. 3. The “flowing” R-charges (green) of the quark (left and meson (right) in the magnetic SQCD with gauge SUðÑcÞ and Nf

quarks qþ q̃ and N2
f mesons Φ, with Nf ¼ 3Ñc − 1. The flow has been found using the perturabative relations (3.17) and (3.17) and

using Ñc ¼ 100. The blue straight lines are the values Rqð0þÞ and RΦð0þÞ obtained in the fixed point above the mass m. Notice that the
values Rqð0−Þ and RΦð0−Þ do not coincide with them: although the gauge couplings g̃ and ỹ are continuous, the R-charges are not: they
are in some sense proportional to the noncontinuous beta functions. Finally the orange straight lines are the limiting values Rqð−∞Þ and
RΦð−∞Þ obtained from the IR fixed point couplings.

FIG. 2. The perturbative running of the gauge (left) and Yukawa (right) coupling constants of the magnetic theory for Ñc ¼ 100 and
Nf ¼ 3Ñc − 1, from the UV fixed point (t ¼ 0 with Nf þ 1 quarks and Ñc þ 1 colors), to the IR fixed point (t ¼ −∞ with Nf quarks
and Ñc colors). The lower and upper lines denote the UV and IR values of the couplings.
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We will adopt the assumption, motivated in the
Introduction, that in regions where the beta functions are
small the aKS-function is the same as the function aK
derived using the Lagrange multiplier definition [17].
Hence, using (2.21) and equating aK’s in the two descrip-
tions as in the Appendix, one finds

2ðN2
c−1Þþ2NfNcða1ðRQðtÞÞ
− ðRQðtÞ−RQð−∞ÞÞa01ðRQðtÞÞÞ

¼ 2ðÑ2
c−1Þþ2NfÑcða1ðRqðtÞÞ

− ðRqðtÞ−Rqð−∞ÞÞa01ðRqðtÞÞþN2
fða1ðRΦðtÞÞ

− ðRΦðtÞ−RΦð−∞ÞÞa01ðRΦðtÞÞÞ; ð3:20Þ

which can be used to determine RQðtÞ. Its behavior is
shown in Fig. 4.
From there it is straightforward to determine the gauge

coupling from the NSVZ beta function. Defining the
electric gauge coupling as

αg ≡ Ncg2

ð4πÞ2 ; ð3:21Þ

and using

βðαgÞ ¼ −6α2gfðαgÞ
�
1þ Nf

Nc
ðRQ − 1Þ

�
; ð3:22Þ

one can now integrate, to find

FðαgðtÞÞ − Fðαgð0−ÞÞ ¼
Z

t

0

dt0
�
1þ Nf

Nc
ðRQðt0Þ − 1Þ

�
;

ð3:23Þ

where

FðxÞ≡ 1

6

�
1

x
þ 2 log x

�
: ð3:24Þ

This can then be solved for αg. Note that as mentioned the
OðΔ2Þ terms in Eq. (3.19) are required here. If they are
omitted then there are order 1=N2

c errors in the integrand,
which over the order −t ∼ N2

c running required to get to the
fixed point, translates into errors of order unity: in other
words there would not be proper convergence to a
fixed point.
Of course, we do not know the numerical value of the

boundary condition, αgð0−Þ, in the electric theory, but since
the rhs of (3.23) is negative, and since the gauge coupling
must obey αg < 1=2 in order that fðαgÞ defined in (3.18)
does not change sign, there is a maximum allowed value of
αgð0−Þ given by

Fðαmax
g ð0−ÞÞþ

Z
−∞

0

dt0
�
1þNf

Nc
ðRQðt0Þ−1Þ

�
¼Fð1=2Þ:

ð3:25Þ

For our inputs, this is given by

αmax
g ð0−Þ ¼ 0.0216164: ð3:26Þ

As an illustrative example, we take three different inputs
(0.99, 0.96, 0.9) for the ratio αgð0−Þ=αmax

g ð0−Þ and obtain
numerically the flows shown in Fig. 5 for the nonpertur-
bative coupling αgðtÞ. There is, of course, only one correct
numerical boundary condition at t ¼ 0− corresponding to
the electric theory dual to the perturbative magnetic one,

FIG. 4. The R-charge (green) of the quark in the electric SQCD
with gauge group SUðNcÞ and Nf quarks Qþ Q̃, with
Nf ¼ 3Ñc − 1, using (3.20). As before, the blue straight line
is the value at t ¼ 0þ, while the orange line is the asymptotic
value in the IR.

FIG. 5. The nonperturbative running of the gauge coupling
constant of the electric theory SUðNcÞ with Nf quarks Qþ Q̃,
for three different values of the ratio αgð0−Þ=αmax

g ð0−Þ, and
for Ñc ¼ 100, Nf ¼ 3Ñc − 1 and Nc ¼ Nf − Ñc. Note that

αg ≡ Ncg2

ð4πÞ2.
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but unfortunately it cannot be determined.10 All we know is
that it must be nonperturbative, so too small ratios
αgð0−Þ=αmax

g ð0−Þ are unacceptable because they would
not reproduce the known anomalous dimensions in the
deep IR.
The entire flow including the R-charges can, of course,

be expressed in terms of the Lagrange multipliers of [17], in
the manner described in the Introduction and in Sec. II. We
included them for completeness in the Appendix.

IV. EQUALITY OF CRITICAL EXPONENTS

The critical exponent provides a mild but nevertheless
important check on the consistency of this picture. It is
defined as the minimal eigenvalue of the matrix of coupling

derivatives of the beta functions around the fixed
point11:

β0 ≡min

�
positive eigenvalues

�∂βαa
∂αb

�
F:P:



: ð4:1Þ

It is a renormalization-scheme-independent quantity and,
therefore, should be equal for dual theories [25,26].
Usually, of course, this equivalence cannot be checked
because one cannot compute in the strongly coupled theory.
However, our prescription (aðelÞKS ¼ aðmagÞ

KS ) allows it to be
checked explicitly, as we now show.
In the magnetic description, the theory is perturbative,

and so we can simply use (3.16) to evaluate the critical
exponent:

�∂βαa
∂αb

�
F:P:

¼

0
B@−2α̃2gð−∞Þ

�
6 − 4

Nf

Ñc
þ 2

Nf

Ñ3
c

�
−2α̃2gð−∞Þ

�
2
�
Nf

Ñc

�
2
�

2α̃yð−∞Þ
�
1 − 1

Ñ2
c

�
ð−2Þ 2α̃yð−∞Þ

�
2
Nf

Ñc
þ 1

�
1
CA: ð4:2Þ

For Nf ¼ 3Ñc − 1, one obtains the leading order in 1=Ñc approximation, using (3.15),

β0mag ¼
7

3Ñ2
c
; ð4:3Þ

while the second, larger, eigenvalue is found to be equal to 14=ð3ÑcÞ.
In the strongly coupled electric description, there is a single gauge coupling, so that

β0el ¼
∂βαgðtÞ
∂αgðtÞ

����
t→−∞

¼
d
dt βαgðtÞ
d
dt αgðtÞ

����
t→−∞

¼ d
dt

log ðRQðtÞ − RQð−∞ÞÞ
����
t→−∞

: ð4:4Þ

Usually, in the nonperturbative theory, the relation between RQðtÞ and αgðtÞ is not known. Here, however, we have a relation
between RQðtÞ and the known RqðtÞ and RΦðtÞ of the perturbative magnetic theory through (3.20). We may, therefore,
expand a around t ¼ −∞,

aðtÞ ¼ að−∞Þ þ
X
i;j

1

2

∂2a
∂Ri∂Rj

ð−∞ÞðRiðtÞ − Rið−∞ÞÞðRjðtÞ − Rjð−∞ÞÞ þ � � � ; ð4:5Þ

and from there must find

∂2ael
∂R2

Q
ð−∞ÞðRQðtÞ − RQð−∞ÞÞ2 ≈ ∂2amag

∂R2
q

ð−∞ÞðRqðtÞ − Rqð−∞ÞÞ2 þ ∂2amag

∂R2
M

ð−∞ÞðRΦðtÞ − RΦð−∞ÞÞ2: ð4:6Þ

Since the second derivative of a over the R-charges is proportional to the b-central charge of a conserved current (in this
case it is the baryon current) and, thus, strictly nonzero, we must have the same scaling,

RQðtÞ − RQð−∞Þ ∼ RqðtÞ − Rqð−∞Þ ∼ RΦðtÞ − RΦð−∞Þ ∼ exp ðβ0magtÞ; ð4:7Þ
in the asymptotic region t → −∞. But then, from (4.4), we consistently find

β0el ¼ β0mag: ð4:8Þ

10It would be interesting to attempt to extend the approach to include the mass term explicitly with another Lagrange multiplier, as for
the free-field theory in the Introduction. However, as one would have to describe a Higgsing in the magnetic theory, this would be
significantly more complicated, and it is not clear how one could fix several Lagrange multipliers with only a single a parameter.

11Here one cannot compare the full matrices or even all their eigenvalues, because e.g., the dimensions of the matrices do not agree.
However the minimal eigenvalue has a physical scheme-independent meaning in both descriptions.
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We conclude that ael ¼ amag along the flow is compat-
ible with the equality of the electric and magnetic critical
exponents. Of course, this is not a particularly restrictive
condition, and many other relations would have given
equality. For example

amag ¼ AðaelÞ ð4:9Þ

for an arbitrary function AðxÞ with

Aðaelð−∞ÞÞ ¼ aelð−∞Þ;
A0ðaelð−∞ÞÞ ≠ 0: ð4:10Þ

would suffice.

V. CONCLUSION

In this paper, we discussed the use of the a central charge
as a method of determining the flow in a strongly coupled
supersymmetric theory from its weakly coupled dual.
Although there are other examples of exact duality in field
theory along an entire flow (e.g., [27]), this method seems
particularly general and well suited to N ¼ 1 supersym-
metry. Crucial to the approach is the equivalence of the
scale-dependent a parameter determined from the four-
dilaton amplitude with an IR cutoff, and the a parameter
determined in the Lagrange multiplier method of
Refs. [17,18] with “flowing” R-charges. We showed that
this equivalence holds directly for massive free N ¼ 1
superfields, as well as weakly coupled SQCD. Assuming it
to hold generally amounts to a particularly physical choice
of RG scheme, in which the running R-charges are always
determined precisely from the four-dilaton amplitude. In
this scheme, which is clearly well defined regardless of
which formulation is being used, one can map the flow of a
weakly coupled magnetic dual to the original strongly
coupled electric theory. The specific system we considered
was the well-known pair of original SQCD Seiberg duals,

with the magnetic description (with weak gauge and
Yukawa coupling constants) running perturbatively from
a fixed point in the UV to a different fixed point in the IR
due to a mass-deformation, and the electric SQCD dual
running between strongly coupled fixed points due to a
meson-induced Higgsing.
We should add that the mapping only seems to work

straightforwardly in the direction of magnetic to electric, as
in that case there is only one R-charge to determine (namely
that of the electric quarks), and there is only one parameter
(namely, the a parameter) with which to do it. Mapping in
the converse direction may be possible in conjunction with
a maximization [28], but is less obvious.

ACKNOWLEDGMENTS

We are extremely grateful to Colin Poole for interesting
discussions. B. B. acknowledges the financial support from
the Slovenian Research Agency (research core funding
No. P1-0035). The work of F. S. is partially supported by
the Danish National Research Foundation under the Grant
No. DNRF:90. B. B. thanks CP3 Origins Odense for
hospitality.

APPENDIX: THE LAGRANGE MULTIPLIERS

Here, we explicitly show how the Lagrange multipliers
of [17,18] flow in the model discussed in Sec. III. We start
with the original magnetic a function,

ãmag ¼ 2ðÑ2
c − 1Þ þ 2ÑcNfa1ðRqÞ þ N2

fa1ðRΦÞ
− λ̃gNfðRq − Rqð−∞ÞÞ þ λ̃yNfð2ðRq − Rqð−∞ÞÞ
þ ðRΦ − RΦð−∞ÞÞÞ: ðA1Þ

By a maximization, we have [28]

∂ãmag

∂Rq
¼ ∂ãmag

∂RΦ
¼ 0; ðA2Þ

FIG. 6. The Lagrange multipliers of the magnetic theory.
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which gives the following for the Lagrange multipliers:

λ̃g ¼ 2Ñca01ðRqÞ − 2Nfa01ðRΦÞ; ðA3Þ

λ̃y ¼ −Nfa01ðRΦÞ: ðA4Þ

Similarly, for the electric theory, one gets

ãel ¼ 2ðN2
c − 1Þ þ 2NcNfa1ðRQÞ

− λgNfðRQ − RQð−∞ÞÞ; ðA5Þ

giving

λg ¼ 2Nca01ðRQÞ ðA6Þ

Plugging (A3) and (A4) into (A1), (A6) into (A5), and
equating the two a-central charges, we obtain (3.20).
From the perturbative knowledge of RqðtÞ and RΦðtÞ, we

can thus draw λ̃gðtÞ in the magnetic theory discussed in the

main text, while from the nonperturbative knowledge of
RQðtÞ using (3.20) we get λgðtÞ for the strongly coupled
electric theory. The graphs are shown in Figs. 6 and 7.
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