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ABSTRACT: Sediment transport equations typically produce transport rates that are biased by orders of magnitude. A causal com-
ponent of this inaccuracy is the inability to represent complex grain‐scale interactions controlling entrainment. Grain‐scale incipient
motion has long been modelled using geometric relationships based on simplified particle geometry and two‐dimensional (2D) force
or moment balances. However, this approach neglects many complexities of real grains, including grain shape, cohesion and the
angle of entrainment relative to flow direction. To better represent this complexity, we develop the first vector‐based, fully three‐di-
mensional (3D) grain rotation entrainment model that can be used to resolve any entrainment formulation in 3D, and which also
includes the effect of matrix cohesion. To apply this model we use X‐ray computed tomography to quantify the 3D structure of wa-
ter‐worked river grains. We compare our 3D model results with those derived from application of a 2D entrainment model. We find
that the 2D approach produces estimates of dimensionless critical shear stress (τ∗cr) that are an order of magnitude lower than our 3D
model. We demonstrate that it is more appropriate to use the c‐axis when calculating 2D projections, which increases values of τ∗cr to
more closely match our 3D estimates. The 3D model reveals that the main controls on critical shear stress in our samples are pro-
jection of grains, cohesive effects from a fine‐grained matrix, and bearing angle for the plane of rotation (the lateral angle of departure
from downstream flow that, in part, defines the grain’s direction of pivot about an axis formed by two contact points in 3D). The struc-
tural precision of our 3D model demonstrates sources of geometric error inherent in 2D models. By improving flow properties to bet-
ter replicate local hydraulics in our 3D model, entrainment modelling of scanned riverbed grains has the potential for benchmarking
2D model enhancements. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.
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Introduction and Problem Statement

The initiation of transport of grains in a stream is dependent upon
the driving bed shear stress (τb) crossing some critical threshold
for entrainment: the critical shear stress, τcr, the dimensionless
form of which is known as the Shields parameter, τ∗cr (Shields,
1936). Although Shields (1936) defines τ∗cr as the ratio of fluid
force on the grain to the submergedweight of the grain, the com-
prehensive review by Buffington and Montgomery (1997) high-
lights that in natural systems there are many other factors, which
affect entrainment. These factors include grain protrusion (de-
fined fully below, but a function of projection from a mean bed

elevation into the flow and grain exposure), intergranular geom-
etry (a function of grain shape, sorting and packing), and fine
sediment infiltration. These recognised characteristics of natu-
ral systems led to a number of definitions linking the threshold
of motion to simple geometric properties and grain arrange-
ments, whereupon entrainment models were developed using
a 2D static force balance (Armanini and Gregoretti, 2005;
Kirchner et al. 1990; Lamb et al. 2008; Naden, 1987; Wiberg
and Smith, 1987) or a 2D static moment balance (Bridge and
Bennett, 1992; Ling, 1995; Papanicolaou et al.2002; Vollmer
and Kleinhans, 2007; Wu and Jiang, 2007; Wu and Chou,
2003; Wu and Yang, 2004). These 2D entrainment models re-
sulted in considerable variation in estimated values of τcr in
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the literature linked to a combination of a lack of observational
data and variation between derived models (Buffington and
Montgomery, 1997).
Despite the acknowledged geometrical complexity of natural

river systems, the approaches cited above make a number of
significant simplifications in that they assume a given grain (i)
is spherical or ellipsoidal (or indeed, circular or elliptical in
2D), (ii) pivots about a single contact point in the downstream
direction, (iii) is unaffected by mortaring by fine sediment
(Barzilai et al. 2013; Hodge et al. 2013), and (iv) is not partially
buried beneath other grains. A few 3D entrainment models
have been developed that are capable of more realistic geomet-
ric arrangements addressing the reliance on a single contact
point noted above (Ali and Dey, 2016; Dey, 1999; Nabi et al.
2013); nevertheless, they still rely on spherical approximations
of grains with relatively simple particle arrangements when
compared to the natural conditions of riverbeds. Furthermore,
the simplistic representation of grains as spheres can lead to fur-
ther assumptions about simple ratios between grain diameter
and projection being suitable to characterise the exposure of
the grain. A number of studies have highlighted the fact that
existing geometric grain entrainment models are developed
for idealised laboratory or theoretical conditions and so do
not reproduce the conditions found in natural riverbeds. Miller
et al. (1977) showed that despite using a carefully selected set
of entrainment data from non‐cohesive, uniform and well‐
rounded or spherical grains, considerable scatter still existed
in the threshold curves derived from their measurements. Simi-
larly, Buffington et al. (1992) noted the relatively poor perfor-
mance of the Wiberg and Smith (1987) model of grain
entrainment, and advocated extending it to include the effects
of packing, grain arrangement (including partial burial) and
protrusion‐ induced flow acceleration as seen in natural
systems.
Several studies address entrainment effects from grain expo-

sure and projection through theoretical development (Kirchner
et al. 1990; Wiberg and Smith, 1987) or flume experiments
using natural river gravels (Fenton and Abbott, 1977), and
from grain sheltering through remote sensing of bed topogra-
phy (Measures and Tait, 2008). Measures and Tait (2008)
identified two mechanisms of grain sheltering: direct shelter-
ing, where adjacent particles prevent flow forces from directly
acting upon the grain, and remote sheltering, where distant
upstream particles modify local flow conditions in the vicinity
of the grain. Empirical methods have been employed to iden-
tify the effects of friction angles and sorting (Johnston et al.
1998; Komar and Carling, 1991) as well as grain size and
shape (Komar and Li, 1986) on sediment entrainment. And
whilst this research identified important relationships between
entrainment shear stress and granular properties of coarse
river sediment and their distributions, these studies are still
based on relatively simple geometries. Simplified models,
such as those described above, do not take into account more
complex grain characteristics such as particle arrangement
and orientation as well as additional spatial angles that, along
with pivot angle, better describe the full range of motion dur-
ing grain entrainment.
To improve the performance of geometric grain entrainment

models there is a need to better account for the complexities of
natural systems, including addressing the fundamental
point that riverbed structures are three dimensional in nature.
Existing models, such as those identified above, treat the
entrainment and resistance forces used in 2D terms and/or
use simple grain geometry and arrangements, giving rise to
an oversimplification of the problem. Similarly, current
entrainment models do not account for the cohesion forces
that fine sediment can exert on grains in natural systems

(Barzilai et al. 2013; Hodge et al. 2013). Until recently, 2D
models have been a necessary simplification because of the dif-
ficulty in measuring the 3D geometry of a water‐worked bed of
grains. However, techniques such as high‐throughput X‐ray
computed tomography (XCT) provide a new opportunity for
measuring 3D bed structure, providing a motivation for the de-
velopment of new 3D models.

Application of any 3D entrainment model requires high‐res-
olution data of a grain arrangement from which to calculate
grain parameters including size and geometry, spatial orienta-
tion, exposed area, elevation and the proximity of grain‐to‐
grain contact points. Non‐intrusive imaging methods such as
high‐throughput XCT have been used in geosciences and
geomechanics for a number of years (Wildenschild and
Sheppard, 2013; Ahmed et al. 2016b; Callow et al. 2018),
for example to explore pore networks (Pierret et al. 2002),
the breakthrough of solutes in porous media (Clausnitzer and
Hopmans, 2000) or hyporheic zone sediment structure (Chen
et al., 2009, 2010; Packman et al. 2006). Despite various hy-
drological applications (Wildenschild et al. 2002), and some
preliminary explorations using magnetic resonance imaging
(Haynes et al. 2009; Kleinhans et al. 2008), there are no pub-
lished examples of using XCT to quantify river bed sediment
geometry in a way pertinent to grain‐scale entrainment
models.

This paper contributes two advances. The first is a novel 3D
entrainment model that employs vector mechanics to account
for the 3D geometric structure of grains and their surroundings
as well as incorporating the effects of cohesive resisting forces.
We chose to use the 2D Kirchner et al.(1990) geometric grain
entrainment model as a basis of comparison with our 3D en-
trainment model. The second advance is developing a method
for collecting and processing high‐resolution XCT data from
sediment beds. We use the new 3D model and XCT data to es-
tablish the τ∗cr for individual grains within two river bed samples
taken from a prototype scale flume experiment: one of coarse
grains and one with additional cohesive sediments. We com-
pare our results to τ∗cr values calculated using the Kirchner et al.
(1990) model, and also evaluate the impact of the new cohe-
sion term.

Grain Rotation Threshold of Entrainment
Models

Here vector algebra is applied to a 3D moment balance to de-
rive a physically‐based threshold of motion entrainment
model, which greatly simplifies the 3D modelling process
when compared with the oft‐used trigonometric method. Our
focus is exclusively on grain rotation as it is the primary mech-
anism of entrainment (Agudo et al. 2014), although it should
be recognised that all grains can undergo a mixture of entrain-
ment modes throughout the sediment transport process (Ancey
et al. 2006). Since our 3D model implements XCT scanned im-
ages of bed sediment, it utilises spatial proximity of surround-
ing grains and their contact points. Therefore, we choose an
existing 2D grain protrusion‐based entrainment model to facil-
itate comparison with our 3D vector‐based entrainment
model.

Revisiting a 2D grain protrusion‐based entrainment
model

Prior to developing a 3D entrainment model, it is useful to
establish the basis of a typical 2D grain protrusion‐based
entrainment model. In this instance the Kirchner et al. (1990)
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model is presented, although it is noted that any other
model based on grain protrusion could be used to compare with
our vector‐based 3D entrainment model developed below. The
key components of the 2D entrainment model are defined be-
low, but for full details see Kirchner et al. (1990). Kirchner et al.
(1990) used the 2D framework derived by Wiberg and Smith
(1987), where they account for bed slope in a static force bal-
ance used to derive their entrainment model. Kirchner et al.
(1990) presumed negligible bed slope for their model by setting
bed slope to zero. Here we use a trigonometric method to derive
the same 2D entrainment model that Kirchner et al. (1990) used,
except based on a static moment balance of forces about a point
of contact between two grains, which forms a rigid body centre
of rotation in the entrainment model (head of vector C in
Figure 1a). The driving forces of entrainment, namely drag, FD,
and lift, FL, act upon a circular particle and are functions of a
logarithmic velocity flow profile, u(z), (Equation (1a)). These
forces oppose a resistant force, namely submerged grain weight,
FW. A moment of force is the perpendicular distance from the
centre of rotation for a rigid body to the line of action of the force
times the magnitude of that force. Summing all of the moments
(positive for clockwise rotation; negative for anticlockwise rota-
tion) and setting their sum equal to zero yields the static moment
balancewhereupon entrainment occurs (Equation (1b)). The en-
trainment forces of drag and lift depend on grain protrusion,
which is defined by two components: projection (p) of the top
of the grain above mean bed elevation; and exposure (e) of the
top of the grain above local upstream maximum bed elevation
(Kirchner et al., 1990, Appendix). It is theoretically assumed
for the latter that the grain of interest, or test grain of diameter,
D, sits on a bed of uniform grains of median grain size, K50,
and is a function of the mean friction angle, α, such that their
geometric relationship is linked (Figure 1b, Equation (1c)). Thus
the three key equations that define the 2D Kirchner model are

uðzÞ ¼
ffiffiffiffiffi
τb
ρ

r
κ−1f ðzÞ; for f ðzÞ ¼ ln

z þ z0
z0

� �
if z≥0;

0 otherwise;

8<
: (1a)

FD
1
2
D cos α þ FL

1
2
D sin α−FW

1
2
D sin α ¼ 0; (1b)

e ¼ 1
2
D−K50 þ D þ K50ð Þcos α½ �; p ¼ e þ π

12
K50; (1c)

where u(z) is flow velocity relative to height, z, above mean
bed height at z=0, ρ is the density of water, τb is the bound-
ary shear stress, κ=0.407 is van Karman’s constant, f(z) is a
logarithmic profile, and z0 = K84 /10 is a length scale. The
drag force, FD, is expressed as an integral of the product of

dynamic pressure, q ¼ 1
2 ρuðzÞ2, and the cross‐sectional area

of the grain, dA=w(z)dz, integrated over the protruding por-
tion of the grain

FD ¼ CD

2
ρ∫

p

p−ewðzÞuðzÞ2dz

¼ CD

2
τb
κ2
∫
p

p−e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2− 2z− 2p−Dð Þ½ �2

q
f ðzÞ2dz;

(2)

where CD is the drag coefficient, and w(z) is the width of the
grain cross‐section as a function of elevation z. The lift force,
FL, is the product of the dynamic pressure differential across
the top and bottom of the grain and the planar cross‐sec-
tional area of the grain

FL ¼ CL

2
ρA uðpÞ2−uðp−DÞ2
h i

¼ CL

8
τb
κ2

πD2 f ðpÞ2−f ðp−DÞ2
h i

;

(3)

where CL is a lift coefficient and A is the plan view cross‐
sectional area of the grain. In Equations (2) and (3), Kirchner
et al. (1990) used coefficient values of 0.40 and 0.20 for CD

and CL, respectively. The submerged weight force, FW, is de-
fined as

FW ¼ 1
6

ρs−ρð ÞgπD3; (4)

where ρs and ρ are the density of sediment and water, re-
spectively, and g is gravitational acceleration of 9.81ms−2.
Substituting Equations (1a), (1c) and (2)–(4) into the 2D mo-
ment balance, Equation (1b), Kirchner et al. (1990) expressed
the τcr as

τcr ¼ ρs−ρð Þg πD3

6

� �

� 1
tan α

CD

2κ2
∫
p

p−e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2− 2z− 2p−Dð Þ½ �2

q
f ðzÞ2dz

�

þ π
8
CL

κ2
D2 f ðpÞ2−f ðp−DÞ2
h i�−1

:

(5)

Developing a vector‐based 3D grain rotation
model

To account for the geometrical complexity of grains found
in natural river systems, we use a vector‐based 3D
moment balance approach for resolving τcr. The approach
essentially adapts the components of fluid mechanics
(Pritchard and Mitchell, 2015) used in the 2D critical shear
model (Kirchner et al. 1990) for use within a 3D rigid body
mechanics framework (Beer et al. 2013) and also accounts
for an additional resisting force associated with cohesion. It
is important to point out that the model being developed
is fairly simple, assuming a logarithmic velocity flow profile
where all forces are configured in a simple orientation relative
to the system reference frame. Consequently, any additional
driving and resisting forces or fluvial mechanics modifications

Figure 1. (a) Diagram of forces acting on a grain: FL, FD and FW are the lift, drag and submerged weight forces, respectively, acting on the grain. U is
the mean flow velocity at height Z above the mean bed elevation. (b) Idealized geometry for calculating grain projection (p) and exposure (e) as a
function of the diameters of the test grain (D) and the bed particles (K) and the mean friction angle represented by the pivot angle (α). Redrawn after
Kirchner et al. (1990).

3D ENTRAINMENT MODELWITH APPLICATION TO CT SCANNED RIVERBED SEDIMENT
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could subsequently be included as components within the 3D
vector‐based framework (e.g. forces related to flow turbulence).

A 3D vector is written as F ¼ Fx îþ Fy ĵþ Fẑ k, where Fx, Fy, and

Fz are the scalar components, and î; ĵ, and̂ k are the orthonormal
unit vectors corresponding to the (x,y,z) axes of a Cartesian refer-
ence frame. To simplify the 3Dentrainmentmodel, the reference
frame is chosen such that force vectors are oriented along single
vector components. Here the stream flow velocity is defined in
the direction of the x‐axis, uî (ms−1), and gravity in the direction

of the z‐axis, ĝk (9.81ms−2). Unless otherwise stated, all vectors
in this section are given as 3 × 1 column vectors to ensure cor-
rectly applied vector calculations.

Typically, in the 2D case, grains are assumed to rotate in the
direction of flow, and a pivot angle is formed between the grav-
ity vector and the vector extending from the grain’s centre of
mass to a single point of contact with an adjacent downstream
grain. However, in reality, grains do not pivot about a single
contact point but rather they do so about an axis of rotation
(AOR), A, formed by the vector difference of a left contact vec-
tor, CVL, and a right contact vector, CVR, between two contact
points of adjacent grains (Figure 2a). Each contact vector ex-
tends from the grain’s centre of mass to a contact point with
the adjacent grain. For illustration, think of a grain rotating
within the saddle formed by two downstream grains. All of
the action of a pivoting grain occurs within the plane of rotation
(POR), which is orthogonal to the AOR (x′z′‐plane in Figure 2a,
b). The 3D orientation of the POR is induced by the rotation
axis, where all of the 3D vector mechanics affecting rotation
about an axis essentially collapse onto the 2D subspace we re-
fer to as the POR.

Within any 3D axis rotational framework, an arbitrary vec-
tor, V, in 3D vector space, may be resolved into two orthog-
onal component vectors: one vector parallel to the AOR, VA,
and another vector that spans the POR, VP (note vector sub-
scripts in Figure 2a,b). For example, the drag force, FD,
shown in Figure 2a, is parallel to the downstream flow direc-
tion along the x‐axis. Here drag force is resolved into two

orthogonal component vectors: one that is projected parallel
to the AOR, FDA , the other that is projected onto the POR,
FDP . Of these two orthogonal component vectors, only the
POR force projection affects entrainment of the grain since
the AOR force projection is parallel to the rotation axis. As
an analogy, an open door does not swing shut due to gravity,
which is a vector parallel to the door’s AOR along its hinges;
you must apply an external, nonparallel force to push the
door shut.

Figure 2 shows that all forces involved in grain entrainment
act along multiple angles, only one of which is the pivot angle.
The overhead view of the grain (Figure 2a) shows that the ar-
rangement of the two contact points and the grain’s centre of
mass determines a bearing angle (β, Figure 2a) and a tilt angle
(γ, not shown) for the POR as well as a pivot angle (α,
Figure 2b) that lies within the POR. We define the bearing angle
as the angle formed between the POR and the direction of
stream flow, and the tilt angle as the angle formed between
the AOR vector and the horizontal xy‐plane. These two depar-
ture angles, one from the downstream flow direction (bearing)
and the other from gravity (tilt), define the 3D spatial orienta-
tion of the POR as it begins its forward rotation (pivot) at the
threshold of entrainment.

To obtain the pivot angle, either contact vector plus the gravity
vector must be projected onto the POR before calculating the
angle between these projected vectors. The 3 × 3matrix that pro-
jects any vector onto the AOR is λ(λTλ)−1λT, where λ is the unit
vector for the AOR (Figure 2a) and superscript T is the transpose
of a vector. The projection that is orthogonal to the AOR projec-

tion, which projects any vector onto the POR, is I3−λðλT λÞ−1λT ,
where I3 is the 3 × 3 identity matrix. Hence, without loss of gen-

erality, the projection of CVL onto the POR is given by CVLP ¼
ðI3−λðλT λÞ−1λT ÞCVL (Figure 2a). Similarly, the bearing angle is
found by projecting the x‐axis unit vector î onto an ‘un‐tilted’

vertical POR. Let λXY be λ, where the k̂ scalar component is

set to zero and normalized. Then I3−λTXY ðλTXY λXY Þ−1λXY is the
matrix that projects any vector onto the vertical POR, and

Figure 2. (a) Overhead image of a 3D ellipsoidal grain on a sediment bed is overlaid by a vector diagram shown in the xy‐plane, with z‐axis going
into the page. The AOR vector (A, blue arrow) formed by the vector difference of left and right contact vectors (CVL and CVR, red arrows) that extend
from the centre of mass of the grain to where the grain makes contact with two neighbouring surface grains (green stones). Vector A forms a pivot for
grain rotation when acted upon by a drag force (FD, violet arrow). The drag force resolves as two component vectors: one that is parallel to the AOR
(FDA) andone that resides within the POR (FDP ). Vectors that reside within the POR, denoted by the P subscript, contribute to pivoting the grain (e.g. FDP

and CVLP ). (b) The same grain viewed within the 3D POR reference frame (x′,z′) indicates the y′‐axis is coming out of the page. The 3D POR view
shows component vectors of resultant forces (FEP and FRP , violet arrows) and their positions (REP and RRP , red arrows), which are the two moment
arms for applied forces acting about the rigid body centre of rotation (A, circular blue arrow). Angles for pivot, α, and bearing, β, are indicated. Tilt
angle, γ, which is the departure angle of the rotation axis from the horizontal plane, is zero in the diagram and not shown. [Colour figure can be
viewed at wileyonlinelibrary.com]
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îXY ¼ ðI3−λTXY ðλTXY λXY Þ−1λXY Þî is the projection of the unit
vector î onto the vertical POR. Finally, we use the definition of
the dot product to find the angles for pivot, α, bearing, β, and tilt,
γ, which are given by

α ¼ arccos
CVLP ·GP

jCVLP jjGP j
� �

; (6a)

β ¼ arccos
îXY ·î
jîXY j

� �
; (6b)

γ ¼ arccos λ·λXYð Þ; (6c)

where GP is the projection of gravity ĝk onto the POR deter-
mined by the same projection used for contact vector projec-
tions, and |A| is the norm of arbitrary vector A. It is important
to realize that the angles defined by Equations (6) are unneces-
sary for a vector‐based 3D entrainment model. Nevertheless,
since they are important to describe entrainment behaviour
and to evaluate the 3D model, these angles are calculated once
threshold of entrainment is determined.
Our 3D entrainment model uses four forces acting upon a

grain: the drag force, FD, the lift force, FL, the submerged weight
of the grain, FW, and a cohesive force, FC, due to fine‐grained
matrix making contact with the particle (Figure 2b). The resul-
tant forces for entrainment FE=FD+FL and for resistance FR=FW
+FC are each applied at positions RE and RR, respectively. Each
position vector extends from anywhere along the AOR (either
contact point is most convenient) to the line of action of the ap-
plied force (Figure 2b). The static moment balance about an
AOR is given as the scalar triple product

λ · RE�FE þ RR�FRð Þ ¼ 0;

λ · RE� FD þ FLð Þ þ RR� FW þ FCð Þð Þ ¼ 0:
(7)

The dot product in Equation (7) is the scalar resolute of the
resultant moment vector, ∑R�F, in the direction of the AOR
unit vector, λ. Recall that vector R×F is orthogonal to the 2D
plane spanned by vectors R and F. Thus the scalar resolute in
Equation (7) is equivalent to collapsing all of the R and F
vectors onto the POR as vector components (Figure 2b), calcu-
lating the resultant of all their moments, and then measuring its
magnitude, yielding a signed scalar value (see Appendix A for a
geometric proof). Subsequent subsections give details for the
entrainment and resistance force vectors and their correspond-
ing position vectors given in Equation (7).

Entrainment force components for the 3D model

We assume non‐slip conditions at the bed and a logarithmic ve-
locity profile with increasing elevation, z, up the water column.
Flow velocity is zero at the mean bed elevation. Both drag and
lift forces are functions of the velocity profile, which is given by

uðzÞ ¼ κ−1
ffiffiffiffiffi
τb
ρ

r
ln

z þ z0
z0

� �
z∈Z≥0;

0 otherwise;

8<
: (8)

where κ=0.407 is van Karman’s constant, τb is the boundary
shear stress in Nm−2, ρ is water density assumed to be 1000
kgm−3, z0= D84 / 10 is a bed roughness length scale, refer-
ence elevation, z=0, starts at the local mean bed elevation,
which is taken over a distance of D84 upstream and down-
stream of the grain, and z∈Z are discrete non‐negative eleva-
tions above the mean bed. Drag force in vector format is
given by

FD ¼ FDî ¼ EFadj
CD

2
ρ ∑
z∈Z

uðzÞ2A⊥ðzÞî; (9a)

EFadj ¼ 1−max 0;
Fu−EF
Fu

� �
; (9b)

where CD is the drag coefficient (assumed to be 0.91 for nat-
ural sediment after Schmeeckle et al. (2007) and will be used
in both 2D and 3D models for model comparison), u(z) is the
logarithmic velocity profile defined in Equation (8), A⊥(z) is
the cross‐sectional area of the grain perpendicular to flow
as a function of discrete elevation height increments z∈Z
above the mean bed elevation, Fu is the fraction of grain
cross‐sectional area A⊥, where u>0, EF is an exposure factor
to account for the sheltering effects of upstream grains, and
EFadj is the necessary adjustment for the portion of EF already
accounted for by Fu.

To estimate exposure factor, EF, for any given grain we up-
date the concept of calculating sphere protrusion areas (Yager
et al. 2007) to include a weighted average of multiple area ra-
tios over several viewing angles of the bed. To better account
for the turbulent nature of streamflow, we assume that flow ve-
locity (an instantaneous vector we term V) influencing the drag
force could interact with the grain at any angle between hori-
zontal and vertical relative to the bed, but that only the hori-
zontal component of V is relevant to the resulting drag force
(V sin θ,where θ is the angle from the overhead view).The expo-
sure factor, EF, is the weighted average of exposure area ratios
estimated by

EF≈
∑θ∈ΘERθ sin2 θ
∑θ∈Θ sin2 θ

; (10)

where ERθ is the exposure area ratio at viewing angle θ,
which is defined as the exposed area of the grain viewed
from angle θ divided by the total area of the grain viewed
from the same angle but with no other grains present, and
Θ is the collection of equidistant angles from 0° at the over-
head view of the bed to 90° at the downstream horizontal
view of the bed (see Appendix B for physical derivation of
EF and EFadj). There are four noteworthy observations about
Equation (10): (i) normalizing the exposed‐view area by to-
tal‐view area yields a dimensionless metric; (ii) the metric is
physically consistent with the product of dynamic pressure
and the cross‐sectional grain area, 1

2 ρu
2A, used in drag force

calculations; (iii) we do not need to know velocities or grain
areas, as they cancel across numerator and denominator; and
(iv) the weights sum to unity as required for any weighted
mean. Lift force in vector format is given by

FL ¼ −FL̂k ¼ −
CL

2
ρA‖ uðzT Þ2−uðzBÞ2
� �̂

k; (11)

where CL is the lift coefficient assumed to be 0.20 for natural
grains (Schmeeckle et al. 2007), A‖ is the overhead cross‐sec-
tional area of the grain parallel to flow, and u(zT) and u(zB)
are the logarithmic velocity profile values at the top and bot-
tom of the grain, respectively.

The position vector for entrainment,RE ¼ REx îþ REy ĵþ REẑ k,
extends from the AOR to the intersection of perpendicular lines
of action for lift and drag forces (see Figure 2b). The line of ac-
tion for the lift force runs vertically through the grain centre of
mass. Due to the location and distribution of the velocity profile,
however, the line of action for the drag force is horizontally
situated somewhere above the grain’s centre of mass. To find
the elevation along the velocity profile for the horizontal line
of action for drag force, we need to find the midpoint
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of distributed drag force across the face of the grain. By using
the drag force distribution as a weighting mechanism, the eleva-
tion for the horizontal line of action for drag force is found
by calculating

zE ¼ ∑z∈Zz·uðzÞ2A⊥ðzÞ
∑z∈ZuðzÞ2A⊥ðzÞ

; (12)

where zE is the elevation above the mean bed located along the
velocity profile.

Resistant force components for the 3D entrainment
model

There are two resisting forces: a submerged grain weight and a
cohesive force due to contact with any fine‐grain matrix. Sub-
merged weight force in vector format is given by

FW ¼ FŴ k ¼ ρs−ρð ÞgV ŝk; (13)

where ρs−ρ is the submerged density of sediment grain as-
sumed to be 1650kgm−3, g is the gravitational constant of
9.81ms−2, and VS is the grain volume (m3). Cohesive force in
vector format is given by

FC ¼ FĈ k ¼ ηASf Ŝ k; (14a)

where η is the cohesive force per unit area (N mm−2), AS is the
surface area of the grain (mm2), and fS is the fraction of the grain
surface area in contact with matrix fines. An empirical power
law model was derived from a cohesive tensile force experi-
ment where a 25mm diameter marble was pulled with a hand-
held force gauge from several binary mixtures of sand and clay
(p <.001, R2=.54 (log); see Appendix C for details). This model
is given by

ηϕ ¼ aDb
ϕF

c ; for ϕ∈Φ; (14b)

where ηϕ is the force per area power law (N mm−2) for grains
with median axes within matrix sand size range ϕ, Dϕ is the
mean for matrix sand grain size range ϕ, F is the fraction of clay
in the sand–clay matrix, and the log‐linearized model regres-
sion coefficients are a=0.002579, b=−0.5332, and c=0.2328.
Sieving analysis rarely yields a uniform distribution of mass
across all sand size classifications. As such, we use Equa-
tion (14b) to estimate a mass‐weighted mean of cohesive force
across grain sizes. Metric grain size ranges for sand classifica-
tions are Φ={(0.0625,0.125],(0.125,0.25],(0.25,0.5],(0.5,1],
(1,2]} mm, and the set of means for each grain size range is
DΦ={0.0938,0.188,0.375,0.75,1.5} mm. The mass‐ weighted
mean force per area η used in Equation (14a) is given by

η ¼ ∑ϕ∈Φηϕmϕ

∑ϕ∈Φmϕ
; (14c)

=where ηϕ is the force per area from Equation (14b) and mϕ is
the sediment mass for size range ϕ∈Φ determined from sieving
analysis of the sediment used in XCT scanning. Equation (14c)
is necessary since the cohesive tensile force experiments were
performed on binary mixtures of a narrow range of grain sizes
for sand mixed with clay whereas sand in the cohesive matrix
from the flume experiments consists of a broad range of grain
sizes for sand mixed with clay. Each force contribution from
the narrow grain size range, ηϕ, is weighted by the mass of
grains, mϕ, that were sieved within that size range.

The position vector for resistance, RR ¼ RRx îþ RRy ĵþ RRẑ k,
extends from either contact point on AOR to the centre of mass
of the grain (see Figure 2b). Observe that the projection of RR

onto the POR is just −CVLP (or the equivalent vector −CVRP ).
Hence, either contact point works.

Calculation of τcr for the 3D entrainment model

For any given grain, the centre of mass and coordinates of all
nearby contact points are used to construct all vectors and met-
rics. A set of critical shear stress values, {τcr}, is calculated for
each stone using every viable pair of contact vectors, (CVL,
CVR). Each viable pair of contact vectors induces a unique set
of two position vectors, RE and RR, used in the entrainment
model (Equation (7)), where their positions extend from either
contact point to the grain’s centre of mass for the resistance vec-
tor and to the horizontal line of action (Equation (12)) for the en-
trainment vector. For each grain, entrainment computation
starts by calculating the resistance force vector, FR=FW+FC, for
the entrainment model. A list of all viable pairs of contact
vectors, (CVL,CVR), and their corresponding position vectors is
then constructed. The viability of each pair of contact vectors
is established using four tests: (i) the POR passing through the
grain’s centre of mass must intersect the AOR between the pair
of contacts; (ii) the POR must not tilt so severely that both con-
tact vectors are on the same side of a POR‐aligned vertical plane
containing the gravity vector; (iii) the POR bearing angle is
bounded by |β|< 90°; and (iv) any contact pair must be elimi-
nated from the list if a third contact point is positioned such that
it prevents the grain from forward rotation. From all viable con-
tact pairs, the smallest critical shear value in the set,
τcr=min{τcr}, and its corresponding contact pair, (CVL,CVR), are
denoted as the threshold of motion solution for that grain.

The most efficient way to calculate the scalar triple product,
λ·R×F, is to express it as a 3 × 3 matrix with the AOR unit vec-

tor, λ ¼ λx îþ λy ĵþ λẑ k in the first row, the position vector,R ¼
Rxîþ Ry ĵþ Rẑ k , in the second row, and the resultant force

vector, F ¼ Fxîþ Fy ĵþ Fẑk in the third row, and then evaluate
its determinant

λ·R�F ¼
λx λy λz

Rx Ry Rz

Fx Fy Fz

								

								
¼ λx RyFz−RzFy


 �
−λy RxFz−RzFxð Þ

þ λz RxFy−RyFx

 �

:

Recognizing that we need one determinant matrix for each
position vector in the equation for a static moment balance
about an AOR, λ·∑R�F ¼ 0, our 3D moment balance (Equa-
tion (7)) yields the following scalar equation

λx λy λz
REx REy REz

FD 0 −FL

							
							þ

λx λy λz
RRx RRy RRz

0 0 FW þ FC

							
							 ¼ 0; (15a)

λx −REy FL þ RRy FW þ FCð Þ� þ
λy REz FD þ REx FL−RRx FW þ FCð Þ½ �−λzREy FD ¼ 0:

(15b)

Algorithmic solutions, using iterations of boundary shear
stress (see Appendix D), should be calculated using the scalar
triple product form, Equation (7) or (15a), until the scalar mo-
ment reaches zero whereas analytical solutions should use
the scalar equation form given by Equation (15b). Factoring
by force components with all resistant force terms placed on
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the right‐hand side of Equation (15b) and all entrainment force
terms on the left‐hand side, we solve for the boundary shear
stress yielding the critical shear equation

τcr ¼ ΛR ρs−ρð ÞgV S

ΛD DþΛL L
þ ΛRηASf S
ΛD DþΛL L

; (15c)

where

ΛR ¼ λyRRx−λxRRy ; ΛD ¼ λyREz−λzREy ; ΛL ¼ λyREx−λxREy ;

FDðA⊥Þ ¼ EFadj
CD

2κ2
∑
z∈Z

ln
z þ z0
z0

� �� �2
A⊥ðzÞ; and

FLðA‖Þ ¼ CL

2κ2
A‖ ln

zT þ z0
z0

� �� �2
− ln

zB þ z0
z0

� �� �2 !
:

For clarity, we partition the critical shear stress formula
(Equation (15c)) into two components: the first term is the 3D
equivalent to the 2D entrainment model of Kirchner et al.
(1990) and the second term is the cohesive force component
due to particle contact with the fine‐grain matrix. The Λs are
the linear combinations of scalar components, in units of length
(m), consisting of products of components from the AOR unit
vector and position vectors; they represent the 3D geometry
of grain‐to‐grain rotation for the rigid body mechanics of the
entrainment model. Scalar force component functions, FD

and FL , are attributed to the continuum mechanics for drag
and lift forces, respectively, and are shown here as functions
of cross‐sectional grain areas (m2) perpendicular and parallel
to streamflow, respectively. Terms in the denominator are in

units of cubic length (m3) whereas those in the numerator are
in units of force–length (N m), making the τcr in units of force
per area (N m−2). Dimensionless τcr is calculated as τ∗cr ¼
τcr=½ðρs−ρÞgD� for grain diameter D.

Application of the Model to XCT Scanned
River Grains

We used XCT to image an extracted section of an analogue riv-
erbed, which was water‐worked in a prototype scale flume.
The 3D image was then processed to derive grain metrics,
which were used to apply the new 3D entrainment model.

Development and extraction of analogue riverbed
sediments

A prototype scale riffle‐pool sequence was constructed in a
large (60m long ×2.1m wide×0.7m deep) flume at the Univer-
sity of Southampton’s Chilworth Hydraulics facility (Figure 3a),
using river gravels with a grain size distribution that was care-
fully matched through sieving to those found in a natural rif-
fle‐pool system at Bury Green Brook, UK (mean D50 range is
25–34 mm; Hodge et al., 2013). Prior to water‐working, a series
of five 250 mm diameter metal mesh baskets were buried with
the rim 1.5×D50 below the surface of the bed, allowing the sur-
face grains of the bed to move without being impeded. Water‐
working of the gravels was achieved by slowly raising the flow
rate at the start of each flume run to a critical flow level (when
several painted D50 stones placed on the riffle mobilized),
where it was sustained for 15 minutes prior to reducing the flow

Figure 3. (a) The Chilworth Hydraulic Facility outdoor flume showing the constructed prototype scale riffle‐pool sequence. Flume dimensions are
60 m × 2.1 m × 0.7 m. (b) An extracted basket of sediment that has been fixed by submergence in hot wax prior to XCT scanning. (c) An output 3D
rendered image. (d) Binary segmentation process showing coarse grains (in red) and fine‐grain matrix, air and wax (in green). (e) A slice through the
binary image stack of coarse grains. (f) A slice through the binary image stack of fine‐grain matrix. (g) Transparent mock‐up of four grains (in grey)
showing centre of mass‐to‐contact point vectors of a single object grain (partial green arrows) and their grain‐to‐grain contact points (shown as red
patches for clarity). [Colour figure can be viewed at wileyonlinelibrary.com]
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to a half critical level for 6 hours. Powell et al. (2016) show that
the majority of bed adjustment occurs over this timescale. The
mean ± standard deviation of half critical flow pooled over
all flume runs was 6.26×102±5.97×10−3m3s−1, with half
critical flow for individual flume runs ranging from
5.44×102±1.87×102m3s−1 to 7.03×102±2.02×102m3s−1. For
this work, we examined two end‐member extremes in grain
size distribution from the pool tail: (R1) coarse gravels (mini-
mum grain size =4mm) with no fines and (R2) the same coarse
sediment with the additional input of sands and clay (1‐4 μm).
The clay was continuously added to the inlet flow to achieve
a steady concentration of 500 mg L−1 throughout the run, mea-
sured using a conductivity meter with a predetermined calibra-
tion. In both runs the final sediment was framework supported.
At the end of each run, the baskets were carefully extracted and
briefly submerged in liquid wax to fix the in situ spatial arrange-
ment of bed grains prior to transport to the scanner (Figure 3b).

XCT imaging, reconstruction and registration

The two baskets of sediment were imaged using a micro‐focus
Nikon Metrology μCT scanner at the μ‐VIS X‐Ray Imaging Cen-
tre, University of Southampton, UK. The image scanner has a
450 kVp X‐ray source and a 2048‐pixel curved linear detector
array (CLDA). Data were acquired using an electron accelerat-
ing potential of 440 kVp and a tube current of 922 μA. 951
equiangular projections were acquired through 360° with 4
frames per projection taken to reduce noise. An exposure time
of 60 ms was used. A detailed discussion of XCT artefacts and
corrections is presented in Clausnitzer and Hopmans (2000).
3D reconstruction of the projections was performed using NI-
TRO, a quasi‐Newton and trust region differentiable optimiza-
tion algorithm found in Digi XCT (Digisens, 2014; More and
Sorensen, 1983; Nocedal and Wright, 1999). The resulting iso-
metric voxel (the 3D extension of a 2D pixel) size is 600μm. In-
teractive volume registration was performed using VGStudio
Max 2.1 (Volume Graphics, 2011). Three reference points were
used to rotate and align the 3D datasets orthogonal to the orig-
inal directions of flow and gravity, which is an important stage
for later calculations of grain geometry and exposure area in re-
lation to downstream flow direction (Figure 3c).

Image processing and model application

After reconstruction and registration, the XCT data consists of a
3D array of voxels whose greyscale intensity is representative of
the material density at that point. Image segmentation was un-
dertaken to split the image into coarse grains (larger than 4 mm;
Figure 3d, in red), and finer grains of sands and clay (termed
‘matrix’ and applicable only in R2) along with air/wax
(Figure 3d, in green), and was performed in Fiji ImageJ
(Schindelin et al. 2012). Segmentation is performed using a
semi‐automated classification process in which the user se-
quentially defines known regions of air and wax (background),
grains and matrix to train the classification algorithm, resulting
in binary masks of each type of material (Figure 3e,f). Despite
the larger sand grains in the matrix being greater than the image
resolution, it was not possible to individually identify them as it
takes 2–4 voxel widths at a 600 μm resolution to describe any
grain with even rudimentary detail; consequently they were in-
cluded in the general matrix class. Following classification, an
initial separation algorithm was applied to the grain dataset to
isolate individual grains. An adverse effect of image segmenta-
tion and separation is the inherent surface erosion over all of
the separated particles in the image. The extent of erosion is de-
termined by a number of factors including, but not limited to,
scan quality, material density differences, segmentation steps

and the separation algorithm. No contact actually occurs be-
tween separated particles in the images.

Two sets of 2D image slices, each set composes a 3D image
stack: a binary image stack of coarse grains (Figure 3e) and a
greyscale image stack of fine‐grain matrix (similar to Figure 3
f), were imported into MATLAB (MathWorks, 2018). Four cate-
gories of grain metrics were extracted prior to entrainment cal-
culations: (i) grain characteristics consisting of unique grain
identification, centroid, volume, surface area, maximum grain
elevation and its coordinates; (ii) principal axis lengths and their
spatial orientation; (iii) grain‐to‐grain relationships consisting of
coordinates of contact points with surrounding grains, their
minimum separation distances and identification numbers of
all contact grains; and (iv) matrix image processing to remove
air pores and to calculate the fractional areas of matrix fines
in contact with coarse sample grains. Imaging software pack-
ages typically have functions to extract characteristics such as
labelling particles and obtaining their centroids, areas and
bounding boxes. Herein we used MATLAB with the Image Pro-
cessing Toolbox and the Parallel Processing Toolbox to com-
pute metrics. Processed image data and developed code are
available online at https://github.com/NERCPATCheS/
VectorEntrainment3D.

XCT scan data imported into MATLAB do not intrinsically
have any information about scaling required to make real spa-
tial measurements. To obtain spatial dimensions from array cal-
culations for distance, area or volume, the calculated results
must be multiplied by the voxel resolution, squared resolution,
or cubed resolution, respectively. Dividing any of these con-
verted spatial dimension by the appropriate voxel resolution
converts the spatial dimension for each voxel back into an in-
dex value; this facilitates coding of entrainment model formulas
where indices are required (Equations (8), (9a), (11) and (12)).
For our MATLAB coding, we left coordinates, such as centroids,
as index values to avoid rounding errors in moment calcula-
tions using Equation (7), where we used a binary search algo-
rithm rather than the analytical solution (Equation (15c)) to
calculate our results (see Appendix D). Note that the Λs are di-
mensionless when Equation (15c) is used with indices rather
than distances to find analytical solutions of grain entrainment
for XCT scanned images.

Individual grain characteristicsmust first be established before
particle group relationships can be derived. The surface area of
each grain was calculated by eroding the 3D binary image of
grains with a 3D ball structural element to create labelled perim-
eters for each grain of one voxel thickness (Russ, 2011). Tabulat-
ing the surface and internal labelled voxels for each grain
allowed the surface area and volume to be readily calculated.
The maximum elevation of each labelled grain was also re-
corded. Axis length and orientation of image particles are usu-
ally calculated using ellipsoidal fitting (Ahmed et al. 2016a; Ge
et al. 2005), but this method performs poorly when grains are
more angular, as they often are in natural systems. Instead, we
performed a principal component analysis (PCA) on all voxel co-
ordinates of individual grains to produce axis lengths and grain
orientationmetrics. Contact points were found using an efficient
search algorithm that calculates the minimum sums of squared
distances between all surface voxels of an object grain and
nearby surface voxels of adjacent grains. A threshold distance
is then used during entrainment calculations to identify contact
points in close enough proximity for consideration as a potential
contact stones. Entrainment results were sensitive to small incre-
ments in threshold values as the number of stones having viable
entrainment calculations increased from very few to nearly all
surface stones. An example of contact points is shown in a trans-
parent mock‐up image (Figure 3g), which illustrates a group of
grains (grey) shown with partial contact vectors (green) that
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extend from the centre ofmass of an object particle (centre grain)
to the contact points (red patches) of its neighbouring grains.
Greyscale image thresholding was used on the matrix images
to segment pore space (i.e. darker greyscale values) from the
fine‐grain matrix, which converts the remaining matrix into a bi-
nary image. The labelled image of surface grains was then used
with the binary matrix image to determine the amount of surface
area in contactwithmatrix voxels, and a contact area fraction, fS,
was calculated for each grain.
Once grain metrics were computed and tabulated, we used

the scalar triple product form of our 3D entrainment model
(Equation (7)) along with a binary search algorithm (see Appen-
dix D) to calculate τcr for each grain. The corresponding pivot
angle and two POR angles for bearing and tilt were then calcu-
lated (Equation (6)). Finally, τ∗cr was calculated from the iterated
solution of τcr for each grain that experienced sufficient shear
stress for entrainment. The 3D model was run both with and
without the cohesion term on the R2 sample to demonstrate
how the cohesion term affects estimates of τ∗cr when fines are
present.
To provide a comparison of our vector‐based 3D entrain-

ment model with the 2D model of Kirchner et al.(1990), 2D
metrics were also computed for all surface grains, denoted as
any grain visible when looking directly down onto the R1 sam-
ple from overhead. Vertical 2D image slices were selected for
each surface grain whereby each slice was parallel to down-
stream flow and contained the (x,y,z) coordinates for the 3D
grain’s centre of mass (see Figure 3e). Each slice was used to
obtain the (x,z) coordinates for the contact point and the grain
tops for each object grain and its upstream neighbouring grain.

The 2D moment arm vector R ¼ ΔxîþΔẑk was calculated,
where Δx and Δz are the distances from the contact point to
the grain’s centre of mass. Grain diameters (b‐axis and c‐axis)
were determined by the 3D PCA routine outlined above. D50

and D84 were obtained from sieving analysis of the R1 sample,
and are used to calculate the empirical protrusion parameters
and the local bed area, respectively. Empirical protrusion pa-
rameters were calculated by direct measurements from the ver-
tical 2D image slices: projection, p, was defined as the vertical
distance from the top of the object grain to the mean bed eleva-
tion that was calculated for the 3D results; and exposure, e, was
defined as the vertical distance from the top of the object grain
to the top of the upstream neighbouring grain. Theoretical pro-
trusion parameters for projection, p, and exposure, e, were cal-
culated for 2D entrainment based on both b‐ and c‐axis lengths
(Equation (1c)). The local bed area was defined as the D84 dis-
tance upstream and downstream of the 3D bounding box for
the grain, the latter of which was found using image processing
functions. The mean bed elevation is thus the average elevation
of all surface elevations within this bounded area.

Results

Our new vector‐based 3D grain entrainment model and the
protrusion‐based 2D grain entrainment model of Kirchner et al.
(1990) were used to calculate pivot angle, α, projection, p, and
dimensionless critical shear stress, τ∗cr , for 28 viable surface
grains from the R1 sample, allowing comparisons to be drawn
between 2D and 3D models. To ensure that 2D versus 3D treat-
ment of geometry and protrusion were compared rather than
the input data alone, we ran the 2D model based on empirical
protrusion in addition to those based on theoretical protrusion
(Equation (1c)). Empirical 2D parameters were measured p
and e values taken directly from processed XCT images. We

further assessed 2D‐to‐3D ratios of model parameters for α, p
and τ∗cr where the 2D models were based on b‐axis, c‐axis
and empirical measurements for p and e. Calculations of τ∗cr ,
both with and without the cohesive force given by the second
term in Equation (15c), were made for 40 grains in the R2 sam-
ple, allowing direct assessment of cohesive effects. Specific
grains from the R1 sample were selected to highlight entrain-
ment metric differences under various complicated grain ar-
rangements and orientations. We used both samples to
examine whether water‐worked grains lay flat. Finally, we ex-
plored the relationship between τ∗cr and p both without and with
cohesive force using R1 and R2, respectively.

Comparison of the 2D and 3D grain entrainment
models

R1 sample 2D entrainment metrics calculated using theoretical
protrusion parameters based on b‐ and c‐axis grain lengths, 2D
entrainment metrics using empirical protrusion measurements,
and our 3D entrainment metrics are shown in Table I.

Distributions for α, p and τ∗cr were lognormal for all 2D and
3D entrainment metrics. Statistics associated with lognormal

distributions are the geometric mean, μ̂G, and standard devi-

ation, σ̂G , which are given in Figure 4 (Limpert et al. 2001;
McAlister, 1879). Quantile intervals (QIs) for lognormal

values, μ̂G⋇ σ̂G ¼ ½ μ̂G�σ̂G ; μ̂G ÷ σ̂G �, are the geometric coun-

terpart to μ̂± σ̂ used for normal values (Limpert et al. 2001)

and are given for comparison of dispersion about μ̂G . A
random variable X is said to have a lognormal distribution
if logðXÞ has a normal distribution, denoted by
logðXÞ∼Nðμ; σ2Þ, with mean μ and variance σ2 (Casella and
Berger, 2001). Since the 2D‐to‐3D ratios were also lognor-
mal, we can test equality of our 3D metrics with each set
of 2D metrics through 2D/3D=1, and take its log‐transform,
logð2DÞ−logð3DÞ ¼ 0 . Since logð2DÞ−logð3DÞ∼Nðμd ; σ2

dÞ
with mean μd ¼ E½logð2DÞ−logð3DÞ� and variance σ2

d ¼
var½logð2DÞ−logð3DÞ�, we can use a paired sample t‐test to
check differences between various 2D models and our 3D
model by H0:μd=0 versus HA:μd≠0. A paired difference is a
blocking method that removes correlated variation due to
particle‐to‐particle variability (e.g. size, shape) allowing only
model differences to be tested (Ott and Longnecker, 2001).

Here we examine parameter values for α, p and τ∗cr (Figure 4
a–c) using entrainment calculations from the 2D b‐axis theoret-
ical method (2Db, green), the 2D empirical method (2De, or-
ange), and our 3D vector entrainment method (3D, violet).
Comparison p‐value results from paired sample t‐tests of log‐
transformed 2D‐to‐3D parameter ratios for α, p, and τ∗cr
(Figure 4d–f) are from the 2D b‐axis theoretical method (green
diamonds), the 2D c‐axis theoretical method (fuchsia squares),
and the 2D empirical method (orange circles), each compared
with our 3D vector method. Four R1 sample grains were ex-
cluded from Figure 4 due to infinite 2D τ∗cr values, which occur
whenever pivot angles are high enough to generate negative
projections (using Equation (1c)).

The pivot angles, α, have aggregate similarity as inferred by a

geometric mean of μ̂G ¼ 1:07 for the α2D‐to‐α3D ratio (Figure 4

d). There is moderate scatter around the geometric mean,̂ σG ¼
2:02, because whereas the 2D model assumes that the grain
pivots around a single contact point in the downstream direc-
tion, the 3D model allows for pairs of contact points in a wide
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range of orientations. The 2D (b, c and e) and 3D QIs for α are
[30.0°,99.5°] and [23.6°,111.0°], respectively (Figure 4a). This
implies that 3D entrained grains can pivot about a wide range
of pivot angles within the POR, as the POR itself diverges from
flow direction (the bearing angle) and gravity (the tilt angle). For
any given grain, there is no systematic pattern as to whether an
α2D or α3D value is higher.

Projections calculated for 2Db are greater than those for

3D, with a geometric mean for p2D‐to‐p3D ratios of μ̂G ¼
2:15 and only five grains having p2D/p3D<1. This difference
is amplified in the calculation of τ∗cr , with a relatively high
2Db projection leading to relatively lower τ∗cr values; hence

τ∗2D‐to‐τ
∗
3D ratios have a geometric mean of μ̂G ¼ 0:32 with

considerable scatter relative to the mean, σ̂G ¼ 5:05
(Figure 4f). The 2Db and 3D QIs for p are [8.5mm,36.8
mm] and [3.2mm,21.0mm], respectively (Figure 4b), differing
by +163% and +75% at the lower and upper bounds, respec-
tively. This discrepancy at the endpoints is reflected in the
corresponding 2Db and 3D QIs for τ∗cr at [0.033,0.750] and
[0.105,2.328], respectively, differing by an average of about
−112% at the endpoints.

The difference in 2Db and 3D projection values reflects the
fact that the 2Db projection is calculated under the assumption
that the grain is sitting on a uniform bed of D50 grains (Equa-
tion (1); Kirchner et al., 1990), and does not include the

increased sheltering effect of larger grains – something that is
explicitly accounted for with our 3D exposure factor. In the
2Db model, the entrained grain is assumed to be circular, with
a diameter equal to the b‐axis of the original grain. We also cal-
culated the 2D p and τ∗cr values using the c‐axis, 2Dc, which re-
flects the fact that water‐ worked grains are typically arranged
with their c‐axis vertical (Komar and Li, 1986), and thus c‐axis
may be more relevant for calculating grain protrusion used to
obtain entrainment forces of drag and lift. Using the c‐axis re-

duces the p2D‐to‐p3D ratio mean from μ̂G ¼ 2:15mm to μ̂G ¼
1:35mm (Figure 4e), and almost triples the τ∗2D ‐to‐τ

∗
3D ratio

mean from μ̂G ¼ 0:32 to μ̂G ¼ 0:86 (Figure 4f). Model 2Dc

had a geometric mean and standard deviation of μ̂G ¼
11:1mm and σ̂G ¼ 2:44mm for p, and μ̂G ¼ 0:425 to σ̂G ¼
4:54 for τ∗cr (not shown in Figure 4). The 2Dc model QIs for p
and τ∗cr are [4.6mm,27.1mm] and [0.094,1.932], respectively.
The p endpoint discrepancy between 2D and 3D QIs decreases
from +163% and +75% for 2Db values to +41% and +29% for
2Dc values at the lower and upper bounds, respectively. Simi-
larly the τ∗cr endpoint discrepancy between 2D and 3D QIs in-
creases from −214% and −210% for 2Db values to −12% and
−21% for 2Dc values. This reduction in p and τ∗cr QI endpoint
discrepancy from 2Db to 2Dc models, each relative to the vec-
tor‐based 3D model, suggests 2D calculations using the c‐axis
may be more appropriate than using the b‐axis.

Table I. Entrainment metrics for 2D and 3D models calculated for the R1 coarse grain sample (D50 = 23.0 mm, D84 = 37.4 mm).

Grain Axis length (mm) Projection, p (mm) Critical shear, τ∗cr Pivot, α (°) POR (°)

No. ID a‐axis b‐axis c‐axis 2Db 2Dc 2De 3D 2Db 2Dc 2De 3D 2D 3D β γ

1 1 59.4 46.3 34.0 35.1 25.8 21.0 22.80 0.073 0.175 0.199 0.184 59.9 90.4 4.4 15.0
2 2 80.8 54.6 46.8 49.8 43.1 19.8 22.20 0.031 0.069 0.166 0.848 43.9 25.6 84.2 7.7
3 3 30.5 28.1 16 12 5.2 12.6 15 0.486 1.469 0.451 0.134 82.2 11.6 80.9 15.5
4 4 45.0 37.8 20.3 40.6 24.0 19.2 19.20 0.019 0.095 0.259 0.071 26.6 34.1 11.0 13.4
5 5 43.1 25.2 18.8 11.1 7.4 3.6 7.20 0.525 0.926 2.421 0.730 80.5 123.8 28.3 12.4
6 6 33.3 27.2 22.3 25.2 21.1 19.2 19.2 0.063 0.149 0.137 0.044 47 18.9 34.4 14.6
7 7 29.9 26.5 21.1 9.1 6.3 12 15 0.709 1.132 0.501 0.262 86.8 97.3 47.4 10
8 8 78.1 40.0 29.7 21.2 14.9 19.2 21.00 0.229 0.398 0.284 0.168 77.8 52.2 38.2 10.9
9 9 27.6 20.7 13.4 11.3 6.6 13.2 13.80 0.445 1.067 0.471 0.171 72.9 59.3 25.0 13.6
10 10 43.6 39.5 24.1 36.4 23.2 20.4 21.00 0.041 0.154 0.297 0.065 45.0 30.8 4.1 4.1
11 11 25.1 19.0 15.6 24.9 21.5 10.8 10.80 0.005 0.015 0.035 0.061 5.2 12.9 18.4 22.9
12 12 36.8 32 20.4 36.6 25.3 4.8 9.6 0.014 0.055 1.574 0.544 18.4 72.9 58 4
13 13 23.7 17.7 13.1 3.4 1.1 1.2 2.40 2.672 17.421 14.194 3.420 90.0 81.6 50.9 5.5
14 14 45.5 30.1 22.7 14.8 10.4 14.4 14.4 0.353 0.605 0.357 0.282 78.7 77.8 43.3 4.8
15 16 78.9 73.5 44.5 60.2 37.0 8.4 10.20 0.037 0.121 0.758 0.175 53.1 162.4 16.1 56.6
– 17 33.0 21.3 15.1 –15.8 –16.0 1.2 1.80 ∞ ∞ 14.215 5.187 161.6 164.6 9.0 43.1
16 18 36.4 30.5 20.1 30.8 21.5 13.8 15.00 0.037 0.132 0.306 0.232 38.3 17.5 76.6 10.5
17 19 44.5 41.1 27 22.1 13.5 15 15.6 0.215 0.446 0.401 0.226 77.3 54.6 54.6 8.2
18 23 43.5 30.0 17.3 17.2 9.0 6.6 7.80 0.253 0.711 1.066 0.615 73.1 78.8 33.7 4.0
– 24 26.6 18.6 7.9 1.2 –3.4 2.4 2.40 13.457 ∞ 5.282 5.695 97.1 43.6 82.4 42.8
19 25 18.0 13.3 10.1 4.4 2.5 4.8 5.40 1.814 4.128 1.608 0.961 79.7 51.9 48.0 41.7
20 26 37.1 27.7 16.3 16.4 8.9 5.4 6.60 0.257 0.719 1.282 0.941 71.6 93.3 51.7 13.9
21 27 16.6 15.4 12.4 10.3 8.1 1.2 1.20 0.430 0.767 12.229 8.575 65.2 92.8 32.7 31.0
22 28 69.3 60.9 41.1 55.5 38.4 7.2 8.40 0.028 0.088 0.538 1.672 43.3 22.3 81.3 25.1
23 30 55.4 38.9 27.2 20.8 13.6 1.8 8.40 0.230 0.440 5.790 0.247 77.3 173.6 39.4 33.5
– 32 28.8 28.1 20.7 –15.5 –15.8 0.0 0.60 ∞ ∞ ∞ 23.635 160.7 141.3 1.8 7.1
– 36 54.2 29.6 24.4 –1.6 –3.1 1.2 4.20 ∞ ∞ 14.875 2.835 114.6 13.2 81.5 16.5
24 39 31.0 29.2 17.3 10.1 3.9 12.0 12.60 0.639 2.170 0.522 0.271 88.0 47.8 49.8 14.7
25 41 35.8 21.2 15.0 5.1 2.0 0.6 0.60 1.483 5.913 49.791 20.209 90.0 125.9 35.7 1.5
26 51 26.5 17.8 14.6 10.3 8.1 1.2 1.80 0.486 0.787 8.917 7.111 70.3 112.6 11.3 32.1
27 57 22.8 16.5 13.0 14.6 11.8 2.4 2.40 0.156 0.369 4.121 2.290 53.1 17.7 59.9 2.6
28 69 29.0 18.9 12.2 21.6 15.4 1.8 3.60 0.042 0.162 7.129 2.278 32.7 23.5 31.6 44.5

Note: Values in bold font indicate grains illustrated in Figure 6. Blank grain nos. are not listed in Figure 4 due to infinite 2D τ∗cr values. Grain sizes were
determined by the PCA method. Metrics labelled ‘2Db’, ‘2Dc’ and ‘2De’ are calculated from b‐axis, c‐axis and empirically derived lengths (from XCT
images), respectively. Grain no. is used in Figure 4; grain ID is used in Figure 6.
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As an attempt to place 2D calculations on an equal footing
with our 3D entrainment calculations, we used direct measure-
ments of projection, p, and exposure, e, to derive an empirical
entrainment model, 2De. p2D‐to‐p3D ratios for 2De are 27%
smaller than those for 3D (Figure 4e) with geometric metrics

of μ̂G ¼ 0:79mm and σ̂G ¼ 1:40mm, respectively. This small
difference nearly doubles τ∗cr values for 2De relative to our
3D model (Figure 4f) with geometric metrics for τ∗2D‐to‐τ

∗
3D ratios

of μ̂G ¼ 1:95 and σ̂G ¼ 2:38, respectively. The 2De model QIs
for p and τ∗cr are [2.3mm,18.5mm] and [0.187,4.982], respec-
tively (Figure 4bc). The p endpoint discrepancy between 2D
and 3D QIs increased from −40% and −13% for 2De values
to +41% and +29% for 2Dc values at the lower and upper
bounds, respectively. Similarly, the τ∗cr discrepancy between
2D and 3D QIs decreases from +78% and +114% for 2De
values to −12% and −21% for 2Dc values. The 2D‐to‐3D dis-
crepancy shift from 2De to 2Dc is a much larger swing than
that from 2Db to 2Dc, the former having a respective total per-
cent change of 81% and 42% for lower and upper bound of p
and 90% and 135% for that of τ∗cr.
Paired sample t‐test of log‐transformed 2D‐to‐3D parameter

ratios were performed to evaluate mean ratio differences from
unity of various 2D methods and our 3D method (Figure 4d–
f). There were insignificant differences (at the 5% level) in α ra-
tios across all methods. p2D‐to‐p3D and τ∗2D‐to‐τ

∗
3D ratios for 2Dc

are insignificantly different from unity, whereas those for 2Db
and 2De have significant differences. We infer from paired ratio
t‐test that 2D estimates of τ∗cr using the c‐axis (p=.623) is a more
suitable proxy for 3D grain entrainment calculations compared

to the commonly used b‐axis (p=.001) or using empirical mea-
surements (p<.001).

Effect of the cohesion term on critical shear stress

We use the data from the R2 sample, which contained addi-
tional fine sediment, to investigate the effect of our cohesion
term in the 3D entrainment model (Equation (15c)), by calculat-
ing τ∗cr with and without the cohesion term included. On aver-
age, the cohesion term approximately doubles the aggregate τ∗cr
(Figure 5), but there is a considerable spread in the data. Eight
out of 40 surface grains are unaffected by cohesion, whereas
for one grain (stone no. 35) τ∗cr increases nearly tenfold when
adding the cohesion term. This variation is because different
grains in the sample have different matrix contact areas, with
some grains on the surface of our sample having no matrix con-
tact, whereas those that are buried deeper may have more
stone surface area contact with matrix fines. The scatter plot
of τ∗Fc¼0=τ

∗
Fc≠0 ratios suggests this to be the case as the grain

numbers shown are ordered from highest to lowest surface ele-
vations (Figure 5b).

Analysis of specific exemplar grains from the XCT
image

To demonstrate the veracity of the new 3D model we look in
detail at six exemplar grains from the R1 sample. Table I lists

Figure 4. (a–c) Parameters for 2D Kirchner model using b‐axis theoretical (2Db, green) and empirically derived p and e values (2De, orange) com-
pared with our 3D entrainment model (3D, violet) across 28 individual surface grains in the R1 sample for: (a) pivot angle, α (some are hidden), (b)
projection, p and (c) dimensionless critical shear stress, τ∗cr. Geometric mean and standard deviation are indicated. (d–f) Parameter ratios 2D‐to‐3D of
individual surface grains using the 2D Kirchner model for theoretical b‐axis (green diamonds), c‐axis (fuchsia squares) and empirical p and e values
(orange circles). Ratios are shown for: (d) pivot angle, α2D‐to‐α3D, (e) projection, p2D‐to‐p3D, and (f) dimensionless critical shear stress, τ∗2D‐to‐τ

∗
3D. Plots

(d–f) show statistics for ratios (geometric mean and standard deviation, and p‐value for paired ratio t‐test) along with vertical lines for geometric means
(coloured dot‐dash) relative to unity (solid black). Solid symbols highlight grain IDs 3, 6, 7, 12, 14 and 19, which are analysed further below and in
Figure 6. Four surface grains were excluded as obtuse 2D pivot angles generates infinite τ∗cr values. [Colour figure can be viewed at wileyonlinelibrary.
com]
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2D and 3D entrainment calculations for these exemplar stones
(shown in bold font). Figure 6 shows the 3D representation of
these grains from the XCT image, each grouped with their left
and right contact grains, identified by their Grain ID (see
Table I). Qualitative characteristics of each exemplar stone, rel-
ative to theoretical protrusion values based on b‐axis calcula-
tions, are given in Table II and briefly discussed below.
Grains 3 and 7 have 3D τ∗cr values that are considerably less

than the 2D equivalents, but for different reasons. Grain 3
shares a downstream contact point between the 2D and 3D
models, but the additional contact point for the 3D model (the
right contact) lies below the grain, resulting in a low pivot angle
of 11.6° in the 3D model relative to high pivot angle of 82.2° in
the 2Dmodel. Alternatively, the lower 3D value of τ∗cr for grain 7
is attributed to the larger projection of 15.0 mm for 3D com-
pared to 9.14 mm for 2D, as the pivot angles used for the 2D

and 3D models are similar. Grain 12 requires a higher τ∗cr using
the 3D model compared to the 2D implementation (over 38
times higher than 2D). The combined effect of much lower pro-
jection (∼74% relative difference) and much larger pivot angle
(about 3 times) for the 3D model relative to the 2D model con-
tributes to the large τ∗cr difference. The two downstream grains
visibly making contact with grain 12 are not accounted for in
the 2D model since neither is included in the 2D vertical plane
passing through the grain 12 centre of mass. Grains 6, 14 and
19 have similar τ∗cr values for the 2D and 3D entrainment
models; however, we note that this is not because the 2Dmodel
accurately accounts for entrainment geometry; rather,
interacting metrics counterbalance one another to coinciden-
tally arrive at similar estimates. For example, grain 14 has a
wide angle between contact points, reducing the distance

Figure 5. The effect of the cohesion term in our 3D entrainment model (Equation (15c)) on resultant τ∗cr for R2 (with fines): (a) comparison of 3D
modelling across individual grains with cohesive effects (orange squares) and without cohesive effects (violet circles), and (b) ratio of results without
cohesion to those with the cohesion term added. Descriptive statistics for minimum, maximum, coefficient of variation and geometric mean are
shown along with vertical lines for geometric mean (dashed) relative to unity (solid black). [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 6. 3D visualization of surface grains for the R1 sample show-
ing examples where τ∗cr is estimated as being: (i) higher for the 3D model
compared to the 2D model (grain ID 12), (ii) lower for the 3D model
compared to the 2D model (grain IDs 3 and 7), and (iii) approximately
equal for both 2D and 3D models (grain IDs 6, 14 and 19). [Colour
figure can be viewed at wileyonlinelibrary.com]

Table II. Qualitative comparison of metrics for select R1 coarse grains
shown in Figure 6.

Grain ID

Metric Comparison 3 6 7 12 14 19

Critical shear, τ∗cr 2D > 3D X X
2D < 3D X
2D ≈ 3D X X X

Projection, p 2D > 3D X
2D < 3D X X
2D ≈ 3D X X X

Pivot angle, α 2D > 3D X X X
2D < 3D X
2D ≈ 3D X X

Bearing angle, β β<38.2° X
β⩾38:2∘ X X X X X

Tilt angle, γ γ<13.6° X X X X
γ⩾13:6∘ X X

Shared contact Yes X X X X
Between 2D & 3D No X X
Complicated Yes X X X
Arrangement No X X X

Note: Median angle values for R1 are used to partition high and low
bearing and tilt angle values. Comparisons are based on b‐axis calcula-
tions (2D‐b in Table I).
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between the centre of mass and the AOR in the 3D model rela-
tive to the 2D, but this reduction in length of both position
vectors is offset by a moderately high bearing angle. Grains 6
and 19 have lower pivot angles in the 3D model implementa-
tion, but these are offset by relatively high bearing angles. These
exemplar grains illustrate how 3D grain orientation combined
with contact grain arrangement affects adjustments in τ∗cr values
in ways that are far too complex for 2D modelling.

Do water‐worked grains lay flat?

There has been some research into whether grains are preferen-
tially deposited with either the b‐ or c‐axis aligned with gravity
(Komar and Li, 1986). Our XCT‐derived grain geometries from
the R1 and R2 samples suggest that there is considerable varia-
tion in our water‐worked grains (Figure 7) but a general prefer-
ence for them to be positioned with their c‐axis more closely
aligned to vertical than either of the other two principal axes.
The box plot in Figure 7a indicates a c‐axis alignment with
gravity is within about 45° for about half of all grains, whilst
the a‐axis and b‐axis fall within about 65° for about half the

grains. Similarly, results in Figure 7b show the c‐axis alignment
with the downstream direction are up to as much as 75° for
about half of the grains. This result further supports our earlier
conjecture that c‐axis lengths would be a better proxy upon
which to base 2D grain entrainment calculations than b‐axis
lengths.

Grain projection relationship to τ∗cr

Grain protrusion (and likely projection, p) is known to have a
fairly strong correlation with τ∗cr (Fenton and Abbott, 1977).
Data from both the Coarse R1 and Coarse + Fines R2 samples
show a strong to moderate power law relationship between
τ∗cr and p with 85% and 54% explained variation in logðτ∗crÞ, re-
spectively (Figure 8a). Dummy variable regression of linearized
power law models combines R1 and R2 data for testing linear
model differences (Draper and Smith, 1998). To perform this
test, let logðτ∗crÞ ¼ α þ βlogðpÞ þ ϵ be the linearized power
law for (i) Coarse and (ii) Coarse + Fines models. Let dummy
variable Z=1 for the Coarse model and let Z=0 otherwise. Then
the combined model that allows us to simultaneously test for

Figure 7. Distribution of angle separation between principal a‐, b‐ and c‐axis from: (a) the vertical direction (green boxes), and (b) the downstream
flow direction (orange boxes), for all surface grains in the R1 and R2 samples, where 0° represents a perfect alignment of a given principal axis with the
named direction on the y‐axis of the box plot. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 8. Power law models of τ∗cr versus projection height of the entrained grain for: (a) coarse stones from the R1 sample (orange circles) and coarse
plus added fines from the R2 sample (violet circles), and (b) stones from combined R1 and R2 samples (green circles). Model regressions for R1 and R2
samples were significantly different (p<.001). Critical shear stress for coarse plus fines scales with projection as −1.78 similar to that of the combined
sets as −1.75. [Colour figure can be viewed at wileyonlinelibrary.com]
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equal slope, α≡logðα′Þ, and scaling, β, parameters is logðτ∗crÞ ¼
α1 þ α2Z þ β1logðpÞ þ β2Z logðpÞ þ ϵ , or, written in parsed
form

logðτ∗crÞ ¼
ðα1 þ α2Þ þ ðβ1 þ β2ÞlogðpÞ þ ϵ Coarse;

α1 þ β1logðpÞ þ ϵ Coarse þ Fines;

�

where the error term assumption is ϵ∼N(0,σ2). Using a partial
F‐test to test the hypothesis H0:α2=0andβ2=0 versus
HA:α2≠0orβ2≠0, model parameters are significantly different
(p<.001). The power law models suggest τ∗cr is higher for grains
in contact with matrix fines, and yet τ∗cr differences between
models decreases with increased projection. τ∗cr for Coarse +
Fines scales faster (β=−1.78) with increasing projection than
Coarse grains alone (β=−1.52). This is likely the result of less
surface contact with matrix fines as the grains project further
from the river bed. Cohesion comparison (Figure 5) suggests
this might be the case as the lowest grain numbers in the plot
are stones positioned at the highest elevations. Plotting the
combined R1 and R2 samples (Figure 8b) suggests matrix fines
might play a dominant role as the scaling parameter (β=−1.75)
is similar to R2.

Discussion

Sources of geometric error inherent in 2D models

The wide‐ranging differences in entrainment parameter values
between the 2D and 3D models are primarily attributed to a
number of geometric factors: (i) the 2D model is a special case
of the 3D model, with a range of motion restricted to a 2D flow‐
parallel vertical plane, and where the AOR coincides with a
single contact point; (ii) in the 3D model, the AOR (and there-
fore the POR) orientation is induced by variations in contact
vector pair arrangements affecting entrainment results; (iii) var-
iations of position vector lengths induced by contact pair ar-
rangements affect the magnitude of the position vector and its
contribution to the moment balance; and (iv) changes in force
vector magnitude and direction induced by variations in POR
orientation also affect moment balance. These factors affect
how forces are geometrically transferred through the POR into
the rotational mechanics of entrainment, and each is discussed
below by considering a 2D entrainment model with fixed force
and position vectors in static equilibrium about a single contact
point (Figure 1a). We first show that the 2D model is a special
case of the 3D model, case (i) above, and then we proceed to
use it in a geometric argument to show the remaining cases.
When combined, these factors show the geometric biases in-
herent in a 2D model. Given the careful consideration in our
attempt to match the continuum mechanics for 2D and 3D
entrainment models, we suggest these 2D geometric biases as
the primary difference between 2D and 3D entrainment
models.
For this discussion, consider a vector‐based 2D entrainment

model with fixed vectors in static equilibrium about a single
contact point (Figure 1a). Consider the xz‐plane as the POR
for the 2D model (shown in Figure 1a). Now, by the right‐hand
rule for reference frames, the AOR has unit vector λ ¼ −ĵ. Re-
versing the direction of the single contact vector, C, in Figure 1

a, the position vector for the 2D model is R ¼ −
1
2
D sin αîþ

1
2
D cos α k̂. The force vectors for drag, lift and submerged grain

weight are FD ¼ FDî, FL ¼ FL̂k and FW ¼ −FŴ k , respectively.
Using the matrix determinant method to calculate the scalar

triple product, we arrive at the same 2D moment balance as
Equation (1b), thereby showing that the 2D entrainment model
is just a special case of the 3Dmodel restricted to a 2D subspace
in the form of a flow‐parallel vertical plane.

Now the POR of our fixed 2D model contains all of the force
vectors involved in the 2D moment balance. By parsing 2D
force vectors into those with horizontal lines of action (drag
force) and those with vertical lines of action (lift and submerged
weight), we can examine the effects of bearing and tilt angles
separately. By increasing the bearing angle, β, from the 2D po-
sition, thus reflecting a changing pair of contact vectors in 3D,
the increased POR deflection from downstream flow (x′‐axis in
Figure 2a) has no effect on the contribution from vertical forces
since those vectors remain within the POR. However, the drag
force is effectively reduced by a factor of cosβ as the POR
swings away from the horizontal line of action (vector FDP in
Figure 2a). For the moment to remain in balance, the boundary
shear stress must be increased to compensate for the loss in
driving force being projected onto the POR, which is caused
by an increased bearing angle. Similarly, increasing tilt angle,
γ, from the 2D position for the POR has no effect on contribu-
tion of the horizontal force on entrainment, but the tilted POR
does affect how vertical force contributes to overall entrain-
ment, as vertical forces are effectively reduced by a factor of
cosγ. Again, this requires an adjustment in the boundary shear
stress for the moment to remain in balance. However, since the

resultant of vertical forces, ðFL−FW Þ̂k, is largely cancelled out
by their difference, any increase in bed shear stress contributes
more towards the magnitude of drag force in the total entrain-
ment, FE=FD+FL, which is also partly attributed to the fact that
drag and lift forces scale proportionally to their coefficients,
CD=0.91 and CL=0.20, respectively.

By the definition of cross‐product of position and force

vectors, R�F ¼ ‖R‖ ‖F‖sin θ n̂ , the magnitude of the moment,
‖R× F‖, is reduced whenever the magnitude of either position
vector or force vector is reduced, or whenever the angle be-
tween their vectors diverges from an orthogonal orientation.
Consider the location of the AOR shown in Figure 2b (blue spi-
ral arrow), which shows the AOR passing through the body of
the stone rather than rotating at its edge. Acute angles between
contact vectors places the AOR near the edge of the stone (e.
g. grain 7 in Figure 6), whereas very obtuse angles place the
AOR much closer to the stone’s centre of mass (e.g. grain 14).
Increasing the angle separating contact vectors on the same
grain reduces the length of both position vectors (Figure 2b)
as the AOR shifts towards the centre of mass, thus affecting
the magnitude of the moment balance for resisting and driving
forces.

Consider again increasing the bearing angle of the POR
from a 2D position, which reduces the magnitude of the drag
force vector projection on the POR. The reduced drag force
projection (Figure 2a,b) results in an entrainment vector,
FEP ¼ FDP þ FLP , that changes in both magnitude and direc-
tion within the POR (i.e. FDP decreases as FLP remains fixed).
As bearing angle increases, the angle between the entrain-
ment vector, FEP , and its position vector, REP (shown in
Figure 2b), increases from slightly acute to slightly obtuse as
the drag force projection decreases in magnitude. This result
corresponds to increasing angle θ in the cross‐product

‖REP ‖ ‖FEP ‖sin θ n̂ from an acute angle to the maximum
‖REP�FEP ‖ value when vectors become orthogonal only to
decreasing again with increasing obtuse angle. Any of these
changes in vector magnitude, direction, or angle between
vectors requires adjustments in the boundary shear stress to
bring the moment back into static equilibrium.
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When combined, these geometric factors affecting moment
balance form the bulk of entrainment parameter differences be-
tween 2D and 3D entrainment models (see Figure 4). More-
over, using a vector‐based 3D framework to calculate static
moments from scanned images of the actual grain structure
yields precise results with respect to the rigid body mechanics
of the 3D entrainment model. Thus any 2D‐to‐3D differences
in entrainment values on the same grain are primarily attributed
to a measurable, geometric bias, which is inherent in any 2D
model. The preceding arguments also demonstrate that friction
angles obtained in the field are largely an amalgamation of an-
gles for pivot, bearing and tilt.

Sources of error in the 3D entrainment model

Inaccuracies in the 3D model are primarily due to: (i) simplify-
ing assumptions for the fluid mechanics of the 3D model; (ii) er-
rors related to XCT scanning and image processing; (iii) missing
grains and contact points from the images; and (iv) the rule set
used to define viable pairs of contact vectors. We attempted to
minimize 2D‐to‐3D model differences with respect to fluid me-
chanics used in the 3D model so that model differences would
primarily be attributed to the rigid body mechanics. Indeed,
since fluid mechanics developed for our 3D entrainment model
are a discrete analogue of the continuous functions used in the
2D Kirchner et al. (1990) model, they are mechanistically com-
parable. In examining both models using the coarse sample of
R1, without cohesive influence, and using the same drag and
lift coefficients, we are effectively able to compare the influ-
ence of a 3D framework relative to a 2D framework by control-
ling for continuum influences.
Errors attributed to XCT scanning and image processing in-

cludes quality and resolution of the scan, segmentation algo-
rithm and steps taken to segment grains from matrix, and
separation methods and the unavoidable grain erosion that en-
sues. Although their cumulative error is relatively minor, when
compared with geometric errors, they can lead to missing
grains and contact points, which can only be quantified
through a detailed error analysis that is beyond the scope of this
work. Smaller grains are usually the culprits in this regard since
larger stones tend to retain their shape and proximity to
neighbouring grains post separation.
We developed a rule set for viable contact pairs based on

fairly relaxed assumptions with respect to the limits of POR ori-
entation. More investigations into these limits using carefully
controlled experiments should establish a physically rigorous
set of rules that are likely to be more restrictive. Differences be-
tween the new and current rule sets would reveal any error that
exists with the current rule set.

Grain orientation and representative axis

Our results show that, for our samples, the Kirchner 2D model
typically predicts a lower τ∗cr than our vector‐based 3D model.
The lower 2D prediction can be explained by two simplifica-
tions that are made by the Kirchner et al. (1990) model. First,
grain geometry is simplified down to a case of a circular grain
sitting on a bed of uniform circular grains. Second, grains are
assumed to pivot around a single point in the downstream
direction. The Kirchner model, and many similar 2D models,
represents grains as a circle with a diameter equal to the grain’s
b‐axis. However, natural grains are almost never spherical,
instead having a variety of complex forms that are usually
represented as an ellipsoid with principal axes: a (longest), b
(intermediate) and c (shortest). The variety in grain size and

shape means that the protrusion of any grain is determined by
the grain’s orientation and position relative to those of its
neighbouring grains.

Numerous studies have evaluated the preferential orienta-
tion of water‐worked grains in both experimental and field
scenarios. Aberle and Nikora (2006) found that for flume‐de-
rived armour surfaces the majority of grains were oriented
with their long axis aligned with the flow, which was attrib-
uted to interaction dynamics between the bed and constant
discharge in the experiment. In contrast, the largest grains,
which did not move during water‐working and armouring,
were arbitrarily oriented (Aberle and Nikora, 2006). Other
studies have also found flow parallel orientation of the
long axes of grains, although a range of causal mechanisms
have been proposed, including low transport rates or the
presence of static armour layers (Hodge et al. 2013; Powell
et al.2016).

Our results cast doubt on the suitability of using the b‐axis
as a proxy for protrusion when estimating 2D entrainment
thresholds, or in roughness calculations more generally. In
these situations we recommend use of the c‐axis instead of
the b‐axis, since doing so reduces the discrepancy between
τ∗cr predicted by the 2D and 3D models by 62.8% as relative
difference with respect to c‐axis calculations (Figure 4f). Con-
version to c‐axis could be as simple as estimating a mean for
c‐to‐b axis ratios obtained from a Wolman pebble count
(Wolman, 1954) to use as a size multiplier on b‐axis grain
size distributions.

Grain entrainment angles

The pivot (and other) angles that we calculate from our 3D XCT
data and model are not limited to a defined range of values as
the model does not rely on trigonometric functions, instead
using a 3D vector space for calculations. In contrast, the Kirch-
ner et al. (1990) model limits pivot angles to between 0° and
90° (e.g. see Table I). Consequently, we sometimes record pivot
angles that are greater than 90°, for example for a grain where
the contact points are above the grain’s centre of mass. Such a
grain will sit mostly below the mean bed surface, but it is still
subject to a component of the driving forces. Although such
grains are unlikely to be very mobile, the 3D model enables
these grains to be assigned a τ∗cr . Therefore, when calculating
the range of τ∗cr values over a gravel surface, we can incorporate
all grains for which a proportion of their surface can be seen
from directly overhead. The inclusion of what might be consid-
ered outliers in a 2D grain entrainment implementation ac-
counts for some of the extreme values and scatter in the data
reported for the 3D results (Figures 4 and 5). Being able to cal-
culate τ∗cr for these grains shows that the 3D model can be ap-
plied beyond the realm of idealized situations.

To assess the impact of cohesion we have used a simple em-
pirical formulation, which shows the potential importance of
the term and how easily it can be incorporated into the 3D
model. Cohesion effects will be a function of the matrix GSD,
and so further work is needed to develop and test the cohesion
term including a test for field site dependence.

Fluvial response within the roughness layer

We used a logarithmic velocity profile assuming zero velocity
at the local mean bed elevation to facilitate model comparison;
however, this assumption ignores interfacial flows that occur
within the roughness layer. A more appropriate profile model
to describe flow over a coarse gravel bed assumes either a
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linear (Nikora et al. 2004; Mignot et al. 2009) or a power law
(Sarkar and Dey, 2010; Dey and Das, 2012) profile within the
roughness layer that increases from zero near the bed troughs
coupled with a logarithmic profile upon entering the surface
layer. By extracting roughness layer elevation boundaries from
images at a distance, say D84, upstream of the grain, a profile
may be constructed to accommodate a roughness layer that is
unique to each surface grain. These variations in local hydrau-
lic properties affecting the profile should generate more appro-
priate entrainment metrics across all surface grains in the
sample.
The potential for grain mobilization is spatially dependent on

surrounding sediment; upstream particles within close enough
proximity are found to strongly affect grain entrainment (Mea-
sures and Tait, 2008). For our 3D model we developed an ex-
posure factor that is a physically‐based weighted mean of
exposed fraction of grain area. XCT scanned images are rotated
to provide multiple viewing angles of surface grains to mimic
turbulence fluctuation of flow velocity over the bed, where
the horizontal component of the vector is assumed to contrib-
ute to drag force during grain entrainment. Measures and Tait
(2008) used surface images of bed sediment to isolate individ-
ual grains and to extract upstream projected areas and their
midpoint elevations, and then used these metrics for individual
grain calculations. They considered two mechanisms of shel-
tering from upstream grains: direct sheltering, which reduces
exposed grain area; and remote sheltering, which modifies flow
due to particle protrusion (Measures and Tait, 2008). Both
mechanisms affect EF in our 3D entrainment model, since a
sheltering grain increases EF values with increased distance
from the object grain.

Applications of 3D models

Although vector‐based 3D entrainment models yield more real-
istic rolling motion physics than their 2D counterparts, their
downside is the impracticality of collecting the 3D scanned im-
ages that are necessary for model parametrization. The time
and costs involved in obtaining and processing sediment scans
of riverbed samples are currently prohibitive for routine moni-
toring applications. The real value for developing vector‐based
3D models to interpret scanned images of grains is their poten-
tial for improving existing 2D models (e.g. switching from b‐
axis to c‐axis entrainment calculations). Furthermore, our find-
ing that grain entrainment is primarily controlled by projection
suggests that high‐resolution 2.5D measurement techniques
such as terrestrial laser scanning (TLS) offer exciting opportuni-
ties for in situ, field‐based estimates of entrainment using expo-
sure as a proxy for projection.
Here we developed a 3D model that utilized simple con-

structs typically used in fluid mechanics of 2D entrainment
models to facilitate comparison with a simple 2D model. Future
development should focus on improving vector‐ based 3D
modelling with respect to the fluid mechanics; three such areas
of enhancement are computational fluid dynamics simulation
over bed topography (Hardy, 2006; Hardy et al. 2005; Lane
et al. 2004), coupling interfacial velocity profiles for the rough-
ness layer with logarithmic profiles for the surface layer (Nikora
et al. 2004; Mignot et al. 2009; Sarkar and Dey, 2010; Dey and
Das, 2012; Blois et al. 2014; Cooper et al. 2018), and entrain-
ment effects due to turbulent pressure fluctuations (Amir et al.
2014; Cooper et al. 2018; Vollmer and Kleinhans, 2007). In do-
ing so, a vector‐based entrainment model representative of 3D
rolling motion physics could serve as a benchmark from which
enhancements to existing 2D models can be developed and
tested.

Conclusion

Kirchner et al. (1990) advocated a better understanding of the
variability within gravel bed surfaces, not simply between dif-
ferent locations. We have developed a vector‐based 3D grain
entrainment model that is parametrized using high‐resolution
XCT data of individual grains within water‐worked gravel beds.
Our new approach explicitly accounts for variability by making
no simplifying assumptions about the grain geometry and loca-
tion of the contact point(s) for pivoting, instead relying upon ac-
curately measured grain geometries and the spatial position all
contact points. Our 3D entrainment model does not rely on
pivot angles to calculate critical entrainment shear stress; how-
ever, in addition to pivot angles, bearing and tilt angles for the
plane of rotation are easily calculated once grain entrainment is
established.

The 3D model presented here has made geometric entrain-
ment formulations relevant and applicable to real‐world data,
removing the need for idealized situations and gross assump-
tions. In the event that one cannot fully resolve 3D subsurface
grain geometry, we show that use of the grain c‐axis, rather
than the oft‐used b‐axis, for 2D grain entrainment calculations
results in critical shear stress estimates that more closely resem-
ble those calculated using the full 3D implementation. Further-
more, the new model ultimately reveals that entrainment is
predominantly controlled by (i) grain projection, (ii) plane of ro-
tation bearing angle, and (iii) cohesion force due to grain con-
tact with a matrix of fines. Whilst protrusion (and as we have
shown here, projection) has long been recognized as a domi-
nant control on critical shear stress, the impact of bearing angle
and cohesion has not yet been accounted for. We demonstrate
major sources of geometric error inherent in 2D entrainment
models to show where improvements can be made in 2D
model development; the magnitude of this error varies with
changes to orientation for the plane of rotation.

Grain entrainment is a function of both the overall structure
of the gravel bed and the overlying flow. Our model has signif-
icantly improved the representation of the former, but still uses
a simplified logarithmic flow profile to represent the latter.
Lamb et al. (2008) noted that local average velocity is not the
only relevant velocity scale of interest and that the role of tur-
bulent fluctuations on grain entrainment should be considered,
with turbulent flow and pressure differentials aiding entrain-
ment of grains from a bed (Vollmer and Kleinhans, 2007). The
structure of our vector‐based 3D grain entrainment model is
such that it could be developed in the future to address the im-
pact of flow properties on grain entrainment. By improving flow
properties to better replicate local hydraulics on vector‐based
3D models, entrainment modelling of 3D scanned riverbed
grains has the potential for use as a benchmark for developing
and testing enhancements in existing 2D models.
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Appendix A: Equivalence of Scalar Triple
Products and POR Cross‐Products
Here the scalar triple product for axis of rotation (AOR) unit
vector, λ, whose dot product with the R × F cross‐product is

H. VOEPEL ET AL.

© 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. Earth Surf. Process. Landforms, Vol. 44, 3057–3077 (2019)

3072



shown to be equivalent to projecting both vectors, R and F,
onto the plane of rotation (POR) before calculating the scalar
moment. The scalar triple product effectively produces a signed
magnitude of the resulting moment of the system. First, resolve
arbitrary vectors for resultant force, F, and position of applied
force, R, into two components: one parallel to the AOR, F1
and R1, and one orthogonal to the AOR, F2 and R2, which lie
within the POR (Figure A1). Then the scalar triple product is
given by

λ·R�F ¼ λ· R1 þ R2ð Þ � F1 þ F2ð Þ
¼ λ· 0þ R1�F2 þ R2�F1 þ R2�F2ð Þ
¼ 0þ 0þ 0þ λ·R2�F2:

The first term of distributed cross‐products, R1× F1, in the sec-
ond equality is zero because R1 and F1 are parallel vectors. The
second and third terms, R1× F2 and R2× F1, in the third equality
are zero because R1 and F1 are parallel to unit vector λ; hence
the cross‐product of either of these two vectors with any other
vector is obviously orthogonal to λ. The remaining nonzero
term is a scalar, equivalent to projecting force and position
vectors onto the POR, R2 and F2, evaluating their vector
cross‐product, R2×F2, and then calculating the signed

magnitude of the result, sgn{R2×F2}‖R2×F2‖, the latter of which
is the consequence of taking the dot product of the unit vector λ
with the resulting moment vector R×F.

Appendix B: Exposure Factor (EF) Model and
its Adjusted Value (EFadj)

Exposure factor

The exposure factor, EF, for our 3D model is the functional
equivalent of grain protrusion used in a 2D model, but is neces-
sary since the elevation of sheltering effects from upstream
grains is not laterally continuous across the face of the down-
stream grain. The exposure factor, EF∈[0,1], is defined as the
average proportion of the face of the grain that is exposed to
the flow when the grain is viewed over multiple angles. We
use the turbulence of flow over the bed as a physical basis for
developing a 3D exposure factor. One way of picturing flow
turbulence is to imagine a camera attached to the flow velocity
vector, V, that points in the same direction as the vector. Turbu-
lence is a departure from the dominant downstream direction
of flow, and so provides different viewing angles, θ, of the
bed surface (see colour bands in Figure B1a). Viewed from
overhead at θ=0°, the entire stone is seen (blue band), whereas
looking downstream at θ=90°, only a fraction of the stone is ex-
posed (red band). Under turbulent flow regimes, a sphere expe-
riences viscous shear and pressure forces up to the moment of
flow separation at about 115° beyond the front of the sphere
(Celik et al. 2014; Constantinescu and Squires, 2004); thus
we can use overhead views of exposed areas in EF calculations.
Let ERθ be the exposure ratio defined as the visible area of ex-
posed stone (solid colour bands) divided by the total area (Aθ,
thick dashed colour lines) of the stone from the same viewing
angle θ. Now consider the magnitude of the horizontal compo-
nent of the velocity vector, ‖Vsinθ‖, as the speed of river current
at an arbitrary point along the velocity profile, u, which is used
in calculating drag force. Observing that

ðV sin θÞ2 ¼ V·V sin2 θ ¼ ‖V‖2sin2 θ ¼ ‖V sin θ‖2;

the drag force on the stone is proportional to the product of dy-
namic pressure and stone area at the same viewing angle

Figure A1. Image of a plane of rotation (blue plane) and its orthogo-
nal axis of rotation (dotted line). Arbitrary force and position vectors,
F and R, that induce a moment R×F in 3D space are resolved into com-
ponents parallel to the axis of rotation, F1 and R1, and perpendicular to
the axis of rotation, F2 and R2, spanning the plane of rotation. The unit
vector for the axis of rotation is λ. Redrawn after Beer et al. (2013).
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure B1. (a) Development of the exposure factor, EF. For three different view angles, solid coloured bands show the areas of viewable stone,
whereas the dashed coloured lines indicate total area of the stone that could be viewed in the case of no upstream sheltering grains. Viewing angle
range from 0° (directly overhead) to 90° (in the direction of flow). The exposure ratio, ERθ, is the ratio of these two area values. (b) The adjusted ex-
posure factor, EFadj, is necessary because we are only interested in the relative exposure of the areas of the grain that are above the elevation at which
the flow velocity is zero. To calculate EFadj, we partition the face of the stone into two initial regions: above the mean bed elevation where the velocity
profile is nonzero (white and light‐grey areas) and below mean bed elevation where flow velocity is zero (dark‐grey area). The upper region is further
partitioned into the hidden fraction (light grey) and the exposed fraction (white) of the nonzero velocity profile. [Colour figure can be viewed at
wileyonlinelibrary.com]
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1
2 ρðV sin θÞ2Aθ (equivalent to 1

2 ρu
2A from Equation (9a)). Hence

we can use the magnitude of the horizontal component of the
velocity vector (illustrated by colour‐matched vectors each
from the same velocity V; Figure B1a) as a physically‐based
weighting mechanism in estimating a weighted mean of ERθ,
which is the exposure factor EF used in Equation (9b). Thus EF
is calculated by

EF ¼
∑θ∈Θ ERθ

1
2
ρðV sin θÞ2Aθ

∑θ∈Θ
1
2
ρðV sin θÞ2Aθ

¼ ∑θ∈Θ ERθ sin2 θ
∑θ∈Θ sin2 θ

ðspherical grainsÞ

≈
∑θ∈Θ ERθsin

2θ
∑θ∈Θ sin2 θ

ðnatural stonesÞ:

Under idealized conditions of spherical grains, 12 ρ‖V‖
2Aθ is not

dependent on viewing angle, so it factors out of both summa-
tions and cancels across the fraction. However, for natural
stones, which are typically not spherical, this weighting mech-
anism provides a good approximation as an exposure factor.
The summed denominator is necessary since the sum of all
the weightings used in a weighted mean must be unity. To min-
imize edge effects when calculating EF on scanned images, we
extended the edges of basket of grains by replicating copies of a
binary image of sample particles in a circular pattern around
the entire basket with a slight buffered overlap around the outer
edge.

Adjusted exposure factor, EFadj

The EF is the proportion of the total face of the grain that is ex-
posed to the flow; however, for the entrainment calculation we
are only interested in the proportion of the grain face that is ex-
posed to nonzero flow velocities. Since the nonzero portion of
the logarithmic velocity profile is defined as starting at the mean
local bed elevation, which is generally above the base of a grain,
it is necessary to rescale EF so that portions of the grainwhere the
profile is zero are not included in the drag force calculations.
Without this step, drag force calculations used in the moment
balance will be underestimated, resulting in increased critical
shear values. The adjustment to EF depends upon whether the
fraction of stone experiencing no flow (i.e. zero velocity profile)
is greater or less than the fraction that is sheltered by upstream
grains (as expressed by EF). Let Fu be the fraction of a stone above
the mean local bed elevation where u>0, and let Fu=F1+F2 be
the partition of this fraction such that F2=EF is the exposure factor
(see Figure B1b). Then F1=Fu−F2=Fu−EF. Since EF represents the
exposed fraction for the entire stone, the hidden fraction of Fu is
F1/Fu (light‐grey section) and the exposed fraction of Fu is the ad-
justed exposure factor EFadj=F2/Fu (white section). EFadj further
reduces drag force on the stone due to the additional sheltering
effects of EF, which are only partially accounted for by Fu
(dark‐grey section). Then, from the defined partition:

EFadj ¼ F2

Fu
¼ Fu−F1

Fu
¼ 1−

Fu−EF
Fu

; 0 < EF≤Fu≤1ð Þ:

Nowwhenever 0<Fu<EF≤1, EF already covers Fu in its entirety,
so there is no need to reduce drag force any further than already
accounted for by Fu. Hence, in this case EFadj=1. For computa-
tional efficiency, we combine both conditional domains for EFadj
into a single, unconditional domain; thus the EFadj becomes

EFadj ¼ 1 − max 0;
Fu−EF
Fu

� �
; Fu; EF ∈ 0;1ð �:

Appendix C: Empirical Cohesive Force (FC)
Experimental Design and Model

Cohesive force experiments were designed to determine the
effect of burial depth, sand size and clay fraction on the ver-
tical tensile force required to extricate a 25 mm diameter
spherical glass marble from a sand–clay mixture. The chosen
marble size represents the lower end of the D50 size range
from field data (Hodge et al. 2013). The marble was also
pulled from pure clay to establish a baseline from which
treatment effects could be modelled relative to the effects of
pure clay. Treatments used in the experiment were burial
depth (4 mm, 8 mm and 12 mm), size range of sand
((0.1,0.3] mm, (0.5,1.0] mm and (1.0,2.0] mm), and clay frac-
tion of the sand–clay mixture (0, 0.25, 0.50 and 0.75) as a
3×3×4 main effects factorial design.

For the experimental setup, a three parts sand–clay mixture
was thoroughly mixed with one part water, and then poured
into a small tray that could accommodate 15 buried marbles
(three burial depths × five replicates) with sufficient spacing
as to avoid surface deformation effects of neighbouring grains
during force pulls. The sand–clay mixture was spread over the
tray, and the surface was smoothed without compaction to en-
sure consistency between pours. String was glued to each mar-
ble prior to vertical pulls. Force pulls were made of each free‐
standing marble prior to burial to adjust their extraction force
by the marble’s weight. Marbles were then buried to their depth
markings, and the surface was allowed to set undisturbed, yet
still damp, until force measurements, which were obtained
using a handheld force gauge.

Force pulls for pure clay were found to be independent of
burial depth, as the simple linear regression was found to be
insignificant (p=.526). Tensile force per buried surface area of
the marble for all sand–clay mixtures had substantial nonlin-
ear relationships with sand size and clay fraction. Therefore,
a single power law model was developed where the response
was defined as the force per surface area for the mixtures di-
vided by the overall mean of force per surface area for pure
clay (i.e. the comparison baseline). Then the zero value clay
fraction was adjusted to 0.001 before log‐linearizing the
power law model for linear regressing over mean sand sizes
(0.20 mm, 0.75 mm and 1.50 mm) and clay fractions

Figure C1. Fitted versus observed cohesive force per surface area.
[Colour figure can be viewed at wileyonlinelibrary.com]
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(0.001, 0.25, 0.50 and 0.75). The significant regression of the
linearized power law (p<.001,R2=.54 (log)) was
exponentiated and multiplied through by the baseline value
for pure clay force per surface area, yielding the final model
(Figure C1). Other empirical definitions could be derived for
use within our vector‐based 3D model. Data and model de-
velopment are located on our Github page at https://github.
com/NERCPATCheS/VectorEntrainment3D.

Appendix D: Algorithmic Solution for 3D
Vector‐Based Grain Entrainment
An algorithmic solution is provided for calculating τ∗cr so that
more complexity can be added into the 3D framework (e.
g. adding turbulence) without deriving an analytical solution.
To arrive at a value of τcr requires finding the boundary shear
stress, τb, used in Equation (8) that satisfies the static moment
balance. Calculate entrainment for each stone in the sample
from top to bottom as only surface stones experience shear
stress. For each stone with entrainment potential, where initial
force calculations are nonzero, get a list of N contact points
of neighbouring stones that are within some specified distance.
Then generate a list of N

2


 �
contact pairs to construct vector pairs

(CVL,CVR), using the rule set to test all vector pairs for viability,
keeping only the pairs that are viable for entrainment calcula-
tions. Next, calculate a set of τcr values, where each value in
the set {τcr} corresponds to each viable pair of contacts. The
smallest τcr value in the set {τcr} and its corresponding pair of
contacts (CVL,CVR) are the entrainment solution for that partic-
ular stone. Calculate the corresponding τ∗cr value, all entrain-
ment angles using Equations (6), and any other useful
information. What follows is the algorithm used to obtain a sin-
gle τcr value for a given contact pair (CVL,CVR) that will be
added to the set {τcr} from which the entrainment solution for
a given grain is τcr=min{τcr}.

Consider a small step length of boundary shear stress, Δτb, to
determine interval width, [τ1,τ2]=[n−1,n]Δτb, iterated over
n=1,2,…, defining a partitioned range of τb values (e.g. [τ1,τ2]
=[0,Δτb] for n=1, and [τ1,τ2]=[Δτb,2Δτb] for n=2, and so on).
Using either moment expression in Equation (7) or Equa-
tion (15a) (i.e. not set to zero) to define a moment function
mi=f(τi) for i=1,2, the moment interval corresponding to [τ1,τ2]
is [m1,m2]. Our goal is to iterate [τ1,τ2] until [m1,m2] contains
zero, which occurs whenever m1×m2<0. Since [m1,m2] is usu-
ally far from containing zero at n=1, it will take k=⌊m1/(m1−m2)
⌋>0 iterations (where ⌊·⌋ is the floor function) for interval [m1,
m2] to be relatively close to zero (note that if k<0, then τcr<0;
set τcr=∞). Therefore, start by iterating [τ1,τ2]=[n−1,n]Δτb over
n=k,k+1,… until m1×m2<0.

Once we reach an interval [τ1,τ2] that generates m1×m2<0,
we then use a binary search algorithm as follows: (i) split the in-
terval [τ1,τ2] in half at the mean, ¯τ ¼ ðτ1 þ τ2Þ=2, and generate
moment intervals ½m1;m¯τ � and ½m¯τ ;m2� corresponding to
½τ1; ¯τ � and ½¯τ ; τ2� , respectively; (ii) test each half interval
½m1;m¯τ � and ½m¯τ ;m2� to find which half contains zero; (iii)
choose a new [τ1,τ2] that corresponds to the moment interval
that contains zero going back to step (i) and repeat until
maxfjm1j; jm2jg≈0; (iv) calculate ¯τ from the final [τ1,τ2] saving
its value to the set {τcr} for the current (CVL,CVR) pair. Get the
next (CVL,CVR) pair for the current grain, setting [τ1,τ2]
=[0,Δτb] at n=1, and repeat the algorithm for all valid (CVL,
CVR) pairs of the current stone. Repeat the algorithm for all re-
maining stones in the sample to obtain a τ∗cr value plus angles
and other metrics for each stone with entrainment potential.
A flow chart detailing the steps taken in the algorithmic solu-
tion is provided (Figure D1).

Binary search algorithms are computationally efficient as
they have a geometric rate of convergence in narrowing
[τ1,τ2] intervals to obtain a τcr value. By initializing the search
for zero in [m1,m2] over n=k,k+1,…, the [τ1,τ2] interval used
in the binary search is obtained in just a few iterations.

Figure D1. Flow chart of algorithmic solution for 3D vector‐based grain entrainment.
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Combining both of the these enhancements with parallel pro-
cessing the for‐loops over contact pairs (CVL,CVR), this algo-
rithm is highly efficient. The Λ values in Equation (15c)
indicated the potential for τcr<0, which is possible due to the
relaxed β<|90°| assumption of the current rule set for viable
(CVL,CVR) pairs. For our analysis, we chose to ignore any neg-
ative τcr values as extraneous information.
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