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Abstract

A new software reliability growth model (SRGM) called RBoostSRGM is proposed in this
paper. It can be regarded as a modification of the boosting SRGMs through the use of a
reduced set of weights to take into account the behaviour of the software reliability during
the debugging process and to avoid overfitting. The main idea underlying the proposed
model is to take into account that training data at the end of the debugging process may
be more important than data from the beginning of the process. This is modelled by taking
a set of weights which are assigned to the elements of training data, i.e., to the series of
times to software failures. The second important idea is that this large set is restricted by
the imprecise ε-contaminated model. The obtained RBoostSRGM is a parametric model
because it is tuned in accordance with the contamination parameter ε. As a variation to
this model, we also consider the use of the Kolmogorov-Smirnov bounds for the restriction
of the set of weights. Various numerical experiments with data sets from the literature
illustrate the proposed model and compare it with the standard non-parametric SRGM
and the standard boosting SRGM.

Keywords: software reliability growth model; boosting; support vector regression;
extreme points; imprecise contaminated model; Kolmogorov-Smirnov bounds; pairwise
comparisons.

1. Introduction

Reliability of software is crucial in many application areas, yet assuring high reliability
is difficult. Lyu (1996) defined software reliability as the probability of failure-free software
operation for a specified period of time in a specified environment. Many models for
software reliability estimation and prediction have been proposed, where predicting the
software reliability based on information from the software debugging process is usually
efficient. The model assumption that software errors are removed during debugging or
testing leads to the term ‘software reliability growth model’ (SRGM). Although assumptions
for SRGMs are often doubtful in practice (Cai et al, 1991), they have become popular
models and they can mostly be divided into two groups: parametric and non-parametric
models (Hua et al, 2007; Li et al, 2012a; Roy et al, 2014).
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Parametric SRGMs (e.g. Jelinski and Moranda (1972); Goel and Okomoto (1979); Li
et al (2012a); Tian and Noore (2005)) are based on assumptions about the behaviour of
the software faults and failure processes, typically reflected through parametric probability
distributions for time between failures or related process characteristics. Non-parametric
SRGMs utilize methods such as artificial neural networks, genetic programming or support
vector machines (Hastie et al, 2001; Vapnik, 1998) (SVMs) to predict the software reliability.
An advantage of such methods is that they limit prior assumptions and are mainly based
on fault history data. Many non-parametric SRGMs have been proposed in recent years
(Amina et al, 2013; Cai et al, 2001; Chiu et al, 2008; das Chagas Moura et al, 2011;
Govindasamy and Dillibabu, 2018; Hua et al, 2007; Jaiswal and Malhotra, 2018; Jin and
Jin, 2014; Kim et al, 2015; Kumar and Banerjee, 2015; Kumar and Singh, 2012; Li et al,
2012b,a; Lou et al, 2010; Pai and Hong, 2006; Sun et al, 2018; Tian and Noore, 2005; Xing et
al, 2005; Yang et al, 2010). A review of using soft computing approaches in non-parametric
SRGMs is provided by Lohmor and Sagar (2018).

Many SRGMs are based on regression models. We consider a support vector regression
(SVR) which can be regarded as a special case of the SVM with a loss function of a specific
form for constructing regression functions. Due to many important features of the SVR,
many authors (das Chagas Moura et al, 2011; Jin and Jin, 2014; Tian and Noore, 2005; Xing
and Guo, 2005) have applied this learning technique to software reliability modelling. A
second important approach to constructing non-parametric SRGMs is by using ensemble-
based methods, in particular, boosting algorithms. We will study a boosting algorithm
which uses the SVR for constructing the so-called weak regressor.

Vamsidhar and Raju (2011) proposed to combine well-known parametric NHPP
SRGMs, including the Goel-Okumoto model, the Musa-Okumoto model, the delayed S-
shaped model, the inflected S-shaped model, and the generalized Goel-Okumoto model,
by means of the AdaBoost algorithm. The proposed use of the AdaBoost algorithm is
very similar to the well-known models based on combination of predictions obtained from
different SRGMs and proposed by Littlewood et al (1993). Similar SRGMs were studied by
Hsu and Huang (2009). A short review of SRGMs based on boosting methods is provided
by Vamsidhar et al (2012).

Li et al (2012b) point out that the AdaBoost algorithm as learning technique has not
commonly been applied to software reliability engineering. They propose two interesting
AdaBoosting-based combination approaches and investigate the effectiveness of these two
approaches for improving the estimation and prediction power of the SRGMs. The first
one, named ‘self-combination approach’, selects several variations of one original SRGM
as the weak predictors, and uses the AdaBoost algorithm to determine the weights of
these variations, by training these variations on the failure data sets in order to obtain the
final linear self-combination model to improve the performance of this original SRGM. The
second approach, named ‘multi-combination approach’, selects several different candidate
SRGMs as the weak predictors, and uses the AdaBoost algorithm to determine the weights
of these models by training these SRGMs on the failure data sets, in order to obtain the
final linear multi-combination model to improve the performance of all candidate models.
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The second combination approach proposed by Li et al (2012b) is similar to that proposed
by Vamsidhar and Raju (2011). The use of boosting techniques to improve the performance
of software reliability models was proposed by Costa et al (2007).

In spite of the successful application of the SRGMs based on using the AdaBoost algo-
rithm, we meet all problems intrinsic to the AdaBoost method itself. It should be noted
that the main advantage of AdaBoost over other boosting techniques is that it is adap-
tive, i.e., it is able to take advantage of weak hypotheses that are more accurate than
was assumed a priori. Adaptation is a very important feature of the AdaBoost and other
ensemble-based algorithms. At the same time, it has been reported by many authors that
the main reason for poor learning results of AdaBoost in the high-noise regime is that the
algorithm produces a skewed data distribution, by assigning too large weights to a few
hard-to-learn data points. This leads to overfitting. In order to overcome this difficulty, we
should somehow restrict the set of possible weights assigned to data points. Several mod-
ifications of boosting algorithms, which restrict the set of weights of examples in training
data, have been proposed (Domingo and Watanabe, 2000; Nakamura et al, 2004; Servedio,
2003; Utkin, 2013, 2015). In fact, every modification is a choice of some rule restricting
the weights. However, the available approaches to restrict the weights do not take into
account peculiarities of the software debugging process and their application to the soft-
ware reliability modelling may lead to unsatisfactory results. Therefore, in this paper, we
propose a new non-parametric SRGM based on the AdaBoost algorithm with the SVR,
called AdaBoost.R2, which restricts the set of weights by combining two rules.

It should be noted that in order to reduce the set of all possible weights represented as
the unit simplex in AdaBoost.R2, Utkin and Wiencierz (2015) proposed to apply several
well-known imprecise statistical models, including the linear-vacuous mixture or imprecise
ε-contaminated model (Walley, 1991), the pari-mutuel model (Walley, 1991), the constant
odds-ratio model (Walley, 1991, Subsection 3.3.5.) and an imprecise model (Utkin and
Coolen, 2014) using the well-known Kolmogorov-Smirnov bounds (Johnson and Leone,
1964, Subsection 8.9.3.). The choice of a suitable model depends on the specific application.
We show below that a good choice for constructing SRGMs is the imprecise ε-contaminated
model which allows us to tune an analyzed SRGM by looking for the optimal value of the
parameter ε.

Typically in software development and testing, training data from the later stages of
the debugging process are likely to be more important for prediction of software reliability
than data from the early stages of the process. Simple errors in software are removed at
the beginning of the debugging process and the software may actually be changed, so early
failures are less relevant for predicting future reliability.

In this paper, we introduce additional weights which reflect the comparative information
underlying the debugging process. The comparative information is represented by pair-
wise comparisons. At first sight, we could use many approaches to formalize the pairwise
comparison information, for example, Fishburn’s representation of preferences (Fishburn,
1999). However, every such approach leads to assignment of precise weights which make
it impossible to use the boosting algorithms. Therefore, we propose to consider a set of
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weights produced by pairwise comparisons. This set is also a subset of the unit simplex
and it can be combined with the subset produced by the imprecise ε-contaminated model
in order to improve the AdaBoost.R2 algorithm applied to SRGMs. We should emphasize
that this second subset enables training data from the later stages of the debugging process
to have more weight than data from earlier stages of the process, but this is not required.
The set of weights allows all data points to have the same weight, or later ones to have
more weight. Numerical experiments will show that optimisation of the weights over the
intersection of the two subsets used tends to lead to good results. The obtained modifica-
tion of the AdaBoost.R2 algorithm uses the weighted SVR as a weak regressor in order to
implement non-linear regression functions. In addition, we also consider the intersection of
a set of weights produced by the well-known Kolmogorov-Smirnov bounds and the pairwise
comparison information. The idea to reduce the set of weights by means of two subsets
gives the corresponding name of the proposed SRGM: RBoostSRGM (Reduced Boosting
SRGM).

This paper is organized as follows. A general approach to the non-parametric SRGM is
presented in Section 2. Section 3 contains a short description of the original AdaBoost.R2
(Drucker, 1997) and its modification taking into account the reduced set of possible weights.
The introduced sets of weights for data points corresponding to times to software failures,
and their extreme points required for implementing the modified AdaBoost.R2, are studied
in Section 4. In Section 5 we consider the intersection of a set of weights produced by the
well-known Kolmogorov-Smirnov bounds and the pairwise comparison information. Nu-
merical experiments with public software reliability data illustrating the proposed SRGMs
and investigating their performance are given in Section 6.

2. A general approach to the non-parametric SRGM and the weighted SVR

The non-parametric SRGM is formulated in the general framework of predictive learning
problems (Hastie et al, 2001; Vapnik, 1995, 1998) as follows. Parameters of the regression
models are computed by minimizing a risk functional defined by a certain loss function
and by a probability distribution of the noise. In regression analysis, we try to estimate
a functional dependency f(x) between a set of sampled points X = (x1,x2, ...,xn) taken
from Rm, and target values Y = (y1, y2, ..., yn) with yi ∈ R. In the framework of machine
learning the regression problem can be stated in the same way. Given n training data
(also called ‘examples’) S = {(x1, y1), (x2, y2), ..., (xn, yn)}, in which xi ∈ Rm represents
a feature vector involving m features and yi ∈ R is an output variable. Let us write the
function f(x) in the form f(x) = 〈a, φ(x)〉+ b, where a = (a1, ..., am) and b are parameters
of the function; φ(x) is a feature map Rm → G such that the data points are mapped into
an alternative higher-dimensional feature space G; 〈·, ·〉 denotes the canonical dot product.
The map φ is used to get the non-linear regression function f . A learning machine has
to choose a function f(x), from a given set of functions, which best approximates the
unknown dependency. This can be done in different ways, for example, by minimizing the
empirical expected loss, where the loss function represents a measure of difference between
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the estimate f and the actual value y given by the unknown function at a point x. The
standard SVR technique is to assume that the probability distribution of the training points
is the empirical (non-parametric) probability distribution function whose use leads to the
empirical expected risk

Remp =
1

n

n∑
i=1

l(yi, f(xi)).

Here l is the so-called ε-insensitive loss function with parameter ε, which is defined as

l(y, f(x)) =

{
0, |y − f(x)| ≤ ε,

|y − f(x)| − ε, otherwise.

Many realizations of the SVR use some distribution of weights w = (w1, ..., wn), w1 +
...+wn = 1, instead of the uniform distribution (1/n, ..., 1/n) over the sampled points S, in
order to incorporate prior knowledge about importance of the data points. The expected
risk in this case is of the form:

Rw =
n∑
i=1

wil(yi, f(xi)). (1)

The parameters a and b of the function f are estimated by minimizing the following
regularized risk function:

RSVR,w =
1

2
〈a, a〉+ C

n∑
i=1

wil(yi, f(xi)).

Here the first term is the standard Tikhonov regularization or smoothness term (Tikhonov
and Arsenin, 1977); C > 0 is the constant “cost” parameter which determines the trade-off
between the flatness of f and the amount up to which deviations larger than ε are tolerated
(Smola and Scholkopf, 2004).

If we introduce slack variables ξi and ξ∗i , then the problem of minimizing the regularized
risk function can be written as follows:

minimize
1

2
〈a, a〉+ C

n∑
i=1

wi (ξi + ξ∗i ) (2)

subject to ξi ≥ 0, ξ∗i ≥ 0,
yi − 〈a, φ(x)〉 − b ≤ ε+ ξi, (3)

〈a, φ(x)〉+ b− yi ≤ ε+ ξ∗i . (4)

This optimisation problem can be written in its dual formulation utilizing Lagrange
multipliers αi, α

∗
i , i = 1, ..., n, as (Tay and Cao, 2002)

maximize
n∑
i=1

yi(αi − α∗
i )− ε

n∑
i=1

(αi − α∗
i )

− 1

2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi,xj), (5)
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subject to
n∑
i=1

(αi − α∗
i ) = 0, (6)

0 ≤ αi ≤ Cwi, 0 ≤ α∗
i ≤ Cwi, i = 1, ..., n. (7)

Here K(xi,xj) = 〈φ(xi), φ(xj)〉 is the kernel function that is the inner product of the
points φ(xi) and φ(xj) mapped into feature space. We do not need to explicitly compute
the function φ(x) due to the kernels. It can be seen from the optimization problem that
only the kernels are used in the objective function. Typical examples of kernel functions
are linear, polynomial and Gaussian (Scholkopf and Smola, 2002). In this paper, we will
use the Gaussian kernel which is defined as

K(x,y) = exp
(
−‖x− y‖2 /σ2

)
,

where σ is the kernel parameter determining the geometrical structure of the mapped
samples in the kernel space. The regression function f can now be written in terms of
Lagrange multipliers as

f(x) =
n∑
i=1

(αi − α∗
i )K(x,xi) + b.

A simple expression for computing b can be found in Smola and Scholkopf (2004).

3. AdaBoost.R2 and its modification

A typical boosting algorithm for constructing a regression model consists of the following
steps. First, the regression model is constructed by means of a number (say, T ) of weak
regressors ft, t = 1, ..., T . The term weak is taken from the classification ensemble-based
methods. Second, weights of data points in the training set for every weak regressor are
updated in accordance with certain rules taking into account the accuracy of the regressor.
Third, various weak regressors are combined in order to form a final regressor. According
to Rokach (2010), a boosting algorithm improves the performance accuracy because it
generates a final classification or regression algorithm whose accuracy can be increased by
combining many weak algorithms whose accuracies may be low.

There are several modifications of ensemble-based regression methods. The simplest
one is called AdaBoost.R2 Drucker (1997). Initially, identical weights h1 = (1/n, ..., 1/n)
are assigned to all data points in the training set. In each iteration, the weights of all
points with a large error measure are increased while the weights of points corresponding
to small values of the error measure are decreased. As a consequence, the weak regressor
is forced to focus on the “hard” data points of the training set by performing additional
iterations and creating more regressors. The “hard” data points are characterized by the
large error measure. According to AdaBoost.R2 (Drucker, 1997), the largest error Dt =
maxj=1,...,n |yj − ft(xj,w)| is computed at each boosting iteration in order to normalize the
real-valued error |yj−ft(xj,w)| in such a way that each adjusted error is in the interval from
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0 to 1. As a result, we get the error measure ej(t) = |yj − ft(xj,w)|/Dt of each data point
at the t-th iteration. The distribution ht is updated using a rule modifying the weights of
data points. One of the well-known rules is of the form ht+1(i) = ht(i)·exp (−αt(1− ei(t))),
where αt is a weight assigned to every weak regressor. This weight measures the overall
accuracy of the regressor and it depends on the error measures e1(t), ..., en(t) of all data
points. In fact, the weight αt measures also the importance that is assigned to the regressor,
i.e., higher weights are given to more accurate classifiers. The final regression function f
is a weighted majority vote of the T weak regressors with coefficients αt. Detailed steps of
AdaBoost.R2 are represented as Algorithm 1.

Algorithm 1 AdaBoost.R2

Require: T (number of iterations), S (training set)
Ensure: ft, αt, t = 1, ..., T
t← 1; hi(t)← 1/n; i = 1, ..., n.
repeat

Build the regression model ft using distribution ht
Dt ← maxj=1,...,n |yj − ft(xj,w)|.
Calculate the adjusted error ei(t) for each instance: ei(t)← |yi − fi(xi,w)|/Dt

Calculate the expected error of fi: εt ←
∑n

i=1 ei(t)hi(t)
if εt > 0.5 then
T ← t− 1
exit Loop.

end if
αt ← ln

(
1−εt
εt

)
ht+1(i)← ht(i) · exp (−αt(1− ei(t)))
Normalize h(t+ 1) to be a proper distribution.
t+ +

until t > T

It can be seen from Algorithm 1 that it does not substantially differ from the stan-
dard AdaBoost for classification (Freund and Schapire, 1997). The main difference is in
determining the expected error εt for each iteration. We can observe that the weights ht
are restricted by the unit simplex denoted as S(1, n). This is the main reason for over-
fitting because the weights of data points tend to concentrate on “hard” points and weak
regressors may be constructed by taking into account only these “hard” data points.

In order to overcome this difficulty and to improve AdaBoost.R2, Utkin and Wiencierz
(2015) proposed the following modification of AdaBoost.R2, restricting the set of weights
of data points by some convex set which is a subset of the unit simplex. Denote a convex
and compact subset of the unit simplex as P . The set P is totally defined by its extreme
points due to its convexity. Denote the extreme points qk = (q

(k)
1 , ..., q

(k)
n ), k = 1, ..., r.

Then every weight h = (h1, ..., hn) from P can be represented as the linear combination of
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the extreme points

h =
r∑

k=1

λk · qk. (8)

Here λ = (λ1, ..., λr) is a vector of non-negative weights such that λ1 + ... + λr = 1. The
main idea of the AdaBoost.R2 modification is to modify the weight vector λ instead of h.
Due to this replacement, a new modified vector h computed from (8) will be inside the set
P . At the same time, the weight vector λ can be arbitrarily changed in the unit simplex
having r vertices denoted S(1, r).

The proposed modification is implemented as follows. Initially, we take identical weights
λk(t) = 1/r, k = 1, ..., r. Then we compute the vector h from P through λ by means of
(8). The vector h is applied to the weighted regression procedure in order to get the t-th
regressor. In order to get the error measure of the t-th regressor, the k-th extreme point
mean error, denoted by εk, is introduced as follows:

εk =
n∑
i=1

ei(t)q
(k)
i .

Here ei(t) has been introduced in Algorithm 1. The overall error of the t-th regressor is
determined as

εt =
r∑

k=1

λkεk.

The updating rule from AdaBoost.R2 can be modified in the following way:

λk(t+ 1) = λk(t) · exp(−αt(1− εk)),

where

αt = ln

(
1− εt
εt

)
= ln

(
1−

∑r
k=1 λkεk∑r

k=1 λkεk

)
.

The detailed description and explanation of the proposed algorithm can be found in (Utkin
and Wiencierz, 2015). It is represented here in the form of Algorithm 2.

Utkin and Wiencierz (2015) point out that the quality of regression can be controlled
by choosing the optimal parameters of the set P . Another advantage of the proposed
algorithm is that arbitrary constraints for the set P can be introduced as additional prior
information about the training set. It is an important property which allows us to take
into account peculiarities of the software debugging process in the methods presented in
this paper.

It should also be noted that there are various learning techniques to realize the weak
regressors in the AdaBoost.R2 and its modification, for example, the Lasso or ridge regres-
sion methods (Hastie et al, 2001) and Bayesian linear regression (Carlin and Louis, 2008).
However, we select the weighted SVR method which can efficiently deal with non-linear
regression functions.
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Algorithm 2 Imprecise AdaBoost.R2

Require: T (number of iterations), S (training set), q1, ..., qr (extreme points of P)
Ensure: ft, αt, t = 1, ..., T
t← 1
λk(1)← 1/r; k = 1, ..., r, or it can be randomly selected from the unit simplex.
repeat

Compute the vector h←
∑r

k=1 λk(t) · qk
Build the regression model ft using distribution ht
Dt ← maxj=1,...,n |yj − ft(xj,w)|.
Calculate the adjusted error ei(t) for each instance: ei(t)← |yi − ft(xi,w)|/Dt

Calculate the k-th extreme point mean error εk ←
∑n

i=1 ei(t)q
(k)
i

Calculate the adjusted error of ft: εt ←
∑r

k=1 εk(t)λk(t)
if εt > 0.5 then
T ← t− 1
exit Loop.

end if
αt ← ln

(
1−εt
εt

)
λk(t+ 1)← λk(t) · exp(−αt(1− εk))
Normalize λ(t+ 1) to be a proper distribution.
t+ +

until t > T
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4. Weights for observations and their extreme points

Several well-known imprecise statistical models have been studied by Utkin and
Wiencierz (2015) as the rules for reducing the unit simplex of weights in the AdaBoost.R2
algorithm. These include the linear-vacuous mixture or imprecise ε-contaminated model
(Walley, 1991), the pari-mutuel model (Walley, 1991), the constant odds-ratio (π, ε) model
(Walley, 1991, Subsection 3.3.5) and an imprecise model (Utkin and Coolen, 2014) using
the well-known Kolmogorov-Smirnov bounds (Johnson and Leone, 1964, Subsection 8.9.3).
We select two models which are simply explained from a reliability point of view and are
used in reliability engineering. These are the imprecise ε-contaminated model, considered
in this section, and the model using Kolmogorov-Smirnov bounds, considered in Section 5.
The imprecise ε-contaminated model for the training set consisting of n points produces
a set of weights having n extreme points. In fact, this is a small simplex included in the
unit simplex. Moreover, the parameter ε of the model can be used for tuning the modified
AdaBoost.R2 algorithm and the proposed SRGM based on the boosting method. The case
ε = 1 produces the unit simplex and corresponds to the standard AdaBoost.R2 algorithm.

However, we have pointed out that in spite of the advantages of the imprecise ε-
contaminated model, it does not take into account the different importance of the de-
bugging data points, where training data from the later stages of the debugging process
may be considered to be more important for prediction than data from the early stages
of the debugging process. In order to take into account the difference in importance of
the data points, we introduce additional weights which reflect the comparative information
underlying the debugging process. Since the comparative information may be represented
by pairwise comparisons, we consider a set of weights produced by the pairwise compar-
isons. This set is also a subset of the unit simplex and it can be combined with the subset
produced by the imprecise ε-contaminated model in order to improve the AdaBoost.R2
algorithm applied to SRGMs. So we use the intersection of two subsets as a possible set
of weights in the AdaBoost.R2 algorithm. This gives us a new modified AdaBoost.R2
algorithm.

4.1. The linear-vacuous mixture

The linear-vacuous mixture, or imprecise ε-contaminated model, produces the set
P(ε, w) of probabilities w = (w1, ..., wn) such that wi = (1−ε)pi+εhi, where p = (p1, ..., pn)
is an elicited probability distribution, hi ≥ 0 is arbitrary with h1+...+hn = 1, and 0 < ε < 1.
The set P(ε, p) is a subset of the unit simplex S(1, n). Moreover, it coincides with the unit
simplex when ε = 1. We denote the set P(ε, p) for the special case with p = (1/n, ..., 1/n)
as P(ε). This set can be produced by n+ 1 hyperplanes

wi ≥ (1− ε)n−1, i = 1, ..., n, w1 + ...+ wn = 1. (9)

4.2. The set produced by comparative information

Let us consider the following comparative information:

0 ≤ w1 ≤ w2 ≤ ... ≤ wn, (10)
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and the condition w1+ ...+wn = 1. A setM of weights w = (w1, ..., wn), which is produced
by n − 1 inequalities of the form wi − wi−1 ≥ 0, n inequalities wi ≥ 0 and one equality
w1 + ...+ wn = 1, has extreme points are of the form:

w1 w2 ... wn−2 wn−1 wn
0 0 ... 0 0 1
0 0 ... 0 1/2 1/2
0 0 ... 1/3 1/3 1/3
... ... ... ... ... ...
0 1/(n− 1) ... 1/(n− 1) 1/(n− 1) 1/(n− 1)

1/n 1/n ... 1/n 1/n 1/n

It is interesting to see from the extreme points that they correspond to cases when only
several elements of training data are used for constructing a regression model. Moreover,
we have two extreme cases. The first one is the distribution of weights having only one
non-zero element. In this case, the decision is made on the basis of the last point. Another
extreme case coincides with the uniform distribution accepted in the empirical expected
risk.

4.3. Intersection of two sets

Before we study the intersection of sets P(ε) and M in general, we consider this in-
tersection for the case n = 3 by using the standard unit simplex. Fig. 1 illustrates the
unit simplex in which every point is a possible weight vector (w1, w2, w3). The set M
corresponds to the area restricted by the triangle ABC. The set P(ε) corresponds to the
area restricted by the small simplex. Their intersection is restricted by the triangle BED
(the shaded area). We can see from the figure that the obtained set of weights is rather
small. The weights used in the model are shifted towards the last (the third) vertex of the
simplex. At the same time, the small simplex corresponding to P(ε) does not allow us to
assign too large weights to the third vertex or to other vertices.

Proposition 1. A set of extreme points of the intersection P(ε)∩M consists of n elements
of the form:

w1 = w2 = ... = wi−1 =
1

n
− ε

n
,

wi = wi+1 = ... = wn =
1

n
+
ε

n
· i− 1

n− i+ 1
,

i = 1, ..., n.

The proof of Proposition 1 is provided in the Appendix. Proposition 1 gives us the set
of extreme points of the set P(ε) ∩M, which are necessary for implementing the reduced
boosting algorithm 2. The set P(ε)∩M is very interesting. Indeed, condition (10) produces
a rather large setM of weights and its use may lead to overfitting because this set contains
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Figure 1: Intersection of sets of weights in the unit simplex for n = 3

many points with unit weights (see, for example, point C in Fig. 1), i.e., the regression is
constructed by using one of the elements of the training set. It should be noted that one
of the extreme points of M is (0, ..., 0, 1). So, the use of M does not help us to solve the
problem of overfitting. The set P(ε) itself has also some shortcomings. Indeed, its extreme
points consist of identical elements except for a single element which is larger than other
elements. We again construct the regression by using one of the elements of the training
set. This may lead to overfitting. At the same time, the intersection of sets P(ε) and
M is a set which has the best properties of both the sets. Let us consider the special
cases. If ε = 0, then the set P(ε) ∩M is reduced to the single point (1/n, ..., 1/n), which
corresponds to the standard non-parametric SRGM with identical weights of all elements
of the training set. Another case is ε = 1. In this case, we get P(1) ∩M =M, i.e., we
use only comparative information. The algorithm implementing the RBoostSRGM is a
modification of Algorithm 2, where n extreme points of P(ε) ∩M denoted q1, ..., qn are
taken in accordance with Proposition 1.

5. An upper bounded imprecise model, Kolmogorov-Smirnov bounds and pair-
wise comparisons

Before considering the Kolmogorov-Smirnov bounds, we study the so-called upper
bounded imprecise model which has been considered in detail in Utkin (2014). In contrast
to many well-known imprecise statistical models, including Walley’s imprecise Dirichlet
model and the imprecise ε-contaminated model, the upper bounded model does not appear
to have a clear statistical meaning. However, we will show that this model is closely linked
to the Kolmogorov-Smirnov bounds (Johnson and Leone, 1964, Subsection 8.9.3.) which
can be regarded as the best bounds for the empirical cumulative distribution. Moreover, the
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Kolmogorov-Smirnov bounds have a strong statistical explanation and justification which
can be used for constructing the proposed SRGM.

5.1. The upper bounded robust model

Let us consider a simple generalization of the vacuous model by introducing upper
bounds for the probabilities w1, ..., wn, namely, we state that wi ≤ ϑ, i = 1, ..., n, where ϑ
is some number between 1/n and 1. We denote the reduced set of probability distributions
as PU(ϑ). The lower possible bound for ϑ is 1/n because the set PU(ϑ) becomes empty
when ϑ < 1/n. The set PU(ϑ) is produced by the following system of 2n inequalities and
one equality:

0 ≤ wi ≤ ϑ, i = 1, ..., n, w1 + ...+ wn = 1. (11)

It is not difficult to find all extreme points of the set PU(ϑ), which strongly depend on
the value ϑ.

Proposition 2. Let k be an integer from 1 to n − 1 such that the following condition is
fulfilled:

1

n− k + 1
< ϑ ≤ 1

n− k
. (12)

Then the set PU(ϑ) has t = k ·
(
n
k

)
extreme points such that every extreme point consists of

exactly n− k elements ϑ, k − 1 elements 0 and one element 1− (n− k)ϑ.

The proof of Proposition 2 can be found in (Utkin, 2014). It follows from condition
(12) that the value k is determined from the condition:

n− ϑ−1 ≤ k < n+ 1− ϑ−1.

5.2. Kolmogorov-Smirnov bounds

One of the ways for taking into account the amount of statistical data and for con-
structing bounds for the set of probability distributions is using the Kolmogorov-Smirnov
confidence limits for the empirical cumulative distribution function Fn(x) constructed on
the basis of n observations. It is a quite different model which does not have anything
common with the upper bounded robust model at first glance. However, we will see an
interesting link between the models.

First, we briefly introduce the Kolmogorov-Smirnov confidence limits. Suppose that
function F (x) is a true probability distribution function of points from the training set,
which is unknown. Then a critical value of the test statistic dn,1−γ can be chosen such
that a band of width ±dn,1−γ around Fn(x) will entirely contain F (x) with probability
1 − γ, which is to be interpreted as a confidence statement in the frequentist statistical
framework. In other words, we can write Pr{Dn ≥ dn,1−γ} = γ, where the quantity
Dn = maxx |Fn(x)− F (x)| is called the Kolmogorov-Smirnov statistic. Denote the (1−γ)-
quantile of the Kolmogorov distribution by k1−γ. The ways for computing dn,1−γ for given
n and γ as well as the values of k1−γ can be found in the book (Johnson and Leone,
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1964, Subsection 8.9.3.). In particular, according to Johnson and Leone (1964), a good
approximation for the test statistic for n > 10 is given by

dn,1−γ ≈ k1−γ/
√
n.

For n ≤ 10 another approximation can be used Johnson and Leone (1964):

dn,1−γ ≈ k1−γ
(√

n+ 0.12 + 0.11/
√
n
)−1

.

Taking into account that the bounds are cumulative distribution functions, we write
the following bounds F n(x) and F n(x) for some unknown distribution function F (x):

F n(x) ≤ F (x) ≤ F n(x), (13)

where

F n(x) = max(Fn(x)− dn,1−γ, 0),

F n(x) = min(Fn(x) + dn,1−γ, 1).

It can be seen from the above inequality that the left tail of the upper probability distribu-
tion is dn,1−γ. The right tail of the lower probability distribution is 1− dn,1−γ. It has been
shown by Utkin and Coolen (2011) that the largest value of the expected risk is achieved at
the probability distribution which coincides with the lower Kolmogorov-Smirnov confidence
limit. Moreover, it has been shown that this distribution has k − 1 jumps of size 0, one
jump of size k/n− dn,1−γ and the other jumps all of size 1/n, where k is determined from
the condition

dn,1−γn < k ≤ dn,1−γn+ 1.

It is assumed here that there are no coinciding points, i.e., xj 6= xi for every j 6= i. This
assumption can be relaxed for the case of coinciding points, in which case the number of
jumps is reduced.

It is important to point out that Kolmogorov-Smirnov bounds use an assumption that
there is a jump 1−dn,1−γ which is located at boundary points of the sample space far from
all data points (see Utkin and Coolen (2011) for details). Therefore, in order to normalize
the sizes of jumps at points x1, ...,xn, every size has to be divided by 1 − dn,1−γ. As a
result, we get one jump of size

(k − ndn,1−γ)n−1(1− dn,1−γ)−1,

n− k jumps of size
n−1(1− dn,1−γ)−1,

and k − 1 jumps of size 0.
Let us denote

ϑ = n−1(1− dn,1−γ)−1. (14)
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Then we get one jump equal to 1− (n− k)ϑ, n− k jumps equal to ϑ, k − 1 jumps of size
0. Moreover, the value ϑ fulfills condition (12). It follows from the above that we have
obtained extreme points of the upper bounded vacuous model. In other words, the set
of probability distributions produced by Kolmogorov-Smirnov bounds and by the upper
bounded vacuous model coincide. This is an important feature which provides a way for
interpretation and choice of the bound ϑ in terms of critical values of the test statistic
dn,1−γ.

The upper bounded model and the model using Kolmogorov-Smirnov bounds have
another interesting property. Every extreme point has k − 1 zero-valued elements. This
implies that weights of k − 1 points from the training set are 0, i.e., these points are not
used in computing the optimal parameters. Of course, every point from the training set is
used, but it is used by taking other extreme points. The number of the zero-valued points
strongly depends on the total number of points n in the training set and on the parameter
ϑ or the confidence probability 1− γ.

5.3. Intersection of two sets

We consider the intersection of the sets of probabilities distributions produced by
Kolmogorov-Smirnov bounds and pairwise comparisons. First of all, we consider the inter-
section of sets PU(ϑ) andM by using the standard unit simplex which contains all possible
weight vector (w1, w2, w3) for the case n = 3. Fig. 2 illustrates two cases of the value ϑ.
The first case (see the left simplex in Fig. 2) is when ϑ > 1/2. The set M corresponds to
the area restricted by the triangle ABC. The set PU(ϑ) corresponds to the area restricted
by the hexagon with vertices DEFGKI. Their intersection is restricted by the tetragon
ABKL (the shaded area). The second case (see the right simplex in Fig. 2) is when
1/3 ≤ ϑ ≤ 1/2. The set PU(ϑ) corresponds to the area restricted by the small simplex
with vertices DEF . The intersection of PU(ϑ) and M is restricted by the triangle AFG
(the shaded area). In both cases, the weights used in the model are shifted towards the
last (the third) vertex of the simplex. However, the set PU(ϑ) restricts this shift.

It follows from (14) that the parameter ϑ decreases as the number of observations n
increases. One can see from Fig. 2 that the intersection of sets PU(ϑ) and M is reduced
with decrease of ϑ or increase of n. It is also interesting to note that increase of n leads to
increase of the dimensionality of the simplex of weight (we get a heigher dimensionality)
and simultaneously leads to reduction of the set PU(ϑ). The limiting case when n → ∞
reduces the set PU(ϑ) as well as the set PU(ϑ) ∩M to the point (1/n, ..., 1/n).

Proposition 3. If we define k from (12), then a set of extreme points of the intersection
PU(ϑ) ∩M consists of k(n− k + 1) elements of the form:

(0, ..., 0︸ ︷︷ ︸
k−s

,
ϕ

s+ t
, ...,

ϕ

s+ t︸ ︷︷ ︸
s+t

, ϑ, ..., ϑ︸ ︷︷ ︸
n−k−t

), (15)

where ϕ = 1− (n− k − t)ϑ, t = 0, ..., n− k, s = 1, ..., k.
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Figure 2: Intersections of sets of weights in the unit simplex for n = 3

The proof of Proposition 3 is provided in the Appendix. Let us consider the case n = 3
and ϑ = 0.8 as an example. Then it follows from (12) that k = 2 and four extreme points
can be written by using Proposition 3:

(ϕ/3, ϕ/3, ϕ/3, ) = (1/3, 1/3, 1/3),

(0, ϕ/2, ϕ/2, ) = (0, 1/2, 1/2),

(0, 1− ϑ, ϑ) = (0, 0.2, 0.8),

((1− ϑ) /2, (1− ϑ) /2, ϑ) = (0.1, 0.1, 0.8).

These points correspond to points A, B, K, L in the left simplex depicted in Fig. 2. If we
take ϑ = 0.4, then k = 2 and we get three extreme points:

(ϕ/3, ϕ/3, ϕ/3, ) = (1/3, 1/3, 1/3),

(1− 2ϑ, ϑ, ϑ) = (0.2, 0.4, 0.4),

((1− ϑ) /2, (1− ϑ) /2, ϑ) = (0.1, 0.1, 0.8).

These points correspond to points A, F , G in the right simplex depicted in Fig. 2.
Proposition 3 gives us the set of extreme points of the set PU(ϑ) ∩M, which will be

used for solving v = k(n − k + 1) programming problems. Every optimization problem is
defined by one of the extreme points w(k), k = 1, ..., k(n − k + 1). As a result, we have
k(n− k + 1) standard weighted SVRs whose solutions do not meet any difficulties.
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In contrast to the set P(ε), presented in Section 4, the set PU(ϑ) depends strongly on
the number of training data. If the training set is small, then the Kolmogorov-Smirnov
bounds produce a very large and non-informative interval which leads to very large values
of ϑ. Both the sets M and PU(ϑ) compensate each other. Their intersection allows us to
avoid some extreme cases when only small part of training data determines the SRGM. It
should be also noted that the point (1/n, ..., 1/n), corresponding to the standard approach
accepted in the non-parametric SRGMs, belongs to the set PU(ϑ) ∩M. This implies that
reliability measures of the software reliability modelling, obtained by means of the standard
non-parametric SRGM on the basis of the empirical expected risk measure, belong to the
intervals of the reliability measures obtained by means of the proposed model. By using the
Kolmogorov-Smirnov bounds, this model allows statements about the software reliability
with a predefined level of confidence γ = Pr{Dn ≥ dn,1−γ}.

6. Numerical experiments

The illustration of our new method and the investigation of its performance is mostly
done using the model presented in Section 4. We report in less detail on the performance
of the model presented in Section 5 at the end of this section. For all data we split the
data set into two subsets. One of them (training set having n − ntest examples) is used
to train the model while the other (test set having ntest examples) is used to validate the
model. We use about 20% of examples for testing, so ntest is about equal to 0.2n, and these
test examples are the final data points in the data set, so with labels n − ntest + 1, ..., n.
Every regressor is realized by means of the weighted SVR (Support Vector Regression)
with parameter ε = 0 of the so-called ε-insensitive loss function (for details see Smola and
Scholkopf (2004)).

Since the purpose of these examples is mainly to show the application of the method
on simple and easy to visualize problems, the hyperparameters are chosen without fine
tuning. For all performed experiments, we quantify the prediction performance with the
normalized root mean square error measure (MSE), which is defined as

MSE =

√∑n
i=1(yi − f(xi))2

ntest
.

Here yi, f(xi) are the actual value and the forecasted value, respectively. We will also use
the relative absolute difference between MSEs (RAMSE), which is defined as

RAMSE =
∣∣∣MSEε=0 −min

ε
MSEε

∣∣∣ /min
ε
MSEε × 100.

Here we have to point out that the MSE depends on the parameter ε.
All experiments use a standard Gaussian radial basis function (RBF) kernel with the

kernel parameter σ. Different values for the kernel parameter σ and the cost parameter
C have been tested, choosing those which lead to the best results. This procedure is
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realized by considering all possible values of σ and C in a predefined grid. The grid for σ
is determined as 2v, where v = −15, ..., 0, ..., 15. The values of C are taken in accordance
with the expression C0 + iCs, where C0 and Cs are experimentally determined parameters,
i = 1, ..., 40.

6.1. Data sets

The proposed RBoostSRGM has been evaluated and investigated by application to the
following publicly available data sets:

1. The first data set is the software inter-failure times yi taken from a telemetry network
system by AT&T Bell Laboratories, published by Pham and Pham (2000). The data
set contains 22 observations of the actual time series.

2. The second data set is obtained from Pham and Pham (2001) and contains 101
observations of the software inter-failure time series.

3. The third data set is reported by Ohba (1984) and is recorded from testing an on-line
data entry software package developed at IBM. The data set contains 15 observations.

4. The fourth failure data set (NTDS - failure data) was first reported by Jelinski and
Moranda (1972) and contains 34 failure data. The set can be also found in (Pham,
2006, Subsection 4.8).

5. The fifth data set is reported by Musa et al (1987) and evaluated by Liu and Xu (2011)
(JDM-I failure data). The set contains 17 observations of the software inter-failure
time series.

6. The sixth data set is also reported by Musa et al (1987) and evaluated by Liu and
Xu (2011) (JDM-II failure data). The set contains 15 observations of the software
inter-failure time series.

7. The seventh data set is reported by Kanoun et al (1991) and is called TUSER. The
set contains 26 observations of the software inter-failure time series.

8. The eighth data set called TDOC is also obtained from Kanoun et al (1991). It
consists of 34 observations.

6.2. Numerical results

First, we investigate the proposed model by using the first data set. Fig.3 presents an
example of the fault detection prediction results with three SRGMs, the proposed RBoost-
SRGM (the thick curve - 1) by ε = 0.2, the boosting SRGM (the thin curve - 2) which is
a special case of the proposed RBoostSRGM with ε = 1, and the standard non-parametric
SRGM based on the SVR (the middle curve - 3), together with the actual results (dashed
curve). It can be seen from Fig. 3 that the observation data have visible heteroscedasticity,
i.e., changes of variance especially after the 15-th failure detection. It is obvious in this
case that observations from the beginning of the debugging process should not strongly
influence the later predictions. The training data are depicted by triangle markers, the
testing data are depicted by circle markers. One can also see from Fig. 3 that all three
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Figure 3: Fault detection prediction results with three SRGMs and actual results for the first data set

models behave differently especially at the testing period where the large variation of times
to failure is observed.

We investigate how the prediction performance depends on the contamination parameter
ε which takes values from 0 to 1. The case ε = 0 corresponds to the standard non-parametric
SRGM based on the SVR, the case ε = 1 corresponds to the boosting SRGM reducing only
by the set M. Moreover, we also compare the above models with the standard boosting
SRGM (Vamsidhar and Raju, 2011) without reduction of the unit simplex as the weight
space. Dependence of the MSE on the parameter ε is shown in Fig. 4. The solid curve
with triangle markers corresponds to the MSE obtained by using the RBoostSRGM. The
dashed line shows the MSE for ε = 0, i.e., for the standard non-parametric SRGM. The
dotted line illustrates the MSE for ε = 1, i.e., for the standard boosting SRGM. The solid
curve with circle markers illustrates the MSE of the standard boosting SRGM. We will use
these lines in all data set analyzed.

The dotted and dashed lines almost coincide here, i.e., the boosting SRGM reducing
by the setM does not outperform the standard SRGM for the first data set. At the same
time, one can see that the solid curve achieves its smallest value at ε = 0.2, i.e., the highest
accuracy can be obtained by taking ε = 0.2. The largest RAMSE is about 9%.

By considering the second data set, we see that the best results are provided by the
standard boosting SRGM. Moreover, the RBoostSRGM increases the MSE (see Fig. 6).
This is because the training set contains many elements. Moreover, if we look at the data
set (see Fig. 5), then we can find that the observations are characterized by large variety
and it is difficult to distinguish different debugging stages from their importance point of
view. Therefore, the proposed model does not provide the best performance.

The corresponding dependences of the MSE of the RBoostSRGM, the standard SRGM,
the boosting SRGM reduced by M and the standard boosting SRGM on the parameter ε
obtained for all data sets are shown in Figs. 6-12. The optimal values of the parameter ε
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Figure 4: Dependence of the MSE on the parameter ε for the first data set

Table 1: Numerical results with real data sets
Data Set Figure n Optimal parameter ε The largest RAMSE (%)

1 4 22 0.2 9
2 6 101 1 0
3 7 15 0.4 28.8
4 8 34 0.4 4.3
5 9 17 0.3 7.3
6 10 15 0.7 27.2
7 11 26 0.7 4.5
8 12 34 0.4 0.6
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Figure 5: Fault detection prediction results with the proposed SRGM and actual results for the second
data set

the RBoostSRGM and the largest RAMSE for every data set are given in Table 1.
It is interesting to point out how the largest RAMSE depends on the number n of

training examples. One can see from Table 1 that the RAMSE decreases as n increases. This
implies that the proposed model can be successful in comparison with the available SRGMs
when the number of observations is rather small. Of course, there are other factors which
impact on the model prediction accuracy, including the parameters of models, for example, ε
for the imprecise ε-contaminated model or γ for the Kolmogorov-Smirnov bounds. Another
one of the important factors is the peculiarity of a dataset analyzed. For example, the fourth
and the eighth datasets have the same number of observations, but quite different accuracy
measures. This implies that their structure is differently adopted for the proposed model.
In most cases, the number of observations is an important factor.

Next we consider the application of the Kolmogorov-Smirnov bounds and pairwise com-
parisons, as presented in Section 5, for constructing the boosting SRGM. In order to apply
the Kolmogorov-Smirnov bounds, we have to define the critical value of the test statistic
dn,1−γ as a function of number n of training data and the confidence level 1−γ. Let us take
γ = 0.1. According to Johnson and Leone (1964, Subsection 8.9.3.), the 0.9-quantile of the
Kolmogorov distribution k1−γ is equal to 1.22 in this case. The computed values of dn,1−γ
are given in Table 2. It should be noted that they are computed by taking into account
only training data, i.e., n−ntest which is about equal to 0.8n examples. The corresponding
MSE measures are also shown in Table 2. The RAMSE measure (see the fifth column of
Table 2) is computed as the relative absolute difference between the MSE for our method
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Figure 6: Dependence of the MSE on the parameter ε for the second data set

Figure 7: Dependence of the MSE on the parameter ε for the third data set
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Figure 8: Dependence of the MSE on the parameter ε for the fourth data set

Figure 9: Dependence of the MSE on the parameter ε for the fifth data set
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Figure 10: Dependence of the MSE on the parameter ε for the sixth data set

Figure 11: Dependence of the MSE on the parameter ε for the seventh data set
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Figure 12: Dependence of the MSE on the parameter ε for the eighth data set

Table 2: Numerical results with real data sets by using the Kilmogorov-Smirnov bounds

Data Set n dn,1−γ MSE RAMSE (%)
1 22 0.281 43.9 8.1
2 101 0.134 1. 638 1.4
3 15 0.337 5.784 26.2
4 34 0.228 92.91 5.8
5 17 0.318 200.6 9.5
6 15 0.337 6.245 24.6
7 26 0.259 6227 7.9
8 34 0.228 19897 4.1

and the MSE of the standard non-parametric SRGM obtained in the previous numerical
experiments.

If we compare Tables 1 and 2, we can see that the results are very similar. We can point
out that the RAMSEs by using the Kolmogorov-Smirnov bounds are larger in compari-
son with the RBoostSRGM using the imprecise ε-contaminated model for large data sets.
However, small data sets illustrate opposite results which can be explained by the fact that
the optimal value in the imprecise ε-contaminated model is chosen, but the Kolmogorov-
Smirnov bounds have the predefined parameter γ = 0.1. At the same time, we can see from
Tables 1 and 2 that the behaviour of the RAMSEs for the Kolmogorov-Smirnov bounds
and the imprecise ε-contaminated model are similar. However, it should be noted that the
model based on the Kolmogorov-Smirnov bounds has a very important advantage in com-
parison with the imprecise ε-contaminated model. It is explainable from statistical point
of view and this model has a strong interpretation based on the test statistic dn,1−γ as a
function of the training data number n.
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7. Conclusion

In this paper we have presented a new software reliability growth model, called RBoost-
SRGM, which can be viewed as a modification of the boosting SRGMs using a reduced set
of weights in order to take into account the behaviour of the software reliability during the
debugging process. We have used the main idea that training data from the later stages of
the debugging process may be more important for software reliability prediction than data
from the early stages of the debugging process. This leads to assigning increasing weights
to the elements of training data from the time series consisting of consecutive times to soft-
ware failures. The second important idea used in the paper is that we do not assign precise
weights but we apply a set of weights produced by the comparative information about train-
ing data elements. Moreover, we avoid getting a very large set of “comparative” weights
by use of the set produced by the imprecise ε-contaminated model. As a result, we have
obtained an interesting intersection of sets, which can be used as the reduced set of weights
in the boosting algorithm.

In fact, the obtained RBoostSRGM is a parametric model because it is tuned in accor-
dance with the parameters of the SVR (C and σ) and with the contamination parameter
ε. The last parameter is very important because the above numerical experiments show
that in each application there is an optimal value of ε providing the best results.

We have applied the well-known AdaBoost.R2 algorithm for modification. However,
there are other boosting regression algorithms whose use can be regarded as a direction for
future research. Moreover, we have applied both the imprecise ε-contaminated model and
the Kolmogorov-Smirnov bounds for restricting the set of “comparative” weights. Other
imprecise models could also be used here, for example Walley’s imprecise pari-mutuel and
constant odds-ratio models (Walley, 1991). General guidance on the choice of a suitable
imprecise model providing optimal results is another direction for future research.

Our newly proposed method does not perform best for all considered data sets. It can
be seen from Table 1 that the relative absolute difference between MSEs is not so large.
Nevertheless, the proposed idea of reducing the set of weights in the boosting method in
a specific manner may can be regarded as an opportunity for developing new classes of
boosting-based models.
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Appendix: Proofs

Proof of Proposition 1.

Denote the set of inequalities (9) by P and the set of inequalities (10) by M . We do
not include into P inequalities wi ≥ 0 because all points with wi = 0 at least for one i do
not belong to the intersection P(ε)∩M. Let us consider the system of 2n− 1 inequalities
from P and M . It is know that every extreme point satisfies n− 1 equalities from P ∩M .
We study the following cases.

Case 1. All n− 1 equalities are from P . It is obvious that w1 = ... = wn = 1/n.
Case 2. n − 2 equalities are from P , and 1 constraint is from M . This implies that

there is one strong inequality wi−1 < wi from P and one equality wk = n−1 − εn−1 from
M . Here we have to consider two subcases. The first subcase is k ≥ i. Then

wi−1 < wi = wk = n−1 − εn−1.

However, wi = wi+1 = ... = wn. Hence, w1 + ...+ wn = 1− ε < 1. We get a contradiction.
Therefore, this subcase does not give extreme points.

The second subcase is k < i. Then

w1 = w2 = ... = wi−1 =
1

n
− ε

n
.

Then there holds
wi + ...+ wn = 1−

(
n−1 − εn−1

)
i.

Hence, we get

wi =
1− (n−1 − εn−1) i

n− i+ 1
=

1

n
+
ε

n
· i− 1

n− i+ 1
.

This is an extreme point for a fixed i. Note that the extreme point obtained in Case 1 can
be regarded as a special case of Case 2 when i = 1.

Case 3. n − 3 equalities are from P , and 2 constraints are from M . This implies that
there are two strong inequalities wi−1 < wi and wj−1 < wj, i < j, from P and two equalities
wk = n−1 − εn−1 and wl = n−1 − εn−1, k < l. The case k ≥ i and l ≥ i is not considered
here (see the similar case above). Suppose that k < i and l < i. Then we can write

w1 = w2 = ... = wi−1 =
1

n
− ε

n
.

Suppose that ws = a, s = i, ..., j − 1, and ws = b, s = j, ..., n, i.e.,

wi = ... = wj−1 = a, wj = ... = wn = b.

Here due to inequalities wi−1 < wi and wj−1 < wj, we can write

1

n
− ε

n
< a < b.
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The numbers a and b satisfy the following obvious condition:(
1

n
− ε

n

)
(i− 1) + a(j − i) + b(n− j + 1) = 1.

It can be seen that there are infinitely many values of a and b satisfying the above
condition. This implies that we get an edge of the corresponding polytope. The same can
be obtained for other cases when we take n− r equalities from P , and r− 1 constraints are
from M . Consequently, Case 2 totally defines all extreme points, as was to be proved.

Proof of Proposition 3.

It is simple to prove that an extreme point of a set, which belongs to another set, is
an extreme point of the intersection of these sets. Therefore, we first consider the extreme
points of M which belong to PU(ϑ). It is obvious that extreme points of M, having the
form

(0, ..., 0︸ ︷︷ ︸
n−r

, r−1, ..., r−1︸ ︷︷ ︸
r

),

belong to the set PU(ϑ) if wi ≤ ϑ (see the definition of the set PU(ϑ)). This implies that
r−1 ≤ ϑ. Hence r ≥ ϑ−1. This provides the first subset of extreme points.

We now consider extreme points of PU(ϑ) belonging to M. In order to ensure that a
point belongs to M, we select extreme points of PU(ϑ) whose elements do not decrease
with increase of the element index. Since every extreme point of PU(ϑ) consists of exactly
n − k elements ϑ, k − 1 elements 0 and one element ϕ = 1 − (n − k − t)ϑ for t = 0, then
we can write only one extreme point

0, ..., 0︸ ︷︷ ︸
k−1

, ϕ, ϑ, ..., ϑ︸ ︷︷ ︸
n−k

.

Indeed, we can write 1 − (n − k)ϑ < ϑ. This inequality follows from the condition for
k which is ϑ > 1/(n − k + 1). Therefore, the element 1 − (n − k)ϑ cannot be located in
another place and we have one extreme point.

Let us consider now extreme points produced by the intersection of sets. Suppose that
n− k− t elements of one of the extreme points of PU(ϑ)∩M correspond to the equalities
wi = ϑ. Here t = 1, ..., n − k − 1. It is obvious that the indices of these elements are
i = k + t + 1, ..., n, because wi ≤ ϑ and wi−1 ≤ wi. We also suppose that k − s elements
of one of the extreme points of PU(ϑ) ∩M correspond to the equalities wi = 0. Here s is
some integer. The indices of these elements are i = 1, ..., k− s. Then elements with indices
i = k − s+ 1, ..., k + t are (1− (n− k − t)ϑ)/(s+ t).

Let us prove that the points with arbitrary elements wk−s+1 = α1, ..., wk = αs satisfying
all conditions (10) and (11), i.e., the point

(0, ..., 0︸ ︷︷ ︸
k−s

, α1, ..., αs+t︸ ︷︷ ︸
s+t

, ϑ, ..., ϑ︸ ︷︷ ︸
n−k−t

),
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can be obtained as a linear combination of two extreme points:

(0, ..., 0︸ ︷︷ ︸
k−s

, 0, ..., 0, ϕ︸ ︷︷ ︸
s+t

, ϑ, ..., ϑ︸ ︷︷ ︸
n−k−t

),

and
(0, ..., 0︸ ︷︷ ︸

k−s

, ϕ/(s+ t), ..., ϕ/(s+ t)︸ ︷︷ ︸
s+t

, ϑ, ..., ϑ︸ ︷︷ ︸
n−k−t

).

On the one hand, it follows from the normalization condition of weights that α1 + ...+
αs+t = ϕ. On the other hand, we can write

αi = γϕ/(s+ t), i = 1, ..., s+ t− 1, αs+t = γϕ/(s+ t) + (1− γ)ϕ.

Here γ is in [0, 1]. Hence, the sum of αi, i = 1, ..., s+ t, is

(s+ t− 1)γϕ/(s+ t) + γϕ/(s+ t) + (1− γ)ϕ = ϕ.

The above implies that α1, ..., αs+t can be obtained as the linear combination of the corre-
sponding elements of two extreme points and the points with these elements belong to an
edge of the corresponding polytope produced by the intersection PU(ϑ)∩M. It should be
noted that a point with n− k+ t elements ϑ does not exist if t ≥ 1. Indeed, it follows from
the condition for ϑ that (n− k + 1)ϑ > 1. Then the sum of all elements (n− k + t)ϑ > 1
by t ≥ 1.

We can see that the points
(0, ..., 0︸ ︷︷ ︸

n−r

, r−1, ..., r−1︸ ︷︷ ︸
r

),

belong to the set of points (15). Indeed, if t = n− k, then ϕ = 1. It is easy to prove that
r = n− k + s. Moreover, it can be seen that the point

0, ..., 0︸ ︷︷ ︸
k−1

, ϕ, ϑ, ..., ϑ︸ ︷︷ ︸
n−k

belongs to the set of points (15) too.
In summary, for every t from the set {0, ..., n−k} we have k extreme points correspond-

ing to s = 1, ..., k. Hence, we can write that the total number v of extreme points of the
form (15) is v = k(n− k + 1).
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