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Abstract
The long‐term morphodynamic evolution of estuaries depends on a combination

of antecedent topography and boundary conditions, including fluvial input, sea‐
level change and regional‐landscape interactions. Identifying effects of such

boundary conditions on estuary evolution is important to anticipate future changes

in specific boundary conditions and for hindcasting with numerical and physical

models. A comprehensive synthesis of the evolution of the former Old Rhine

estuary is presented here, together with its boundary conditions over its full lifes-

pan from 6,500 to 1,000 cal. yr BP. This system formed during a period of sea‐
level high stand, during which the estuary served as the main River Rhine outlet.

The estuary went through three stages of evolution: a maturation phase in a wide

infilling back‐barrier basin, a stable mature phase and an abandoning phase, both

in a laterally confined setting. The Old Rhine River formed by a river avulsion

around 6,500 cal. yr BP that connected to a tidal channel within a large back‐bar-
rier basin. Decelerating sea‐level rise caused the back‐barrier basin to silt up

around 5,700 cal. yr BP, resulting in shoreline progradation by beach‐barrier for-

mation until ∼2,000 cal. yr BP. Beach‐barrier formation along the coast and natural

levee formation along the river triggered peat formation in the coastal plain, later-

ally constraining the estuary and limiting overbank deposition, which caused most

sediment to accumulate offshore. The abandoning phase started around 2,200 cal.

yr BP when a series of upstream avulsions led to a substantial reduction in fluvial

input. This induced a period of enhanced estuarine overbank clay deposition that

continued into near‐complete silting up and estuary closure around 1200 AD.

These findings exemplify how tidal systems, formed in wide coastal plains during

sea‐level high stand, depend on antecedent conditions, and how they respond to

connection and disconnection of a large river over long, millennial timescales.
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1 | INTRODUCTION

Estuaries are ubiquitous in coastal areas worldwide. They
generally form on antecedent topography and substrate and
are shaped by changing boundary conditions such as sea‐
level rise and independently fluctuating fluvial and coastal
sediment supply (Belknap & Kraft, 1985; Coco et al.,
2013; Dalrymple, Zaitlin, & Boyd, 1992; De Haas et al.,
2018; De Swart & Zimmerman, 2009; Fletcher, Knebel, &
Kraft, 1990; Rossi, Amorosi, Sarti, & Potenza, 2011; Semi-
nara, Pittaluga, & Tambroni, 2012; Wang et al., 2012).

Estuaries are important for nature and society. They are
very productive natural habitats with a high species density
and at the same time are vital areas for agriculture, fishing
and ports (Beck et al., 2001; Savenije, 2005). Sustainable
use of present‐day estuaries is threatened by changing con-
ditions, such as accelerating sea‐level rise, varying river
inflow and increasing human interference with sedimentary
processes and ecology (Bouma et al., 2014; Craft et al.,
2008; Syvitski et al., 2009; Yang, Wang, Voisin, & Cop-
ping, 2015). To adequately anticipate the effects of future
changes in boundary conditions, it is important to glean
understanding from how such changes have affected estuar-
ies in the past.

While the short‐term effects of changing boundary con-
ditions on estuarine biogeomorphodynamics can be mea-
sured and monitored, determining their long‐term (i.e.
centuries or more) effects is more challenging. Long‐term
estuary evolution can be inferred from geological recon-
structions (Allen & Posamentier, 1993; Dalrymple & Choi,
2007; Dalrymple et al., 1992; De Haas et al., 2018; Lessa
& Masselink, 1995; Martinius & Van den Berg, 2011) and
simulations by numerical and physical models (Guo, van
der Wegen, Roelvink, & He, 2014; Kleinhans, Scheltinga,
Vegt, & Markies, 2015; Lessa & Masselink, 1995). Each
of these approaches requires many simplifications and
assumptions. Recent numerical models are able to repro-
duce realistic width‐averaged estuarine bed profiles reason-
ably well and thereby provide valuable tools to investigate
estuarine sensitivity to changing forcings (Bolla Pittaluga et
al., 2015; Canestrelli, Lanzoni, & Fagherazzi, 2014; Guo,
Wegen, Wang, Roelvink, & He, 2016; Guo et al., 2014).
However, numerical models are not yet able to reproduce
self‐confining estuaries in aggrading coastal plains, as they
lack the capability to also model critical interactions with
the regional landscape and often exclude key biological
processes. Moreover, effective hindcasting of estuarine
morphodynamic evolution on decadal to millennial time-
scales requires high‐resolution reconstructions of long‐term
estuarine evolution and initial and boundary conditions.

Many estuaries inherited from Late Pleistocene valleys
incise into bedrock, which controls their position,

accommodation and sediment supply (Chaumillon, Tessier,
& Reynaud, 2010; Raynal et al., 2010; Rodriguez, Ander-
son, & Simms, 2005; Vis, Kasse, & Vandenberghe,
2008). The fixed relief in such systems generally inhibits
upstream avulsion and loss of fluvial input, which enables
long‐term estuary survival (De Haas et al., 2018). In con-
trast, upstream avulsions are often frequent on wide, low‐
relief, coastal and delta plains (Allison, Khan, Goodbred,
& Kuehl, 2003; Blum & Roberts, 2012; Edmonds, Hoyal,
Sheets, & Slingerland, 2009), inducing large temporal
fluctuations in fluvial input to estuaries. As such, river
avulsions can reduce or increase the fluvial supply to estu-
arine river outlets, thereby substantially changing their
biomorphodynamics (Lane, Nanson, Vakarelov, Ainsworth,
& Dashtgard, 2017). Here, the evolution of the Old Rhine
estuary and its changing boundary conditions are
described in detail. The Old Rhine was the main river dis-
tributary in the Rhine–Meuse delta between ∼6,500 and
∼2,000 cal. yr BP (Figures 1 and 2) (Berendsen & Stoutha-
mer, 2000; Cohen, Stouthamer, Pierik, & Geurts, 2012).
The Old Rhine estuary formed during a period of sea‐
level high stand (Hijma & Cohen, 2011b) and was located
in a wide coastal plain. Its boundary conditions have been
reconstructed in detail, most notably the timing of river
avulsion, which determined the fluvial input to the system.
During the Holocene, the Rhine and Meuse rivers entered
the same back‐barrier delta in the central Netherlands,
wherein most fluvial sediments were trapped before they
could reach the open sea (Beets, Van der Valk, & Stive,
1992; Berendsen & Stouthamer, 2000; Cohen et al.,
2012). Multiple estuaries became established in the back‐
barrier delta plain, connecting river distributaries to the
open sea. The Old Rhine River was a particularly long‐
lived river distributary, the development of which was
strongly affected by major changes in fluvial input as a
result of changes in the delta distributary river network as
well as in the regional fluvio‐deltaic landscape, which
evolved from tidal basin to peat bog over the lifetime of
the estuary (Berendsen & Stouthamer, 2000; Hijma &
Cohen, 2010, 2011b).

This paper reports on the effects of initial conditions and
upstream and downstream boundary conditions on the Old
Rhine estuary evolution emphasizing fluvial influx. To this
end, the palaeogeographical evolution of the Old Rhine
estuary during the period 6,500 to 1,000 cal. yr BP is recon-
structed and compared to varying boundary conditions over
this period, on the basis of available, partly unpublished,
sources and new analyses. New geological cross‐sections of
the estuary deposits are presented here. In addition, the spa-
tio‐temporal evolution of the Old Rhine estuary is summar-
ized in a series of newly compiled palaeogeographical maps
(Figure 10). These reconstructions reiterate and update past
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overview studies that cover the Old Rhine estuary (Cohen et
al., 2012; Van Dinter, 2013; Vos, 2015) and expand them
with the most recent geological and archaeological data.
Reconstructed boundary conditions include the avulsive
development of the Rhine River network and associated dis-
charge redistribution (Berendsen & Stouthamer, 2000;
Cohen et al., 2012; Van Dinter et al., 2017) and the evolu-
tion of the coast surrounding the Old Rhine estuary (Pruis-
sers & De Gans, 1988; Van der Valk, 1995), such as the
delta front (Van Heteren & Van der Spek, 2008), beach bar-
riers (Beets & Van der Spek, 2000; Cleveringa, 2000) and
back‐barrier basin (Beets, De Groot, & Davies, 2003; Beets
et al., 1992; Donselaar & Geel, 2007; Vos, 2015).

2 | GEOGRAPHICAL SETTING AND
BOUNDARY CONDITIONS

2.1 | Geographical setting

The Rhine River is the largest north‐west European river.
It is fed by a catchment of ∼220,000 km2, is ∼1,230 km
long, and it has an average discharge of 2,260 m3/s and an
extreme peak discharge of ∼12,500 m3/s with a return per-
iod of ∼200 years at the Dutch border (Toonen, 2015). The
present‐day Rhine River is fully embanked and debouches

into the North Sea near the city of Rotterdam in the
Netherlands. However, between ∼6,500 and 2,000 cal. yr
BP, most Rhine River discharge followed the Old Rhine
River distributary, further to the north (Berendsen &
Stouthamer, 2000; Hijma & Cohen, 2011b). The Old Rhine
was the delta's main river distributary until Roman times
(∼2,000 cal. yr BP), functioning as the northern border of
the Roman Empire, the Limes, in the first to third century
AD (Van Dinter, 2013). The present‐day coastal plain of the
Netherlands is built up by barrier and back‐barrier deposits
on top of a low‐sloping shelf (Beets & Van der Spek,
2000; Vos, 2015).

2.2 | Offshore boundary conditions

Since the origin of the Old Rhine estuary (Figure 2),
∼6,500 cal. yr BP, the Dutch coast has been exposed to pre-
vailing westerly winds and dominant south‐west to north‐
east‐directed long‐shore drift (Beets & Van der Spek,
2000; Van der Molen & De Swart, 2001a). The current
average offshore wave height is ∼1.5 m, mainly from the
south‐west, and storm waves from the south‐west and
north‐west may reach up to 6.5 m near the coast (Beets et
al., 1992; Jelgersma, Stive, & Van der Valk, 1995; Klein-
hans & Grasmeijer, 2006).
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The Holocene tidal regime at the mouth of the Old
Rhine estuary was microtidal (0.5 to 4 m tidal range along
the Dutch coast). Geological observations and modelling
studies suggest that the tidal amplitudes have been approxi-
mately constant over the last 6,500 cal. yr (Figure 3b)
(Hijma & Cohen, 2011a; Roep & Beets, 1988; Van der
Molen & De Swart, 2001b), and that net littoral sediment
drift has been dominantly northwards since 7,500 to
6,500 cal. yr BP (Hijma, Van der Spek, & Van Heteren,
2010; Van der Molen & Van Dijck, 2000). Middle Holo-
cene mean significant wave height may have been 0.1 to

0.5 m lower than the present‐day wave height due to a
smaller North Sea depth as a result of a lower sea‐level
(Figure 3c) (Van der Molen & De Swart, 2001a).

Early to middle Holocene relative sea‐level rise was
rapid in the Netherlands because of the combined effects of
absolute sea‐level rise and accelerated subsidence from
forebulge collapse (Figure 3a) (Kiden, Denys, & Johnston,
2002; Vink, Steffen, Reinhardt, & Kaufmann, 2007). From
9,500 to 8,000 cal. yr BP sea‐level rose from −34 to
−13.5 m ordnance datum (O.D.; ≈ present‐day mean sea‐
level) in front of the Dutch coast (Hijma & Cohen, 2010;

FIGURE 2 Old Rhine estuary and older tidal back‐barrier deposits expressed in the present‐day surface morphology. (a) Final configuration
of the Old Rhine estuary, with a sharp bend towards the north (Van Dinter, 2013). North of the residual channel of the Old Rhine beach‐barrier
deposits are exposed. In between the beach barriers the remnants of tidal creeks flowing through the beach plains are present. (b) Large crevasse
system in the tidally influenced fluvial part of the Old Rhine. Such crevasse systems are large compared to the crevasse systems in the Rhine
delta found further upstream. (c) Middle Holocene back‐barrier basin landscape including many tidal creeks exposed at the surface where
overlying peat was mined or eroded by wave erosion in presently drained peat lakes (Haarlemmermeerpolder). See Figure 1 for panel locations.
Elevation data source: AHN (Rijkswaterstaat‐AGI, 2005)
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Jelgersma, 1979), at an average rate of 1 m per century
(Figure 3a). Afterwards, sea‐level rise progressively slowed
down from 5.5 mm/year between 8,000 and 7,000 cal. yr
BP to a rate of 0.5 mm/year in the last 2,000 years (Hijma
& Cohen, 2010; Roep & Beets, 1988; Roep, Van der Valk,
& Beets, 1991; Van de Plassche & Roep, 1989).

2.3 | Variations in total Rhine discharge and
sediment delivery

The mean annual discharge of the Rhine was hardly
affected by intra‐Holocene climate changes because the size
of its catchment is thought to have been largely insensitive

to climate. Discharge is estimated to have varied less than
10% during the Holocene (Erkens, 2009; Stouthamer,
Cohen, & Gouw, 2011). Deforestation since 3,000 cal. yr
BP led to a ∼60% increase in fine sediment supply by the
Rhine River over the period 3,000 to 1,000 cal. yr BP rela-
tive to the period 6,500 to 3,000 cal. yr BP (Erkens, 2009;
Hoffmann et al., 2007). The frequency of occurrence of
large discharge peaks in the Rhine river did vary with
intra‐Holocene climate change and growing human impacts
(Toonen, 2015; Toonen, Middelkoop, Konijnendijk, Mack-
lin, & Cohen, 2016). The increased flood frequency and
fine sediment supply are believed to have led to increased
deposition of fines and more frequent avulsions, especially
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in the last 2,500 years, when the Old Rhine was gradually
abandoned (Pierik, Stouthamer, & Cohen, 2017; Van Din-
ter et al., 2017).

2.4 | Regional geological evolution

Between 50,000 and 30,000 years ago, the braided Rhine–
Meuse river system formed a wide periglacial palaeovalley
in the study area (Busschers et al., 2007; Hijma, Cohen,
Roebroeks, Westerhoff, & Busschers, 2012). The glacial to
interglacial transition caused a climate‐driven transition
from fully braided during the Late Pleniglacial to meander-
ing in the Holocene (Berendsen, Hoek, & Schorn, 1995;
Pons, 1957). The Late Pleistocene deposits later functioned
as the Old Rhine estuary's deeper substrate and as a source
for barrier sands from the North Sea floor.

The sea approached the present‐day coast of the Nether-
lands in the early to middle Holocene, and reached the
study area around 8,500 cal. yr BP. This initiated the forma-
tion of the modern coastal prism, which is approximately
10 m thick near the Old Rhine estuary and consists of an
intercalation of tidal, estuarine and fluvial deposits, includ-
ing abundant organic beds (Hijma & Cohen, 2011b; Vos,
2015). Before marine drowning and transgression, early to
middle Holocene sea‐level rise led to the formation of large
wetlands, and resulted in widespread basal‐peat formation
on top of the Pleistocene to early Holocene substrate (Beets
et al., 1992; Bos, Busschers, & Hoek, 2012; Pons, Jel-
gersma, Wiggers, & De Jong, 1963; Van de Plassche,
1982). As a result of decelerating sea‐level rise around
8,500 cal. yr BP onwards (Hijma et al., 2010), wave‐driven
mobilization of sand in the coastal zone allowed beach‐bar-
rier systems to develop all along the Dutch coast (Beets &
Van der Spek, 2000; Van der Molen & Van Dijck, 2000).
By ∼6,000 cal. yr BP, marine and fluvial sedimentation kept
up with, or exceeded, the progressively decreasing accom-
modation rate generated by sea‐level rise, which led to net
infilling of the back‐barrier basins (Beets et al., 1992). This
induced progressive closure of tidal inlets and beach‐barrier
formation, and led to an increasingly water‐logged freshwa-
ter environment in the (former) back‐barrier area, resulting
in extensive peat formation (Vos, 2015). Only where large
rivers debouched into the sea did the tidal inlets remain
open, such as at the Old Rhine estuary, whereas tidal inlets
not connected to rivers closed by progressive basin infilling
(De Haas et al., 2018).

By 3,000 cal. yr BP, most transgressive tidal systems of
the western part of Dutch coastal plain were filled up,
including the study area. Until ∼2,000 cal. yr BP the beach
barriers and dunes in the western Netherlands gradually
accreted seawards, forming in a ∼9 km wide beach‐barrier
complex (Cleveringa, 2000; Roep et al., 1991; Van der
Valk, 1996). Fed by freshwater (river flood water,

groundwater, rain water), peaty marshes, fens and bogs
expanded in the back‐barrier area and progressively
increased in surface elevation.

3 | MATERIALS AND METHODS

Geological data from literature and institutional databases
were combined to construct cross‐sections and palaeogeo-
graphical maps summarizing the spatio‐temporal evolution
of the Old Rhine estuary. Changing boundary conditions
were independently inferred from the literature on the
upstream system and the coastal plain. The geological
cross‐sections are based on a new compilation of densely
distributed corings and cone‐penetration tests (Figure 4).
Borehole descriptions were obtained from the TNO‐DINO
database of the Geological Survey of the Netherlands
(http://www.dinoloket.nl) and of the UU‐LLG database of
the Faculty of Geoscience of Utrecht University (Berend-
sen, Cohen, & Stouthamer, 2007; Cohen, 2017). Age con-
straints come from existing radiocarbon (14C) (see
Supporting Information Tables S1 and S2) and optically
stimulated luminescence (OSL) dating, as well as from
archaeological finds (Figure 4). Radiocarbon dates were
obtained from terrestrial material, particularly peat, and
from marine shells (see Supporting Information Tables S1
and S2), while the archaeological finds originate from the
Archis 2 national database (http://www.archis.nl).

Five cross‐sections were made across the Old Rhine
estuary deposits. Their location was selected such that opti-
mal use of the abundance of bore‐hole descriptions and
datings could be made. Cross‐section construction followed
established methods for the Rhine–Meuse delta, as docu-
mented in Gouw and Erkens (2007) and Hijma, Cohen,
Hoffmann, Van der Spek, and Stouthamer (2009) and
spans the full thickness of Holocene deposits. Available
Holocene 14C and OSL dates within ∼1 km from the cross‐
sections were projected on to the cross‐section when the
dates belonged to the same geological and lithological unit.
High‐resolution laser altimetric (LiDAR) surface‐elevation
data with sub‐metre horizontal resolution (Algemeen
Hoogtebestand Nederland: AHN; http://www.ahn.nl; Rijk-
swaterstaat‐AGI, 2005) was also used to capture the surface
expressions of sandy channel systems present down to 4 m
below the surface because of topographic inversion by dif-
ferential compaction (Berendsen & Volleberg, 2007). These
surface expressions were always verified by borehole data
before being applied to the cross‐sections or palaeogeo-
graphical maps (cf. Hijma & Cohen, 2011b).

The palaeogeography of the Old Rhine estuary follows
from detailed mapping and dating of the distribution and
geometry of architectural elements in and between the
cross‐sections, each with facies diagnostics of specific
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depositional environments, following established methods
for palaeogeographical reconstruction in the Holland barrier
system and Rhine–Meuse back‐barrier delta (Hijma &
Cohen, 2011b; Pruissers & De Gans, 1988; Van der Valk,
1995; Vos, 2015). Based on these methods, the following
environments of deposition were distinguished, based on
their lithofacies, stratigraphy and sedimentology: Tidal
basin, tidal channel, estuary/channel, levees/floodplain, wet-
land (marsh) complex, beach‐barrier complex, dunes,
shoreface, delta‐front and Pleistocene substrate (Table 1).
The extent of these units on the palaeogeographical maps
was determined on the basis of morphological continuity,
cross‐cutting relationships and dating evidence (Hijma &
Cohen, 2011b; Pierik, Cohen, & Stouthamer, 2016; Pruis-
sers & De Gans, 1988; Van der Valk, 1995; Van Dinter,
2013; Vos, 2015), cross‐checked and corrected with

currently available data (corings, 14C, OSL and archaeolog-
ical dates, present‐day topography from LiDAR data)
Figure 4).

4 | OLD RHINE ESTUARY INITIAL
CONDITIONS, BOUNDARY
CONDITIONS AND RESULTANT
STRATIGRAPHY

In this section, the geological data are synthesized to dis-
cuss the initial conditions of the back‐barrier basins where
the Old Rhine river and estuary formed. The changing
boundary conditions of the system are discussed and the
stratigraphy and facies of the preserved estuary and delta‐
front deposits are described.

FIGURE 4 Overview of geological data resources synthesized in this study. Note that multiple dates obtained downcore plot as a single
location. Cross‐section locations here given for the geological cross‐sections in Figure 5. Coordinates are in the Dutch national triangulation
system (in m). CPT, cone‐penetration test
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4.1 | Initial conditions

The Old Rhine avulsed into a wide back‐barrier basin filled
with Holocene tidal deposits on top of a Pleistocene sub-
strate of fluvial and aeolian origin. Near the mouth of the
estuary, these pre‐Holocene deposits are found at depths
ranging from −11 to −13 m O.D. in the east to about
−19 m O.D. in the west (Figure 5). This westward dip in
depth of sandy substrate only partly represents the natural
2 × 10−4 m/m pre‐Holocene palaeotopography, because the
original surface has been transgressively reworked and
eroded by shoreface processes during barrier formation in
cross‐section E–E′.

The tidal‐basin deposits are underlain by basal peat up
to 1 m thick in cross‐sections A–A′ to D–D′, whereas it
is absent in profile E–E′ due to erosion. Radiocarbon
dates show that basal‐peat formation started ∼9,800 cal. yr
BP in the areas of lowest relief, expanding broadly and at
increasingly higher elevation to become widespread
around 9,000 cal. yr BP under the influence of rising
groundwaters (Bos et al., 2012; Koster, Stafleu, & Cohen,
2017).

Peat formation stopped around 7,500 to 7,000 cal. yr BP

when the area transformed into a tidal back‐barrier basin
and conditions became saline. The peat became substan-
tially compressed, as a result of sediment loading, and
therefore relatively resistant to erosion. The associated
back‐barrier deposits are predominantly clayey at their
base, with intercalated humic and sandy layers. Around a
depth of −10 m O.D. these deposits generally grade into

facies of alternating sand and mud layers, which are pre-
dominantly sandy in the proximity of tidal channels and
mud dominated at a greater distance. The back‐barrier
deposits show that, from c. 7,500 to 5,500 cal. yr BP, the
study area went through a sequence of initial drowning
with largely subtidal conditions under relatively fast rela-
tive sea‐level rise, followed by silting up associated with
the formation of intertidal and supratidal areas after the rate
of sea‐level rise decreased. This development is in line
with the regional evolution of the Holland coast and Rhine
delta during this period (Beets & Van der Spek, 2000;
Hijma & Cohen, 2011b).

These reconstructions show that, after its formation
(6,500 to 6,100 cal. yr BP), the Old Rhine River entered an
extensive but largely filled back‐barrier basin, consisting of
intertidal and supratidal flats and a well‐developed tidal‐
channel network.

4.2 | Boundary conditions

4.2.1 | Fluvial discharge supply

Fluvial discharge supply is an important boundary condi-
tion for estuary evolution and has strongly varied over time
in the Old Rhine River. Around 7,300 cal. yr BP, a first
Rhine distributary began to flow into the tidal basin of
interest. Around 6,500 cal. yr BP, the next avulsion, 40 km
further inland, formed the Old Rhine River distributary
(Berendsen, 1982; Berendsen & Stouthamer, 2000; Cohen
et al., 2012; Hijma et al., 2009) (Figure 6), which grew to

TABLE 1 Characteristics of the mapped palaeoenvironments

Environments Lithology Salinity

Tidal basin Rhythmic flaser‐bedding and laminated sandy
clay, potentially strongly bioturbated

Brackish

Tidal channel Dominantly sandy, with rhythmic clay layers,
coarse gravelly sand beds and predominantly brackish water shells

Brackish

Estuary/channel Dominantly sandy, with rhythmic clay layers,
coarse gravelly sand beds, brackish water shells

Brackish to fresh

Levees/floodplain Silty clay loam and sandy loam grading into silty
clay and humic clay with distance from channels

Fresh to brackish

Wetland (marsh)
complex

Peat (mostly reed and forest species) and gyttja Fresh

Beach‐barrier
complex

Fine‐grained and well‐sorted sand, with occasional
layers of clay, shells and peat. Locally overlain
by coastal dunes with multiple soil horizons

Brackish to saline

Dunes Fine‐grained and well‐sorted sand, potentially with multiple soil horizons –

Shoreface Sandy deposits rich in shell fragments, intercalated
with mud layers and marine shells

Saline

Delta‐front Alternating clay and fining‐upward sand layers, the latter rich in shells Saline

Pleistocene
substrate

Sandy floodplain and aeolian cover sand deposits Fresh
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FIGURE 6 Evolution of the Rhine and Meuse rivers during the lifespan of the Old Rhine, showing initiation (6,300 BP), development, and
gradual abandonment (1,850 BP) as new channels increasingly transfer discharge to the southern distributaries in the delta (after Cohen et al.,
2012). North is up. All ages in cal. yr BP
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convey the vast majority of the Rhine discharge to the sea
around 6100 cal. yr BP, leading to the formation of the Old
Rhine estuary. The Old Rhine continued to convey the vast

majority of Rhine discharge until ∼2,200 cal. yr BP (Berend-
sen & Stouthamer, 2002).

Avulsion frequency in the Rhine–Meuse delta peaked
between 3,200 and 1,400 cal. yr BP (Berendsen & Stoutha-
mer, 2000; Stouthamer & Berendsen, 2001), which coin-
cides with and may be partly caused by the increased
delivery of fine sediment from deforestation (Erkens,
2009; Stouthamer et al., 2011). From 2,850 cal. yr BP

onwards, a series of avulsions further upstream in the
delta led to a gradual decrease of discharge in the Old
Rhine (Figures 6 and 7) (Berendsen & Stouthamer, 2000;
Cohen et al., 2012; Kleinhans, Cohen, Hoekstra, & IJm-
ker, 2011; Van Dinter et al., 2017). In addition, changes
in the channel and the bifurcation planform shape due to
meandering and chute cutoffs at the Rhine delta apex led
to a gradual but fluctuating decrease in discharge to the
northern part of the Rhine delta and thus the Old Rhine
distributary (Figure 7) (Kleinhans et al., 2011). The first
avulsion diverting discharge from the Old Rhine was that
of the Angstel‐Vecht River (Bos, Feiken, Bunnik, &
Schokker, 2009; Cohen et al., 2012; Törnqvist, 1993)
(Figure 6), but the resulting discharge loss in the Old
Rhine was limited (Figure 7) (Bos et al., 2009; Van Din-
ter et al., 2017), as inferred from cross‐sectional channel
geometries (Van Dinter et al., 2017).

The next series of avulsions, between 2,200 and
1,500 cal. yr BP, at the upstream end of the Old Rhine dis-
tributary initiated the new distributaries of the Lek and Hol-
landse IJssel, leading to a substantial reduction in the
discharge of the Old Rhine (Pierik, Stouthamer, Schuring,
& Cohen, 2018; Stouthamer & Berendsen, 2001; Van

FIGURE 8 Beach‐barrier sequences (yellow) and preserved
delta‐front deposits (blue). Beach‐barrier age after Van der Valk
(1995). The beach‐barrier deposits are indicated by a solid yellow fill,
while the low‐lying beach plains are indicated by a transparent yellow
fill. Preserved distribution of remnant delta front and age range of
deposits after Van Heteren and Van der Spek (2008). North is up. All
ages in cal. yr BP
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FIGURE 7 Estimated average discharge in the Old Rhine. Discharge during abandonment and closure of the Old Rhine (2,800 to
800 cal. yr BP) is based on Van Dinter et al. (2017), using upstream channel network configuration, channel dimensions and archaeological finds.
Van Dinter et al. (2017) correlate and attribute the loss of discharge to the formation of many new river distributaries in the upstream river
network, whereas reconstruction and modelling by Kleinhans et al. (2011) show that changes in the discharge distribution at the Rhine delta apex
bifurcation may have partly caused the decrease in discharge through the Old Rhine, where fluctuations arose due to meandering at the
bifurcation. All ages in cal. yr BP
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Dinter et al., 2017) (Figure 7). Simultaneously, avulsions
further upstream of Wijk bij Duurstede affected the water
and sediment supply to the Old Rhine; in particular, the
maturation of the Linge, Waal and Gelderse IJssel distribu-
taries (Berendsen & Stouthamer, 2000; Cohen et al., 2012)
led to a further reduction of discharge supply to the Old
Rhine (Van Dinter et al., 2017). By the end of the 10th cen-
tury AD the deepest part of the Old Rhine River channel had
begun to accumulate a muddy fill, indicating that the chan-
nel had become a near‐standing water body. By this time,
the Old Rhine at Utrecht carried less water at normal flow
than the Angstel‐Vecht and at Wijk bij Duurstede, upstream
of Utrecht, much less water entered the Old Rhine than the
Lek (Van Dinter et al., 2017). Damming of the Old Rhine
at Wijk bij Duurstede in AD 1122 thus merely terminated an
already nearly finished process of abandonment (Van Dinter
et al., 2017). In short, nearly the full Rhine discharge was
conveyed by the Old Rhine between 6,100 and 2,850 cal.
yr BP, after which discharge progressively decreased, most
rapidly after ∼2,200 cal. yr BP (Figure 7).

4.2.2 | Beach‐barrier development

At the downstream end, marine processes provided bound-
ary conditions for estuary evolution, predominantly waves

that built a set of prograding beach barriers. This resulted in
an approximately 9 km wide complex of beach‐barrier
deposits along the coast at the Old Rhine outlet (Figures 5
and 8) (Cleveringa, 2000; Roep et al., 1991). The oldest
beach barriers flanking the Old Rhine estuary formed around
5,700 cal. yr BP and the youngest preserved beach barriers
formed around 2,000 cal. yr BP (Van der Valk, 1995).

The thickness and depth of the base of the beach‐barrier
deposits increases seawards. The beach‐barrier deposits
become younger from bottom to top and from east to west,
in a seaward direction (see dates in cross‐sections B–B′,
D–D′ and E–E′ and Figure 8). Beach barriers of the
younger part of the barrier system curve seawards near
the Old Rhine outlet (Figure 8), showing that the mouth of
the Old Rhine was protruding into the sea. This suggests
that a substantial amount of sediment was delivered to the
sea by the Old Rhine. Especially between 4,800 and
3,800 cal. yr BP there was rapid progradation of the beach
barriers, in places exceeding 7 km, corresponding to an
average rate of 700 m per century. Beach‐barrier formation
differed along the southward and northward sides of the
Old Rhine outlet (Cleveringa, 2000; Roep et al., 1991; Van
der Valk, 1995). The beach barriers on the south side of the
Old Rhine had formed and already prograded by a few kilo-
metres before the first beach barrier on the north side was
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FIGURE 9 Schematic longitudinal cross‐section of the Old Rhine estuary. The dimensions of the estuary and channel deposits are based on
the cross‐sections in Figure 5. Estuary mouth position is inferred from the longitudinal position of the beach barriers combined with sea‐level
over time (Figures 3a and 8). The preserved delta‐front deposits are visible in the present‐day bathymetry, and deposit depth is based on Van
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fully established, which happened around 5,200 cal. yr BP.
This observation implies that near‐shore coastal sediment
supply from the south was relatively abundant from 5,700
to 5,200 cal. yr BP. This sand supply resulted from erosion
of the precursor Rhine–Meuse promontory to the south,
which had become established by 7,500 to 6,000 cal. yr BP

(Hijma et al., 2010), and was transported to the Old Rhine
outlet by the predominantly northward‐directed littoral drift
(Hijma & Cohen, 2011b; Hijma et al., 2009). Note that
abundant sand was also transported to the beach barriers by
cross‐shore transport of shoreface sediments (Van Heteren,
Van der Spek, & Van Der Valk, 2011). From approximately
4,800 cal. yr BP onwards, beach‐barrier progradation on the
north side of the Old Rhine exceeded progradation in the
south. This implies that an increasing amount of sediment
was delivered to the coast by the Old Rhine and was subse-
quently predominantly transported northwards by littoral
drift. This is confirmed by the relative abundance of gravel
with a Rhine basin provenance admixed with freshwater‐
shell fragments north of the Old Rhine outlet compared
with quantities on the south side. The distance between the
4,500 and 3,800 cal. yr BP beach barriers on the south side
of the Old Rhine progressively decreases with increasing
distance from the estuary mouth, suggesting that littoral
sand supply decreased during this period.

Between 4,000 and 3,000 cal. yr BP, a large spit formed
in front of the Old Rhine estuary, extending from the
south, which forced the Old Rhine mouth to migrate north-
wards (Figure 8). Coastal progradation probably ceased
between 2,500 and 2,000 cal. yr BP near the Old Rhine
mouth. The exact end time and location of progradation
and beach‐barrier formation is hard to pinpoint as the most
recent beach barriers were removed by coastal erosion
(Heeringen & Van der Valk, 1989; Pruissers & De Gans,
1988; Van der Valk, 2011).

The beach‐barrier evolution shows that the mouth of the
Old Rhine estuary progressively migrated in both a sea-
ward and northward direction over time. Moreover, the
presence of these beach barriers probably led to relatively
tranquil conditions behind them.

4.2.3 | Preserved estuary deposits

In the centre of the cross‐sections (Figure 5), estuary
channel and bar deposits are present, forming an amalga-
mated channel belt. The width of the channel and estuary
deposits increases in a seaward direction. In cross‐section
A–A′, the channel belt has a width of ∼2 km and reaches
down to the basal peat. In its centre, however, the basal
peat was eroded and the channel is up to 4 m deeper
over a width of nearly 1 km. In cross‐section B–B′, 2 km
downstream, the width of the channel‐belt complex
increases to almost 3 km. The channel deposits are

deepest in the southernmost kilometre of the channel belt,
extending through the basal peat and into Pleistocene
sandy substrate, whereas the depth of the channel deposits
decreases northwards. In cross‐section C–C′, the width of
the channel belt is similar to the width of the channel belt
in cross‐section B–B′, and the channel depth is also great-
est in the southern part of the channel belt. Channel depth
rapidly decreases towards the north where the base of the
channel is almost 10 m shallower, probably representing a
later stage channel of the Old Rhine when the mouth had
migrated northwards. Similarly, the channel deposits in
cross‐section D–D′ are deepest in the southern part, up to
a depth of approximately −17.5 m O.D. (location studied
in detail in Busschers et al., 2005, 2007; Törnqvist et al.,
2000; Wallinga, Murray, & Bøtter‐Jensen, 2002). The
lowest 2.5 m of this sequence are tidal deposits with
many brackish water shells and mud layers, showing that
these belong to a former tidal channel as shown by Buss-
chers et al. (2007) and in agreement with the hypothesis
of Hijma et al. (2009) that the Old Rhine became con-
nected to, and was routed through, a former tidal channel
in the early stages of its formation. Near the present‐day
coastline, in cross‐section E–E′, the channel or estuary
deposits are nearly 4 km wide and here also the deepest
deposits are at the southern end of the channel body.
Because of lateral migration, the active part of the Old
Rhine estuary probably never equalled the eventual envel-
ope width of the estuarine deposits as depicted in the
cross‐sections.

The cross‐sections and shallow geological mapping do
not allow the location and width of the active channel, or
channels, to be directly constrained over time, except for
the last stage of the system from 2,500 cal. yr BP onwards
(Van Dinter, 2013; Van Dinter et al., 2017). Also, the
dimensions and location of the former tidal channel that
the Old Rhine connected to are poorly preserved. The max-
imum depth of the estuary and its channels, however, can
be reasonably constrained. Around 6,000 cal. yr BP, the
estuary base was at approximately −15 m O.D. in cross‐
section A–A′ and lowered to −17 m O.D. in C–C′ (Fig-
ure 5). Mean sea‐level at that time stood at approximately
−7 m O.D., suggesting an estuary depth of 8 to 10 m (Fig-
ures 3 and 9). The channel base at its final functioning
stage can be recognized in cross‐section C–C′, at a depth
of approximately −8 m O.D. This base is estimated to cor-
respond to the estuary around 2,500 cal. yr BP, when mean
sea‐level stood at −1 m O.D., suggesting a local estuary
depth of 7 m.

In all cross‐sections, silty to clayey levee, crevasse and
floodbasin deposits flank the channel deposits. These silty
to clayey Old Rhine deposits wedge out from the main
river channel and crevasses towards the surrounding peat.
In the seaward cross‐sections these deposits reach for some
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distance into the beach plains in between the barriers,
whereas further landward they are located mainly on top of
back‐barrier peats. In the back‐barrier area, flood‐basin
deposits laterally grade into peat layers; where the peat
contained minimal amounts of clay it has been mined and

removed since the 16th century (see the northern parts of
cross‐sections A–A′ and D–D′).

In short, the Old Rhine estuary lies within back‐barrier
basin deposits grading into beach‐barrier deposits in a sea-
ward direction. The estuarine/channel deposits are incised

?

6800 yr BP 6300 yr BP

5700 yr BP 5200 yr BP

4500 yr BP 3800 yr BP

a

FIGURE 10 Palaeogeographical reconstruction of the evolution of the Old Rhine estuary, based on the data presented here and maps
presented by Pruissers and De Gans (1988), Van der Valk (1995), Hijma and Cohen (2011b) (6,800 and 6,300 cal. yr BP) and Van Dinter (2013)
(2,000 cal. yr BP). The exact channel width over time cannot be determined with certainty based on the presently available data for the period
6,800 to 2,600 cal. yr BP, and is estimated here. All ages in cal. yr BP
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deepest on their southward side, and the deepest deposits
have a tidal‐channel origin showing that the incipient Old
Rhine was guided seaward through an older tidal channel.
Subsequently, the Old Rhine estuary, in particular its
mouth, migrated northwards over time, especially from
∼4,000 cal. yr BP onwards. The estuary is flanked by levees,
which formed when the landscape surrounding the estuary
changed from an open tidal back‐barrier basin to a more
elongated and confined estuary. At a greater distance from
the estuarine channel, great volumes of peat filled the
back‐barrier accommodation in the >4,000 years that the
system functioned.

4.2.4 | Offshore delta remains

Delta‐front deposits have been identified in offshore seis-
mic profiles and cores by Van Heteren and Van der Spek

(2008) (Figure 8). They are found up to approximately
8 km seawards of the present‐day coastline at −20 m O.D.,
located in a 10 × 5 km zone, with the widest axis parallel
to the coastline. The patch of delta‐front deposits is lens‐
shaped, relatively thin (2 m thick), and comprises a
sequence of alternating clay and sand layers, the latter rich
in shells. The shells are concentrated at the base of the
sand layers, suggesting fining‐upward sorting during depo-
sition. 14C dates collected from the preserved sediments
show that they were deposited between 4,200 and
1,900 cal. yr BP, and that most accumulation took place
between 3,800 and 3,300 cal. yr BP (Cleveringa, 2000; Van
Heteren & Van der Spek, 2008). This coincides with the
fast beach‐barrier progradation occurring during this period,
while the age of the youngest deposits coincides with a
period of substantially decreasing river discharge. Older
delta-front deposits (i.e., from before 4000 cal. yr BP)

3200 yr BP 2600 yr BP

2000 yr BP 700 yr BP

Dune complex
Beach barriers
Shoreface
Tidal basin

Wetlands (marshes)
Surface water (river, estuary, sea)

Present-day coastline

10 km

Preserved delta-front deposits

Preserved estuarine/
channel  deposits

b

FIGURE 10 Continued
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appear to have been buried and eroded by shoreface pro-
cesses during coastal transgression.

5 | SYNTHESIS AND DISCUSSION

Here the spatio‐temporal evolution of the Old Rhine estuary
is synthesized into a series of palaeogeographical maps of
the study area from 6,800 BP to 700 BP (Figure 10). These
maps are used to discuss the long‐term morphodynamic evo-
lution of the estuary in time and space. Separate phases of
‘establishment’ (6,800 to 5,700 cal. yr BP), ‘progradation’
(5,700 to 2,000 cal. yr BP) and ‘abandonment and closure’
(2,000 to 800 cal. yr BP) are distinguished. The estuarine
morphodynamic developments for each of these phases have
different spatial scales: the hydromorphologically active area
for estuarine developments was much greater in the first
phase than in the later phases.

5.1 | Establishment of the Old Rhine estuary

The 7,300 to 5,700 cal. yr BP time frame was characterized
by the establishment of the barriers and tidal basin (Fig-
ure 10: 6,800 to 5,700 cal. yr BP). In terms of the develop-
ment of the Old Rhine estuary, however, it can be seen as

the establishment of the initial conditions. These initial
conditions are distinct from many other estuaries in the
world. Firstly, because of the wide back‐barrier plain along
the Dutch coast, the Old Rhine could freely move away
from former estuaries, connecting to and subsequently cap-
turing a tidal channel outside the formerly active part of
the delta, which consequently expanded in size (Figures 5
and 10). This was possible because sea‐level rise had
exceeded the palaeovalley shoulders, creating a broad plain
of accommodation, unlike the situation in topographically
constrained estuaries elsewhere (Allen, 1990; Belknap &
Kraft, 1985; Bertin, Chaumillon, Weber, & Tesson, 2004;
Clement & Fuller, 2018; Fletcher et al., 1990; Gregoire, Le
Roy, Ehrhold, Jouet, & Garlan, 2017; Long, Scaife, &
Edwards, 2000; Pye & Blott, 2014; Vis et al., 2008, 2016).
Secondly, the Old Rhine entered an infilling tidal basin
with an abundant intertidal area and a well‐developed tidal‐
channel network, through which it could rapidly obtain a
connection to the open sea (Figure 10: 6,800 to 5,700 cal.
yr BP). Finally, the gently sloping, sandy continental shelf
in the southern North Sea enabled rapid transgression of
the tidal basins along the Holland coast (Beets & Van der
Spek, 2000). Furthermore, a considerable amount of sand
was available for waves to build wide beach barriers and to
fill the back‐barrier basins in combination with fluvial
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mud. This contrasts with the numerous tidal systems with a
steeply sloping Pleistocene surface and relatively small sed-
iment influx (Takashimizu et al., 2016), which filled in
slowly as rivers formed bay‐head deltas of coarse material.
Returning to the Old Rhine estuary, the initial tidal basin
configuration into which the Old Rhine avulsed not only
determined the location of the new river, but it also
allowed the newly avulsed channel to rapidly establish a
direct connection through an existing tidal inlet to the sea
rather than diverge into the back‐barrier basin. So, the com-
bined processes of upstream avulsion and downstream
tidal‐channel piracy determined the position of the Old
Rhine river for more than 4,000 years. In addition, the lim-
ited accommodation in the tidal basin during the time of
formation of the Old Rhine distributary enabled rapid
throughflow of fluvial sediment to the coast, enabling
coastal transgression. Moreover, it inhibited the formation
of a bay‐head delta, in contrast to many other rivers enter-
ing tidal basins (Boyd, Dalrymple, & Zaitlin, 1992; Dal-
rymple et al., 1992; Padmalal et al., 2013).

In short, transformation from a tidal basin to an estuary
in the study area initiated between 6,500 and 5,700 cal. yr
BP, when the Rhine avulsed into the tidal basin and the bar-
rier system stabilized its position. Due to the decreasing
rate of sea‐level rise and an increase in discharge in the
Old Rhine, a well‐developed river channel was established
through the former back‐barrier basin around 5,700 cal. yr
BP, which also started to develop levees that laterally con-
fined the main water flow (Figure 10: 5,700 cal. yr BP).
Progressive levee growth isolated the back‐barrier area
from the estuary, which facilitated peat development at
rates sufficient to keep up with the decelerating sea‐level
rise. The peat development restricted channel migration,
thereby keeping the levees in a relatively stable position
and enabling vertical levee growth. Whether this was of
prime importance for the development of the estuary,
merely accelerated its development or had no significant
effects, cannot be determined based on the available data.

The above developments are unique to the surviving
river outlet of the Old Rhine estuary. All surrounding Mid-
dle Holocene tidal inlets show the opposite development of
silting up and closure, followed by transformation into vast
back‐barrier peat lands.

5.2 | Coastal progradation and deltaic outlet
phase

Progressive closure of other tidal inlets along the barrier
coast formed relatively protected environments at the
inland side, but on the other hand initiated erosion of the
ebb‐tidal deltas (Beets & Van der Spek, 2000; De Haas et
al., 2018; Roep et al., 1991). In combination with the large
volumes of available sand on the shallow North Sea floor,

this resulted in a surplus of sandy sediment supply to the
coast and its shoreface, leading to coastal progradation
(Figures 8 and 10) (Cleveringa, 2000; Hijma et al., 2010;
Roep et al., 1991; Van Heteren et al., 2011). Silting up of
the back‐barrier basin caused the distribution pattern of
marine sediment to change from cross‐shore redistribution,
in which sediment entered the back‐barrier basin via the
tidal inlets, to alongshore redistribution, leading to new
barrier formation seawards of older coastlines. Moreover,
the Old Rhine was now established as an estuarine channel,
efficiently bypassing its increasingly filled tidal basin and
hence supplying substantial parts of its fluvial water and
sediment fluxes to the seaward side of the coastal barrier
system. This resulted in the formation of a cuspate river
mouth flanked by beach barriers. Between 4,000 and
3,500 cal. yr BP, an increasing amount of sand was incor-
porated into the beach barriers flanking the Old Rhine out-
let, especially on its northern side (Figure 8). Accordingly,
delta‐front accumulation rates were relatively high during
this period (Van Heteren & Van der Spek, 2008). Around
the same time, a large spit formed in front of the southern
edge of the Old Rhine River mouth, partly blocking the
estuary inlet and forcing the Old Rhine River mouth north-
wards (Figure 10: 3,800 to 3,200 cal. yr BP). From 3,500 to
3,000 cal. yr BP, the coastal progradation rate decreased,
which was probably the result of sediment depletion off
the coast caused by progressive steepening of the shoreface
(Beets et al., 1992; Van Heteren et al., 2011).

Between 5,700 and 3,000 cal. yr BP, the Old Rhine dis-
charge was relatively stable (Figure 7). In this period sedi-
ments originating from the river and estuary settled from
suspension on the prograding delta front. In addition, mud
was trapped in the estuary, in the beach plains surrounding
the estuary and at a relatively small scale along the Old
Rhine River channel. There was extensive peat formation
inland of the beach barriers and on a smaller scale between
the inner beach barriers. The peat‐land environment implies
that fresh groundwater level was high; freshwater lenses
had formed in the top of the beach‐barrier complex aquifer
and in the back‐barrier deposits (Delsman et al., 2014).
Also, mud supply was low to absent as a result of estab-
lished levees and dense riparian vegetation, both separating
the main channels from the flood basins and causing initia-
tion of raised‐bog formation in the most distal areas
(Pierik, Cohen, Vos, van der Spek, & Stouthamer, 2017;
Van Dinter, 2013; Vos, 2015). The accumulated peat layer
aided in hampering lateral meander migration (cf. Makaske,
Berendsen, & Van Ree, 2007) and caused relatively high
and narrow levees (Van Asselen, 2011). In addition, the
peat filled in considerable accommodation space in the
back‐barrier area from approximately 5,700 cal. yr BP,
which restricted lateral sediment storage and caused fluvial
sediment to more efficiently bypass to the coast. This
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bypass is observed in the expansion of the beach barriers
and the development and outbuilding of the delta front.

The expansion of the spit from the southern bank of the
estuary mouth around 4,000 to 3,500 cal. yr BP (Figure 10:
3,800 cal. yr BP) led to relatively sheltered conditions in
the floodplain behind it, resulting in the deposition of mar-
ine and fluvial muds (see cross‐section E–E′ in Figure 5),
particularly in the south‐western part of the estuary. Espe-
cially in the seaward parts of this mud bed, marine diatoms
and molluscs indicate deposition under saline conditions
(Van der Valk, 1995).

Palaeo‐ecological studies indicate that saline storm surge
water occasionally reached as much as 15 km upstream from
the estuary mouth during Roman times (Van Dinter, 2013).
Blocking of river discharge during storm surges caused the
water level in the lower reach of the river to rise, which
caused overtopping of the levees and allowed ‘perimarine’
crevasse channels to branch off to be reused in subsequent
events, helped by tidal currents as shown by tidal bundling
in the sediment infills. These crevasse channels have a land
inward orientation and occur abundantly between 10 and
20 km upstream of the present coastline from where they
extend into peat lands. It is estimated that these crevasses
started forming from 4,000 to 3,500 cal. yr BP onwards,
when the fluvio‐tidal levees along the main system became
more mature (Berendsen, 1982; Cohen et al., 2012; Van
Dinter, 2013) (Figures 2b and 10: 3,200 to 2,000 cal. yr BP).
From 20 to ∼30 km inland, a decrease in abundance and size
of these crevasse channels is observed. This suggests that the
tidal backwater effect reached up to at least ∼30 km inland
(Martinius & Van den Berg, 2011; Van Dinter, 2013), which
agrees with a characteristic backwater length estimated as
water depth, here about 10 m, divided by gradient, here
about 0.5 × 10−4 m/m to 1 × 10−4 m/m. Along the Old
Rhine, the perimarine crevasses were most widely estab-
lished around 3,000 cal. yr BP (Berendsen, 1982; Cohen et
al., 2012). At this stage, the matured crevasse systems func-
tioned as year‐round drainage channels for the peat lands,
with semi‐diurnal tidal currents preventing the channels from
silting up or paludifying. During storm surges and river peak
discharge, they would still temporarily develop landward
gradients and function as crevasse channels.

5.3 | Loss of discharge and estuary closure

Discharge from the Old Rhine started to drop from
2,850 cal. yr BP (Figures 6 and 7). The loss of discharge
was most pronounced between 2,200 and 1,500 cal. yr BP,
when the Hollandse IJssel and Lek avulsions grew into
new permanent channels (Berendsen & Stouthamer, 2000;
Cohen et al., 2012; Pierik et al., 2018). The decrease in
river discharge coincided with a period of enhanced marine
clay deposition in the Old Rhine estuary (Figure 10: 2,600

to 2,000 cal. yr BP) (Van der Valk, 1995), especially in the
beach plains in between the beach barriers. This clay was
predominantly deposited north of the Old Rhine estuary
and river channel, which was also migrating northwards
around that time. The enhanced rate of clay trapping start-
ing from 2,600 cal. yr BP is attributed to the decrease in
mean river discharge, which enabled tides and storm surges
to reach further inland, increasing deposition of marine
clays (Van der Valk, 1995). In addition, natural and
human‐induced peat subsidence may have enhanced the
expansion of clay deposition. From ∼2,500 cal. yr BP

onwards, increased habitation and the known practice of
de‐watering of peat lands to increase habitability led to sea
ingression in many back‐barrier areas along the Dutch
coast (Pierik, Cohen, et al., 2017; Vos, 2015). Local peat
reclamations in the areas between and immediately behind
the beach barriers may therefore have sequentially led to
subsidence, enlarging accommodation space and permitting
sea ingression. Finally, although the mean annual discharge
and fluvial sand transport strongly decreased during this per-
iod, river floods still transported ample clay to the Old Rhine
estuary (Van Dinter et al., 2017). Following the decrease in
fluvial discharge, the coastal promontory and beach barriers
were reworked by waves. Similar reworking of abandoned
promontory systems (Bhattacharya & Giosan, 2003) has
been reconstructed for the previous Rhine outlet near Rotter-
dam (Hijma & Cohen, 2011b), the Po delta (Correggiari,
Cattaneo, & Trincardi, 2005) and the Usumacinta‐Grijalva
beach‐barrier plain (Nooren et al., 2017). The estuary mouth
had a more sinuous shape during the final stages of its exis-
tence, as can be seen on historical maps and the present‐day
topography (Figures 2a and 10: 2,000 cal. yr BP). This shape
was induced by the northward littoral drift becoming more
important relative to river discharge. The Old Rhine estuary
is not the only system developing such a sinuous channel in
its final stages. For example, the Oer‐IJ estuary, located
40 km northwards along the Dutch coast, developed a simi-
lar shape during its final stages of existence, as can be
expected from the similar coastal orientation and dominant
long‐shore transport direction (Vos, de Koning, & van Eer-
den, 2015). In addition, Rodríguez‐Ramírez et al. (1996,
2014) found a similar sinuous shape for the Guadalquivir
estuary in Spain. This system had a small river influx and,
similar to the Old Rhine, only developed its sinuous shape
after the river discharge decreased.

From Roman times onwards and throughout the first
millennium AD, the Old Rhine functioned as one of the
main shipping routes between the hinterland and the North
Sea (Jansma, Van Lanen, & Pierik, 2017; Van Lanen,
Jansma, van Doesburg, & Groenewoudt, 2016). Storm
surges from time to time affected the Old Rhine estuary,
and occasionally dune sand covered parts of the estuary
floodplain, notably in the 10th century (Van der Valk,
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1995). Construction of a river dam near Wijk bij Duurstede
in 1122 AD effectively sealed off the already nearly silted‐
up downstream Old Rhine from river water, which implies
that the Old Rhine distributary and its surrounding land-
scape from that moment on functioned as a local drainage
basin. The youngest clay deposits in the Old Rhine estuary
also date to the 12th century AD. These had a marine origin
as shown by the occurrence of estuarine shell specimens in
life position in the sediments (Heeringen & van der Valk,
1989). The Old Rhine to sea connection disappeared
entirely around 1300 AD. This was probably the effect of
substantial loss of the river‐induced enhanced ebb flows
and of the accompanying progressive reduction of the tidal
prism, which enabled coastal long‐shore drift to clog the
sea entrance together with dune drift sands (De Haas et al.,
2018; Van der Valk, 1995, 2011).

5.4 | Assessment of effects of changing
boundary conditions

Figure 11a,b summarizes and compares the timing of the
most important boundary conditions, with the main devel-
opments of the Old Rhine estuary. The transition between
coastal transgression (barrier back‐stepping) to coastal
regression (barrier progradation) (Figure 11c) was caused
by closure of most inlets along the coast from ∼5,700 cal.
yr BP onwards (Figure 11b). The period of beach‐barrier
progradation that commenced around 5,700 cal. yr BP

lasted for at least 3,000 yrs. Yet, beach‐barrier progradation
was already slowing down between ∼3,800 and 3,000 cal.
yr BP along the Old Rhine estuary (Figure 8), eventually
ceasing between 2,500 and 2,000 cal. yr BP (Cleveringa,
2000; Roep et al., 1991; Van der Valk, 1995). Although
this roughly coincides with the substantial decrease of Old
Rhine discharge, the consistency in the ending of prograda-
tion along the entire coast of the western Netherlands
(Beets & Van der Spek, 2000; Roep et al., 1991) suggests
that coastal progradation had a largely marine rather than
fluvial cause. Nevertheless, around the Old Rhine outlet
progradation was locally enhanced due to fluvial sediment
supply, as suggested by the seaward‐curving beach barriers.
The northward migration of the inlet occurred well before
the discharge started to decrease suggesting that this migra-
tion and the formation of the spit in front of the estuary
were the result of marine processes, possibly changes in
the wave climate or sand supply from the south. The fastest
northward migration of the mouth along the coast coincides
with a period of fast regression around 4,000 cal. yr BP,
when relatively greater quantities of sand were available to
reshape the estuary mouth morphology.

The Old Rhine estuary closed off after river discharge
ceased. This shows that substantial fluvial input was a pre-
requisite for the Old Rhine estuary to persist over time, and

waning fluvial input led to reduction of the former quasi‐
equilibrium dimensions of the estuary resulting from sedi-
ment input equalling sediment output. This is consistent with
the general evolution of tidal systems along the western parts
of the Dutch coast where tidal systems tend to fill up and
close off in the absence of substantial fluvial input and cre-
ation of accommodation by rapid sea‐level rise (De Haas et
al., 2018; Van der Spek, 1996). Van den Berg, Jeuken, and
Van der Spek (1996) and De Haas et al. (2018) hypothe-
sized that the final stages of estuary infilling are mainly the
result of mud trapping and expansion of vegetation into the
estuary, which further enhances mud trapping, inducing a
positive feedback mechanism that ultimately leads to closure
of an estuary. The reconstructed enhanced mud trapping in
the final stages of the Old Rhine estuary as a result of loss of
river discharge supports this hypothesis.

The data presented here do not allow the planform
shape and dimensions of the estuary to be determined
before 2,500 cal. yr BP due to the continuous northward
and seaward migration of its channels. It is thus unknown
whether the estuary was able to attain a planform shape
similar to an ‘ideal’, trumpet‐shaped, estuary (cf. Savenije,
2005). A further unknown is how planform shape and size
came about in the aggradational system of the Old Rhine
estuary, where the sedimentation of levees probably self‐
confined the estuary despite sea‐level rise. Future numerical
and physical modelling of estuaries, using well‐constrained
initial and boundary conditions from geological reconstruc-
tions, may help unravel the processes that are key to estu-
ary shape formation in wide aggrading basins.

6 | CONCLUSIONS

The long‐term palaeogeographical evolution and regional
boundary conditions of the former Old Rhine estuary,
which was active on the Dutch coast from ∼6,500 cal. yr BP

to ∼1,000 cal. yr BP, was synthesized based on a rich geo-
logical dataset and literature.

The Old Rhine River formed around 6,500 cal. yr BP by
a northward avulsion near the apex of the Rhine delta. By
6,100 cal. yr BP, the newly formed distributary conveyed
most of the Rhine discharge. Initially, the Old Rhine
entered an extensive back‐barrier basin, where it connected
to and followed a tidal channel to the open sea. As a result
of a decelerating rate of sea‐level rise and ample sedimenta-
tion, the back‐barrier basin silted up and large parts of the
barrier coast progressively closed except for the Old Rhine
outlet. At that time the Old Rhine outlet had established
itself as an estuary, which traversed the further closed‐off
tidal basin. The estuary was laterally confined by levee for-
mation and the formation of vast peatlands behind these
levees. This confinement made offshore and fluvial
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sediment, which was formerly transported into the back‐bar-
rier basins, available for up to 9 km of coastal progradation
from 5,700 cal. yr BP to ∼2,000 cal. yr BP through accretion
of a beach‐barrier complex. During this period, the Old
Rhine estuary mouth migrated northwards by ∼10 km from
its initial position, forced by littoral drift. From ∼3,000 cal.
yr BP onwards, and most significantly from 2,200 to
1,500 cal. yr BP, a series of upstream avulsions in the Rhine
River network caused redirection of the majority of the
Rhine River discharge into the North Sea through another
outlet in the south, so that the discharge of the Old Rhine
strongly reduced. The reduced fluvial input had a significant
effect on the Old Rhine estuary; it allowed for a period
of marine clay deposition within the estuary and flanking
low‐lying areas. Finally, the strong reduction in the fresh
water discharge culminated in the silting up of the Old Rhine
estuary, ultimately resulting in its closure around 1200 AD.

The results highlight that estuarine evolution can
strongly depend on the interaction with the regional land-
scape, and show that fluvial input is essential for tidal sys-
tem dynamics and ultimately, for its survival. This
reconstruction provides a dataset for the validation of
numerical and physical modelling of high‐stand estuaries
forming in wide and shallow back‐barrier basins.
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