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We discuss the holographic reconstruction of static thin bubble walls in Bañados, Teitelboim, and Zanelli
(BTZ) black hole geometries. We consider two reconstruction prescriptions suggested in recent years: hole-
ography and light-cone cuts, in the context of thin bubble walls, and comment on their applicability in the
presence of nontrivial matter in the bulk. We find that while the light-cone cuts prescription goes through
within its own limitations, the current hole-ographic approaches are inadequate to describe bubble
spacetimes completely. Much as entanglement shadows found around BTZ black holes and conical defects
in the bulk, we find that thin bubbles are accompanied by shadows of their own, which are regions of
spacetime that are only partially probed by minimal geodesics. We speculate that such shadows might be a
generic feature of the presence of matter in the bulk.
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I. INTRODUCTION

Since the seminal work of Maldacena in 1997 [1],
holography has came to become one of the cornerstones
of twenty-first century high energy physics. The so-called
“AdS/CFT duality” has found a multitude of applications in
condensed matter physics, as it provides a probe for
studying strongly coupled highly quantum phenomena in
field theories using their dual weakly coupled semiclassical
gravity theories. These applications have been well
explored in the literature; see, e.g., [2–4] and references
therein. The other direction of this duality can in turn be
used to potentially understand some characteristics of
quantum gravity—which continues to be one of the most
profound puzzles in physics—by looking at the well
understood weakly coupled field theories. Soon after the
AdS/CFT conjecture was proposed, these ideas began to
take shape under the name of bulk reconstruction [5,6].
Since then, there has been a tremendous amount of research
toward reconstructing local bulk operators from the boun-
dary conformal field theory (CFT) ones [7–13]. See [14] for
an excellent set of lecture notes on the subject, as well as
references therein.

An important part of the bulk reconstruction program is
to understand how classical spacetime emerges from the
underlying quantum degrees of freedom. Presumably, any
theory of quantum gravity should provide an answer to this
question; however, the precise mechanism is still unknown.
In the holographic setting, one would like to isolate the
degrees of freedom in the boundary field theory that might
encode the information about the geometry, or more
specifically the metric, of the bulk spacetime. A number
of proposals have been put forth in this regard over the past
two decades, perhaps the most developed of which is the
idea that the bulk spacetime emerges from the entangle-
ment structure of the boundary field theory [15,16]. In
(2þ 1) bulk dimensions, which will be the focus of this
paper, these ideas have been rigorously developed using
boundary observables such as entanglement entropy, differ-
ential entropy, and entwinement [17–22]. Another more
recent approach to bulk reconstruction, called light-cone
cuts, uses n-point correlation functions in the boundary
field theory to obtain the bulk metric in an arbitrary number
of dimensions up to a conformal factor [23].
Most of the work cited above for geometric bulk

reconstruction trials are the methods with a fairly limited
class of bulk geometries: global AdS3, Bañados,
Teitelboim, and Zanelli (BTZ) black holes, and point
conical defects, all of which are quotients of AdS3. It is
important therefore to subject these proposals to further
tests, and in particular, to apply these recipes to more
complicated (and hence realistic) geometries, which will
allow us to understand them better and help determine
their limits of applicability. To this end, in this paper
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we consider spacetimes with massive thin shells as an
interesting candidate to test the validity of the proposed
bulk reconstruction approaches. These spacetimes have
several generic features related to the problem: the presence
of nontrivial matter in the bulk in the form of a collapsing or
expanding thin shell is combined with almost the same
amount of isometries as in the empty AdS spacetime.
However crucially, the presence of the shell matter in the
bulk causes a controllable breaking of the bulk symmetries
that can lead to interesting features in the dual boundary
field theory.
There are two type of physical processes that could be

described by massive thin shells. A collapsing shell
describes the process of a spherical collapse and black
hole formation in anti–de Sitter (AdS) spacetime. This
would correspond to a thermalization process in the
boundary field theory and has been explored, e.g., in
[24,25]. Thin wall bubbles also describe the process of
false vacuum decay [26,27], can be time dependent or
static, and can occur with or without a black hole [28–30].
Aspects of their dual holographic description were studied
in [31]. We will concentrate on the special case at the
boundary of these two examples—static shells in (2þ 1)
dimensions. These can be viewed as special instantons in
the context of vacuum decay, or as limits of flows or
domain walls in AdS. The advantage of using a thin wall is
that it is an analytic gravitational setup. We can therefore
derive analytic expressions for the quantities being pro-
posed in bulk reconstruction and easily explore their
validity.
Our setup is such that the static shell solution bounds two

BTZ black hole spacetimes: the inside “−” and outside
“þ,” respectively. These two spacetimes in general have
different mass parameters, M− ≠ Mþ, and different AdS
radii, l− < lþ.

1 We refer to these spacetimes as BTZ
bubbles, and it is clear that they cover a wide range of
geometries, easily generalizable to higher dimensions.
Leaving consideration of this, and dynamical shells, for
the future, it is worth mentioning that time evolution of the
holographic entanglement entropy in higher dimensions
with collapsing shells has previously been studied in the
adiabatic limit in [33]. However, the question of bulk
reconstruction was not addressed there.
We will focus in this paper on two proposals for bulk

reconstruction that use a geometrical approach to the
problem, in the sense that they define points and distances
in the bulk via the introduction of auxiliary geometric
constructions on top of the boundary field theory data. The
first approach was introduced in [17,18], which we will
refer to as “hole-ography.” This method provides a recipe to

reconstruct the spatial part of the bulk metric using the
entanglement structure of the boundary CFT, which
involves observables such as entanglement entropy, differ-
ential entropy, and entwinement. This proposal is quite
natural, as the very first indication of an “emergence” of the
bulk geometry was seen in the Ryu-Takayanagi formula for
holographic entanglement entropy [15]. It has been widely
felt that the entanglement entropy data of the boundary
field theory should play an important role in bulk
reconstruction; therefore, we discuss holographic entangle-
ment entropy for the BTZ bubble spacetimes in detail in
Sec. III. The hole-ography method itself is reviewed and
applied to BTZ bubble spacetimes in Sec. IVA.
The second and more recent approach of using light-

cone cuts to reconstruct bulk geometry was introduced
in [23,34]. This method provides a strategy to obtain the
metric of the bulk spacetime up to an overall conformal
factor. However, only the part of the spacetime that is in
causal contact with the boundary can be reconstructed
using this prescription. The method is based on the
knowledge of the divergence structure of the correlation
functions in the boundary CFT. We will review this method
in detail in Sec. IV B and provide explicit examples of the
reconstruction of empty AdS, BTZ black hole and BTZ
bubble spacetimes.
In addition to the comments on reconstructability of

bubbles, we note the existence of what we call “bubble
shadows.” These are a region of spacetime surrounding
a bubble in the bulk, which can be seen as a parti-
cular generalization of entanglement shadows discussed
extensively in the literature (see, e.g., [21,35,36]). Unlike
an entanglement shadow, however, which is a region
of spacetime where minimal length geodesics (Ryu-
Takayanagi surfaces) do not enter, these bubble shadows
are only partially probed by minimal geodesics. Given that
entanglement shadows have been found in BTZ black holes
and spacetimes with a conical defect, which can be seen as
point matter sources in the bulk, it seems to suggest that
such shadows might be a generic feature of the presence of
matter in the bulk.
The paper is structured as follows. We give an overview

of static thin wall bubble geometries and their geodesics
in Sec. II. In Sec. III we give a detailed discussion of
holographic entanglement entropy in the presence of
bubbles in the bulk, and we note the existence of bubble
shadows. In Sec. IV we investigate hole-ographic and light-
cone cuts reconstruction schemes in the context of bubble
spacetimes. Finally, we close with discussion in Sec. V. In
Appendix, we present the construction of kinematic spaces
associated with bubble spacetimes.

II. STATIC BUBBLE GEOMETRY

We will start with a brief review of thin wall bubbles and
Israel junction conditions (see [37] formore details).Wewill
work out various kinds of geodesics in this geometry, which

1This last inequality between AdS radii follows from the
requirement thatΛ− < Λþ for tunneling toward a deeper vacuum.
In the boundary field theory it corresponds to the proper direction
of an renormalization group (RG) flow [32].
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will form the basis for our discussion in the bulk of thiswork.
A generic bubble spacetime in arbitrary dimensions consists
of an infinitesimally thin wall separating two bulk solutions
of the vacuum Einstein’s equations. The symmetries of
our setup and bubble wall energy momentum require that
each bulk has the form of an AdS black hole [38]. The
vacuum energy and mass parameters of the black hole on
each side are, in general, different and related to the tension
of the bubble wall via the Israel junction conditions [39].
Generically, a bubble will have a time-dependent trajectory;
however, to illustrate the issues in geometric bulk reco-
nstruction, it is sufficient to consider the subset of bubble
geometries that are static. We therefore briefly review the
(2þ 1)-dimensional bubble geometries in this section
before considering their holographic interpretation.

A. Static bubble metric

Recall that the metric of a (2þ 1)-dimensional BTZ
black hole can be written as

ds2 ¼ 1

z2

�
−ð1 −Mz2Þdt2 þ dx2 þ l2

1 −Mz2
dz2
�
; ð2:1Þ

with coordinates t, x ∈ R and z ∈ ð0; 1= ffiffiffiffiffi
M

p Þ. Here l is
the AdS radius related to the cosmological constant as Λ ¼
−1=l2 andM is themass parameter of the black hole. Notice
that this metric is invariant under the scaling of coordinates
ft; x; zg → fλt; λx; λzg if we transform M → M=λ2. The
horizon of the black hole is at z ¼ 1=

ffiffiffiffiffi
M

p
, while z → 0

represents the asymptotic boundary of the spacetime.

It is worth pointing out that our coordinate x ∈ R, and
hence the horizon of the black hole, is noncompact. This is
in contrast with most of the holographic literature on this
subject (see, e.g., [15,40]), where x ∈ S1 is taken to be
compact. An important feature of these compact black
holes, as is well illustrated in [15,40], is that for any interval
at the boundary, there is an infinite cascade of geodesics
anchored at its end points, characterized by their winding
number around the black hole. For a major part of this
work, we will be interested in holographic entanglement
entropy, wherein the length of the shortest among these
infinite sets of geodesics computes the entanglement
entropy of the boundary interval in question, while the
longer ones are said to compute “entwinement” [21]. As we
shall explore in due course, the presence of a bubble gives
rise to two new geodesics for some boundary intervals, on
top of the infinite cascade arising due to compactness.
Therefore by going to a noncompact version of the BTZ
black hole, which is essentially an infinite cover of the
compact one, we can efficiently isolate and focus on the
effects of the bubble.
To construct a bubble spacetime, we will “glue” together

two BTZ black holes with masses M� and AdS radii l�
along a timelike hypersurface given by z ¼ ZðτÞ, while
respecting the translation invariance in the x direction. Here
τ is a timelike coordinate on the hypersurface. The
geometry is supported by a brane/bubble with constant
tension σ on the hypersurface. By a suitable choice of
coordinates, we take an ansatz for the metric

ds2 ¼
8<
:

1
z2

�
−ð1 −Mþz2Þdt2þ þ dx2 þ l2þ

1−Mþz2
dz2
�

for z ≤ ZðτÞ;
1
z2

�
−ð1 −M−z2Þdt2− þ dx2 þ l2−

1−M−z2
dz2
�

for z ≥ ZðτÞ:
ð2:2Þ

The bulk time coordinates are given by t�, which becomes
a function of τ in the vicinity of the bubble. For this ansatz
to be consistent, it should induce the same metric on the
bubble z ¼ ZðτÞ from either side. If we represent the
induced metric on the bubble as

ds2Bubble ¼ hijdxidxj ¼
1

ZðτÞ2 ð−dτ
2 þ dx2Þ; ð2:3Þ

this gives a consistency condition on the bulk metric ansatz

ð1 −M�Z2Þ_t2� −
l2
� _Z2

ð1 −M�Z2Þ ¼ 1; ð2:4Þ

where the dot denotes the derivative with respect to τ. This
condition should be read as relating the time coordinates t�
to τ. In particular for a static bubble, defined by _Z ¼ Z̈ ¼ 0,
this boils down to a simple relation

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −MþZ2

q
¼ t−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M−Z2

q
¼ τ: ð2:5Þ

Except on the bubble, the metric in Eq. (2.2) is merely a
BTZ black hole and hence satisfies the Einstein equations.
On the bubble, however, Einstein equations imply that this
geometry can be supported by a uniform tension bubble
with an energy-momentum tensor Ti

j ¼ −σδij, provided
the Israel junction conditions [39] are met,

8πGσ ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−MþZ2

l2þ
þ _Z2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−M−Z2

l2
−

þ _Z2

s
;

Z̈−MþZ
l2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−MþZ2

l2þ
þ _Z2

q ¼
Z̈−M−Z

l2−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−M−Z2

l2−
þ _Z2

q : ð2:6Þ

For the static case these conditions simplify considerably
and imply a range of parameter space where we are allowed
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to have a static bubble. For M� ≠ 0, Eq. (2.6) in the static
case implies

8πGσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M−

l2
−
−
Mþ
l2þ

��
1

M−
−

1

Mþ

�s
;

Z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MþM−

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

−
l2−

− M2
þ

l2þ
M−
l2−

− Mþ
l2þ

vuuut : ð2:7Þ

Requiring the bubble tension σ ≥ 0 and radius
0 < Z < minð 1ffiffiffiffiffiffi

Mþ
p ; 1ffiffiffiffiffi

M−
p Þ, it gives the allowed range of

parameter space as

Mþ ≥ M−;
lþ
Mþ

≥
l−

M−
; ð2:8Þ

which also implies a weaker condition lþ ≥ l−. On the
other hand, if either of the black hole masses Mþ or M− is
zero, the static condition forces the other mass to vanish as
well. Consequently for M� ¼ 0, using Eq. (2.6) we get

8πGσ ¼ 1

l−
−

1

lþ
; Z ∈ Rþ; ð2:9Þ

with the allowed region of parameter space

lþ ≥ l−: ð2:10Þ

It is interesting to note that in both cases, the bubble
separates a BTZ spacetime with a less negative cosmo-
logical constant and higher mass parameter in the UV (near
the boundary) from a more negative cosmological constant
and lower mass parameter in the IR (deep in the bulk). This
is in agreement with a holographic c theorem [32,41].

B. Spatial geodesics

During our discussion of bulk reconstruction later, we
will extensively need the form of geodesics in the bulk.
Hence we dedicate this subsection and the next to derive
geodesics in static bubble geometries. The bubble space-
time is locally a BTZ black hole everywhere except in the
vicinity of the bubble. So to find the geodesics we can use
the following trick: we can start with the known geodesics
in the þ and − parts of the spacetime independently, and
glue them with suitable boundary conditions (correspond-
ing to the local continuity and smoothness of the geodesic).
As innocuous as it sounds, this procedure can be quite
cumbersome for a generic geodesic. Fortunately, for our
purposes it suffices to consider just two special cases:
spatial geodesics confined to a constant time slice and null
geodesics that reach out to the boundary.
By a straightforward computation, one finds that spatial

geodesics on a constant time slice of the BTZ metric in

Eq. (2.1) are given by two distinct branches. The first kind
of geodesics starts from the boundary, turns at a point
ðt0; x0; z0Þ in the bulk, and returns to the boundary:

t¼ t0;

x¼ x0�
lffiffiffiffiffi
M

p sinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðz20− z2Þ
1−Mz20

s !
with 0<z0 <

1ffiffiffiffiffi
M

p :

ð2:11Þ

These are the geodesics one would consider when comput-
ing entanglement entropy of a spatial slice at the boundary.
The other kind of geodesics starts from the boundary,
crosses the black hole horizon, and escapes all the way to
the other asymptotic boundary:

t¼ t0;

x¼x0�
lffiffiffiffiffi
M

p cosh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðz20−z2Þ
Mz20−1

s !
with

1ffiffiffiffiffi
M

p <z0<∞:

ð2:12Þ

One would employ these if one needs to understand
entanglement between the two asymptotic regions. If we
are interested in the intervals at a boundary of the BTZ
black hole, they are not quite as useful. However, upon the
introduction of bubbles, we find that they, in fact, start to
play an important role.
For notational clarity, let us combine the two branches of

geodesics into an analytically continued form

t ¼ t0; x ¼ x0 �
lffiffiffiffiffi
M

p S−1½z; z0;M�; ð2:13Þ

where

S−1½z;z0;M�¼ sinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðz20−z2Þ
1−Mz20

s !
−
iπ
2
Θ
�
jz0j−

1ffiffiffiffiffi
M

p
�
:

ð2:14Þ

Here 0 < z0 < ∞ and ΘðzÞ is the Heaviside theta function.
We have illustrated some representative geodesics in Fig. 1.
We construct spatial geodesics in the static bubble

geometry by gluing spatial geodesics in the þ and −
spacetimes, given in Eq. (2.13), and requiring continuity
and smoothness of the geodesic on the bubble. If the
geodesic turns at a point ðt0; x0; z0Þ in þ spacetime with
z0 ≤ Z, it does not enter the − spacetime at all, and is
simply given by

tþ ¼ t0; x ¼ x0 �
lþffiffiffiffiffiffiffiffi
Mþ

p S−1½z; z0;Mþ�: ð2:15Þ
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On the other hand, if z0 > Z, then the geodesic will enter
the minus spacetime, thus crossing the bubble at two
distinct points. Although the spatial coordinates x and z
have been chosen to be continuous across the bubble wall,
the time coordinates are different on each side, so the time
tþ ¼ t0 on the plus side of the bubble will match up to

t− ¼ γt0 on the minus side, where γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−MþZ2

1−M−Z2

q
is the time

warp factor when we cross the wall. Once on the minus side
of the bubble, the geodesic will have the standard form

t− ¼ γt0; x ¼ x0 �
l−ffiffiffiffiffiffiffi
M−

p S−1½z; z0;M−�; ð2:16Þ

that must be matched through the bubble to a generic
geodesic segment in the plus spacetime

tþ ¼ t0 � α1;

x ¼ x0 � α2 �
lþffiffiffiffiffiffiffiffi
Mþ

p S−1½z; α3;Mþ�: ð2:17Þ

The constants α1, α2, and α3 are fixed by local continuity
and smoothness of the geodesic at the bubble

α1¼0;

α2¼
l−ffiffiffiffiffi
M

p
−
S−1ðZ;z0;M−Þ−

lþffiffiffiffiffi
M

p
þ
S−1½Z;z0;Mþ�; α3¼z0:

ð2:18Þ

These geodesics start from the boundary in þ spacetime
and reach the bubble, and then (in this coordinate system)
“refract” through the bubble to a standard − geodesic.
Depending on how z0 compares to 1=

ffiffiffiffiffiffiffi
M−

p
, these geo-

desics will either turn and return via a similar trajectory, or
will cross the horizon all the way to the other asymptotic
boundary.

Note that the geodesics in bubble geometry only cross
the horizon if z0 > 1=

ffiffiffiffiffiffiffi
M−

p
. In particular, if Mþ > M−,

geodesics with 1=
ffiffiffiffiffiffiffiffi
Mþ

p
< z0 < 1=

ffiffiffiffiffiffiffi
M−

p
will stay well

away from the black hole. These geodesics have segments
in the þ spacetime that would have crossed the horizon by
themselves in the absence of the bubble, but the bubble
refracts them such that they do not make it to the horizon
after all.
To summarize, spatial geodesics in bubble geometry are

given in the þ spacetime as

tþ ¼ t0;

x ¼ x0 �
lþffiffiffiffiffiffiffiffi
Mþ

p S−1½z; z0;Mþ�

� Θðz0 − ZÞ
�

l−ffiffiffiffiffiffiffi
M−

p S−1½Z; z0;M−�

−
lþffiffiffiffiffiffiffiffi
Mþ

p S−1½Z; z0;Mþ�
�
; ð2:19Þ

while for z0 > Z they also have a branch in the − spacetime

t− ¼ γt0; x ¼ x0 �
l−ffiffiffiffiffiffiffi
M−

p S−1½z; z0;M−�: ð2:20Þ

These different types of spatial bubble geodesics are shown
in Fig. 2. As discussed in [42], the physical effect of the
bubble and the interior BTZ spacetime is analogous to a
medium with a lower refractive index to the exterior BTZ
geometry. Geodesics therefore have a tendency to cross to
the interior − spacetime to transit across the bulk. This
gives rise to interesting phenomena when considering the
length of such geodesics, which we will review in Sec. III
while talking about holographic entanglement entropy.

C. Null geodesics

We now move on to the discussion of null geodesics.
A generic null geodesic for the BTZ black hole metric (2.1),
which escapes to the boundary, is given as

Boundary

Horizon z0 < 1/ M

Boundary

Horizon z0 > 1/ M

(a) (b)

FIG. 1. Spatial geodesics for BTZ black holes with (a) 0 < z0 < 1=
ffiffiffiffiffi
M

p
and (b) 1=

ffiffiffiffiffi
M

p
< z0 < ∞. (Parameters: l ¼ 1, M ¼ 0.1,

t0 ¼ 0, and x0 ¼ 0.) Note that the second branch of geodesics appears to be grazing the horizon and returning, but this is just a product of
an inappropriate set of coordinates. They indeed cross the horizon, as can be illustrated by computing their slope at the horizon.
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t ¼ t0 �
lffiffiffiffiffi
M

p T −1
t ½z; p;M�;

T −1
t ½z; p;M� ¼ tanh−1

�
z
ffiffiffiffiffi
M

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2ð1 −Mz2Þ

p �
;

x ¼ x0 �
lffiffiffiffiffi
M

p T −1
x ½z; p;M�;

T −1
x ½z; p;M� ¼ tanh−1

�
pz

ffiffiffiffiffi
M

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2ð1 −Mz2Þ

p �
: ð2:21Þ

Here ðt0; x0Þ are coordinates of a point at the
boundary where the geodesic hits, while p ∈ ð−1; 1Þ
represents the momentum of the null geodesic in the x
direction. We can also find null geodesics that do not
escape to the boundary, but we will not need them in
this work.
Now performing an analysis similar to that for

the spatial geodesics, i.e., considering null geodesics in
þ and − spacetimes and imposing suitable boundary
conditions on the bubble, we can recover null geodesics
for static BTZ bubbles. The resultant solutions for the
ones that escape to the boundary are for z < Z in
þ spacetime

tþ ¼ t0 �
lþffiffiffiffiffiffiffiffi
Mþ

p ðT −1
t ½z; p0;Mþ� − T −1

t ½Z; p0;Mþ�Þ

� 1

γ

l−ffiffiffiffiffiffiffi
M−

p T −1
t ½Z; γp0;M−�;

x ¼ x0 �
lþffiffiffiffiffiffiffiffi
Mþ

p ðT −1
x ½z; p0;Mþ� − T −1

x ½Z; p0;Mþ�Þ

� l−ffiffiffiffiffiffiffi
M−

p T −1
x ½Z; γp0;M−�; ð2:22Þ

and for z ≥ Z in − spacetime

t− ¼ γt0 �
l−ffiffiffiffiffiffiffi
M−

p T −1
t ½z; γp0;M−�;

x ¼ x0 �
l−ffiffiffiffiffiffiffi
M−

p T −1
x ½z; γp0;M−�: ð2:23Þ

Here ðt0; x0Þ are coordinates of a point at the boundary
where the geodesic hits, while p0 and γp0 represent the
momentum of the null geodesic in the x direction in þ and
− spacetime, respectively.
This finishes our general discussion of static bubble

geometries. We constructed static uniform tension infini-
tesimally thin bubbles with a BTZ black hole geometry on
either side and studied the behavior of some special
geodesics in this spacetime. In the following sections we
will use these results to probe some exciting holographic
implications of these bubbles.

III. HOLOGRAPHIC
ENTANGLEMENT ENTROPY

In recent years, there has been a tremendous amount of
interest in connections between quantum gravity and
quantum information theory. We have learned that we
can get some profound insights into the quantum nature of
gravity by appealing to techniques pertaining to quantum
information [15,43–45]. Perhaps the best understood of
these insights come from a field theory observable called
the “entanglement entropy.” Naively, entanglement entropy
SA of a spatial region A in a field theory is a measure of
quantum entanglement between degrees of freedom living
in A and those in its complement. For an excellent review
on the subject, see [46]. For field theories that admit a
holographic dual, entanglement entropy can be computed
using the formula due to Ryu-Takayanagi [15,47]

SA ¼ min
i

�
AreaðΣi

AÞ
4G

�
: ð3:1Þ

Boundary

Horizon

Bubble

z0 < Z

(a)

Boundary

Horizon

Bubble

Z < z0 < 1/ M−

(b)

FIG. 2. Sample spatial geodesics for BTZ bubbles for (a) z0 < Z and (b) Z < z0 < 1=
ffiffiffiffiffiffiffi
M−

p
. Dotted lines represent geodesics inþ and

− spacetimes, which have been “glued” together to get the resultant geodesics in bubble spacetime. (Parameters: lþ ¼ 2, Mþ ¼ 0.8,
l− ¼ 1, M− ¼ 0.1, Z ¼ 1, t0 ¼ 0, x0 ¼ 0, and z0 ¼ 0.6, 1.8.)
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Here Σi
A are extremal area surfaces in the bulk anchored at

A at the boundary, i.e., ∂Σi
A ¼ ∂A, and are homologous to

A (can be smoothly deformed into A at the boundary). The
index “i” runs over multiple such surfaces, if available, in
which case the formula picks up the minimal area surface.
For a (1þ 1)-dimensional field theory that has a (2þ 1)-
dimensional bulk dual, such as the ones we are interested
in, spatial region A is just an interval at the boundary and
Σi
A is a spacelike geodesic anchored at its end points.
We would like to use this framework of holographic

entanglement entropy for our case of static bubble geom-
etries. This would allow us to better understand the holo-
graphic interpretation of these bubbles. From the boundary
field theory perspective, dynamics of thin bubble walls in a
black hole spacetime is understood as a thermalization
process [42]. It was noted in [42], for the case when
M− ¼ 0, that entanglement entropy in these dual field
theories shows an interesting swallowtail behavior. This is
due to the presence of multiple spatial geodesics that are
anchored at the same boundary interval. We will inspect
this behavior in detail in the following for arbitrary BTZ
masses, focusing on the static limit. We will see later in
Sec. IVA that this swallowtail behavior has important
consequences for the holographic reconstruction of bubble
spacetimes.

A. BTZ black holes

Let us start with a warm-up exercise of computing
holographic entanglement entropy in a bubble-free BTZ
black hole spacetime. A detailed analysis can be found,
e.g., in [15]. Recall that the metric of a BTZ black hole is
given by Eq. (2.1). For an interval in the boundary with end
points ðt0; x0 � L=2Þ at the boundary to be linked by a bulk
spatial geodesic, we require

L ¼ 2lffiffiffiffiffi
M

p S−1½0; z0;M�; ð3:2Þ

where the parameter z0 refers to the turning point of the
geodesic in the bulk, which is defined in Eq. (2.13). This
constraint is solved by2

z0 ¼
1ffiffiffiffiffi
M

p tanh

� ffiffiffiffiffi
M

p

2l
L

�
: ð3:3Þ

See Fig. 3 for a diagrammatic representation. We can
compute the length of this geodesics as

Sϵ ¼ 2l log
�

2z0=ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Mz20

p �
þOðϵÞ

¼ 2l log
�
2=ϵffiffiffiffiffi
M

p sinh

� ffiffiffiffiffi
M

p

2l
L

��
þOðϵÞ; ð3:4Þ

where ϵ is an infinitesimal UV cutoff. It determines the
entanglement entropy of the interval of length L via the
Ryu-Takayanagi formula,

SEEðLÞ ¼
c
3
log

�
2β

a
sinh

�
L
2β

��
; ð3:5Þ

where c ¼ 3l=2G is the central charge of the CFT, a ¼ ϵl
is the length scale associated with the UV cutoff in the CFT,
and β ¼ l=

ffiffiffiffiffi
M

p
is the inverse temperature. See Fig. 4 for a

plot of S versus the turning point z0 and the boundary
interval L.

Boundary

Horizon

z0

L

(a)

0.5 1.0 1.5 2.0 2.5 3.0
z0

2

4

6

8

10

12

L

Horizon

Boundary

(b)

FIG. 3. (a) Spatial geodesics anchored at a boundary interval of length L. (b) Length of the interval spanned at the boundary L as a
function of z0. [Parameters: l ¼ 1, M ¼ 0.1, and in (a) t0 ¼ 0, x0 ¼ 0, z0 ¼ 2, and L ¼ 4.71.]

2Mathematically speaking, there is another solution to this
constraint given by

z0 ¼
1ffiffiffiffiffi
M

p coth

� ffiffiffiffiffi
M

p

2l
L

�
>

1ffiffiffiffiffi
M

p :

However, this geodesic falls into the black hole and escapes to the
other asymptotic boundary, and hence would not be relevant for
us here.
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B. Static BTZ bubbles

We can now move on to our primary case of interest:
static BTZ bubble spacetimes. Equation (2.19) implies that
for a geodesic to be anchored at a boundary interval
ðt0; x0 � L=2Þ, we must have

L¼ 2lþffiffiffiffiffiffiffiffi
Mþ

p S−1½0;z0;Mþ�þΘðz0−ZÞ
�

2l−ffiffiffiffiffiffiffi
M−

p S−1½Z;z0;M−�

−
2lþffiffiffiffiffiffiffiffi
Mþ

p S−1½Z;z0;Mþ�
�
: ð3:6Þ

Unlike the pure BTZ case, however, this relation is not
simply analytically invertible, apart from the case when
z0 < Z. Nevertheless, we can qualitatively analyze the
behavior of L as we increase z0. The first term in
Eq. (3.6) is an increasing function of z0 until the turning
point z0 ¼ 1=

ffiffiffiffiffiffiffiffi
Mþ

p
> Z is reached. At that point, the

constraints on the parameters of the plus and minus
geometries, Eq. (2.8), imply that the second term in
Eq. (3.6) is negative. Specifically, expanding z0¼Zþδz0
for small δz0, we see that

L≈
2lþffiffiffiffiffiffiffiffi
Mþ

p S½0;Z;Mþ�þ
2lþδz0
1−MþZ2

þΘðδz0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8Zδz0

p �
l−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−M−Z2
p −

lþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−MþZ2

p �
; ð3:7Þ

and henceLðz0Þ has a localmaximumat z0 ¼ Z.Meanwhile,
as z0 → 1=

ffiffiffiffiffiffiffi
M−

p
, L → ∞, hence L has a minimum between

Z and 1=
ffiffiffiffiffiffiffi
M−

p
, while for z0 > 1=

ffiffiffiffiffiffiffi
M−

p
, L decreases

again, approaching zero as z0 → ∞. This behavior is dis-
played in Fig. 5 for a sample set of parameters for the bubble
geometry.
We can tie this behavior to the fact that there are now

three distinct types of spatial geodesics, depending on the
value of L. For small L, i.e.,

L < La ¼
2lþffiffiffiffiffiffiffiffi
Mþ

p tanh−1ð ffiffiffiffiffiffiffiffi
Mþ

p
ZÞ; ð3:8Þ

there are “branch (a)” geodesics, remaining entirely within
the þ spacetime. As we increase the interval length past
some L ¼ Lc < La, two new branches of geodesics pop
up, as it becomes preferable for the geodesic to cross the
bubble wall and take a path through the − spacetime (see
the middle plot in Fig. 6). One of these new geodesics,
called “branch (c)” goes deeper in the bulk than the other,
called “branch (b).” These geodesics will persist until
L ¼ La, at which point it is no longer possible for a
geodesic to remain in the plus spacetime, and we will
simply have a branch (c) geodesic (see the third plot in
Fig. 6). Figure 6 shows these different branches of spatial
geodesics as L increases, and Fig. 5 shows a plot of the
length of the geodesics as a function of z0.
The physical appearance of these geodesics suggests an

interesting phase structure as we vary the boundary interval
L. For small L, we expect the minimal length geodesic to
remain “close” to the boundary. However, as L increases

0.5 1.0 1.5 2.0 2.5 3.0
z0

0.5

1.0

S

Horizon

Boundary

2 4 6 8 10
L

- 0.5

0.5

1.0

S

z0 →
1

M
(Horizon)

z0 →0 (Boundary)

FIG. 4. Renormalized holographic entanglement entropy for BTZ black holes. The first plot shows the behavior of renormalized
entangling function S as a function of z0, while the second shows the mutual behavior of S with L for varying z0. (Parameters: l ¼ 1,
M ¼ 0.1, and G3 ¼ 1.)

0.5 1.0 1.5 2.0 2.5 3.0
zo

2

4
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8

10

12

L

Horizon

Boundary Bubble

FIG. 5. Length of the interval spanned at the boundary L
against the turning point z0. (Parameters: lþ ¼ 2, Mþ ¼ 0.8,
l− ¼ 1, M− ¼ 0.1, and Z ¼ 1.)
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and the geodesic gets near to the bubble in the bulk, we
might expect that it becomes preferable for the geodesic to
“jump” across the bubble wall, refracting into the interior −
spacetime to cross the bulk at lower cost. To confirm this
suspicion, we need to compare the length of these various
geodesics. In terms of the parameter z0, we find that the
length of the geodesic has the form

Sϵ ¼ 2lþ

�
log

�
2z0=ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Mþz20

p �

− Θðz0 − ZÞsinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z−2 − z−20
z−20 −Mþ

s !!

þ 2Θðz0 − ZÞl−sinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z−2 − z−20
z−20 −M−

s !
: ð3:9Þ

Thus we can readily infer the geometric length of the
spacelike geodesics connecting intervals of length L on the

boundary. In Fig. 7 we show the behavior of the renor-
malized geodesic length S ¼ Sϵ þ 2lþ logðϵ=2Þ as a
function of z0 and L. The geodesic with the least length
for a given value of the interval length L determines the
entanglement entropy for that interval, while the longer
geodesics can be interpreted as determining entwine-
ment [21].
The plot in Fig. 7 clearly shows the phase structure

associated with geodesics in the bubble geometry. As we
increase the length of the boundary interval, entanglement
entropy spontaneously jumps from one branch of geodesics
to another. The “swallowtail” behavior of this phase
diagram mimics the Van der Waals phase transition in
condensed matter systems and was originally observed
by [42] during the study of collapsing shells of matter. As a
consequence of this behavior, there is a range of z0 around
Z for which none of the spatial geodesics are minimal, i.e.,
all spatial geodesics with turning points in this region
around the bubble correspond purely to entwinement. We
refer to this region as the bubble shadow. Similar regions,

Boundary

Horizon

Bubble

(a)

Boundary

Horizon

Bubble

(b)

Boundary

Horizon

Bubble

(c)

FIG. 6. Multiple geodesics anchored at the boundary. The geometry parameters are lþ ¼ 2, Mþ ¼ 0.8, l− ¼ 1, M− ¼ 0.1, and
Z ¼ 1. In plot (a) L ¼ 2.15, with z0 ¼ 0.5, in (b), L ¼ 5.07, with z0 ¼ 0.9, 1.05, 1.71, and in plot (c), L ¼ 7.52, with z0 ¼ 2.5.

0.5 1.0 1.5 2.0 2.5 3.0
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0.5

1.0
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Horizon

Boundary Bubble
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L

- 2

- 1
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1

M
(Horizon)

zo = Z (Bubble)

zo →0 (Boundary)

FIG. 7. Renormalized holographic entanglement entropy for BTZ bubbles. The first plot shows the behavior of the renormalized
entangling function S as a function of z0, while the second shows the mutual behavior of S with L for varying z0. We see that for a given
L there are 2 to 4 allowed geodesics, the lowest of which computes entanglement entropy, and the remaining correspond to entwinement.
The plot also shows the swallowtail behavior of holographic entanglement entropy observed by [42]. (Parameters: lþ ¼ 2, Mþ ¼ 0.8,
l− ¼ 1, M− ¼ 0.1, Z ¼ 1, and G3 ¼ 1.)
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called “entanglement shadows,” are found around compact
BTZ black holes or a conical deficit [18]. These, however,
are fundamentally different from our bubble shadows, as
minimal geodesics do not penetrate an entanglement
shadow at all, whereas minimal geodesics do, in fact, cross
the bubble shadow region—they just cannot turn inside it.
Figure 8 illustrates the bubble shadow effect for our sample
bubble geometry. One might dismiss the occurrence of
bubble shadows as an artifact of working with an infini-
tesimally thin wall; however, one can show that the
phenomenon occurs for smooth walls thinner than a
characteristic thickness [48].

IV. HOLOGRAPHIC RECONSTRUCTION
OF STATIC BTZ BUBBLES

A spacetime manifold is a set of points accompanied
with a Lorentzian metric. The challenge in establishing a
holographic dialogue lies in reconstructing the information
that has been projected from the bulk onto the boundary.
In order to reconstruct a bulk spacetime, one requires
either differential information on the bulk or causal order-
ing together with a notion of volume. Here we explore
two different methods for reconstructing the bulk: first,
a differential approach using a prescription for defining
points and then a definition of distance, and second,
a causal approach, using the structure of bulk light cones.

A. Bulk reconstruction using entanglement entropy

In [17,18], a prescription to reconstruct bulk spacetimes
dual to a (1þ 1)-dimensional CFT was proposed, specifi-
cally with spacetime translation invariance. Entanglement
entropy of an interval in the boundary CFT is equivalent to
the length of the corresponding bulk geodesic joining the
end points. Thus broadly speaking, intervals of different
lengths sample different depths in the bulk; however,
a method for extracting the local spacetime structure is

required. The approach of [17,18] was to first note that a
curve γðτÞ in the bulk, where τ is an arbitrary parameter on
the curve, can be described on the boundary via a sequence
of intervals, each of which is connected by a bulk geodesic
that touches the bulk curve at, and tangent to, a point.3 This
sequence of intervals is expressed as a boundary function
αðxÞ, where x is the center and x� αðxÞ are the end points
of the interval. The bulk curve γðτÞ thus corresponds to a
particular function αðxÞ on the boundary. The length of γðτÞ
has a special interpretation in the bulk; it computes the so-
called differential entropy [17] of αðxÞ,

E½α�≡ 1

2

Z
dx
dSðαÞ
dα

����
α¼αðxÞ

¼ Length½γ�
4G3

: ð4:1Þ

Here SðαÞ denotes the entanglement entropy (or entwine-
ment) corresponding to a boundary interval of length
L ¼ 2α.
Having identified functions on the boundary with curves

in the bulk, we then identify a subset of the boundary
functions that correspond to bulk points. To do this, simply
note that a point is a limit of a sequence of closed curves
with length and spanning area tending to zero. To be
precise, a point boundary function αpðxÞ corresponding
to a point p in the bulk is a sequence of intervals at
the boundary, subtended by the geodesics passing from the
point p. Therefore, the point boundary functions are
a family of boundary functions parametrized by three
parameters—coordinates of the associated point in the
bulk. By definition, the differential entropy of a point
boundary function vanishes, E½αp� ¼ 0, which gives a
necessary, but not sufficient,4 condition to determine them.
Point boundary functions are crucial to this bulk-

reconstruction scheme, as they provide a boundary inter-
pretation of the bulk manifold. Furthermore, as shown by
[18], given two points p and q in the bulk, the geodesic
distance between them can be computed using the corre-
sponding point boundary functions αpðxÞ and αqðxÞ,

Dðp; qÞ ¼ D½αp; αq�≡ 1

2
jE½minðαp; αqÞ�j: ð4:2Þ

The boundary function minðαp; αqÞðxÞ is defined quite
intuitively as

Boundary

Horizon

Bubble

FIG. 8. Two spatial geodesics that are anchored at the same
interval at the boundary. (Parameters: lþ ¼ 2, Mþ ¼ 0.8,
l− ¼ 1, M− ¼ 0.1, Z ¼ 1, t0 ¼ 0, x0 ¼ 0, the bubble shadow
is 0.89 < z0 < 1.68, and the corresponding critical boundary
interval is 4.91.)

3In general, a boundary “function”αðxÞ constructed thisway can
bemultivalued. In that case,wewill need to define it parametrically,
i.e., αðζÞ, xðζÞ for some parameter ζ. Correspondingly for the
differential entropy we have E½α� ¼ 1

2

R
dζx0ðζÞS0ðαðζÞÞ.

4To be precise, differential entropy is computed by the signed
length of the bulk curve. Therefore a bulk curve with self-
intersections might lead to nonzero differential entropy if the
clockwise length cancels the counterclockwise length of the
curve.
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minðαp; αqÞðxÞ ¼
�
αpðxÞ; αpðxÞ < αqðxÞ;
αqðxÞ; αpðxÞ ≥ αqðxÞ:

ð4:3Þ

Consequently, if we are given the family of point boundary
functions, and the entanglement (plus entwinement) profile
of the boundary, we can reconstruct the bulk spacetime
points and their mutual distances, hence recovering the
bulk geometry.

1. Point boundary functions for BTZ black holes

A crucial part of the aforementioned reconstruction
scheme is to be able to work out the family of point-
boundary functions for a given CFT, without invoking the
holographic bulk. As we mentioned above, a necessary
condition for a boundary function αðxÞ to be a point
boundary function is that E½α� ¼ 0; however, it is not
sufficient. To get some insight into the generic prescription,
we start with the family of point boundary functions when
we know that the holographic dual is a BTZ black hole
geometry.
Consider a point p ¼ ðxp; zpÞ on a spatial slice of a BTZ

black hole with mass M and AdS radius l. In Sec. II B we
established that the family of spatial geodesics can be
characterized by their turning point p0 ¼ ðx0; z0Þ in the
bulk. Requiring these geodesics to pass the point p
determines jx0 − xpj leaving a family of geodesics depend-
ing on z0 ≥ 0 and sgnðx0 − xpÞ. By working out the
intersection of these geodesics with the boundary and
defining a parameter λ ¼ z0sgnðx0 − xpÞ, point boundary
functions can be expressed parametrically as [see
Eqs. (2.13) and (3.6)]

αpðλÞ ¼
lffiffiffiffiffi
M

p S−1½0; λ;M�;

xðλÞ ¼ xp þ sgnðλÞ lffiffiffiffiffi
M

p S−1½zp; λ;M�: ð4:4Þ

On the other hand, the entanglement function for these
boundary functions is given by the length of the geodesics
given in Eq. (3.4) leading to

SðλÞ ¼ 2l log
�

2jλj=ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Mλ2

p
�
: ð4:5Þ

Authors in [18] noted that these point boundary func-
tions obey a curious relation independent of the black hole
parameters l and M

ð1−α0ðxÞ2Þd
3SðαÞ
dα3

����
α¼αðxÞ

þ2α00ðxÞd
2SðαÞ
dα2

����
α¼αðxÞ

¼0: ð4:6Þ

This is a second order ordinary differential equation for
αðxÞ, and hence completely determines the two parameter
family of point boundary functions. Given that there is no

explicit reference to parameters of the bulk in this relation,
one might wonder if it holds true in general, and if it could
be used as a boundary definition of point boundary
functions. One can, in fact, write down an action

I½α� ¼
Z

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1 − α0ðxÞ2Þd

2SðαÞ
dα2

����
α¼αðxÞ

s
; ð4:7Þ

whose extrema lies at the point boundary functions. From
the point of view of a bulk curve γðτÞ associated with αðxÞ,
the action is merely

R
γ dτ

ffiffiffi
h

p
K where dτ

ffiffiffi
h

p
is the line

element on γðτÞ, whileK is the extrinsic curvature. Because
of the Gauss-Bonnet theorem in negatively curved space-
times, this integral extremizes curves enclosing zero area,
i.e., points.
These hints lead the authors of [18] to conjecture that

perhaps the action Eq. (4.7) is more generic and can be used
to isolate point boundary functions in more generic trans-
lationally invariant boundary field theories. In the following
subsection, we provide a counterexample of this naive
expectation using our BTZ bubbles. In the absence of a
universal bulk independent mechanism to find point boun-
dary functions, this bulk reconstruction mechanism is
incomplete.5

2. Point boundary functions for bubbles

We now turn our attention to point boundary functions
for BTZ bubbles and inspect if they agree with the naive
differential equation (4.6). Let us first consider a point p ¼
ðxp; zpÞ outside the bubble in þ spacetime, i.e., zp < Z.
Geodesics passing through p are of one of the two types:
either they turn outside the bubble staying in þ spacetime
all the while or they penetrate the bubble and turn in −
spacetime. Denoting the turning point by p0 ¼ ðx0; z0Þ, we
can find the center of the boundary interval (which is
merely x0 by symmetry) using Eqs. (2.19) and (2.20), and
requiring that the geodesic passes the point p

xðλÞ ¼ xp þ sgnðλÞ lþffiffiffiffiffiffiffiffi
Mþ

p ðS−1½zp; λ;Mþ�

− Θðjλj − ZÞS−1½Z; λ;Mþ�Þ

þ sgnðλÞΘðjλj − ZÞ l−ffiffiffiffiffiffiffi
M−

p S−1½Z; λ;M−�: ð4:8Þ

5In the language of integral geometries, the action Eq. (4.7)
can be thought of as length on an auxiliary space with metric
ds2 ¼ d2SðαÞ

dα2 ð−dx2 þ dα2Þ. In a recent paper on integral geom-
etries [49], the authors mentioned a different mechanism to work
out point boundary functions assuming some strict conditions on
the bulk. Unfortunately, most of these conditions, in particular the
assumption that there are no conjugate points (i.e., no two
geodesics intersect at more that one point), break down in the
presence of the bubbles.
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As in the bubble-free case, we have defined λ ¼
z0sgnðx0 − xpÞ. On the other hand, for the point p behind
or on the bubble in − spacetime, i.e., zp ≥ Z, every
geodesic must turn in − spacetime, hence z0 ≥ Z as well.
In this case, using Eqs. (2.19) and (2.20) the center of the
boundary interval is given as

xðλÞ ¼ xp þ sgnðλÞ l−ffiffiffiffiffiffiffi
M−

p S−1½zp; λ;M−�: ð4:9Þ

Now to specify the point boundary functions, we just need
the length of the boundary interval subtended by a spatial
geodesic in terms of the turning point. We can directly
borrow the results from Eq. (3.6) to get

αðλÞ ¼ lþffiffiffiffiffiffiffiffi
Mþ

p ðS−1½0; λ;Mþ� − Θðjλj − ZÞS−1½Z; λ;Mþ�Þ

þ Θðjλj − ZÞ l−ffiffiffiffiffi
M

p
−
S−1½Z; λ;M−�: ð4:10Þ

In summary, Eq. (4.10) along with Eq. (4.8) for a point in
front of the bubble (jλj < Z) and Eq. (4.9) for a point
behind the bubble (jλj ≥ Z) parametrically specify the
entire set of point boundary functions for a bubble
geometry.
Finally, we compute the entanglement function SðλÞ by

computing the length of the aforementioned geodesics.
Using Eq. (3.9) we get

SðλÞ ¼ 2lþ

"
log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ2=ϵ2

1 −Mþλ2

s �

− Θðjλj − ZÞsinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z−2 − λ−2

λ−2 −Mþ

s !#

þ 2Θðjλj − ZÞl−sinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z−2 − λ−2

λ−2 −M−

s !
: ð4:11Þ

We wish to see whether the point boundary functions
satisfy the bulk independent differential equations (4.6). To
do so, it is helpful to decompose Eq. (4.6) in terms of an
intermediate parameter λ to give

3α00ð χÞα0ð χÞ2 þ 2

c
α0ð χÞ3 ¼? x0ð χÞ2

�
2

χ
α0ð χÞ þ α00ð χÞ

�

þ 2
x00ð χÞ
x0ð χÞ α

0ð χÞ3; ð4:12Þ

where all the derivatives are taken with respect to the
parameter c. We have used the fact that S0ð χÞ ¼ 2

j χj α
0ð χÞ to

simplify the equation, which can be checked to hold
explicitly on the point boundary functions associated with
bubble or BTZ geometries. Plugging the point boundary

functions in Eqs. (4.8) to (4.10) into this differential
equation, we can check that it indeed is not satisfied as
we claimed.
Using this counterexample, we see that point boundary

functions for generic holographic CFT’s cannot, in fact, be
generated using the action in Eq. (4.7). Another plausible
mechanism to figure out point boundary functions was
suggested in the Appendix of [49], which among other
things, assumes the bulk to not have any pair of conjugate
points (points connected by more than one geodesics). As
we discussed in Sec. II B, this assumption severely breaks
down in the presence of bubbles. Bubbles, as we con-
structed them, exemplify the simplest form of extended
matter in the bulk that confirms with the symmetries of the
boundary; hence we expect that the assumptions in [49]
will continue to be invalid in bulk spacetimes with arbitrary
matter distribution. Other methods include using geodesics
in boundary Kinematic space as an alternative definition of
point boundary functions, but as we show in Appendix,
they do not work with bubbles either. We conclude that a
more generic bulk-independent mechanism to define point
boundary functions in the field theory is required for this
bulk reconstruction prescription to be complete.

B. Light-cone cuts

In a recent paper [23] (see also [34,50]), Engelhardt and
Horowitz proposed a new mechanism to reconstruct the
metric of a spacetime, up to a conformal factor, using its
holographic dual. Unlike hole-ography, however, which
relies on the entanglement structure of the boundary field
theory, this prescription makes use of the divergence
structure of (dþ 2)-point correlation functions in the field
theory to reconstruct the (dþ 1)-dimensional bulk metric.
The proposal involves a novel field theory observable
called “light-cone cuts” defined as the hypersurfaces that
are null separated from a point in the dual bulk. These cuts
can be used to reconstruct the metric, up to a conformal
factor, for a part of the bulk that is in causal contact with the
boundary. From a purely field theoretic perspective, light-
cone cuts can be obtained using the divergence structure of
(dþ 2)-point correlation functions.
In the following, we give a quick review of the

reconstruction procedure of [23], presented in a slightly
different language than the original material. With a given
point p in the causally visible bulk (from the boundary), we
can associate a unique cutCp at the boundary defined as the
intersection of the boundary with the light cone of p.
Engelhardt and Horowitz further showed that distinct bulk
points cannot lead to the same cut, establishing a bijection
between the set of cuts, which we refer to as the “cut space,”
and points in the causally visible bulk. From the bulk point
of view, it is clear that the cut space should be a (dþ 1)-
parameter family of hypersurfaces in the d-dimensional
boundary. Hence a cut in the family can be represented as
Cλ where λ ¼ ðλ0;…; λdÞ is an arbitrary set of parameters.
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Given the bijection, λ can also serve as a coordinate system
in the causally visible bulk. On a given cut Cλ, we will
sometimes choose a parametrization σ ¼ ðσ1;…; σd−1Þ and
denote a point on the cut as Ci

λðσÞ where the index i refers
to the boundary coordinates.
One can make a curious observation in the setup defined

above. Consider a point with coordinates λ0 in the causally
visible bulk and the corresponding cutCλ0 at the boundary; if
another point λ in the bulk is null separated from λ0, then the
associated cut Cλ intersectsCλ0 tangentially at the boundary.
That the two cuts intersect follows trivially from the fact that
the light ray joining λ to λ0 hits the boundary at some point σ0
which lies on both the cuts. Furthermore, let λ be in the future
of λ0, and then the entire causal future of l is visible to λ0
while λ can see the entire past of λ0, and viceversa if λ is in the
past of λ0. If the cuts were to cross, and not intersect
tangentially, at least one of these conditions will be violated.
The more interesting part of this observation is the

converse, which is the backbone of this reconstruction
mechanism. Let Cλ0 be a cut at the boundary, then all the
cuts Cλ that intersect Cλ0 tangentially at some point σ0 trace
out a curve in the λ space (i.e., cut space), which
corresponds to a light ray in the bulk passing through
the point λ0 and hitting the boundary at the point σ0.

6 It is
obviously a curve, as opposed to a higher dimensional
surface, because λ is a set of (dþ 1) parameters and the
condition of tangential intersection imposes d constraints
on it, leaving one free parameter defining the curve. Since
we know that the cuts corresponding to the points on a light
ray joining λ0 with σ0 must be tangential to Cλ0 at σ0, this
light ray must be the unknown curve in question.
The philosophy of reconstruction from this point forth is

rather straightforward: we assume that we are provided
with a family of light-cone cuts Cλ at the boundary with
some arbitrary parametrization λ. We will come back to the
question of determining this family using the field theory
data in a while. Given a particular cut Cλ0 in this family and
a point parametrized by σ0 on Cλ0 , we will look for a curve
γðλ0;σ0Þ in the λ space that corresponds to cuts tangent to Cλ0

at the point σ0. γðλ0;σ0Þ can be defined via the tangential
intersection constraints

Ci
λðσÞ ¼ Ci

λ0
ðσ0Þ;

d
dσ

Ci
λðσÞ ∝

d
dσ

Ci
λ0
ðσÞ
���
σ¼σ0

for some σ: ð4:13Þ

Obviously the point λ0 lies on γðλ0;σ0Þ. We denote the
tangent vector to γðλ0;σ0Þ at the point λ0 as n

a
ðλ0;σ0Þ, where the

index a runs from 0 to d. We know that from the point of
view of the bulk, naðλ0;σ0Þ must be a null vector. So we define

a metric gabðλÞ on the λ space such that it gives zero norm to
naðλ0;σ0Þ,

gabðλ0Þnaðλ0;σ0Þnbðλ0;σ0Þ ¼ 0: ð4:14Þ

We can repeat this procedure for as many values of σ0 as we
like, making the system overdetermined for gabðλ0Þ. If the
boundary field theory is indeed holographic, there must
exist at least one value of gabðλ0Þ that satisfies Eq. (4.14) for
all values of σ0. Note that gabðλ0Þ has 1

2
ðdþ 1Þðdþ 2Þ

independent components, but a conformal factor can never
be determined through Eq. (4.14). Nevertheless, we can
choose 1

2
ðdþ 1Þðdþ 2Þ − 1 ¼ 1

2
dðdþ 3Þ generic values

of σ0 and determine the metric gabðλ0Þ at the point λ0 up to a
conformal factor. We can then go ahead and repeat this
procedure for all values of λ0 to determine the conformal
metric in the entire causally visible bulk.
Now for the reconstruction procedure to be complete, up

to a conformal factor, we just need a field theoretic
definition of light-cone cuts. The authors of Ref. [51]
argued that an n-point Lorentzian correlator in a holo-
graphic field theory can diverge if all its points are null
separated from a bulk point, given that we can associate
null momenta to each of the points while conserving energy
momentum at the bulk point. Let us consider a set of dþ 1
points fx1;…; xdþ1g in a d-dimensional holographic field
theory, so that there is a unique point p in the bulk7 that is
null separated from all xi. Let us also take two more points
z1 and z2 at the boundary, so that the following correlator
diverges:

hOðz1ÞOðz2ÞOðx1Þ � � �Oðxdþ1Þi → ∞: ð4:15Þ

For this to happen, the point z1 can be anywhere on the
light-cone cut corresponding to the bulk point p, while z2
should be another point on the cut so that the energy
momentum at p is conserved. Now we can find light-cone
cuts by fixing some points fxig at the boundary—which
fixes the bulk point p—and tracing the points z1, z2 at the
boundary, so that the (dþ 3)-point correlator in Eq. (4.15)
remains divergent. Once we have the cuts, we can go ahead
and reconstruct the bulk metric, up to a conformal factor.
Above, we gave an extremely compact review of bulk

reconstruction via light-cone cuts. Naturally, we had to
6To be precise, the corresponding curve in the bulk will be a set

of two light rays. If, e.g., Cλ0 is the future branch of a cut, all the
cuts Cλ whose future branches touch Cλ0 at some point σ0 will
form a light ray passing through the points λ0 and σ0, while all the
cuts whose past branches touch Cλ0 will form another light ray
that passes through σ0 but not λ0. Here, however, we will only be
interested in the behavior of this curve around λ0 and hence will
not worry about the second branch.

7In principle, the point p can also be at the boundary. However,
we can easily avoid this situation by considering time separation
between the boundary points large enough so that they cannot be
all null separated from a single point at the boundary. See [23] for
details.
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gloss over a lot of tiny yet important details, which can be
found in [23]. In the following we will now try to explicitly
reconstruct our static BTZ bubble using this method. This
might help better understand the prescription by applying
to a nontrivial geometry in the presence of matter.

1. Light-cone cuts for BTZ black hole

For simplicity, let us start an ordinary BTZ black hole
whose metric has been given in Eq. (2.1). A generic null
geodesic in this geometry, which escapes to the boundary,
is given in Eq. (2.21). To find the light-cone cuts, we need
to trace the trajectory of the boundary point ðt0; x0Þ in
Eq. (2.21) for all the null geodesics that pass through some
point ðtp; xp; zpÞ in the bulk. We find

Ct
λðσÞ ¼ λ0 ∓ 1ffiffiffi

μ
p T −1

t ½λ2; σ; μ�;

Cx
λðσÞ ¼ λ1 ∓ 1ffiffiffi

μ
p T −1

x ½λ2; σ; μ�; ð4:16Þ

where μ ¼ M=l2 is the only parameter on which the family
of light-cone cuts depends, and not on the parameters M
and l independently. This can be traced back to the fact that
under a scaling M → MΩ2, l → lΩ, z → z=Ω, the metric
changes by a conformal factor Ω2, leaving the light
cones and hence the light-cone cuts invariant. The set λ ¼
ðλ0 ¼ tp; λ1 ¼ xp; λ2 ¼ lzpÞ can be understood as coor-
dinates in the cut space, while the momentum σ ¼ p is a
parameter on the cut. Eliminating σ, we can write down a
constraining equation for the light-cone cuts

tanh2ð ffiffiffi
μ

p ðCt − λ0ÞÞ − ð1 − μðλ2Þ2Þtanh2ð ffiffiffi
μ

p ðCx − λ1ÞÞ
¼ μðλ2Þ2: ð4:17Þ

See Fig. 9 for a graphical illustration. Interestingly in the
AdS limit, i.e., when the black hole mass M → 0, light-
cone cuts become hyperbolas,

ðCt − λ0Þ2 − ðCx − λ1Þ2 ¼ ðλ2Þ2; ð4:18Þ

which are independent of the AdS radius l. This is
expected, because in pure AdS we can always transform
away l to a conformal factor.
Reconstruction: We will now forget about the bulk and

will assume that these light-cone cuts can be obtained
directly by a field theory computation. Such a computation,
in general, might lead to an arbitrarily different para-
metrization of the cuts. The metric thus obtained via the
reconstruction prescription, will be related to the one given
in Eq. (2.1) by merely a coordinate transformation and an
arbitrary conformal factor.
Plugging the light-cone cuts in Eq. (4.16) into Eq. (4.13),

a straightforward computation will lead to the null gen-
erators

naðλ;σÞ∝
�
� 1

1−μðλ2Þ2 ;�σ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−σ2ð1−μðλ2Þ2Þ

q �
: ð4:19Þ

Defining a metric gabdλadλb, Eq. (4.14) then takes the form

1

1−μðλ2Þ2
�

g00
1−μðλ2Þ2þg22ð1−μðλ2Þ2Þ

�

þσ2ðg11−g22ð1−μðλ2Þ2ÞÞþ 2σg01
1−μðλ2Þ2

�2

�
σg12þ

g02
1−μðλ2Þ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−σ2ð1−λðλ2Þ2Þ

q
¼0: ð4:20Þ

Since this equation must be imposed for all values of σ, we
can perform a Taylor expansion around σ ¼ 0 and set all

(a)

- 3 - 2 - 1 1 2 3
x

- 3

- 2

- 1

1

2

3

t

(b)

FIG. 9. (a) Part of the light cone originating at a point p in the bulk. (b) A generic light-cone cut at the boundary. [Parameters: l ¼ 1,
M ¼ 0.1, and p ¼ ð0; 0; 1Þ.]
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the coefficients to zero. For example, the coefficients of σ3

and σ4 only get contributions from the last term and set
g12 ¼ g02 ¼ 0. The coefficient of s then sets g01 ¼ 0, while
the coefficients of σ2 and 1 determine the metric up to an
arbitrary overall factor

ds2 ¼ Ω2ðλÞ
	
−ð1 − μðλ2Þ2Þðdλ0Þ2

þ ðdλ1Þ2 þ 1

1 − μðl2Þ2 ðdλ
2Þ2


: ð4:21Þ

Choosing the conformal factor ΩðλÞ ¼ l=λ2 and picking a
basis fλ0 ¼ t; λ1 ¼ x; λ2 ¼ lzg, we can recover the BTZ
metric in Eq. (2.1) with mass M ¼ μl2.

2. Light-cone cuts for bubbles

We now move on to the case of static BTZ bubbles.
Similar to our calculation in the previous section, we can use
null geodesics for bubbles given in Eqs. (2.22) and (2.23) to
work out the light-cone cuts. We trace the trajectory of the
point ðt0; x0Þ in Eqs. (2.22) and (2.23) while requiring the
null geodesics to pass a fixed point ðtp; xp; zpÞ in theþ part
of the bulk or equivalently ðγtp; xp; zpÞ in the− part.We find

Ctþ
λ ðσÞ ¼ λ0 ∓ 1ffiffiffiffiffiffi

μþ
p ½T −1

t ½λ2; σ; μþ� − Θðλ2 − ζþÞðT −1
t ½λ2; σ; μþ� − T −1

t ½ζþ; σ; μþ�Þ�

∓ Θðλ2 − ζþÞ
1

γ

1ffiffiffiffiffiffi
μ−

p ðT −1
t ½ζλ2; γσ; μ−� − T −1

t ½ζ−; γσ; μ−�Þ;

Cx
λðsÞ ¼ λ1 ∓ 1ffiffiffiffiffiffi

μþ
p ½T −1

x ½λ2; σ; μþ� − Θðλ2 − ζþÞðT −1
x ½λ2; σ; μþ� − T −1

x ½ζþ; σ; μþ�Þ�

∓ Θðλ2 − ζþÞ
1ffiffiffiffiffiffi
μ−

p ðT −1
x ½ζλ2; γσ; μ−� − T −1

x ½ζ−; γσ; μ−�Þ: ð4:22Þ

Here again, we have defined a set of coordinates λ ¼
ðλ0 ¼ tp; λ1 ¼ xp; λ2 ¼ lþzpÞ on the cut space, and
σ ¼ p0 is a parameter on the cut. We have also condensed
the parametric dependence of the cuts into four dimension-
less combinations

μ� ¼ M�
l2
�
; z� ¼ Zl�; ð4:23Þ

and defined ζ ¼ ζ−=ζþ ¼ l−=lþ. In terms of these,

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−μþζ2þ
1−μ−ζ2−

q
. The information about one independent

parameter out of M�, l�, and Z is lost. See Fig. 10.
Interestingly, when the bubble is on an AdS-AdS interface,
i.e., M� → 0, the light-cone cuts reduce to

lim
M�→0

Ctþ
λ ðσÞ

¼ λ0 ∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− σ2

p ½λ2 þΘðλ2 − ζþÞðζλ2 − λ2 − ζ− þ ζþÞ�;

lim
M�→0

Cx
λðsÞ

¼ λ1 ∓ sffiffiffiffiffiffiffiffiffiffiffiffiffi
1− σ2

p ½λ2 þΘðλ2 − ζþÞðζλ2 − λ2 − ζ− þ ζþÞ�:

ð4:24Þ

Note that we can remove all the parametric dependence by
performing a coordinate transformation in the cut space:

λ2→λ02¼λ2þΘðλ2−ζþÞðζλ2−λ2−ζ−þζþÞ, after which
they merely reduce to their bubble-free hyperbolic form
given in Eq. (4.18). Hence we can infer that the cut space of
an AdS-AdS bubble is the same as that of a bubble-free
AdS.
Reconstruction: Having obtained the light-cone cuts,

Eq. (4.22), we can now forget about the bulk and try to
reconstruct it using the boundary data. Similar to the
ordinary BTZ case, the normal vector naðl;sÞ can be obtained
by solving Eq. (4.13). We find that for þ spacetime we
have

naðλ;σÞ ∝
�
� 1

1 − μþðλ2Þ2
;�σ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2ð1 − μþðλ2Þ2Þ

q �
;

ð4:25Þ

while for “−” spacetime

naðλ;σÞ∝
�
� 1=γ
1−μ−ðζλ2Þ2

;�γσ;
1

ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ2σ2ð1−μ−ðζλ2Þ2Þ

q �
:

ð4:26Þ

Putting this back in Eq. (4.14) we get the constraints: in the
þ spacetime
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1

1 − μþðλ2Þ2
�

g00
1 − μþðλ2Þ2

þ g22ð1 − μþðλ2Þ2Þ
�
þ σ2ðg11 − g22ð1 − μþðλ2Þ2ÞÞ

� 2

�
g02

1 − μþðλ2Þ2
þ σg12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2ð1 − μþðλ2Þ2Þ

q
þ 2σg10
1 − μþðλ2Þ2

¼ 0; ð4:27Þ

and in the − spacetime

1

1 − μ−ðζλ2Þ2
�

g00=γ2

1 − μ−ðζλ2Þ2
þ g22

1 − μ−ðζλ2Þ2
ζ2

�
þ γ2σ2

�
g11 − g22

1 − μ−ðζλ2Þ2
ζ2

�

� 2

ζ

�
g02=γ

1 −m−ðζλ2Þ2
þ γσg12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2σ2ð1 − μ−ðζλ2Þ2Þ

q
þ 2σg10
1 − μ−ðζλ2Þ2

¼ 0: ð4:28Þ

Again performing a Taylor expansion in σ we can find that the metric must be diagonal. In fact, up to a conformal factor
Ω2ðλÞ we get

ds2 ¼
8<
:

Ω2ðλÞ
h
−ð1 − μþðλ2Þ2Þðdλ0Þ2 þ ðdλ1Þ2 1

1−μþðλ2Þ2 ðdλ
2Þ2
i
; λ2 ≥ ζþ

Ω2ðλÞ
h
−ð1 − μ−ðλ2Þ2Þðγdλ0Þ2ðdλ1Þ2 þ 1

1−μþðλ2Þ2 ðdλ
2Þ2
i
; λ2 < ζþ:

ð4:29Þ

Choosing the coordinates

λ0 ¼ tþ ¼ t−=γ; λ1 ¼ x; λ2 ¼ lþz; ð4:30Þ

and a conformal factor ΩðlÞ ¼ lþ=λ2 ¼ 1=z, we can
recover the metric in Eq. (2.2) with AdS radii lþ and
l− ¼ ζlþ, masses M� ¼ μ�l2

�, and the bubble radius
Z ¼ ζþ=lþ ¼ ζ−=l−.

V. DISCUSSION

In this paper we considered the question of holographic
reconstruction of spacetimes containing nontrivial matter.

We believe that this is an important consistency check for
any bulk reconstruction prescription, which aims to build
nontrivial holographic spacetimes using purely boundary
observables. Realizing that most of the previous work on
geometric bulk reconstruction has concerned itself with
spacetimes that are quotients of AdS, we chose to work
with thin BTZ bubble walls as an example of nontrivial
matter content in the bulk. Such a choice of the matter
presence has several unique features. On the one hand, it
has almost the same number of symmetries as pure AdS or
BTZ black hole, whereas the presence of matter is nonlocal
and the geometry is no longer merely a quotient of AdS. To
retain some analytic control over the problem, we have

(a) (b)

- 2 - 1 1 2

- 2

- 1

1

2

λ2 > R
˜

λ2 < R
˜

(c)

FIG. 10. Part of the light cone originating at a point p in the bulk (a) in front of the bubble and (b) behind the bubble. (c) A generic set
of light-cone cuts at the boundary; the one in red corresponds to a λ2 ¼ R (i.e., when the corresponding bulk point is on the bubble).
[Parameters: lþ ¼ 1, Mþ ¼ 0.1, l− ¼ 0.5, M− ¼ 0.05, R ¼ 0.75, and p ¼ ð0; 0; 0.5Þ; ð0; 0; 1.5Þ.]
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further restricted ourselves to static thin bubble wall
solutions. Some readers might argue against such a matter
presence as we are explicitly giving away smoothness of
the spacetime manifold. However, thin wall bubbles are a
well known approximation to the more realistic thick wall
solutions, for which the manifold is smooth everywhere.
One can easily imagine a sequence of limiting and still
smooth thick wall solutions approximating a thin bubble
wall. We therefore expect the qualitative features discussed
in this paper to be valid for thick bubble walls which are
sufficiently thin compared to relevant length scales in the
problem. We intend to discuss this issue in detail in a
follow-up work [48].
An additional advantage of working with bubble space-

times is that they can provide a toy model for understanding
the process of matter collapse and black hole formation in
the bulk. From the boundary perspective, this process is
understood as thermalization of a field theory state toward
its thermal equilibrium [25,42]. On the one hand, looking at
these nontrivial dynamical processes from the perspective
of holographic bulk reconstruction is expected to bring
some new and important insights in the long-standing
puzzles in (quantum) black hole physics [52]. On the other
hand, they should also guide our efforts toward writing with
a universally applicable bulk reconstruction scheme. In any
case, it would be interesting to extend the analysis done in
this paper to include dynamical thin bubble walls and
explore if we find any qualitative differences in the results.
Having sacrificed the time translation invariance of our
setup, it is likely that explicit results will require numerical
techniques. We plan to return to this question in the near
future.
We considered two recent schemes of geometric bulk

reconstruction. Using the hole-ography method, we are
able to reconstruct the metric on a spatial slice of the bulk
using the entanglement structure of the boundary, provided
we are given a bulk-independent mechanism to work out
point boundary functions for a given field theory.
Unfortunately, as we discussed in the bulk of this paper,
the current mechanism in place to work out these functions
using a variational principle seems to break down when
applied to bubble geometries. There have also been some
suggestions (see, e.g., [53]) to use boundary kinematic
spaces to work out the point boundary functions. However,
we show in Appendix that this also does not work with
bubble geometries. In the absence of such a mechanism, the
hole-ographic prescription by itself is incomplete, which
adds to the limitations of hole-ography previously pointed
out in [54].
The light-cone cuts method of [23], on the other hand,

seems to work quite well for bubble spacetimes, consid-
ering the manifold we are working with is not smooth
due to the presence of a thin wall. It should be noted, as
the authors pointed out themselves, that this bulk
reconstruction prescription only returns the metric up to

a conformal factor. This essentially means that the infor-
mation about the volume measure is not recoverable in this
scheme. In particular, this implies that the light-cone cuts
method is ignorant of a thin bubble wall bubble between
two empty AdS spacetimes, which is conformally related to
an empty AdS. We know that from the boundary field
theory perspective, the presence of a dynamical thin shell in
an empty AdS spacetime corresponds to an RG flow in the
boundary field theory, whereas an empty AdS spacetime
corresponds to the vacuum state. Therefore, a lot of such
interesting physics is lost in the light-cone cut prescription,
unless we can complement it with an independent pre-
scription to compute the volume measure. As a future
direction, it would be interesting to explore if the two
methods of bulk reconstruction considered here can be
made to complement each other, so as to mutually over-
come their shortcomings.
Another important direction in the bulk reconstruction

program is the ongoing research on tensor networks
[11,55,56]. These methods, again, have been quite suc-
cessful in describing the emergence of locally AdS geom-
etries from boundary field theory data. The natural next
step therefore, is to extend this discussion to the cases
where nontrivial matter is present in the bulk. A viable toy
model to explore this direction is provided by the thin
bubble walls discussed in this paper, whose analysis has
already been initiated in [57]. Another bulk restriction
prescription that we have not considered in this work is
using the quantum error correcting structure of AdS/CFT,
proposed recently by [58]. As the light-cone prescription, it
promises to be able to reconstruct the bubble spacetime up
to a conformal factor.
During our holographic analysis of thin bubble walls in

Sec. III, we observed the existence of the so-called bubble
shadows: a region around a bubble wall in the bulk
spacetime that is only partially probed by minimal geo-
desics. These appear to be a generalization of entanglement
shadows found around BTZ black holes and conical
defects, which are spacetime regions where no minimal
geodesics can enter. These preliminary results seem to
suggest that such shadows in boundary entanglement
structure might be a generic feature of the presence of
matter in the bulk. However, more analysis is required
before these suggestions can be turned into concrete claims.
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APPENDIX: KINEMATIC SPACE
FOR BTZ BUBBLES

In this Appendix we discuss the kinematic spaces
associated with the bubble spacetimes discussed in this
paper. For a detailed discussion of kinematic spaces and
their relevance in bulk reconstruction, see [49,53,59] and
references therein. A kinematic space, from the boundary
field theory perspective, is defined as the space of a pair of
boundary points. In pure AdS, it can equivalently be
defined from the bulk perspective as the space of bulk
geodesics anchored at those boundary points. In more
complicated spacetimes, however, this equivalence runs
into some trouble because of the existence of multiple
geodesics corresponding to the same boundary intervals.
For example, AdS spacetime with a conical defect admits
multiple geodesics anchored at the same boundary points,
labeled by their winding number around the defect. The
kinematic space for this geometry was studied in [60]. A
similar story holds true for cyclically identified BTZ black
holes as well, wherein the geodesics wind around the
horizon instead of the defect.
As we have explored in this paper, BTZ black holes with

bubble walls admit additional geodesics for a subset of
boundary intervals, which in a sense are more nontrivial
than the ones wrapping around the horizon. To isolate this
effect, we specialized to planar BTZ black holes, so that we
can concentrate on only the multiple geodesics arising due
to the bubble. In this section we would like to explore
kinematic spaces for these bubbles. Let us start with a
generic discussion of (2þ 1)-dimensional bulk spacetimes,
whose constant time slices look like

ds2 ¼ 1

z2
ðdx2 þ f2ðzÞdz2Þ; ðA1Þ

where fðzÞ ¼ fð−zÞ. In the case of BTZ bubbles discussed
in the bulk of this paper [see metric (2.2)], fðzÞ takes a step
function profile

f2ðzÞ ¼ l2þ
1 −Mþz2

ΘðZ − zÞ þ l2
−

1 −M−z2
Θðz − ZÞ: ðA2Þ

Spatial geodesics corresponding to metric (A1) generic-
spatial-metric are given by a two parameter family,

xðζÞ ¼ x0 þ sgnðζÞsgnðz0Þ
Z jz0j

jz0j−jζj
dλ

λfðλÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 − λ2

p ;

zðζÞ ¼ jz0j − jζj; ðA3Þ

where x0, z0 ∈ R. Note that the way we have parametrized
this family of geodesics, it is left invariant by z0 → −z0
provided we take the parameter on the geodesic ζ → −ζ.
Therefore every geodesic is counted twice.8 In this sense,
Eq. (A3) actually parametrizes the set of “oriented
spatial geodesics,” where the orientation is defined by
sgnðx0ðζÞÞ ¼ sgnðz0Þ. This set is generally known as the
‘kinematic space.” The pair of parameters ðx0; z0Þ serves as
a basis on the kinematic space. Locally, we can also use as a
basis the x coordinates ðu; vÞ of the points at which the
geodesic hits the boundary z → 0, i.e., ζ ¼ �jz0j. They are
given in terms of ðx0; z0Þ as

u ¼ xð−jz0jÞ ¼ x0 − sgnðz0Þ
Z jz0j

0

dλ
λfðλÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 − λ2

p ;

v ¼ xðjz0jÞ ¼ x0 þ sgnðz0Þ
Z jz0j

0

dλ
λfðλÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 − λ2

p : ðA5Þ

Alternatively, we could also use the local basis ðα; x0Þ
where

αðz0Þ ¼
v − u
2

¼ sgnðz0Þ
Z jz0j

0

dλ
λfðλÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 − λ2

p ðA6Þ

is half the signed length of the interval spanned by the
geodesic. Note, however, that when there are multiple
spatial geodesics corresponding to the same boundary
interval, such bases are not globally well defined. One
can define a measure on the kinematic space locally via the
Crofton form9 [49]

ωKS ¼
∂2Sðu; vÞ
∂u∂v du ∧ dv ¼ −

1

2

d2SðαÞ
dα2

dx0 ∧ dα; ðA8Þ

where Sðu; vÞ ¼ SðαÞ is the length of the geodesic being
considered. In accordance with the symmetries of our
setup, we have taken SðαÞ to be dependent only on the
length of the boundary interval and not its location. In terms

8Eliminating ζ and assuming z0 ≥ 0, these geodesics could
also be written as

xðzÞ ¼ x0 �
Z

z0

z
dλ

λfðλÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 − λ2

p ; ðA4Þ

but one would need to take care of two branches, as there are two
values of x for every value of z < z0.9The measure is defined via the requirement that the length of a
closed curve g in the bulk can be reproduced by a kinematic space
integral

1

4GN
Length½γ� ¼ 1

4

Z
ωKSnγ; ðA7Þ

where nγ is the number of times a given geodesic intersects the
curve γ [17].
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of the global coordinates ðx0; z0Þ, the Crofton form is
given as

ωKS ¼ −
1

2

d
dz0

�
S0ðz0Þ
α0ðz0Þ

�
dx0 ∧ dz0; ðA9Þ

where Sðz0Þ can be computed to be

Sðz0Þ ¼ 2sgnðz0Þ
Z jz0j

0

dλ
jz0jfðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 − λ2

p : ðA10Þ

The authors in [49] further endowed the kinematic space
with a causal structure via the metric represented locally as

ds2KS ¼ 2
∂2Sðu; vÞ
∂u∂v dudv

¼ −
1

2

∂2SðαÞ
∂α2 ð−dα2 þ dx20Þ: ðA11Þ

In our ðx0; z0Þ coordinate system, the same turns into

ds2KS ¼ −
1

2

d
dz0

�
S0ðz0Þ
α0ðz0Þ

��
−α0ðz0Þdz20 þ

1

α0ðz0Þ
dx20

�
:

ðA12Þ

Wewould like to inspect this metric on the kinematic space
for our bubble setup. αðz0Þ and Sðz0Þ for these bulk
geometries have been given in Eqs. (4.10) and (4.11),
respectively. Taking a straightforward derivative we can
find that

−
1

2

d
dz0

�
S0ðz0Þ
α0ðz0Þ

�
¼ 1

z20
; ðA13Þ

α0ðz0Þ¼
lþ

1−Mþz20

þz0Θðz0−ZÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20−Z2

p �
l−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−M−Z2

p
1−M−z20

−
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−MþZ2

p
1−Mþz20

�
:

ðA14Þ

The first thing we immediately note is that α0ðz0Þ is not well
defined on the bubble wall z0 ¼ Z. But that is hardly
surprising, as we are working with a thin bubble wall. We
expect this singularity togoawaywhenweworkwith a smooth
wall instead. However, α0ðz0Þ also vanishes at some point
z0 > Z finite distance away from the bubble, whichwe cannot
attribute to working with a thin wall. It is not just a coordinate
singularity either; scalar curvature R blows up at this point,
indicating that there is something really wrong with the
spacetime. In fact, inspecting the behavior or R as a function
of z0, we see that the geometry in question is not nice at all.
One of the motivations of working with kinematic spaces

in the context of holographic bulk reconstruction is that the
geodesics in kinematic space are conjectured to correspond
to point boundary functions in boundary field theory (see
Sec. IVA for the definition of point boundary functions). If
true, this could provide the missing piece in the puzzle for
hole-ographic bulk reconstruction. However, the geodesic
equation for the kinematic space metric (A12) is given in
Eq. (4.6), and as we discussed in Sec. IVA 2, is not satisfied
for point boundary functions in bubble spacetimes.
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