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ABSTRACT
We apply the model relating halo concentration to formation history proposed by Ludlow
et al. to merger trees generated using an algorithm based on excursion set theory. We find that
while the model correctly predicts the median relation between halo concentration and mass,
it underpredicts the scatter in concentration at fixed mass. Since the same model applied to
N-body merger trees predicts the correct scatter, we postulate that the missing scatter is due to
the lack of any environmental dependence in merger trees derived from excursion set theory.
We show that a simple modification to the merger tree construction algorithm, which makes
merger rates dependent on environment, can increase the scatter by the required amount, and
simultaneously provide a qualitatively correct correlation between environment and formation
epoch in the excursion set merger trees.
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1 IN T RO D U C T I O N

It is now very well established that the density profiles of cold dark
matter (CDM) haloes can be well described by simple, universal
forms such as the NFW profile Navarro, Frenk & White (1996,
1997) or, somewhat more accurately, by the Einasto profile (Gao
et al. 2008; Ludlow & Angulo 2017). The density profile is thought
to play a significant role in shaping the properties of galaxies that
form in dark matter haloes, as it contributes significantly to the
rotation curve, and gravitational potential.

In semi-analytic models of galaxy formation, the density profile
of the halo directly affects determinations of galaxy sizes (Cole et al.
2000; Jiang et al. 2018), and in many models affects the mass loading
of outflows from galaxies (Cole et al. 2000; Benson 2012). While
semi-analytic models of galaxy formation are most often applied to
dark matter halo merger trees extracted from N-body simulations,
from which dark matter profiles can be measured directly, they can
also be applied to merger trees generated using other techniques,
such as those based on excursion set theory (Bond et al. 1991;
Lacey & Cole 1993; Cole et al. 2000; Parkinson, Cole & Helly
2008). Such approaches have some advantages over the use of N-
body merger trees, for example, allowing much finer time resolution
to be achieved (which can affect the results of semi-analytic
models; Benson et al. 2012), rapid exploration of different dark
matter physics (Benson et al. 2013), and avoidance of numerical
noise issues that occur in N-body haloes at low particle number
(Benson 2017a).

� E-mail: abenson@carnegiescience.edu

However, merger trees built from excursion set theory have, so
far, only provided halo masses – they say nothing about other key
physical properties of haloes such as their density profiles, spins,
or environment. Typically, these quantities are assigned to haloes
in such trees by appealing to an empirical correlation with halo
mass and redshift, or by drawing at random from some measured
distribution. In the case of halo concentrations for example, the usual
approach is to assign a concentration based on a concentration–
mass–redshift relation measured from an N-body simulation. This
approach has two significant disadvantages. First, concentration
is not uniquely determined by halo mass and redshift – there is
significant scatter in concentration at fixed mass and redshift. As
such, this scatter will be missing from calculations that depend on
halo structure (e.g. galaxy sizes; Jiang et al. 2018). This scatter
cannot be incorporated by simply adding a random perturbation
around the median concentration relation as the offset from the
median is expected to be correlated across time in any given halo.
The second disadvantage of this approach is that it is known that halo
structure correlates with the formation history of the halo (Navarro
et al. 1997; Bullock et al. 2001; Ludlow et al. 2013).

Based on these correlations, Ludlow et al. (2014, see also Correa
et al. 2015) and Ludlow et al. (2016) developed models that relate
the density profiles of dark matter haloes to their assembly histories.
The model of Ludlow et al. (2016) is based upon the time evolution
of the total mass of progenitor haloes collapsed (the ‘collapsed mass
history’, or CMH), and is able to correctly predict concentrations for
both CDM and warm dark matter (WDM) power spectra, while the
Ludlow et al. (2014) model, which is based on the ‘mass accretion
history’ (MAH; the mass of the main progenitor halo) fails to
reproduce the concentration–mass relation in WDM. As shown by
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Ludlow et al. (2014, 2016), these models work well for haloes that
are relaxed and in equilibrium, for which concentration is mainly
set by formation time and is independent of other factors (such as
substructure, recent collapse times, etc.). As such, the models are
relevant to a biased set of simulated merger trees, since selecting
relaxed haloes naturally biases trees to those that form early (on
average). While these models were developed and tested primarily
on assembly histories extracted from N-body simulations, they were
also shown to be applicable to simple, spherical collapse models.
As such, they can be similarly applied to assembly histories derived
from excursion set-based merger trees.

It has also been shown (e.g. Zehavi et al. 2018) that the
formation times of haloes correlate with environment. Any model
that relates concentration to halo assembly history (and therefore
formation time) should also consider the relation with environment.
In excursion set theory, the large-scale environment of a halo has
no effect on its assembly history (Bond et al. 1991), at least in the
standard case where the power spectrum is filtered using a window
function that is sharp in k-space.

In this work, we examine the outcome of applying the Ludlow
et al. (2016) model for halo concentration to merger trees built
using the Parkinson et al. (2008) algorithm. We further explore how
a simple model for the effects of environment on halo assembly
can be introduced into this algorithm, and show that this improves
agreement with the distribution of concentrations derived from N-
body simulations.

The remainder of this paper is organized as follows. In Section 2,
we describe how we measure the concentrations of N-body haloes,
and estimate the uncertainties on these measurements. We then de-
scribe our algorithm for introducing an environmental dependence
into the Parkinson et al. (2008) tree-building algorithm, and how
the parameters of this model are constrained. In Section 3, we show
the results of this model and compare it to those from N-body
simulations. Finally, in Section 4 we discuss the implications of our
results.

2 ME T H O D S

Our goal in this work is two-fold: to introduce a model for
halo concentrations into the Parkinson et al. (2008) tree-building
algorithm that is dependent upon the formation history of each
halo, and to compare the results of that model to those from
cosmological N-body simulations. This will require determining
the full distribution of concentration parameter as a function
of halo mass. To that end, we first describe how we measure
concentrations of a sample of N-body haloes and, importantly, how
we determine the uncertainties in these measurements arising from
the finite number of particles with which each halo is represented
(Benson 2017a,b).

2.1 Concentrations of N-body haloes

2.1.1 Fitting procedure

We make use of the Copernicus Complexio (COCO) simulations of
Hellwing et al. (2016) to determine the distribution of N-body halo
concentrations. As described by Hellwing et al. (2016), haloes were
identified in the COCO simulations using the friends-of-friends
algorithm (Davis et al. 1985), with a linking length parameter of b =
0.2. For each halo a mass M200c is determined as the mass within a
sphere centred on the halo particle with the minimum gravitational
potential, and enclosing a mean density equal to 200 times the

critical density. This is a widely used definition of halo mass, and
we will use it in this work to calibrate our model. Once calibrated
in this way the model can easily be applied to other halo mass
definitions (see Section 2.2.1). As shown by Ludlow et al. (2012),
haloes of a given mass that collapse very recently (i.e. double their
mass in less than a crossing time) have concentrations that are biased
relative to the normal concentration-formation time relation. Such
haloes, which are dynamically young and not in equilibrium, do
not have well-defined concentrations. Concentrations of a single
such halo will vary widely over short time-scales if the halo is
undergoing a merger or rapid/transient but substantial accretion for
example. As such, concentration models based on mean MAH such
as the one used in this work cannot be applied to such haloes and we
follow Ludlow et al. (2016) and exclude any haloes that more than
doubled their mass in the last 1.25 crossing times, or approximately
the last 3.7 Gyr.

To measure concentrations of haloes via their N-body representa-
tions we construct histograms of the number of particles in the halo
in 31 spherical shells with logarithmically spaced radii between
3.46 × 10−2r200c and 0.764r200c, where r200c is the radius enclosing
a mean density equal to 200 times the critical density, and then fit
these using an Einasto profile (Einasto 1965), which has been found
to be a good fit to the density profile of cosmological N-body haloes
(Gao et al. 2008). In performing the fit we include only those bins
that satisfy the inequalities:

r ≥ 2ε, (1)

κ(r) ≥ κconv, (2)

where ε is the softening length (230pc for the COCO simulations),
and κ(r) = trelax(r)/tcirc(r200c) is a convergence criterion defined by
Power et al. (2003; their equation 20). We choose a value of κconv =
1 to ensure the profile is minimally affected by numerical relaxation.
(Power et al. 2003 advocate κ = 0.6, so we are more conservative
in defining convergence as larger κ implies better convergence,
Navarro et al. 2010.) We find that this relaxation criterion excludes
only 1.2 per cent of haloes. We furthermore retain only those haloes
for which at least 16 bins satisfy the above inequalities to ensure
that the fit is well constrained.

To find the best-fitting profile for each halo we minimize a
goodness-of-fit measure:

φ2 =
∑
i=1

log2

(
N

(n)
i

N
(e)
i

)
, (3)

where N
(n)
i is the number of particles in the ith bin of the N-body

profile, and N
(e)
i if the mean number of particles expected in that

bin assuming an Einasto profile.1

1We also considered an alternative approach in which we maximized the
Poisson likelihood logL = ∑

i −N
(e)
i + N

(n)
i log N

(e)
i − log �(N (n)

i + 1),
which may be expected to be valid if the number of particles in each
bin obeys Poisson statistics (Benson 2017b). We found that this leads to
small but significant differences in the resulting distribution of concentration
parameters. Specifically, the scatter in log10c200c at fixed mass is decreased
by around 0.02 dex. However, we find that the Poisson model is not a good
description of the distribution of particle number in each bin, presumably
because of fluctuations introduced by subhaloes and other internal structure.
This does, however, point to the need for a more careful understanding of
this issue for precision measurements of halo concentrations.
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Our Einasto profiles are described by three parameters: m0 (the
total mass of the halo in units of the nominal M200c mass reported
by SUBFIND), r−2 (the radius at which the logarithmic slope of
the density profile equals −2, measured in units of the nominal
r200c radius reported by SUBFIND), and α (the shape parameter of
the Einasto profile). We choose to fix α = 0.18 (consistent with
the typical shape of haloes reported by Gao et al. 2008) as it
is generally not well constrained by the data, and explore broad
ranges of the remaining two parameters: m0 = (0.5, 1.5) and rs =
(0.01, 0.50). The range for m0 is chosen to be sufficiently broad
to encapsulate all plausible profiles, and that on rs is chosen to
encompass the plausible range of concentrations (Gao et al. 2008).
Once the best-fitting parameters for the Einasto profile, (m̂0, r̂−2),
have been determined we use them to compute the value of r̂200c

(i.e. the radius enclosing a mean density equal to 200 times the
critical density in the best-fitting profile in units of the nominal
r200c radius reported by SUBFIND, and which may differ slightly
from unity) for this profile, and then compute a concentration
c200c = r̂200c/r̂−2.

2.1.2 Uncertainties in N-body concentration estimates

As has been explored by Trenti et al. (2010) and Benson (2017a,b),
measurements of halo properties from N-body simulations are
subject to noise arising from the discrete sampling of the underlying
distribution function by a finite number of particles. To explore the
effects of the discreteness noise on our concentration measures we
perform two Monte Carlo experiments.

In the first, we generate spherically symmetric Einasto density
profiles with a range of different concentrations, and sample from
each profile using different numbers of particles via a Poisson
process (Benson 2017b). These N-body representations are then fit
using the procedure described above [without any application of the
Power et al. (2003) convergence criterion, which does not apply in
this simple experiment]. This is repeated for many different random
realizations of the particle distribution, and for many different total
number of particles in the halo to quantify the uncertainty and bias
in the recovered concentration.

In our second experiment, we utilize N-body haloes from the
Millennium Simulation (Springel et al. 2005), fitting them using
the same method as described above. However, we sample particles
uniformly at random from each halo (with replacement) to generate
a large number of random realizations of the halo, and repeat the
fitting procedure on each realization. This sampling is initially done
at a rate of μ = 1 (where we define μ as the mean number of times
that any given particle will appear in a random realization), and then
repeated with lower sampling rates to generate realizations of the
haloes with fewer particles. This allows us to assess the uncertainty
and bias in the measured concentrations for realistic, cosmological
haloes.

The results of these experiments are shown in Fig. 1. The scatter,
σlog10 c200c , is shown as a function of the number of particles in a
halo, Nh, on the x-axis, and as a function of concentration (shown
by colour – with c200c = 4 shown in blue, increasing to c200c =
20 shown in red). Solid lines show the results of fitting Monte
Carlo realizations of idealized, spherical, Einasto profiles. Dashed
lines indicate results from fitting cosmological N-body haloes, with
each dashed line corresponding to the mean scatter measured over
all cosmological haloes of that concentration. Cosmological haloes
that deviate significantly from the expected scaling are excluded
– in these cases the haloes are not well described by Einasto

Figure 1. Scatter in the concentration parameter, log10c200c, derived from
Monte Carlo experiments. The scatter, σlog10 c200c , is shown as a function of
the number of particles in a halo, Nh, on the x-axis, and as a function
of concentration (shown by colour – with c200c = 4 shown in blue,
increasing to c200c = 20 shown in red). Solid lines show the results of
fitting Monte Carlo realizations of idealized, spherical, Einasto profiles.
Dashed lines indicate results from fitting cosmological N-body haloes, the
particles of which were resampled (with replacement) at different rates
and fit to estimate concentration. Each dashed line corresponds to the
mean scatter measured over all cosmological haloes of that concentration.
Cosmological haloes that deviate significantly from the expected scaling are
excluded.

profiles and so we do not expect our fits to give meaningful
results.

We fit the dependence of σlog10 c200c on particle number and
concentration using simple polynomial fits. For idealized haloes
we find that the scatter in concentrations can be described by the
model

log10 σlog10 c200c = α(c200c) + b log10 Nh,

α(c200c) = −1.04 + 2.03 log10 c200c − 0.53 log2
10 c200c,

b = −0.47 ± 0.06, (4)

while for cosmological haloes the scatter is described by

log10 σlog10 c200c = α(c200c) + b log10 Nh,

α(c200c) = −0.20 + 1.46 log10 c200c − 0.25 log2
10 c200c,

b = −0.54 ± 0.06. (5)

In both cases, the dependence of the relation on particle number is
consistent with the expected N

−1/2
h scaling due to Poisson sampling.

The normalization is significantly higher for the cosmological
haloes than for the idealized haloes.

Achieving an uncertainty in concentration parameter less than
0.1 dex requires Nh � 2 × 103 for idealized haloes, and Nh � 6 × 103

for cosmological haloes. When fitting our model to match N-body
data, we will use the model of equation (5) to forward model the
scatter in concentration parameter.

We also considered the bias in concentration – defined as the
difference between the measured and true concentrations. (In the
case of cosmological haloes, the mean concentration found when
fitting to the halo particles sampled at a rate of μ = 1 is taken to
be our estimate of the true concentration.) Idealized haloes show
a trend of positive bias in fits, while cosmological haloes show no
significant trend in bias – the bias estimates for individual haloes
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Figure 2. Concentrations of haloes in the COCO simulation as a function
of halo mass. Points show a random subsample of all haloes fitted. The solid
yellow line shows the median concentration as a function of mass, while the
solid green lines show the 16th and 84th percentiles of the distribution.

scatter around zero. As such, we assume no bias when modelling
concentrations.

2.1.3 Concentrations of COCO haloes

We fit profiles from the COCO simulations (Hellwing et al. 2016)
using the procedure described in Section 2.1.1. Results are shown
in Fig. 2. Points show a random subsample of all haloes fitted. The
solid yellow line shows the median concentration as a function of
mass, while the solid green lines show the 16th and 84th percentiles
of the distribution. The expected scatter in concentration arising
from finite particle number effects (as computed using the model of
equation 5) is negligibly small, less than 0.035 dex, in this figure as
all haloes shown have Np > 25 000 particles.

2.2 Merger trees

Our goal is to apply the concentration model of Ludlow et al. (2016)
to merger trees generated using an excursion set-based approach.
Specifically, we will use the algorithm of Parkinson et al. (2008)
– which is itself a modification of the algorithm of Cole et al.
(2000) – to construct merger trees. In Appendix A, we describe
a small optimization to the tree building algorithm of Cole et al.
(2000).

2.2.1 Concentrations

To compute concentrations of our merger trees we apply either the
Ludlow et al. (2014) or Ludlow et al. (2016) algorithms. In the
Ludlow et al. (2016) algorithm, the mean density within the scale
radius, 〈ρ−2〉, for a halo is given by

〈ρ−2〉
ρ0

= C
ρcrit(tc)

ρ0
, (6)

where tc is the time at which the halo had first assembled a mass
M−2 = 4π〈ρ−2〉r3

−2/3 into progenitors of mass greater than fM,
where M is the mass of the halo in question.2 To find r−2 for any

2We note that while the N-body haloes used in calibrating our model are
based on the ‘M200c’ mass definition (see Section 2.1.1), we are not restricted
to using that mass definition in the generated merger trees used here. Instead,
we can adopt any mass definition for the haloes in those trees and simply

given halo in a merger tree, we use an iterative approach. We make an
initial guess for r−2 (typically based on the median concentration–
mass–redshift relation) and use this, together with the known mass
and virial radius of the halo, to determine M−2. We then search
backward in time through the progenitors of the halo until we find
the time, tc, at which the halo first had a total mass equal to M−2

in progenitor haloes of mass fM or greater. An estimate of 〈ρ−2〉
can then be made from equation (6), which in turn can be used
(along with the mass and virial radius of the halo) to compute an
updated estimate of r−2. This new value of r−2 is used in the next
iteration of this procedure, which is continued until the value of r−2

has converged to a desired level. In this way, scale radii, r−2, are
found for all haloes in the merger tree.3

For the algorithm of Ludlow et al. (2014) we use a similar
approach, except that the condition that the mass in all progenitors
above mass fM must equal M−2 at tc, we instead require that the
mass in the primary (most massive) progenitor equals M−2.

2.2.2 Environmental dependence

It is now well established that the properties and formation histories
of dark matter haloes correlate with their environment (Sheth &
Tormen 2004; Gao, Springel & White 2005), such that (for high-
mass haloes) highly concentrated/old haloes cluster more weakly
than low-concentration/young haloes at fixed mass. As discussed by
Paranjape, Hahn & Sheth (2018), analytic models of halo formation
(e.g. Dalal et al. 2008; Desjacques 2008; Musso & Sheth 2012;
Castorina & Sheth 2013) predict such a correlation arising from
correlations between the large-scale density environment around the
Lagrangian volume of a halo, and the density structure within that
proto-halo region. Such correlations can be captured by extensions
of the excursion set approach (Castorina & Sheth 2013). However,
it is also well established (see Paranjape et al. 2018) that such
models cannot explain the reversal of the trend of clustering versus
concentration at low masses. This reversal has been hypothesized
to be due to the effects of tidal interactions with the non-linear
density field (Hahn et al. 2009; Borzyszkowski et al. 2017). In
this work, we attempt to incorporate only the first of these effects,
developing a simple, empirical model that aims to capture the effects
of large-scale density environment on the formation of haloes,
leaving consideration of the effects of the non-linear density field
to a future work.

Since we wish to examine the effects of environment on our
merger trees, we select for each tree an environmental overdensity
(defined within some spherical region of radius Re) in the linear
regime extrapolated to the present epoch, δe. This is drawn from
the distribution of Mo & White (1996; their equation 9), that is
from a normal distribution conditioned upon the fact that the region
has not exceeded the threshold for collapse on any larger scale.
This environmental overdensity is assumed to be the same for all
progenitor haloes in the given merger tree.

compute the corresponding M200c mass given the density profile of the halo
(which is found iteratively as will be described).
3For haloes close to the resolution limit of our merger trees progenitors
of mass fM may not be resolved. In such cases we can simply assign a
concentration from a measured concentration–mass–redshift relation. In
this work, we do not care about such haloes as we ensure that haloes for
which we wish to compute the concentration are sufficiently well resolved
that this problem does not occur.
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Each merger tree, with final halo of mass Mi (defined such that
Mi > Mi–1), is considered to have an abundance

ni = 1

Mi

∫ √
MiMi+1

√
Mi−1Mi

Mn(M, δe)dM. (7)

That is, the abundance is chosen such that the number of such trees
per unit volume contains the total mass expected from the halo mass
function n(M, δe) within the mass interval associated with the tree.

To determine the environment-dependent halo mass function,
n(M, δe), we use the peak-background split approach (Bond et al.
1991; Bond & Myers 1996). This is formally derived within the
excursion set theory, and predicts a mass function of the Press &
Schechter (1974) form but with the mappings δc → δc − δe and
σ 2(M) → σ 2(M) − σ 2(Me), where Me is the mass corresponding
to the spherical region used to define the environment, and σ 2(M)
is the fractional variance in the mass in spheres containing mean
mass M in the linear theory density field extrapolated to the present
day. In this work, we use the mass function of Sheth & Tormen
(2002) with parameter values tuned as described in Section 2.2.3
rather than the Press–Schechter mass function. We retain this same
mapping of δc and σ 2(M) suggested by the peak-background split.

In the case of the Press–Schechter mass function, when the peak-
background split mass function is integrated over all environments
(weighted by the appropriate distribution function – see Mo &
White 1996) the result is the original Press–Schechter mass function
(i.e. that unconditioned on environment). For halo masses that
exceed the mass of the background, the unconditioned mass function
applies. Therefore, in the case of the Press–Schechter mass function,
the environmentally averaged mass function is identical to the
unconditioned mass function.

The same is not true for the Sheth–Tormen mass function. Instead,
we find that averaging this mass function over environment leads
to a result slightly larger than the corresponding unconditioned
mass function. This overshoot peaks at around 5 per cent close
to the background mass, and approaches zero at low masses.
This overshoot occurs because the distribution function we use
for the background overdensity is derived for the constant barrier
corresponding to the Press–Schechter mass function. In principle,
the correct distribution function could be found for the curved
barrier corresponding to the Sheth–Tormen mass function, by
numerical solution of the barrier crossing problem. Given the small
magnitude of the overshoot we do not seek to find the correct
background distribution here, but instead simply recalibrate the
parameters of the Sheth–Tormen mass function such that when
environmentally averaged it agrees well with N-body measures of
the mass function. Because of the overshoot, there is a discontinuity
in the mass function at Me. To correct for this we multiply the mass
function for M > Me by a fixed factor to remove the discontinuity.

While the peak-background split can be used to accurately predict
the environmental dependence of the halo mass function, it predicts
no environmental dependence in halo formation histories. This is
easy to see in excursion set theory, as the behaviour of the trajectory
on scales larger than the collapse scale (at variances smaller than
the collapse variance) is uncorrelated with the behaviour of the
trajectory on smaller scales (larger variances).4

In the merger tree algorithm of Parkinson et al. (2008) the quantity
w(t) = δc(t)/D(t), where δc is the critical linear theory overdensity
for collapse at time t and D(t) is the linear theory growth factor,

4This is true under the usual assumption of a sharp-k filter – for other filters
the trajectory is non-Markovian (Maggiore & Riotto 2010).

plays the role of a ‘time’ variable, and sets the threshold which
perturbations must reach to collapse and form haloes. Therefore,
to introduce an environmental dependence into this algorithm, we
make an empirical modification such that

w(t ; δe) = δc(t)Dαδe−1(t), (8)

where α is a parameter to be determined. This introduces a depen-
dence on the mapping between merger tree ‘time’, w(t), and true
cosmic time, t, which depends on the environmental overdensity.

The choice of the radius used to define environment, Re, is some-
what arbitrary, but may influence the value of α in our model. We
choose to use Re = 5 h−1 Mpc (where h = H0/100 km s−1 Mpc−1)
as this is larger than the collapse scale for the vast majority of
haloes,5 while still being a relatively ‘local’ measure of environ-
ment. This point is discussed further in Section 3.2.

2.2.3 Calibration

Several predictions of our model – specifically the environment-
averaged halo mass function, halo progenitor mass functions, and
the distribution of halo concentrations as a function of halo mass
– will be altered as a consequence of our introduction of environ-
mental dependences into both the halo mass function, n(M; δe), by
adopting the peak-background split model, and the halo collapse
threshold, w(t; δe). Therefore, we recalibrate the parameters of
these models to match measurements from N-body simulations.
This calibration is carried out by running a Markov Chain Monte
Carlo (MCMC) simulation. Our approach follows that of Benson
(2017a) in detail, including utilizing the same MCMC algorithm and
convergence criteria. Benson (2017a) constrained the parameters
of the Sheth & Tormen (2002) mass function, and the Parkinson
et al. (2008) merger tree algorithm to match the mass function and
progenitor mass functions measured from the MultiDark Planck
N-body (MDPL2) simulation (Klypin et al. 2016), after having
removed splashback haloes to avoid double-counting. We constrain
these parameters in the same way here, except that we additionally
average halo and progenitor mass functions over environment,
and include the parameter α as an additional parameter in our
MCMC simulation. Furthermore, when constructing progenitor
mass functions we adopt the error distribution of Trenti et al.
(2010) when convolving the intrinsic halo mass function with the
expected error distribution. As the Trenti et al. (2010) errors are
dominated by the effects of missing structure below the resolution
limit, we expect that errors in halo masses will be correlated across
time. This correlation should be measured directly from N-body
simulations, using a methodology similar to that adopted by Trenti
et al. (2010). Lacking such an analysis, we instead adopt a simple
model to describe the covariance between the halo masses of parent
and progenitor haloes. Given a parent halo, ‘0’, and progenitor halo,
‘1’ we assume that their masses are drawn from a distribution with
covariance matrix S. The diagonal elements of this matrix are set

5For haloes whose Lagrangian radius exceeds Re we assume no environmen-
tal dependence (i.e. we assume δe = 0 for these haloes). We could, instead,
select a δe in this case, conditioned on the fact that the density field exceeded
the threshold for collapse, δc, at some larger mass scale (corresponding to
the mass of the halo), and use this as the environmental overdensity in our
model. However, this seems unreasonable as it would modify the formation
history after the scale used to define the environment had already collapsed.
As such, our model makes no statement about the environmental dependence
of formation history for haloes in this regime.
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to σ 2
0 and σ 2

1 , where σ 0 and σ 1 are the root variances in the parent
and progenitor halo mass according to Trenti et al. (2010). For the
off-diagonal elements we assume that the covariance is Cσ 0σ 1,
with

C = C0

(
M1

M0

)Cm
(

a1

a0

)Ca

, (9)

where a is expansion factor, M is halo mass, and C0, Cm, and Ca

are parameters to be determined. We include these three nuisance
parameters in our MCMC simulation, adopting broad, uniform
priors in the interval 0–1 for C0 and 0–2 for both Cm, and Ca,
and will marginalize over them in our final analysis.

The concentration model of Ludlow et al. (2016) has two free pa-
rameters, f and C. We include the parameters C and f in our MCMC
simulation, and constrain the model to match the distribution of
concentrations found in the COCO simulations (see Section 2.1.1).
Specifically, we construct histograms of the concentrations of haloes
in seven logarithmically spaced mass bins spanning the range
9.4 < log10(M/M�) < 12.4, and adopt a log-likelihood for each
mass bin of

logL = −1

2
�C−1�T, (10)

where � is a vector of differences between the N-body and
model concentration histograms, and C is a covariance matrix. The
covariance matrix is taken to be the sum of that of the N-body halo
histogram, and that of the model halo histogram, both assuming
Poisson counting statistics. When constructing the histogram of
model halo concentrations we exclude haloes that have more than
doubled their mass in the last 1.25 crossing times (3.7 Gyr; see
Section 2.1.1; which we find excludes 2.6 per cent of haloes), and
smooth by a Gaussian with width chosen to match the expected
uncertainty in N-body halo concentration estimates (see equation 5)
– this smoothing is taken into accounting when computing the
covariance matrix.

For the parameters of the Sheth & Tormen (2002) halo mass
function and Parkinson et al. (2008) merger tree algorithm we adopt
the same priors as were used by Benson (2017a). For the parameter
α we adopt a uniform prior in the range 0.0–0.4 – we expect this
parameter to be positive to induce early formation times in higher
density environments (see Section 3), and we find that values larger
than 0.4 can lead to w(t; δe) becoming an increasing function of
t, which would result in progenitor haloes collapsing after their
descendants and so is physically impossible. For the parameters
C and f we adopt uniform priors of (100, 800) and (0.01, 0.10),
respectively. These priors are broad and include the values found
by Ludlow et al. (2016) to match results for both cosmological
N-body haloes, (C, f) = (400, 0.02), and simple spherical collapse
models, (C, f) = (650, 0.02). Furthermore, Ludlow et al. (2016)
find that C and f correlate with the slope of the 〈ρ−2〉–ρcrit(z−2)
relation, when f approaches the mass M−2/M200 (which is typically
0.1–0.2). This correlation is currently neglected in our modelling,
which further motivates our choice to restrict f to values less than
0.1. f restricted to small values, e.g. f = (0.01, 0.1)

3 R ESULTS

The parameter constraints derived from our MCMC simulation are
listed in Table 1, along with previously determined values. The
maximum likelihood values of the Sheth & Tormen (2002) and
Parkinson et al. (2008) model parameters are significantly shifted
by the inclusion of environmental dependences, but the resulting
halo and progenitor mass functions remain equally good matches

Table 1. Maximum posterior probability values and the region containing
68 per cent of the posterior probability for all parameters used in our model
(the nuisance parameters C0, Cm, and Ca are not listed). For each parameter,
we also list the previously determined value where available.

This work Previous work

a +0.791+0.074
−0.023 +0.874+0.005

−0.005 Benson (2017a)

p +0.218+0.045
−0.130 −0.031+0.005

−0.005 Benson (2017a)

A +0.302+0.013
−0.003 +0.332+0.0002

−0.0002 Benson (2017a)

G0 +0.591+0.009
−0.010 +0.635+0.011

−0.0002 Benson (2017a)

γ 1 +0.253+0.019
−0.019 +0.176+0.002

−0.015 Benson (2017a)

γ 2 +0.124+0.017
−0.019 +0.041+0.001

−0.009 Benson (2017a)

α +0.077+0.017
−0.009 –

C +625.0+77.0
−15.0 +400.0 Ludlow et al. (2016)

f +0.061+0.020
−0.005 +0.020 Ludlow et al. (2016)

Table 2. Mean and scatter in log10c200c for different concentration models,
and as measured from COCO N-body haloes, for haloes in the mass range
9.402 ≤ log10(M200c/M�) < 9.902 at z = 0.

Model 〈log10c200c〉 σlog10 c200c

COCO (N-body) 1.084 0.152
Ludlow et al. (2016), α = +0.000 1.104 0.103
Ludlow et al. (2016), α = +0.071 1.077 0.114
Ludlow et al. (2014), α = +0.000 1.077 0.133
Ludlow et al. (2014), α = +0.071 1.051 0.140

to the MDPL2 N-body measurements. We find that the parameter
α is strongly constrained to be non-zero, indicating that the N-body
data are better fit by a model with environmental dependence in
halo merger rates. For the parameters (C, f) of the Ludlow et al.
(2016) model, we find best-fitting values higher than those reported
by Ludlow et al. (2016). This may reflect some difference in the
structure of our merger trees compared to those extracted from
N-body simulations, but we note that the posterior distribution over
(C, f) shows that these two parameters are strongly degenerate in
the direction that includes the (C, f) = (400, 0.02) results favoured
by Ludlow et al. (2016).

3.1 Concentrations

Fig. 3 shows the distribution of concentrations, c200c, for haloes
in the mass range 9.402 ≤ log10(M200c/M�) < 9.902 at z = 0.
The model of Ludlow et al. (2014) (right-hand panel) produces a
distribution that matches N-body results (shown by green points)
quite well when no dependence on environmental density is in-
cluded in w(t; δ7). However, as shown by Ludlow et al. (2016),
the Ludlow et al. (2014) has significant failings, such as failing to
reproduce the concentrations of haloes in WDM models. The model
of Ludlow et al. (2016) (left-hand panel) predicts a distribution
that is too narrow when w(t) is independent of environmental
density, but matches the N-body results reasonably well when
w(t ; δ7) = δc(t)D+0.071δ7−1(t). The improvement is most noticeable
in the low-concentration tail of the distribution where the model
with no environmental dependence underpredicts the frequency
of these low-concentration haloes. To quantify the improvement
in the match to N-body data we can consider the log-likelihood
of the COCO concentration distributions used in our calibration.
Including the environmental dependence in our model increases
the log-likelihood of these distributions by �L ≈ 221. Table 2
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5016 A. J. Benson, A. Ludlow, and S. Cole

Figure 3. Distribution of concentration, c200c, for haloes in the mass range 9.402 ≤ log10(M200c/M�) < 9.902 at z = 0. Green points show results for
concentration measured directly from N-body haloes (see Section 2.1.3). Histograms show results obtained using the models of Ludlow et al. (2016) (left-hand
panel) and Ludlow et al. (2014) (right-hand panel). Pink histograms indicate results when the collapse threshold, w(t), is independent of environment, while
blue histograms indicate results when w(t) scales with environmental density as indicated in the panels.

Figure 4. The concentration–mass relation. Points indicate the mean
log10c200c, while error bars show the root variance in log10c200c. Green
points are measured from dark matter halo profiles in the COCO-COLD N-
body simulation (see Section 2.1.3), while yellow and blue points are from
this work using the algorithm of Ludlow et al. (2016), with and without an
environmental dependence in w(t) (as shown in the figure). Small grey points
show individual haloes from this work with w(t ; δ7) = δc(t)D+0.071δ7−1(t).
The green line indicates the concentration–mass relation computed by
Ludlow et al. (2016).
summarizes the mean and scatter in concentration in a narrow
range of halo mass as measured from the COCO N-body haloes,
and predicted by the Ludlow et al. (2014, 2016) models applied
to our merger trees. Even with an environmental dependence
introduced into w(t; δ7) the Ludlow et al. (2016) model is unable
to produce a scatter quite as large as that measured for N-body
haloes. This is largely driven by the tail of low-concentration
haloes seen in the N-body simulation, which is not matched by
the Ludlow et al. (2016) model applied to our excursion set-derived
merger trees.

Fig. 4 shows the concentration–mass relation as measured from
N-body halo profiles, and as predicted by the model of Ludlow
et al. (2016).

3.2 Formation epochs

N-body haloes show a correlation between environmental over-
density and formation time (defined as the time at which a given
halo had first assembled 50 per cent of its final mass into a single

progenitor halo) as shown, for example, by Zehavi et al. (2018).
While our model of environmental dependence was constructed to
explain the scatter in halo concentrations at fixed mass, we can also
ask whether it produces the correct correlation between environment
and formation time.

To assess this correlation, and to compare to the measurements
of Zehavi et al. (2018), we must account for the fact that our
environmental overdensity, δe, is the linear theory overdensity in
the Lagrangian volume surrounding each halo, while that measured
by Zehavi et al. (2018) is the non-linear overdensity in an Eulerian
volume surrounding each halo. While a fitting function relating
these quantities has been proposed by Roth & Porciani (2011)
we find that it does not well describe the relation here as we are
interested in the relation for special points in the density field,
namely the locations of haloes. We therefore measure the linear
theory Lagrangian, and non-linear Eulerian overdensities around
particles in the Millennium N-body simulation (as was used by
Zehavi et al. 2018).

Zehavi et al. (2018) define environment based on a 5 h−1 Mpc
Gaussian smoothing of the N-body particle field (computed in
2 h−1 Mpc cells), which they label δ5. Based on their fig. 2,
the median value of 1 + δ5 is around 2 for most halo masses.
As such, these regions have collapsed in radius by a factor of
approximately 21/3 relative to their initial, Lagrangian volume. We
therefore choose to use a radius Re = 21/35 h−1 Mpc = 6.3 h−1 Mpc
to define environment in our model.6

Using the particle distribution in the Millennium Simulation we
measure the Lagrangian overdensity in spheres of radius Re in
the initial conditions around each halo’s most-bound particle, and
extrapolate this to z = 0 assuming linear perturbation theory. We
then determine δ5 in the z = 0 density field for the same particles.
The results are shown in Fig. 5. We model the distribution of non-
linear, Eulerian overdensity at each linear, Lagrangian overdensity

6We did not alter the value of α used in constructing these merger
trees, even though it was constrained using Re = 5 h−1 Mpc rather than
Re = 6.3 h−1 Mpc. Since the dispersion in δe will depend on Re it is possible
that α should be recalibrated for each Re. Alternatively, it is possible that one
specific value of Re is the optimal choice (given some suitable metric to judge
optimality) for our model and should always be used to define environment
(in which case comparisons to measures using a different definition of
environment become more difficult). We leave a full investigation of these
issues to a future work.
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Halo concentrations from extended Press–Schechter 5017

Figure 5. Mapping from Lagrangian, linear overdensity to non-linear
Eulerian overdensity. The blue line shows the one-to-one relation, the green
curve shows the expectation from spherical collapse, while the yellow line
shows the fitting function of Roth & Porciani (2011). Grey points show
measurements of overdensity around individual particles in an N-body
simulation. Solid black lines show the 16/50/84 percentiles of the distribution
of these points, while the dashed black lines show polynomial fits to these
percentiles.

Figure 6. Joint and marginalized distributions of non-linear, Eulerian
density contrast and formation epoch for haloes in three narrow ranges
of log10(MFoF/h−1 M�): 11.0–11.2 (red), 12.0–12.2 (blue), and 13.0–13.2
(green). Formation epoch is defined as the epoch at which the primary
progenitor of the z = 0 halo first reaches half of the final mass. Overlaid
on the joint distribution are medians of formation epoch (solid lines) and
of density contrast (dashed lines). This figure is intended to be compared
directly to that of Zehavi et al. (2018).

as a lognormal distribution, and determine the mean and dispersion
of this distribution from the measured points. Then, for each halo
in our model, we take its assigned linear, Lagrangian overdensity,
and draw a non-linear, Eulerian overdensity from the appropriate
lognormal distribution.

Fig. 6 shows joint and marginalized distributions of density
contrast and formation epoch in three different halo mass ranges,
and can be compared directly to fig. 2 of Zehavi et al. (2018)
in which these same distributions were measured directly from

the Millennium Simulation (Springel et al. 2005). To construct
these distributions from our model we generated large samples of
merger trees as described in Section 2.2, matching the cosmological
parameters and power spectrum of the Millennium Simulation.
The resulting distributions of overdensity and formation epoch
are in qualitative agreement with those found by Zehavi et al.
(2018). In particular, the marginalized distributions of overdensity
agree well with Zehavi et al. (2018), and are in good quantitative
agreement for the position of the mode of the distribution, and
the width. Marginalized distributions for formation epoch also
agree well. Finally, the joint distribution shows a correlation
between formation epoch and environmental overdensity that agrees
moderately well with that found by Zehavi et al. (2018) – without
our overdensity-dependent modification of the collapse threshold
no correlation would exist. A more quantitative comparison of
the effects of environment on assembly history in excursion set
and N-body merger trees is currently limited by the different
definitions of environment that naturally apply in these two
approaches.

3.3 Progenitor mass functions

The original Parkinson et al. (2008) algorithm for generating merger
trees was calibrated to match progenitor mass functions measured
in N-body simulations. Correctly reproducing progenitor mass
functions is crucial for merger trees as this ensures that the evolution
of the overall halo mass function is also correctly reproduced.
Because of this requirement we included progenitor mass functions
in our calibration process as described in Section 2.2.3. Here,
we check whether the inclusion of our model for environmental
dependence in halo merger rates affects how well our merger trees
match progenitor mass functions from N-body simulations.

Fig. 7 shows progenitor mass functions for z = 0 haloes of
mass 1012.8 M� averaged across all environments, at four different
redshifts (z = 0.49 top-left, z = 1.03 top-right, z = 2.03 bottom-
left, z = 4.04 bottom-right). Green points show the progenitor mass
function from the MDPL simulation that was used as our calibration
data set, while blue points show the results from our model. The
good agreement between the N-body progenitor mass functions and
those from our model remains intact after adding in our model of
environmental dependence.

As a further test of our model for environmental dependence in
merger trees we can examine the progenitor mass functions of haloes
selected by environment. Specifically, we compare results from
our model to those from the ‘milli-Millennium’ Simulation data
base7 since it provides full particle information allowing us to trace
the Lagrangian position of each halo to the initial conditions and
measure its Lagrangian, linear density that is directly comparable
to the definition of environmental overdensity used in this work.
This particle information is not available for the full Millennium
Simulation, which limits the statistical power of this comparison.
Therefore, we take a relatively broad bin in parent halo mass
(±0.5 dex around a central mass), and split the sample into haloes
that are in underdense region and those in overdense regions (we also
compare results for haloes selected regardless of environment). We
then construct the same progenitor mass functions from our model.

We find that the effects of environment on the progenitor mass
function are generally quite small in both the N-body simulation
and in our model. The effect of environment is most pronounced

7http://gavo.mpa-garching.mpg.de/MyMillennium/MyDB
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Figure 7. Progenitor mass functions for z = 0 haloes of mass 1012.8M� averaged across all environments, at four different redshifts (z = 0.49 top-left,
z = 1.03 top-right, z = 2.03 bottom-left, z = 4.04 bottom-right). Green points show the progenitor mass function from the MDPL simulation that was used as
our calibration data set, while blue points show the results from our model.

at high redshifts. Therefore, in Fig. 8 we show the results of this
comparison at z = 3.87 of parent haloes in the range 1012 h−1 M� ≤
Mvir < 1013 h−1 M�, selected at z = 0. N-body results are shown
by points with error bars, while results from our model are shown
by lines. Yellow points and line correspond to the progenitor mass
function for parent haloes selected independent of environment,
while green/blue points and lines correspond to the progenitor
mass function for parent haloes selected to be in under/overdense
regions, respectively. The vertical grey line corresponds to 20
particles in the Millennium Simulation for Mparent = 1012.5 h−1 M�
– results will be affected by the simulation resolution close to
this line.

While the N-body results are noisy, the trend with environmental
overdensity shows a direction and magnitude that closely matches
that predicted by our model.

4 D ISCUSSION AND SUMMARY

We have applied the model of Ludlow et al. (2016) to merger trees
generated via the algorithm of Parkinson et al. (2008) to predict the
concentration of haloes in those merger trees from their formation
histories. We find that, with the original Parkinson et al. (2008)
algorithm this model results in insufficient scatter in concentration
at fixed halo mass. Since the Ludlow et al. (2016) model predicts
the correct amount of scatter when applied to merger trees extracted

from N-body simulations this suggests that the failure lies within the
merger tree construction algorithm itself. We hypothesize that the
missing ingredient is the effects of environment on halo formation
times, and introduce a simple, empirical model for this effect to
the Parkinson et al. (2008) algorithm. With this modification our
model correctly predicts the mean concentration as a function of
halo mass, and comes closer to matching the measured scatter,
while simultaneously matching the statistics of progenitor halo mass
functions.

We also show that this simple model for the influence of
environment on halo formation reproduces, at least qualitatively, the
correlation between environment and formation epoch measured in
N-body simulations. This brings some of the important effects of
assembly bias into the extended Press–Schechter framework for
merger tree construction.

Our model is based solely upon the linear density field, and so has
no knowledge of the non-linear density field. It may not therefore
capture any effects related to the non-linear density field (e.g. in
cases where a single halo dominates the local density field). The
degree to which this approximation (i.e. considering only the linear
density field) is reasonable can be judged by the ability of our
model to capture environmental correlations and trends – some of
which we have demonstrated in this work. We expect that there will
be effects related to the non-linear collapse of the primary halo,
and possibly other details of the local density field, which we do
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Figure 8. The progenitor mass function at z = 3.87 of parent haloes in
the range 1012 h−1 M� ≤ Mvir < 1013 h−1 M�, selected at z = 0. N-body
results are shown by points with error bars, while results from our model
are shown by lines. Yellow points and line correspond to the progenitor
mass function for parent haloes selected independent of environment, while
green/blue points and lines correspond to the progenitor mass function for
parent haloes selected to be in under/overdense regions, respectively. The
vertical grey line corresponds to 20 particles in the Millennium Simulation
for Mparent = 1012.5 h−1 M� – results will be affected by the simulation
resolution close to this line.

not capture in our model. Nevertheless, we have shown that this
simple model does capture some key aspects of the environmental
dependence of halo assembly.

This model has important consequences for semi-analytic models
of galaxy formation built on such merger trees. The concentrations
of haloes are a key factor in determining the sizes of galaxies
(Jiang et al. 2018), and determine key observable properties such
as rotation curves. To illustrate the effects of this work we utilize
the GALACTICUS model (Benson 2012) to predict the distribution of
disc stellar masses, scale lengths, and rotation speeds8 for central,
disc-dominated galaxies occupying haloes in the mass range 1–
3 × 1012 M� at z = 0. The resulting distributions are shown in
Fig. 9, which also shows the mean and standard deviation of each
distribution. The yellow line shows the result obtained when the
concentration of haloes does not include any scatter (i.e. it is set
to the mean concentration as a function of halo mass and redshift,
specifically using the fitting formula given by Ludlow et al. 2016).
The blue line shows the result when scatter in concentration is
included using the model of Ludlow et al. (2016) with parameter
values as calibrated in this work. Incorporating scatter into halo
concentrations has little effect on the mean of the distributions
but does add to the scatter by a small but non-negligible increase.
This is most readily apparent in the case of rotation speeds, in
which the scatter is increased from 0.06 to 0.08 dex. Semi-analytic

8In GALACTICUS galaxy sizes and rotation speeds are solved for assum-
ing each disc is in rotationally supported equilibrium in the combined
gravitational potential of the dark matter halo and the baryonic content
of the galaxy itself. The sizes and rotation speeds will therefore depend
on the halo concentration through its effect on the dark matter density
profile and potential. Stellar masses of galactic discs will also be affected
by concentration since they depend on the sizes and rotation speeds of those
discs (via the dependence of the algorithms for star formation and feedback
on those quantities). See Benson (2012) for further details.

Figure 9. The distribution of galactic disc stellar masses (upper), scale
lengths (middle), and rotation speeds (at one scale length; lower) for
disc-dominated, central galaxies occupying haloes in the mass range 1–
3 × 1012 M� at z = 0. The yellow line shows the result obtained when the
concentration of haloes does not include any scatter (i.e. it is set to the mean
concentration as a function of halo mass and redshift, specifically using
the fitting formula given by Ludlow et al. 2016). The blue line shows the
result when scatter in concentration is included using the model of Ludlow
et al. (2016) with parameter values as calibrated in this work. The mean and
standard deviation of the distribution is shown for each case.

models that assign concentrations based on the mean concentration–
mass relation will therefore miss a significant contribution to the
scatter in these observables – as far as we are aware all other semi-
analytic models either utilize a mean (or median) concentration–
mass–redshift relation to assign concentrations to haloes, or else
do not make use of concentrations in deriving galaxy properties.
Models that attempt to include this scatter by randomly drawing
concentrations from the measured distribution of concentrations
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will, by construction, incorporate the scatter in observable quanti-
ties, but will miss any correlation with other galaxy properties that
may be influenced by formation history.
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APPENDI X A : O PTI MI ZATI ON OF THE
MERGER TREE CONSTRUCTI ON
A L G O R I T H M

We use the merger tree construction algorithm of Cole et al. (2000;
see also Parkinson et al. 2008). In that algorithm, small steps in
‘time’ (actually in w(t) ≡ δc(t)/D(t), where δc is the critical threshold
for spherical collapse and D(t) is the linear growth factor, which
serves the role of a time variable) are taken. These steps, δw, are
required to be sufficiently small that the probability, P = Rδw

(where R is the rate of branching events per unit interval of w), of
a branching event in any time-step is small, typically P < ε with
ε = 0.1. Additionally, the time-steps must be small enough to ensure
that subresolution accretion on to the halo is not too large during
the time-step, and that the approximations of the Cole et al. (2000)
merger rate are valid. In the limit of high branching rate (which
occurs when the mass of the branch in question is much larger than
the mass resolution), the step will be limited by branching.

We make a small modification to this algorithm. We remove the
limit on the time-step due to branching rate, retaining the other
limits on the time-step. Then, in each time-step, we find the interval
to the next branching event by drawing a value at random from
a negative exponential distribution with rate parameter R. If this
interval exceeds the maximum allowed time-step, no branching
occurs, and the time-step proceeds. If the interval is less than the
maximum allowed time-step, branching occurs at that point. In the
regime of high branching rates this approach allows for larger (by
a factor 1/ε on average) time-steps to be taken. Note that we do
not have to concern ourselves in the subsequent time-step with the
fact that no branching occurred in the previous time-step because of
the memorylessness nature of the negative exponential distribution.
That is, the distribution of branching intervals conditioned on the
fact that no branching occurred in the previous time-step is just the
same negative exponential distribution.

The increase in speed of the tree building will depend on both
the algorithm implementation, and the tree resolution. In the case
of the specific implementation of the Cole et al. (2000) algorithm,
with a mass resolution equal to 5 × 10−6 times the final halo mass,
this optimization results in speed-ups by a factor of 1.2.
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