
J
H
E
P
0
3
(
2
0
1
9
)
0
6
0

Published for SISSA by Springer

Received: January 6, 2019

Accepted: March 6, 2019

Published: March 12, 2019

Resummation for rapidity distributions in top-quark

pair production

Benjamin D. Pecjak,a Darren J. Scott,b,c Xing Wangd and Li Lin Yangd,e,f

aInstitute for Particle Physics Phenomenology, University of Durham,

Durham DH1 3LE, U.K.
bInstitute for Theoretical Physics, University of Amsterdam,

Science Park 904, Amsterdam 1098 XH, The Netherlands
cNikhef, Theory Group,

Science Park 105, Amsterdam 1098 XG, The Netherlands
dSchool of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University,

Beijing 100871, China
eCollaborative Innovation Center of Quantum Matter,

Beijing, China
fCenter for High Energy Physics, Peking University,

Beijing 100871, China

E-mail: ben.pecjak@durham.ac.uk, d.j.scott@uva.nl, x.wong@pku.edu.cn,

yanglilin@pku.edu.cn

Abstract: We extend our framework for the simultaneous resummation of soft and small-

mass logarithms to rapidity distributions in top quark pair production. We give numerical

results for the rapidity distribution of the top quark or the anti-top quark, as well as the

rapidity distribution of the tt̄ pair, finding that resummation effects stabilize the depen-

dence of the differential cross sections on the choice of factorization scale. We compare our

results with recent measurements at the Large Hadron Collider and find good agreement.

Our results may be useful in the extraction of the gluon parton distribution function from

tt̄ production.

Keywords: QCD Phenomenology

ArXiv ePrint: 1811.10527

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2019)060

mailto:ben.pecjak@durham.ac.uk
mailto:d.j.scott@uva.nl
mailto:x.wong@pku.edu.cn
mailto:yanglilin@pku.edu.cn
https://arxiv.org/abs/1811.10527
https://doi.org/10.1007/JHEP03(2019)060


J
H
E
P
0
3
(
2
0
1
9
)
0
6
0

Contents

1 Introduction 1

2 Formalism 2

3 Numerical results 5

4 Conclusions 10

A Modifications to the coefficient functions 10

1 Introduction

Being the heaviest fundamental particle in the Standard Model (SM), the top quark plays

an important role in studying the spontaneous breakdown of electroweak symmetry and in

searching for new physics beyond the SM. The Large Hadron Collider (LHC) is expected

to produce billions of top quarks during its lifetime and with such a large amount of data,

precision studies in the top quark sector have become a key goal of the LHC program.

Accurate measurements of the production and decay channels of the top quark allow us to

probe some of the less-well-determined SM parameters, such as the CKM matrix element

Vtb as well as the gauge and Yukawa coupling of the top quark, which are all sensitive

to new physics effects. In addition, the kinematic distributions in top quark production

may be affected by the existence of new resonances, particularly in the high energy tails.

Last but not least, top quark production processes are important backgrounds for many

processes in and beyond the SM, which need to be carefully modeled in order to extract

possible new physics signals.

Even if no deviations from the SM are found in the top quark sector, the differential

cross sections in top quark pair production can still help to constrain the parton distribution

function (PDF) of the gluon [1–3]. This is due to the fact that around 90% of the tt̄ events

at the LHC come from the gluon-initiated partonic subprocess. The precise knowledge of

the gluon PDF is indispensable for Higgs physics, since at the LHC the Higgs boson is

also mainly produced via the gluon-fusion process. The theoretical predictions for single

Higgs boson production, Higgs boson production associated with a jet and Higgs boson

pair production can be improved by incorporating the tt̄ data in the PDF fit.

To match the high precision of the LHC experiments, it is necessary to have theoretical

predictions with equally high or even higher accuracy. For differential cross sections in top

quark pair production, the best fixed-order results are the next-to-next-to-leading order

(NNLO) ones given in [4]. Combining with the resummation framework developed in [5, 6]

at next-to-next-to-leading logarithmic accuracy (NNLL′), the works [7, 8] presented pre-

dictions for the tt̄ invariant mass distribution and the top quark transverse momentum
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distribution up to the NNLO+NNLL′ precision. In this short article, we extend the re-

summation framework to the rapidity distribution of the top/anti-top quark, as well as

the rapidity distribution of the tt̄ pair. We present NNLO+NNLL′ predictions for these

observables at the LHC with a center-of-mass energy
√
s = 13 TeV.

The paper is organized as follows. In section 2 we briefly review the formalism for

the resummation of threshold logarithms and for the joint resummation of threshold and

small-mass logarithms. We then discuss the modifications necessary to our resummation

formalism for the computation of rapidity distributions. In section 3, we present numerical

predictions, with emphasis on the sensitivity of the results to scale choices and to PDFs.

We conclude in section 4. In appendix A we discuss a few differences between the formulas

used in this work and in [7, 8] due to a recent calculation of the NNLO soft function for

top quark pair production [10], and show the numerical impact of these corrections.

2 Formalism

In this section, we briefly review the resummation framework established in [5, 6, 8], and

discuss its extension to describe rapidity distributions in tt̄ production. We consider inclu-

sive top quark pair production at the LHC

p(P1) + p(P2)→ t(p3) + t̄(p4) +X , (2.1)

where the differential cross section with respect to the tt̄ invariant mass Mtt̄ = (p3 + p4)2

and the scattering angle θ in the center-of-mass frame can be written as

d2σ(τ)

dMtt̄ d cos θ
=

8πβt
3sMtt̄

∑
ij

∫
dzdx1dx2 δ(τ − zx1x2) fi/p(x1, µf ) fj/p(x2, µf )Cij(z, µf ) .

(2.2)

Here we have defined s = (P1 + P2)2, τ = M2
tt̄/s, and βt =

√
1− 4m2

t /M
2
tt̄

. The hard-

scattering kernel Cij(z, µf ) and the PDFs fi/p(x, µf ) depend on the factorization scale

µf . The sum runs over all parton species i, j = q, q̄, g. Note that we have suppressed the

dependence of Cij on the kinematic variables Mtt̄, mt and cos θ for convenience. As in [8],

we transform to Mellin space, where the convolution in eq. (2.2) becomes a product which

we write as

d2σ̃(N)

dMtt̄ d cos θ
=

8πβt
3sMtt̄

∑
ij

f̃i/p(N,µf ) f̃j/p(N,µf ) c̃ij(N,µf ) , (2.3)

where the functions with tildes are the Mellin transforms of the corresponding momentum-

space functions in eq. (2.2), and N is the Mellin moment variable.

In general, the hard-scattering kernels Cij(z, µf ) or c̃ij(N,µf ) can be calculated in

perturbation theory as a series in the strong coupling αs. However, in certain kinematic

configurations, the differential cross sections are dominated by soft emissions. In such cases,

the hard-scattering kernels in the flavor diagonal channels (i.e., ij = qq̄, gg) are enhanced

by Sudakov double logarithms ln2N at each order in the strong coupling αs. The methods

to resum these logarithms to all orders in αs for tt̄ production are well-known [5, 9]. The

– 2 –



J
H
E
P
0
3
(
2
0
1
9
)
0
6
0

resummation is based on the factorization of the cross section in the limit where final state

gluons are soft and leads to the formula

c̃ij(N,Mtt̄,mt, cos θ, µf ) = Tr

[
Hm
ij (Mtt̄,mt, cos θ, µf )

× s̃mij

(
ln

M2
tt̄

N̄2µ2
f

,Mtt̄,mt, cos θ, µf

)]
+O

(
1

N

)
, (2.4)

for the hard-scattering kernel where the massive hard function Hm
ij is available up to

NLO [5], and the massive soft function s̃mij has been calculated up to NNLO [10], though

we use only the NLO result for consistency with the hard function in this work. Together

with the anomalous dimensions governing the renormalization group evolution of these two

functions, resummation has been performed at NNLL accuracy in [5].

Besides soft logarithms, in the high energy regime when Mtt̄ � mt, small-mass log-

arithms ln(mt/Mtt̄) may also become important. In [6], a framework to simultaneously

resum soft and small-mass logarithms was developed. The factorization formula for the

hard-scattering kernel needed to achieve this resummation is given by1

c̃ij(N,µf ) = Tr

[
Hij(Mtt̄, cos θ, µf ) s̃ij

(
ln

M2
tt̄

N̄2µ2
f

,Mtt̄, cos θ, µf

)]

× C2
D(mt, µf ) s̃2

D

(
ln

mt

N̄µf
, µf

)
+O

(
1

N

)
+O

(
mt

Mtt̄

)
, (2.5)

where the massless hard function Hij and the massless soft function s̃ij are defined in the

limit mt → 0, and are available up to NNLO [11, 12]. The logarithms of mt are absorbed

into the two functions CD and s̃D, which are related to collinear and soft-collinear emissions

from the final state top quarks and are also available up to NNLO [6].2 These ingredients

allow resummation in this “boosted-soft” limit to be performed at NNLL′ order.

To obtain the resummed hard-scattering kernels, one has to derive and solve the RG

equations for each of the matching functions in eqs. (2.4) and (2.5). This allows each

function to be evaluated at a scale which frees it of large logarithms, and resums them

in an evolution kernel. We denote the scales at which to evaluate the matching functions

H
(m)
ij , s̃

(m)
ij , CD, and s̃D by µh, µs, µdh, and µds respectively. Given the resummed hard-

scattering kernels, a remaining difficulty in evaluating the formula (2.3) for the differential

cross section is that the Mellin-space PDFs f̃i/p(N,µf ) are not readily available from pro-

gram packages such as LHAPDF [13]. It is possible to perform the Mellin-inversion on the

kernel c̃ij(N,µf ), and carry out the convolution with the x-space PDFs as in, e.g. [14, 15].

However, this method suffers from numerical instabilities due to the fact that the resummed

kernel Cij(z, µf ) is ill-behaved around the singular point z = 1. An alternative method

described in [16] amounts to approximating the parton luminosity function

L̃ij(N,µf ) ≡ f̃i/p(N,µf ) f̃j/p(N,µf ) (2.6)

1For simplicity, we have ignored the nh-dependent contributions from top quark loops.
2Note that the coefficient functions CD, s̃D and s̃ij used in this work are slightly different to those

obtained in [6, 12]. We explain the details in appendix A.
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by an analytic expression with fitted coefficients. Briefly speaking, one can approximate

the x-space version of the parton luminosity function

Lij(ξ, µf ) ≡
∫
dx1dx2 δ(ξ − x1x2) fi/p(x1, µf ) fj/p(x2, µf ) (2.7)

by a linear combination of Chebyshev polynomials with µf -dependent coefficients. The

above formula can be numerically evaluated using inputs from LHAPDF and the coefficients

can then be fitted using standard methods. The Mellin transform of the Chebyshev poly-

nomials can then be calculated analytically, which finally leads to an expression for the

N -space luminosity function L̃ij(N,µf ). Note that the fit has to be done for each dis-

tinct value of µf , which leads to computational overheads if µf depends on the integration

variables.

In [7, 8], we combined the above treatment of the parton luminosity function with

the resummation framework in [5, 6] to produce phenomenological predictions for the tt̄

invariant mass distribution as well as the top-quark transverse momentum (pT ) distribu-

tion. The transverse momentum of the top quark is obtained in the soft limit via the

relation pT = Mtt̄βt sin θ/2. Since this relation does not involve the variables x1, x2 and z

in eq. (2.2), the same luminosity function L̃ij(N,µf ) can be used for a given pT phase-space

point without difficulty. However, to extend our framework to rapidity distributions, we

need to slightly modify the treatment of the PDFs, which we discuss in the following.

We will be concerned with two kinds of rapidities: the rapidity of the tt̄ pair Ytt̄, and

the rapidity of the top quark or the anti-top quark yt/t̄. In the soft limit we can express

these as

Ytt̄ =
1

2
ln
x1

x2
, ŷ =

1

2
ln

1 + βt cos θ

1− βt cos θ
, yt/t̄ = Ytt̄ ± ŷ , (2.8)

where ŷ is the rapidity of the top quark in the partonic center-of-mass frame. We start by

rewriting eq. (2.2) as

d3σ(τ)

dMtt̄ d cos θ dYtt̄
=

8πβt
3sMtt̄

∑
ij

∫
dzdξdx1dx2 δ(τ − zξ) δ(ξ − x1x2) δ

(
Ytt̄ −

1

2
ln
x1

x2

)
× fi/p(x1, µf ) fj/p(x2, µf )Cij(z, µf ) , (2.9)

and use the last two delta functions to integrate over x1 and x2 to arrive at

d3σ(τ)

dMtt̄ d cos θ dYtt̄
=

8πβt
3sMtt̄

∑
ij

∫
dz dξ δ(τ − zξ)Cij(z, µf )

× fi/p
(√

ξeYtt̄ , µf

)
fj/p

(√
ξe−Ytt̄ , µf

)
. (2.10)

Using techniques employed previously for the Drell-Yan process [17], we define a rapidity-

dependent parton luminosity function as

Lij(ξ, Ytt̄, µf ) ≡ fi/p
(√

ξeYtt̄ , µf

)
fj/p

(√
ξe−Ytt̄ , µf

)
, (2.11)
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and its Mellin transform3

L̃ij(N,Ytt̄, µf ) ≡
∫ 1

0
dξ ξN−1 Lij(ξ, Ytt̄, µf ) . (2.12)

We can now perform a Mellin transform on eq. (2.10) to arrive at

d3σ̃(N)

dMtt̄ d cos θ dYtt̄
=

8πβt
3sMtt̄

∑
ij

L̃ij(N,Ytt̄, µf ) c̃ij(N,µf ) . (2.13)

The new luminosity function L̃ij(N,Ytt̄, µf ) can be approximated by an analytic expression

using the same techniques as before. The formula (2.13) can be used to calculate single-

variable differential cross sections, and can also be used to calculate double differential

cross sections where two kinematic variables are measured simultaneously (see, e.g., [18]).

In this paper, we will only study the rapidity distributions, and leave the double differential

cross sections to future work.

It is straightforward to obtain the rapidity distribution of the tt̄ pair by integrating

over Mtt̄ and cos θ from eq. (2.13). The integration ranges are given by

−1 ≤ cos θ ≤ 1 , 2mt ≤Mtt̄ ≤
√
s/ cosh(Ytt̄) . (2.14)

It is also easy to obtain the rapidity distribution of the top quark via a change of variables,

which leads to

d3σ̃(N)

dMtt̄ d cos θ dyt
=

8πβt
3sMtt̄

∑
ij

L̃ij(N, yt − ŷ, µf ) c̃ij(N,µf ) , (2.15)

where on the right-hand side, ŷ should be expressed as a function of Mtt̄ and cos θ through

eq. (2.8). A similar change of variables can be used to calculate the rapidity distribution

of the anti-top quark. Phenomenologically, one is often interested in the average of the yt
distribution and the yt̄ distribution, i.e.

dσ

dyavt
≡ 1

2

(
dσ

dyt

∣∣∣∣
yt=yavt

+
dσ

dyt̄

∣∣∣∣
yt̄=yavt

)
. (2.16)

In the next section, we will present our predictions for the Ytt̄ distribution and the yavt

distribution.

Finally, to obtain precision predictions, it is necessary to combine the resummed results

with fixed order ones whenever possible. The fixed order part accounts for formally power-

suppressed terms, which can be important numerically. This “matching” procedure was

described in detail in [8], and we refer the interested reader to that article.

3 Numerical results

We now use the formalism introduced in the last section to produce numerical results

relevant for LHC experiments at
√
s = 13 TeV. Throughout this section we set the top

3This function is called L rap
(
N, 1

2

)
in [16].
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quark mass to mt = 173.3 GeV. For both the Ytt̄ distribution and the yavt distribution,

the default factorization scale is chosen to be µdef
f = HT /4 following [4], while the default

values of the other matching scales are set as µdef
h = HT /2, µdef

s = HT /N̄ , µdef
dh = mt and

µdef
ds = mt/N̄ following [8]. Here N̄ ≡ NeγE with γE denoting Euler’s constant and HT is

defined by

HT ≡
√
p2
T,t +m2

t +
√
p2
T,t̄

+m2
t . (3.1)

We compare predictions using two different PDF sets: CT14 [19] and NNPDF3.1 [20],

obtained from LHAPDF with αs(mZ) = 0.118. We match our resummed predictions to

fixed-order results at NLO and NNLO. The NLO distributions [21–23] are generated using

MCFM [24], while the NNLO ones [4] are obtained from fastNLO [25, 26] using the tables

available with [27]. Note that the fastNLO tables do not provide scale variations and as

a result, we only provide the central values for the NNLO(+NNLL′) predictions. On the

other hand, for the NLO+NNLL′ predictions, we estimate the perturbative uncertainties

by varying each of the scales individually up and down by a factor of two and combining the

resulting variations of the differential cross sections in quadrature. All our predictions are

calculated using NNLO PDFs. Only when we show the NLO predictions for comparison

do we use NLO PDFs.

In figure 1 we compare our resummed predictions for the Ytt̄ distribution to the fixed-

order results at NLO and NNLO. We show the results with the CT14 PDF sets here. The

left plot shows a comparison between the NLO and NLO+NNLL′ predictions, where in the

lower panel we show the ratio defined by

Ratio =
dσ

dσNLO(µdef
f )

. (3.2)

We see that the two results are rather similar, with the scale dependence slightly reduced

by the resummation. On the right plot of figure 1, we compare the central values of the

NNLO and the NNLO+NNLL′ predictions by displaying their ratios to the NLO result

(the K-factors). The NLO+NNLL′ result is also shown (with uncertainty) as a reference.

We find that matching our resummation to NNLO compared to NLO predictions increases

the central value by about 8%. We also find that the central values of the NNLO and

NNLO+NNLL′ results are close to each other. This implies that with the choice µf = HT /4

in fixed-order calculations, higher order corrections beyond NNLO are well under control,

consistent with the behavior of the Mtt̄ and pT distributions studied in [8].

In figure 2 we compare the theoretical predictions to recent experimental measurement

from the CMS collaboration using 35.8 fb−1 of data [18]. The left and the right plots show

predictions produced with the CT14 and the NNPDF3.1 PDF sets, respectively. The CMS

results are given in terms of the differential production rate in the lepton+jets channel. In

order to compare with that, we must rescale our results by the branching ratio of the tt̄

pair decaying into the bb̄lνjj final state, where l = e, µ. We assume the top quarks decay

exclusively to a bottom quark and a W boson, and extract the theoretical predictions for

the braching ratios of the W → lν decay and the W → qq̄′ decay from the PDG review [28].

– 6 –



J
H
E
P
0
3
(
2
0
1
9
)
0
6
0

0

100

200

300

400
 (

p
b

)
t t

/d
Y

σ
d

NLO

NLO+NNLL'

 = 173.3 GeVtm

LHC 13 TeV

/4T = Hdef

f
µ

CT14_(n)nlo_as_0118

Ratio =  NLO+NNLL'(NLO)/NLO

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

tt
Y

0.9

1.0

1.1

R
a
ti
o

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

tt
Y

0.90

0.95

1.00

1.05

1.10

1.15

1.20

K
 F

a
c
to

r

NLO+NNLL'

NNLO+NNLL'

NNLO

 = 173.3 GeVtm

LHC 13 TeV

/4T = Hdef

f
µ

CT14_(n)nlo_as_0118
NLO

σ/dσK Factor =  d

Figure 1. Left: the Ytt̄ distribution at NLO and NLO+NNLL′ with scale uncertainties; right: the

ratios (K-factors) of NNLO and NNLO+NNLL′ to NLO with central values only, and NLO+NNLL′

with scale uncertainties. Results are obtained using the CT14 PDF sets.
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Figure 2. Comparison between theoretical predictions and experimental data from the CMS

collaboration [18] for the |Ytt̄| distribution in the lepton+jets channel. The left and right plots use

CT14 and NNPDF3.1 PDF sets, respectively. In the lower panels we normalize everything to the

NNLO central values.

The rescaling factor for our predictions is therefore given by

Br(tt̄→ bb̄lνjj) = 0.2985 . (3.3)

After the rescaling, the theoretical predictions are in excellent agreement with data. How-

ever, we find that the predictions from the two PDF sets have slightly different shapes.

Especially in the tail region (large |Ytt̄|), the CT14 PDFs tend to predict a higher produc-

tion rate than the NNPDF3.1 PDFs. It is possible to exploit this region to gain further

information about the parton distributions, which we leave for future investigation.

We now turn to the average rapidity distribution defined in eq. (2.16). Figure 3 shows

predictions for the yavt distribution in a form analogous to figure 1. We observe behavior
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the ratios (K-factors) of NNLO and NNLO+NNLL′ to NLO with central values only, and the

NLO+NNLL′ with scale uncertainties. Results are obtained using the CT14 PDF sets.
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Figure 4. Comparison between theoretical predictions and the experimental data from the CMS

collaboration [18] for the |yavt| distribution in the lepton+jets channel. The left and right plots use

CT14 and NNPDF3.1 PDF sets, respectively. In the lower panels we normalize everything to the

NNLO central values.

similar to that of the Ytt̄ distribution: that the resummation effects reduce the perturbative

uncertainties, and that the NNLO+NNLL′ results are close to the NNLO ones. We then

compare the various theoretical predictions to the CMS data in figure 4. As before, we need

to rescale the theoretical results by the factor in eq. (3.3). We again find a good overall

agreement except for the last bin, where the theoretical predictions tend to overestimate

the cross section. We also see that the predictions from the two PDF sets are slightly

different here, hinting that the yavt distribution may also be used to improve the PDF

fitting.

One of the important findings of [8] is that resummation effects stabilize the dependence

of the differential cross sections on the choice of the factorization scale µf . Given the new
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Figure 5. Comparison between the two default choices for the factorization scale, µdef
f = HT /4

and µdef
f = Mtt̄/2.

results in this work, it is interesting to do the same comparison for the rapidity distributions.

In figure 5, we present the NLO and the NLO+NNLL′ predictions with two default choices

for µf : µdef
f = HT /4 and µdef

f = Mtt̄/2, with the other scales chosen as before. We see that

for both the Ytt̄ distribution and the yavt distribution, the NLO+NNLL′ results exhibit

smaller sensitively to the choice of µdef
f than the NLO ones. This is similar in spirit to the

conclusion of [8].

Finally, it would be interesting to compare the scale dependence of the NNLO and

the NNLO+NNLL′ results. We have all ingredients in our resummation formula ready for

the NNLO+NNLL′ matching including scale variations, and it will be straightforward to

combine them with the NNLO results from [4]. Based on the experience gained from the

studies of differential distributions in [8], we would expect that the NNLO+NNLL′ rapidity

distributions are close to the NNLO ones for the choice µdef
f = HT /4, and that they are

less sensitive to the different choices of the default factorization scale. We hope to validate

these expectations in the future.

– 9 –



J
H
E
P
0
3
(
2
0
1
9
)
0
6
0

4 Conclusions

In this work we have extended the resummation framework for top quark pair production

to the rapidity distribution of the tt̄ system (Ytt̄), as well as the rapidity distributions

of the top quark and the anti-top quark (and their average yavt). Predictions have been

presented both at NLO+NNLL′ and NNLO+NNLL′ accuracy, and are compared to recent

experimental measurements in the lepton + jets channel by the CMS collaboration with

good agreement. We find that the resummation effects are mild with the default scale choice

µdef
f = HT /4, showing that higher order corrections beyond NNLO are under control. The

fixed-order results are, however, more sensitive to the choice of µf . When µdef
f = Mtt̄/2, for

example, the NLO predictions are much lower than the results obtained with µdef
f = HT /4.

In contrast, the NLO+NNLL′ results are affected much less by parametric changes of the

default factorization scale.

In the comparison with experimental data, we find that the theoretical predictions in

the boosted regions (high |Ytt̄| or high |yavt|) exhibit some differences when different PDF

sets are used. This region can thus be used to constrain the gluon PDF in the future,

which is indispensable for improving the precision of the theoretical prediction for Higgs

boson production.

In appendix A, we have presented some slight differences in the coefficient functions

used in this article compared to those used in earlier works. We show that the modifications

have minimal impact on the Mtt̄ and pT distributions, and therefore the results of the earlier

works are not altered.
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A Modifications to the coefficient functions

The coefficients CD and s̃D appearing in the factorization formula (2.5) were extracted

in [6] and subsequently used in [7, 8]. However, it was noted in [6] that there exists an

inconsistency in the literature which may lead to a shift of a constant term at order α2
s

between CD and s̃D. This shift has indeed been confirmed by the explicit calculation of

the NNLO massive soft function s̃mij in [10], for which the small-mass factorization can be

validated by taking the limit mt �Mtt̄. Another by-product of the calculation in [10] is the

extraction of a purely-imaginary off-diagonal contribution to the massless soft function s̃ij ,

which had previously been omitted in [12]. This contribution arises from gluon exchanges

among 3 Wilson lines, and is important for both the massive and massless soft functions

to satisfy their RG equations.

For these reasons, the coefficient functions s̃ij , CD and s̃D used in this work differ

slightly to those used in [7, 8]. The purpose of this appendix is to present these modifica-

tions and to assess their numerical impact on the Mtt̄ and pT,avt distributions.
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The matching functions CD and s̃D admit a perturbative expansion in αs which we

write as

CD = 1 +
αs
4π
C

(1)
D +

(αs
4π

)2
C

(2)
D + · · · ,

s̃D = 1 +
αs
4π
s̃

(1)
D +

(αs
4π

)2
s̃

(2)
D + · · · . (A.1)

The modification concerns the NNLO coefficients C
(2)
D and s̃

(2)
D . We denote the expressions

of these coefficients used in [7, 8] by C
(2)
D,old and s̃

(2)
D,old, while the correct ones used in this

work by C
(2)
D,new and s̃

(2)
D,new. They are related by

C
(2)
D,new = C

(2)
D,old − 4π2CACF , s̃

(2)
D,new = s̃

(2)
D,old + 4π2CACF . (A.2)

Another modification concerns the NNLO massless soft function s̃
(2)
ij . Again we denote

the old and the new expressions with corresponding subscripts. They are related by

s̃
(2)
ij,new = s̃

(2)
ij,old + s̃

(2)
ij,3w . (A.3)

The subscript “3w” makes it clear that this contribution arises from correlations among

3 Wilson lines, which is non-vanishing in the virtual-real diagrams at NNLO. The soft

function is a Hermitian matrix in color space, and therefore it is enough to give the non-

zero entries in the upper-right part. For the qq̄ channel, we have(
s̃

(2)
qq̄,3w

)
12

= 32iπ

[
L2

2
(H0(xt)+H1(xt))+L (H0,0(xt)+H1,0(xt)−H1,1(xt)−H2(xt)+ζ2)

+H1,2(xt)+H2,0(xt)+2H2,1(xt)+H0,0,0(xt)+2H1,0,0(xt)

+2H1,1,0(xt)+H1,1,1(xt)+2H3(xt)+
π2

3
H0(xt)+

π2

2
H1(xt)−2ζ3

]
, (A.4)

where

xt = (1− βt cos θ)/2 , L = ln

(
M2
tt̄

N̄2µ2

)
. (A.5)

The contribution for the gg channel is given by(
s̃

(2)
gg,3w

)
12

=
9

4

(
s̃

(2)
qq̄,3w

)
12
. (A.6)

In the above formulas we have set the number of colors Nc = 3 and the number of light

quarks Nl = 5. The Hi,j,... functions denote harmonic polylogarithms with weights specified

by the indices {i, j, . . .}.
We now turn to assess the numerical impact of these modifications. Since the rapidity

distributions have never been computed with the “old” coefficients, we only need to compare

the Mtt̄ and pT,avt distributions. In table 1, we list the central values for the integrated

cross section in two sample bins for each of these two distributions. The two bins are

representative for the un-boosted and the boosted region, respectively. In figure 6, we

show the two distributions with uncertainty bands reflecting the scale variations. From

both the table and the plots, we find that the numerical differences between the old and

the new results are at the sub-percent level. We hence conclude that the modifications of

the coefficient functions lead to no visible changes to the results presented in [7, 8].
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observable bin old new

Mtt̄

[580,620] GeV 1.129 pb 1.132 pb

[2500,3000] GeV 1.548× 10−4 pb 1.547× 10−4 pb

pT,avt

[50,100] GeV 4.830 pb 4.847 pb

[800,900] GeV 7.743× 10−4 pb 7.789× 10−4 pb

Table 1. Comparison of the numerical results computed with the old (used in [7, 8]) and the

new (used in this work) coefficient functions s̃ij , CD and s̃D. We show the central values with the

default scale choices given in [8]. The results here are obtained using the NNPDF3.0 PDF sets with

αs(MZ) = 0.118 [29].
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Figure 6. Comparison of the numerical results computed with the old (used in [7, 8]) and the new

(used in this work) coefficient functions s̃ij , CD and s̃D. The default scale choices are given in [8].

The results here are obtained using the NNPDF3.0 PDF set with αs(MZ) = 0.118 [29].
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Thesis, Università degli Studi di Genova, Genova Italy (2012) [arXiv:1212.0480] [INSPIRE].

[17] M. Bonvini, S. Forte and G. Ridolfi, Soft gluon resummation of Drell-Yan rapidity

distributions: Theory and phenomenology, Nucl. Phys. B 847 (2011) 93 [arXiv:1009.5691]

[INSPIRE].

[18] CMS collaboration, Measurement of differential cross sections for the production of top

quark pairs and of additional jets in lepton + jets events from pp collisions at
√
s = 13 TeV,

Phys. Rev. D 97 (2018) 112003 [arXiv:1803.08856] [INSPIRE].

[19] S. Dulat et al., New parton distribution functions from a global analysis of quantum

chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

[20] NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.

C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

[21] P. Nason, S. Dawson and R.K. Ellis, The One Particle Inclusive Differential Cross-Section

for Heavy Quark Production in Hadronic Collisions, Nucl. Phys. B 327 (1989) 49 [Erratum

ibid. B 335 (1990) 260] [INSPIRE].

[22] M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at

next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].

– 13 –

https://doi.org/10.1007/JHEP09(2010)097
https://doi.org/10.1007/JHEP09(2010)097
https://arxiv.org/abs/1003.5827
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5827
https://doi.org/10.1103/PhysRevD.86.034010
https://arxiv.org/abs/1205.3662
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3662
https://doi.org/10.1103/PhysRevLett.116.202001
https://arxiv.org/abs/1601.07020
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.07020
https://doi.org/10.1007/JHEP05(2018)149
https://arxiv.org/abs/1803.07623
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.07623
https://doi.org/10.1016/S0550-3213(97)00506-3
https://doi.org/10.1016/S0550-3213(97)00506-3
https://arxiv.org/abs/hep-ph/9705234
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9705234
https://doi.org/10.1007/JHEP06(2018)013
https://arxiv.org/abs/1804.05218
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.05218
https://doi.org/10.1007/JHEP12(2014)005
https://arxiv.org/abs/1409.5294
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5294
https://doi.org/10.1007/JHEP10(2012)180
https://arxiv.org/abs/1207.4798
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4798
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7420
https://doi.org/10.1016/0550-3213(96)00399-9
https://arxiv.org/abs/hep-ph/9604351
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9604351
https://doi.org/10.1103/PhysRevD.66.014011
https://arxiv.org/abs/hep-ph/0202251
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0202251
https://arxiv.org/abs/1212.0480
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.0480
https://doi.org/10.1016/j.nuclphysb.2011.01.023
https://arxiv.org/abs/1009.5691
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5691
https://doi.org/10.1103/PhysRevD.97.112003
https://arxiv.org/abs/1803.08856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08856
https://doi.org/10.1103/PhysRevD.93.033006
https://arxiv.org/abs/1506.07443
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07443
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://arxiv.org/abs/1706.00428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00428
https://doi.org/10.1016/0550-3213(90)90180-L
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B327,49%22
https://doi.org/10.1016/0550-3213(92)90435-E
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B373,295%22


J
H
E
P
0
3
(
2
0
1
9
)
0
6
0

[23] S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Top quark distributions in hadronic

collisions, Phys. Lett. B 351 (1995) 555 [hep-ph/9503213] [INSPIRE].

[24] J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc.

Suppl. 205–206 (2010) 10 [arXiv:1007.3492] [INSPIRE].

[25] T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, in

proceedings of the 14th International Workshop on Deep Inelastic Scattering (DIS 2006),

Tsukuba, Japan, 20–24 April 2006, World Scientific (2007), pp. 483–486 [hep-ph/0609285]

[INSPIRE].

[26] fastNLO collaboration, Theory-Data Comparisons for Jet Measurements in Hadron-Induced

Processes, arXiv:1109.1310 [INSPIRE].

[27] M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential

distributions, arXiv:1704.08551 [INSPIRE].

[28] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018)

030001 [INSPIRE].

[29] NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040

[arXiv:1410.8849] [INSPIRE].

– 14 –

https://doi.org/10.1016/0370-2693(95)00430-S
https://arxiv.org/abs/hep-ph/9503213
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9503213
https://doi.org/10.1016/j.nuclphysBPS.2010.08.011
https://doi.org/10.1016/j.nuclphysBPS.2010.08.011
https://arxiv.org/abs/1007.3492
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3492
https://doi.org/10.1142/9789812706706_0110
https://arxiv.org/abs/hep-ph/0609285
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0609285
https://arxiv.org/abs/1109.1310
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1310
https://arxiv.org/abs/1704.08551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.08551
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D98,030001%22
https://doi.org/10.1007/JHEP04(2015)040
https://arxiv.org/abs/1410.8849
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8849

	Introduction
	Formalism
	Numerical results
	Conclusions
	Modifications to the coefficient functions

