
Eur. Phys. J. C (2015) 75:132
DOI 10.1140/epjc/s10052-015-3318-8

Special Article - Tools for Experiment and Theory

LHAPDF6: parton density access in the LHC precision era

Andy Buckley1,a, James Ferrando1, Stephen Lloyd2, Karl Nordström1, Ben Page3, Martin Rüfenacht4,
Marek Schönherr5, Graeme Watt6

1 School of Physics and Astronomy, University of Glasgow, Glasgow, UK
2 School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
3 Departamento de Física Teórica y del Cosmos y CAFPE, Universidad de Granada, Granada, Spain
4 School of Informatics, University of Edinburgh, Edinburgh, UK
5 Physik-Institut, Universität Zürich, Zurich, Switzerland
6 Institute for Particle Physics Phenomenology, Durham University, Durham, UK

Received: 26 December 2014 / Accepted: 10 February 2015 / Published online: 20 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The Fortran LHAPDF library has been a long-
term workhorse in particle physics, providing standardised
access to parton density functions for experimental and phe-
nomenological purposes alike, following on from the ven-
erable PDFLIB package. During Run 1 of the LHC, how-
ever, several fundamental limitations in LHAPDF’s design
have became deeply problematic, restricting the usability
of the library for important physics-study procedures and
providing dangerous avenues by which to silently obtain
incorrect results. In this paper we present the LHAPDF 6
library, a ground-up re-engineering of the PDFLIB/LHAPDF
paradigm for PDF access which removes all limits on use
of concurrent PDF sets, massively reduces static memory
requirements, offers improved CPU performance, and fixes
fundamental bugs in multi-set access to PDF metadata. The
new design, restricted for now to interpolated PDFs, uses cen-
tralised numerical routines and a powerful cascading meta-
data system to decouple software releases from provision
of new PDF data and allow completely general parton con-
tent. More than 200 PDF sets have been migrated from
LHAPDF 5 to the new universal data format, via a stringent
quality control procedure. LHAPDF 6 is supported by many
Monte Carlo generators and other physics programs, in some
cases via a full set of compatibility routines, and is recom-
mended for the demanding PDF access needs of LHC Run 2
and beyond.

Contents

1 Introduction . 2
1.1 Definitions and conventions 2

a e-mail: andy.buckley@cern.ch

2 History and evolution of LHAPDF 3
2.1 Performance problems 3
2.2 Correctness problems 4
2.3 Maintainability problems 4
2.4 Summary of LHAPDF 5 issues 4

3 Design of LHAPDF 6 4
3.1 PDF value access 4
3.2 PDF metadata 5
3.3 Object and memory management 5
3.4 PDF value calculation 5

3.4.1 Interpolator system 6
3.4.2 Extrapolation system 6

3.5 αS system 7
4 Usage examples 8

4.1 C++ example 8
4.2 Python example 8
4.3 Fortran example (same as for LHAPDF 5) . . 8

5 Data formats . 8
5.1 Metadata format 8

5.1.1 System-level metadata 8
5.1.2 Set-level metadata 9
5.1.3 Member-level metadata 10

5.2 PDF grid data format 10
5.3 αS interpolation data format 10
5.4 Index file 11
5.5 Distribution and updating 11

6 PDF uncertainties 11
6.1 set.uncertainty(values, cl,

alternative) 12
6.2 set.correlation(valuesA, valuesB) . 12
6.3 set.randomValueFromHessian(values,

randoms, symmetrise) 13
7 PDF reweighting 13
8 LHAPDF 5/PDFLIB compatibility 14

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-015-3318-8&domain=pdf
mailto:andy.buckley@cern.ch

132 Page 2 of 20 Eur. Phys. J. C (2015) 75 :132

8.1 Legacy code interfaces 14
8.2 Version detection hooks 14
8.3 Uptake and prospects 15

9 Benchmarking and performance 15
9.1 Memory requirements 15
9.2 CPU performance 15
9.3 Disk space requirements 17

10 PDF migration and validation 17
11 Summary and prospects 17
References . 19

1 Introduction

Parton density functions (PDFs) are a crucial input into cross-
section calculations at hadron colliders; they encode the
process-independent momentum structure of partons within
hadrons, with which partonic cross-sections must be con-
volved to obtain physical results that can be compared to
experimental data. At leading order in perturbation theory,
PDFs encode the probability that a beam hadron’s momen-
tum is carried by a parton of given flavour and momentum
fraction. At higher orders this interpretation breaks down and
positivity is no longer required – but PDF normalization at
all orders is constrained by the requirement that a sum over
all parton flavours i and momentum fractions x equates to
the whole momentum of the incoming beam hadron B:

∑

i

∫ 1

0
dx x fi/B(x; Q2) = 1, (1)

where fi/B(x; Q2) is the parton density function for parton
i in B, at a factorization scale Q. Conservation of baryon
number leads to a flavour sum rule,

∫ 1

0
dx(fi/B(x; Q2) − f̄i/B(x; Q2)) = ni , (2)

where i runs over quark flavours and f̄i/B is the antiquark
PDF in baryon B. For protons, nu = 2, nd = 1, and
n{s,c,b,t} = 0.

Parton density calculations sit astride the borderline of
perturbative and non-perturbative QCD, constructed by fit-
ting of a factorised low-scale, non-perturbative component
to experimental data and then evolved to higher scales using
perturbative QCD running, most commonly DGLAP evolu-
tion. In general, PDFs may include a transverse momentum
dependence but here we restrict ourselves to collinear PDFs
where the extracted parton momenta are perfectly aligned
with that of the parent hadron; such PDFs are then defined as
a two-variable function fi/B(x; Q) for collinear momentum
fraction x and factorization scale Q. Equations (1) and (2)

apply independently at each value of Q, hence the semicolon
separator between f ’s parameters.

The LHAPDF library is the ubiquitous means by which
parton density functions are accessed for LHC experimen-
tal and phenomenological studies. It is both a framework for
uniform access to the results of many different PDF fitting
groups and a collection of such PDF sets. The first version of
LHAPDF was developed to solve scaling problems with the
previously standard PDFLIB library [1], and to retain back-
ward compatibility with it; in this paper we describe a similar
evolution within the LHAPDF package, from a Fortran-based
static memory paradigm to a C++ one in which dynamic PDF
object creation, concurrent usage, and removal of artificial
limitations are fundamental. This new version addresses the
most serious limitations of the Fortran version, permitting
a new level complexity of PDF systematics estimation for
precision physics studies at the LHC [2] Run 2 and beyond.

1.1 Definitions and conventions

Since the beam hadron will in most current applications be
a proton, we will simplify the notation from here by drop-
ping the /B specification of the parent hadron, i.e. fi (x; Q2)

rather than fi/B(x; Q2). Other parent hadrons are possible,
of course, notably neutrons which can either be fitted explic-
itly or obtained from proton PDFs assuming strong isospin
symmetry.

The PDFs appear in hadron collider cross-section calcu-
lations in the form [3,4]:

σ =
∫

dx1dx2 fi (x1; Q2) f j (x2; Q2) σ̂i j (x1, x2, Q
2), (3)

where σ̂i j is the partonic cross-section for a process with
incoming partons i and j . Usually several partonic initial
states contribute and should be summed over in Eq. (3).

Given the fundamental role played by the x f (x; Q2) struc-
ture in the fitting and use of PDFs, it is this form which is
encoded in the LHAPDF library. We will tend to refer to this
encoded value as the “PDF value” or similar, even though it
is in fact a combination of the parton density function and
the momentum fraction x .

Another ambiguity in common usage is the meaning of the
words “PDF set”, which are sometimes used interchangeably
with “PDF” and sometimes not. If one considers a PDF to be a
function defined for a given parton flavour, then both a collec-
tion of such functions for all flavours, and a larger collection
of systematic variations on such collections can reasonably
be called a “PDF set”. In this paper, particularly when refer-
ring to LHAPDF code objects, we will take the approach that
a “PDF” or “PDF set member” is a complete set of 1-flavour
parton density functions; we refer to a larger collection of

123

Eur. Phys. J. C (2015) 75 :132 Page 3 of 20 132

systematic variations on such an object, e.g. eigenvectors or
Monte Carlo (MC) replicas, as a “PDF set”.

Finally, when referring to code objects or configuration
directives we will do so in typewriter font.

2 History and evolution of LHAPDF

LHAPDF versions 5 and earlier [5,6] arose out of the 2001
Les Houches “Physics at TeV Colliders” workshop [7], as
the need for a scalable system to replace PDFLIB became
pressing. The main problem with PDFLIB was that the data
for interpolating each PDF was stored in the library, and as
PDF fitting became industrialised (particularly with the rise
of the CTEQ and MRST error sets), this model was no longer
viable.

LHAPDF was originally intended to address this problem
by instead storing only the parameters of each parton density
fit at a fixed low scale and then using standard DGLAP evolu-
tion in Q via QCDNUM [8] to dynamically build an interpo-
lation grid to higher scales, and thereafter work as before.
However, by the mid-2000s and version 4 of LHAPDF,
this model had also broken down. Each PDF parameteri-
sation required custom code to be included in the LHAPDF
library, and the bundled QCDNUM within LHAPDF had
itself become significantly outdated: upgrading it was not
an option due to the need for consistent behaviour between
LHAPDF versions. PDF fitting groups, concerned that the
built-in QCDNUM evolution would not precisely match that
used by their own fitting code, universally chose to supply full
interpolation grid files rather than evolution starting condi-
tions, and as a result LHAPDF acquired a large collection of
routines to read and use these data files in a myriad of formats.

At the same time as these trends back to interpolation-
based PDF provision, user demand resulted in new features
for simultaneous use of several PDF sets – the so-called “mul-
tiset” mode introduced in LHAPDF 5.0. The implementation
of this was relatively trivial: the amount of allocated inter-
polation space was multiplied by a factor of NMXSET (with
a default value of 3), but while it permitted rapid switch-
ing between a few concurrent sets the multiset mode did not
integrate seamlessly with the original interface, potentially
leading to incorrect results, and was memory-inefficient and
limited in scalability.

2.1 Performance problems

The major problems with LHAPDF v5 relate to the technical
implementation of the various interpolation routines and the
multiset mode.

Both these issues are rooted in Fortran’s static memory
allocation. As usual, the interpolation routines for various
PDFs operate on large arrays of floating point data. These

were typically declared as Fortran common blocks, but in
practice were not used commonly: each PDF group’s “wrap-
per” code operates on its own array. As the collection of sup-
ported PDF sets became larger, the memory requirements of
LHAPDF continually grew, and with version 5.9.1 (the final
version in the v5 series) more than 2 GB was declared as
necessary to use it at all. In practice operating systems did
not allocate the majority of this uninitialised memory, but it
proved a major issue for use of LHAPDF on the LHC Com-
puting Grid system where static memory restrictions had to
be passed in order for a job to run.

A workaround solution was provided for this problem:
a so-called “low memory” build-time configuration which
reduced the static memory footprint within acceptable lim-
its, but at the heavy cost of only providing interpolation array
space for one member in each PDF set. This mode is usually
sufficient for event generation, in which only a single PDF is
used, and in this form it was used for the LHC experimental
collaborations’ MC sample production through LHC Run 1.
But it is incompatible with “advanced” PDF uncertainty stud-
ies in which each event must be re-evaluated or reweighted to
every member in the PDF error set: constant re-initialisation
of the single PDF slots from the data file slows operations to
a crawl. For this reason, and because the low-memory mode
is a build-time rather than run-time option, PDF reweighting
studies for the LHC needed to use special, often private, user
builds of LHAPDF with the attendant danger of inconsis-
tency.

The era of the low-memory mode’s suitability for event
generation has also come to an end between LHC Runs 1
and 2, with the rise of next-to-leading order (NLO) matrix
element calculations “matched” to parton shower algorithms
[9,10]. The “NLO revolution” has been a great success of
LHC-era phenomenology and the bulk of Standard Model
processes are now simulated at fully-exclusive NLO – but
the flip-side is that PDF reweightings now require detailed
information about initial parton configurations in each NLO
subtraction counter-term [11]. Accordingly PDF uncertain-
ties are increasingly calculated as event weightings during
the generation rather than retrospectively as done in the past
for leading-order (LO) processes.1

Further options exist for selective disabling of LHAPDF
support for particular PDF families, as an alternative way
to reduce the memory footprint. However, since this highly
restricts the parton density fits which can be used, it has not
found much favour.

Of course, with a design so dependent on global state
and shared memory, Fortran LHAPDF is entirely unsafe for

1 NLO event generators may report summary PDF information, for
example in HepMC’sPdfInfo object, but this is an approximation and
may give very misleading effects if used for retrospective reweighting.

123

132 Page 4 of 20 Eur. Phys. J. C (2015) 75 :132

use in multi-threaded applications: this greatly restricts its
scalability in the current multi-core computing era.

2.2 Correctness problems

The last set of problems with LHAPDF 5 relate, concern-
ingly, to the correctness of the output. For example different
generations of PDF fit families share the same interpolation
code, although they may have different ranges of validity in
x–Q phase space, and wrong ranges are sometimes reported.

The reporting of �QCD and other metadata has also been
problematic, to the extent that PYTHIA 6’s many tunes
depend on LHAPDF returning a nonsense value which is
then reset to the default of 0.192 GeV. Since the multiset
mode is often only implemented as a multiplying factor on
the size and indexing offsets, reported values of metadata
such as αS and x & Q boundaries do not always correspond
to the currently active PDF slot, but rather to properties of
the last set to have been initialised.

2.3 Maintainability problems

Aside from the technical issues discussed above, the design of
LHAPDF 5 (and earlier versions) tightly couples PDF avail-
ability to the release cycle of the LHAPDF code library –
as in PDFLIB. As PDF fitting has become more diverse,
with many different groups releasing PDF fits in response to
new LHC and other data, the mismatch of the slow software
releases (typically two releases per year) and the faster, less
predictable release rate of new PDF sets has become evident.
It is neither desirable for new PDF data to have to wait for
months before becoming publicly available via an LHAPDF
release, nor for experiments and other users to be deluged
with new software versions to be installed and tested.

In addition, since adding new PDFs involved interfacing
external Fortran code via “wrapper” routines, it both required
significant coding and testing work from the LHAPDF main-
tainers, and blocked PDF fitting groups from using lan-
guages other than Fortran for their fitting/interpolation codes.
The (partial) sharing of wrapper routines between some sets
which did not provide their own interpolation code made
any changes to existing wrapper code dangerous and fragile.
An attempt was made to make it easier for users to make
custom PDFs by using one of three generic set names to trig-
ger a polynomial spline interpolation, but this was also very
restricted in functionality and saw minimal use.

A final logistical issue was the lack of version tracking
in PDF data files, which would periodically be found to be
buggy, and no way to indicate which versions of the LHAPDF
library were required to use a particular PDF. This led to some
problems where for space-saving reasons PDF data would be
shared between different versions of the library, producing

unintended numerical changes and potentially introducing
buggy outputs from previously functional installations.

2.4 Summary of LHAPDF 5 issues

Many of the problems of LHAPDF 5 stem from the combi-
nation of the static nature of Fortran memory handling and
from the way that evolving user demands on LHAPDF forced
retro-fitting of features such as grid interpolation and multiset
mode on to a system not originally designed to incorporate
them. These have combined with more logistical features
such as the lack of any versioned connection between the
PDF data files and the library, the menagerie of interpola-
tion grid formats, and the need to modify the library to use
a new PDF to make LHAPDF 5 difficult both to use and to
maintain. These issues became critical during Run 1 of the
LHC, leading to the development of LHAPDF 6 to deal with
the increased demands on parton density usage in Run 2 and
beyond. Version 5.9.1 of LHAPDF was the last in the For-
tran series; all new development and maintenance (including
provision of new PDF sets) is restricted to LHAPDF 6 only.

3 Design of LHAPDF6

LHAPDF 6 is a ground-up redesign and re-implementation
of the LHAPDF system, specifically to address all the above
problems of the Fortran LHAPDF versions. As so many of
these problems fundamentally stem from Fortran(77) static
memory limitations, and the bulk of new experimental and
event generator code is written in C++, we have also chosen
to write the new LHAPDF 6 in object oriented C++. Since
the Python scripting language has also become widely used
in high-energy physics, we also provide a Python interface to
the C++ LHAPDF library, which can be particularly useful
for interactive PDF testing and exploration.

3.1 PDF value access

The central code/design object in LHAPDF 6 is the PDF, an
interface class representing parton density functions for sev-
eral parton flavours, typically but not necessarily the gluon
plus the lightest 5 quark (and anti-quark) flavours. An extra
object, PDFSet is provided purely for (significant) conve-
nience in accessing PDF set metadata and all the mem-
bers in the set, e.g. for making systematic variations within
a set. The set level of data grouping is unavoidable, even
in the case of single-member sets, and a list of all avail-
able PDF sets on the user’s system can be obtained via
the LHAPDF::availablePDFSets() function. There is no
LHAPDF 6 user-interface type to represent a single-flavour
parton density.

Unlike in LHAPDF 5, where a few PDFs included a parton
density for a non-standard flavour such as a photon or gluino

123

Eur. Phys. J. C (2015) 75 :132 Page 5 of 20 132

via a special-case “hack” [12,13], LHAPDF 6 allows com-
pletely general flavours, identified using the standard PDG
Monte Carlo ID code [14] scheme. An alias of 0 for 21 =
gluon is also supported, for backward compatibility and the
convenience of being able to access all QCD partons with a
for-loop from −6 to 6.

x f (x; Q2) values are accessed via the PDF interface meth-
ods PDF::xfxQ(...) and PDF::xfxQ2(...) – the only dis-
tinction between these name variants is whether the scale
argument is provided as an energy or energy-squared quan-
tity. The most efficient way is the Q2 argument, since this is
the internal representation – it is more efficient to square a Q
argument than to square-root a Q2 one. Overloadings of these
functions’ argument lists allow PDF values to be retrieved
from the library either for a single flavour at a time, for all
flavours simultaneously as a int→doublestd::map, or for
the standard QCD partons as a (pre-existing) std::vector

of doubles. Parton flavours not explicitly declared in a PDF

object will return x f (x; Q2) = 0.

3.2 PDF metadata

A key feature in the LHAPDF 6 design is a powerful “cas-
cading metadata” system, whereby any information (integer,
floating point, string, or homogeneous lists of them) can be
attached to a PDF, a PDFSet, or the global configuration of the
LHAPDF system via a string-valued lookup key. Access to
metadata is via the general Info class, which is used directly
for the global LHAPDF system configuration and specialised
into the PDFSet and PDFInfo classes for set-level and PDF-
level metadata respectively.

Much of the physics content of LHAPDF is in fact encoded
via the metadata system. For example, the value of αS(MZ)

is defined via metadata: if it is not defined on a PDF, the
system will automatically fall back to looking in the con-
taining PDFSet, and finally the LHAPDF configuration for a
value before throwing an error (or accepting a user-supplied
default). The metadata information is set in the PDF/PDF
set/global configuration data files, as described later, and any
metadata key may be specified at any level (with more spe-
cific levels overriding more generic ones). The main moti-
vation for the cascade is reduced duplication and easier con-
figuration: a global change in behaviour need not be set in
every PDF, and set-level information need not be duplicated
in the data files for every one of its members. All metadata
values set from file may also be explicitly overridden in the
user code.

3.3 Object and memory management

A very important change in LHAPDF 6 with respect to
v5 is how the user manages the memory associated with
PDFs – namely that they are now fully responsible for it.

A user may create as many or as few PDFs at runtime as they
wish – there is neither a necessity to create a whole set at a
time, nor any need to re-initialise objects, nor a limitation to
NMXSET concurrent PDF sets. The flip-side to this flexibility
is that the user is also responsible for cleaning up this mem-
ory use afterwards, either with manual calls to delete or by
use of e.g. smart pointers.

Many objects, including PDFs, are created in factory func-
tions such as LHAPDF::mkPDF(...), LHAPDF::getPDFSet
(...), and LHAPDF::PDFSet::mkPDFs(). Internally these
functions typically call the new operator so that the mem-
ory is allocated on the heap and outlives the scope of the
calling function. We use a naming convention to indicate
when the user needs to delete the created objects: if the
function name starts with “mk”, then the return type will be
pointer(s) and the user is responsible for deletion. Note that
LHAPDF::getPDFSet(...) is not such a function: PDFSet
is a lightweight object shared between the set members and
hence its memory is automatically managed and is only
exposed to the user via a reference handle, not a pointer.

Creation of PDFs is usually done via the factory functions
LHAPDF::mkPDF(...) and LHAPDF::mkPDFs(...), which
take several forms of argument list. mkPDF, which returns a
heap-allocated PDF*, either takes two identifier arguments –
the string name of the PDF set, plus the integer PDF member
offset within the set – or a single string which encodes both
properties with a slash separator, e.g. mkPDF(“CT10nlo/0”)
to refer to the central member of the CT10nlo set. For conve-
nience, if the /0 is omitted when specifying a single PDF, the
first (nominal) member is taken as implied. This string-based
lookup is extremely convenient2 and we encourage uptake
of this scheme as standard syntax for referencing individual
PDF members. A final form takes a single integer argument,
which gives the global LHAPDF ID code for the desired PDF
set member. The mkPDFs(...) functions behave similarly,
but only the set name is specified (or implied when call-
ing LHAPDF::PDFSet::mkPDFs()). If no further argument is
given, the PDFs are returned as avector < PDF∗ >, but an
extra argument of templated type vector < T > may also
be given and will be filled in-place for better computational
efficiency and to allow automatic use of smart pointers.

3.4 PDF value calculation

The PDF x f (x; Q2) values may come from any implementa-
tion, derived from the abstract PDF class, although (reflecting
the reality of real-world PDF usage) the only current provider
is the GridPDF class which provides PDF values interpolated
from data files.

2 Extension of this scheme is anticipated for PDFs with nuclear correc-
tion factors in a future release.

123

132 Page 6 of 20 Eur. Phys. J. C (2015) 75 :132

These data files consist of PDF values for each flavour
evaluated on a rectangular grid of “knots” in (x, Q2), with
values for all flavours given at each point. The spacing of
the knot positions in x and Q2 is not prescribed, but the
physical nature of PDFs means that most natural and efficient
representation is to use uniform or near-uniform distributions
in log x and log Q2.

In fact, each PDF may contain arbitrarily many distinct
grids in Q2, in order to allow for parton density discontinu-
ities (or discontinuous gradients) across quark mass thresh-
olds. This gives the possibility of correct handling of evo-
lution discontinuities in NNLO PDFs, and is used by the
MSTW2008 and NNPDF 3.0 fits. There is no requirement
that the subgrid boundaries lie on quark masses – they may be
treated as more general thresholds if wished. The Q2 bound-
aries of these subgrids, and the x , Q2 knots within them must
be the same for all flavours in the PDF. The mechanisms for
efficient lookup from an arbitrary (x, Q2) to the containing
subgrid, and of the surrounding knots within that subgrid
(and of specific flavours at each point) are implemented in
the GridPDF class and associated helper structures.

Since several applications of PDFs, notably their use in
Monte Carlo parton shower programs, require a probabilis-
tic interpretation of the PDF values, a “force positive” option
has been implemented to ensure (if requested) that nega-
tive x f (x; Q2) values are not returned, either from actual
negative values at interpolation knots or by a vagary of
the interpolation algorithm. This is necessary for leading-
order or leading-log applications such as parton showers,
but not in the matrix element computation of NLO shower-
matched generators. The force-positive behaviour is set via
the ForcePositive metadata key, which takes values of 0,
1, or 2 to, respectively, indicate no forcing, forcing negative
values to 0, or forcing negative-or-zero values to a very small
positive constant.

The interpolation of gridded PDF values to arbitrary points
within the grid x and Q2 ranges is performed by a flexible
system of interpolator objects.

3.4.1 Interpolator system

There are many possible schemes for PDF interpolation. To
strike a balance between efficiency and complexity, we have
implemented an interpolation based on cubic Hermite splines
in log Q2–log x space as the default interpolation scheme in
LHAPDF 6, implemented in the LogBicubicInter

polator class, which inherits from an abstract Inter

polator type.
Internally, the log-cubic PDF querying is natively done

via Q2 rather than Q, since event generator shower evolu-
tion naturally occurs in a squared energy (or p⊥) variable and
it is advisable to minimise expensive calls of sqrt. For this
log-based interpolation measure, the logarithms of (squared)

knot positions are pre-computed in the interpolator construc-
tion to avoid excessive log calls in calls to the interpolation
function. In the regions close to the edges of each subgrid,
where fewer than the minimum number of knots required
for cubic spline interpolation are available, the interpolator
switches automatically to linear interpolation.

This interpolation scheme is not hard-coded but is simply
the standard value, “logcubic”, of the Interpolator meta-
data key. This key is read at runtime when a PDF’s value
is first queried, and is used as the argument to a factory
function whose job is to return an object implementing the
Interpolator interface. If an alternative value is specified
in the PDF set’s .info file, in a specific member’s .dat file,
or is overridden by a call to PDF::setInterpolator(...)

before the PDF is first queried, then the corresponding inter-
polator will be used instead. At present, however, the alter-
native interpolators such as “linear” are intended more for
debugging (and for edge-case fallbacks) than for serious
physics purposes.

As the interpolator algorithm is runtime-configurable,
there is the possibility of evolving better interpolators in a
controlled way without changing previous PDF behaviours.
So far there has been little incentive to do so, as specific prob-
lem regions like high-x where uniform spacing of anchor
points in log x becomes sub-optimal are most easily dealt
with by locally increased knot density rather than a global
increase in the complexity (and computational cost) of the
interpolation measure.

Interpolation as described here only applies within the
limiting ranges of the (x, Q2) grid (given by XMin–XMax and
QMin–QMax metadata keys and accessed most conveniently
via the PDF::xMin() etc. methods). Outside this range, a
similar extrapolator system is used.

3.4.2 Extrapolation system

The majority of PDF interpolation codes included in
LHAPDF 5 did not return a sensible extrapolation outside the
limits of the grid, with many codes even returning nonsensi-
cal PDF values. Hence the default LHAPDF 5 behaviour was
to “freeze” the PDFs at the boundaries, although this option
could be overridden for the few PDF sets that did return sen-
sible behaviour beyond the grid limits.

In particular, the MSTW interpolation code included in
LHAPDF 5 made an effort to provide a sensible extrapola-
tion to small-x , low-Q and high-Q values. A continuation
to small x values was performed by linearly extrapolating
from the two smallest log x knots either the value of log x f ,
if x f was sufficiently positive, or just x f itself otherwise. A
similar continuation to high Q values was performed based
on linear extrapolation from the two highest log Q2 knots.
Extrapolation to low Q values is more ambiguous, but the
choice made was to interpolate the anomalous dimension,

123

Eur. Phys. J. C (2015) 75 :132 Page 7 of 20 132

γ (Q2) = ∂ log x f/∂ log Q2, between the value at Qmin and
a value of 1 for Q � Qmin, so that the PDFs for Q ∼ Qmin

behave as:

x f (x; Q2) = x f (x; Q2
min)

(
Q2/Q2

min

)γ (Q2
min)

, (4)

while for Q � Qmin the PDFs vanish as Q2 → 0 like:

x f (x; Q2) = x f (x; Q2
min)

(
Q2/Q2

min

)
. (5)

In LHAPDF 6, (x, Q2) points outside the grid range trig-
ger the same sort of function-object lookup as for in-range
interpolation, but the returned object now implements the
Extrapolator interface.

The default extrapolation, as of LHAPDF version 6.1.5, is
an implementation of the MSTW scheme for use with all PDF
sets, named the “continuation” extrapolator. Alternatives are
also available: a “nearest” extrapolator as in LHAPDF 5,
which operates by identifying the nearest in-range point in
the grid and then using the correct interpolator to return the
value at that point via a pointer back to the GridPDF object;
and an “error” extrapolator which simply throws an error if
out-of-range PDF values are requested. Uncontrolled evo-
lution outside the range is not an option for LHAPDF 6’s
interpolation grids.

3.5 αS system

Consistent αS evolution is key to correct PDF evolution and
usage: programs which use PDFs in cross-section calcula-
tions should also ensure, at least within fixed-order pertur-
bative QCD computations, that they use αS values consis-
tent with those used in the PDF fit. LHAPDF 6 contains
implementations of αS running via three methods: an ana-
lytic approximation, a numerical solution of the ODE, and
a 1D cubic spline interpolation in log Q. All three methods
implement the LHAPDF::AlphaS interface.

The first two of these methods are defined within the MS
renormalization-scheme, and for consistency this scheme
should also be used for interpolation values supplied to the
spline interpolation. The analytic and ODE implementations
are based on the outlines given in Ref. [14] using the result
from Ref. [15] for b3, the results from Ref. [16] for the QCD
decoupling coefficients cn , and the result from Ref. [17]
for the analytic four-loop approximation. Flavour thresh-
olds/masses, orders of QCD running, and fixed points/�QCD

are all correctly handled in the analytic and ODE solvers, and
subgrids are available in the interpolation.

The ODE solver approximates the αS running by numeri-
cally solving the renormalization group equation up to four-

loop order using the input parameters MZ , αS(MZ):

μ2 dαS

dμ2 = β(αS) (6)

= −(b0α
2
S + b1α

3
S + b2α

4
S + b3α

5
S + O(α6

S)). (7)

The decoupling at flavour thresholds where we go from n f

to n f + 1 active flavours or vice versa is currently calculated
using under the assumption the flavour threshold is at the
heavy quark mass, a restriction which will shortly be relaxed
to allow use of generalised thresholds:

α
(n f +1)

S (μ) = α
(n f)

S (μ)

(
1 +

∞∑

n=2

cn[α(n f)

S (μ)]n
)

. (8)

If a more involved calculation is required, we suggest linking
LHAPDF6 to a dedicated αS library such as that described in
Ref. [18]. This evolution is used to dynamically populate an
interpolation grid which is used thereafter for performance
reasons.

The analytic approximation is given by the following
expression, again up to four-loop order:

αS(μ) = 1

b0t

⎛

⎝1 − b1 ln t

b2
0 t

+ b2
1(ln2 t − ln t − 1) + b0b2

b4
0t

2

−
b3

1

(
ln3 t− 5

2 ln2 t− 2 ln t+ 1
2

)
+3b0b1b2 ln t−1/2b2

0b3

b6
0t

3

⎞

⎠ ,

(9)

where t = ln(μ2/�2
QCD). Here �QCD takes distinct values

for different n f , and these are required input parameters for
the number of active flavours that are desired in the calcula-
tion. General flavour thresholds are possible with the analytic
solver.

The interpolation option uses a set of αS values and their
corresponding Q knots, provided as metadata, to interpolate
using a log-cubic interpolation with constant extrapolation
for Q2 > Q2

last and logarithmic gradient extrapolation for
Q2 < Q2

first. Discontinuous subgrids are supported, to allow
improved treatment of the impact of flavour thresholds on αS

evolution.
These αS evolution options are specified, cf. the grid inter-

polators and extrapolators, via an AlphaS_Type metadata
key on the PDF member or set. By default the general PDF
quark mass, MZ , etc. metadata parameters are used for αS

evaluation, but specific AlphaS_* variants are also provided
and take precedence. Other details of the αS scheme, such
as variable or fixed flavour number scheme, are specified

123

132 Page 8 of 20 Eur. Phys. J. C (2015) 75 :132

by the AlphaS_FlavorScheme and AlphaS_NumFlavors3

keys. Quark thresholds can be treated separately from the
quark masses, but the latter are used as the default thresh-
olds.

4 Usage examples

In this section we give brief demonstrations of how to acquire
and use PDF objects in the three languages supported by
LHAPDF 6: C++, Python, and Fortran (the latter via a legacy
compatibility layer which provides the LHAPDF 5 Fortran
API, as will be described in Sect. 8).

4.1 C++ example

#include “LHAPDF/LHAPDF.h”

...

LHAPDF::PDF* p = LHAPDF::mkPDF(“CT10/0”);

cout << p->xfxQ(21, 1e-4, 100.);

delete p;

vector<unique_ptr<LHAPDF::PDF∗ > > ps \

= LHAPDF::mkPDFs(“CT10nlo”);

4.2 Python example

import lhapdf

p = lhapdf.mkPDF(“MSTW2008nlo68cl/1”)

xfs = [p.xfxQ(pid, 1e-3, 100) for pid in p.flavors()]

s = lhapdf.getPDFSet(“CT10nlo”)

ps = s.mkPDFs()

4.3 Fortran example (same as for LHAPDF 5)

double precision x, q, f(-6:6)

x = 1.0D-4

q = 50.0D0

call InitPDFsetByName(“CT10.LHgrid”)

call InitPDF(0)

call evolvePDF(x,Q,f)

5 Data formats

LHAPDF 6 uses a single system of metadata for all PDF sets,
and a unified interpolation grid format for all PDFs imple-
mented via the GridPDF class – this is the case for all cur-
rently active PDFs, both all those migrated from LHAPDF 5
and the several new sets supplied directly to LHAPDF 6.

3 Note that American spelling is used consistently in the LHAPDF 6
interface.

All these data files, and an index file used to look up PDF
members by a unique global integer code – the LHAPDF
ID, following the scheme started by PDFLIB – are searched
for in paths which may be set via the code interface, which
falls back to the $LHAPDF_DATA_PATH environment vari-
able if set, then to the legacy $LHAPATH variable if set, and
finally to the build-time 〈install-pre f i x〉/share/LHAPDF/
data directory. The search paths set via the API and via the
environment variables may contain several different loca-
tions, separated in the usual way by colon (:) characters in
the variables; as usual these are searched in left-to-right order,
returning as soon as a match is found.

Since it is shared between all prospective PDF implemen-
tations and can influence the interpretation of the PDF data
formats, we first describe the metadata format in some detail,
then the data format for LHAPDF 6’s standard interpolation
grids.

5.1 Metadata format

Metadata is encoded in LHAPDF 6 using the standard YAML
[19] syntax, and a uniform system is used for control-
ling system behaviours and storing PDF physical informa-
tion. YAML is a simple data structure syntax designed as
a more human readable/writeable variant of XML. Its use
in LHAPDF 6 consists of dictionaries of key-value pairs,
written as Key: Value. The LHAPDF keys are all charac-
ter strings; the value types may be booleans, strings, inte-
gers, floating point numbers, or lists of numbers written as
[1,2,3...]. Valid boolean values include true, false, yes,
no, 1, 0, and capitalised variants. The yaml-cpp package [20]
is embedded inside the LHAPDF library4 and is responsi-
ble for parsing of the YAML data sections, which are then
available in C++ typed fashion from the Info class and its
specialisations.

Each PDF has a data file, the first part of which is YAML;
these files share a set directory with a 〈setname〉.info file
which is in the same format; and lastly the global configura-
tion lives in a lhapdf.conf file, again in YAML.

As already mentioned, metadata keys set at a more specific
level will override those set more globally; it can hence be
most efficient (for maintenance) to set a not-quite ubiquitous
key at PDFSet level and override it in the minority of PDF

members to which it does not apply. Major metadata keys
and their types are listed in Table 1.

5.1.1 System-level metadata

The basic system-level configuration is set by a collection of
metadata keys in the file lhapdf.conf – specifically the first
file of that name to be found in the runtime search path, as is

4 With a modified namespace to avoid clashes with external usage.

123

Eur. Phys. J. C (2015) 75 :132 Page 9 of 20 132

Table 1 Main metadata keys used in LHAPDF 6 along with their data types and descriptions. Full information on the standard metadata keys and
their usage is found in the CONFIGFLAGS file in the LHAPDF code distribution, and on the LHAPDF website

Name Type Default value Description

Usually system- level

Verbosity int 1 Level of information/debug printouts

Pythia6LambdaV5Compat bool True Return incorrect �QCD values in the PYTHIA6 interface

Usually set- level

SetDesc str Human-readable short description of the PDF set

SetIndex int Global LHAPDF/PDFLIB PDF set ID code of first member

Authors str Authorship of this PDF set

Reference str Paper reference(s) describing the fitting of this PDF set

DataVersion int −1 Version number of this data, to detect & update old versions

NumMembers int Number of members in the set, including central (0)

Particle int 2,212 PDG ID code of the represented composite particle

Flavors list[int] List of PDG ID codes of constituent partons in this PDF

OrderQCD int Number of QCD loops in calculation of PDF evolution

FlavorScheme str Scheme for treatment of heavy flavour (fixed/variable)

NumFlavors int Maximum number of active flavours

MZ real 91.1876 Z boson mass in GeV

MUp, …, MBottom, MTop real 0.002, …, 4.19, 172.9 Quark masses in GeV

Interpolator str Logcubic Factory argument for interpolator making

Extrapolator str Continuation Factory argument for extrapolator making

ForcePositive int 0 Allow negative (0), zero (1), or only positive (2) x f values

ErrorType str Type of error set (hessian/symmhessian/replicas/unknown)

ErrorConfLevel real 68.268949… Confidence level of error set, in percent

XMin, XMax real Boundaries of PDF set validity in x

QMin, QMax real Boundaries of PDF set validity in Q

AlphaS_Type str Analytic Factory argument for αS calculator making

AlphaS_MZ real 91.1876 Z boson mass in GeV, for αS(MZ) treatment

AlphaS_OrderQCD int Number of QCD loops in calculation of αS evolution

AlphaS_Qs,_Vals list[real] Lists of Q & αS interpolation knots

AlphaS_Lambda4/5 real Values of �
(4)
QCD and �

(5)
QCD for analytic αS

Usually member- level

PdfType str Type of PDF member (central/error/replica)

Format str Format of data grid (lhagrid1/…)

the case for all file lookup in LHAPDF 6. The system-level
metadata can be obtained by loading the generic info object
using the LHAPDF::getConfig() function.

The default set of such keys is relatively small and sets
some uncontroversial values such as use of the log-cubic
interpolator and the continuation extrapolator, and default
quark and Z boson masses.

The Verbosity key is also set here: this integer-valued
parameter controls the level of output written to the terminal
on loading PDFs and performing other operations, and by
default is set to 1, which produces a small announcement
on first loading a PDF set; by comparison 0 is silent and 2
produces more detailed and more frequent print-outs.

5.1.2 Set-level metadata

As opposed to LHAPDF 5, where each PDF set was encoded
in a single text data file, the LHAPDF 6 format is that
each set is a directory with the same name as the set,
which contains one 〈setname〉.info file, plus the member-
specific data files. The common set-level metadata should
be set in the .info file. The set-level metadata can be
obtained by loading the lightweight PDFSet object using the
LHAPDF::getPDFSet() function.

The bulk of metadata should be declared at the PDF set
level, except in those sets where each member has a system-
atic variation in the information set via metadata keys such as

123

132 Page 10 of 20 Eur. Phys. J. C (2015) 75 :132

quark masses/thresholds and αS. The information typically
specified at the set-level includes quark and Z masses (even if
the system-level defaults are appropriate, it is safest to repeat
the values used for future-proofing), the PDG ID code of
the parent particle (to allow for identifiable nuclear PDFs in
future), and the error treatment, confidence level, etc. of the
systematic uncertainty variations in the set, to permit auto-
mated error computation such as that described in Sect. 6.

5.1.3 Member-level metadata

As will be described in more detail below, in addition to
the .info file in each PDF set directory, there is one “.dat”
file for each PDF member in the set. This structure permits
much faster lookup of set-level metadata and random access
to single members in the set, compared to the one-file-per-set
structure used by LHAPDF 5.

The top section of each .dat file is devoted to member-
level metadata in the usual format. This should contain the
Format metadata key which will be used to determine what
sort of PDF is being loaded and trigger the appropriate con-
structor (e.g. GridPDF, for key value lhagrid1) via a factory
function to read the rest of the file. This header section ends
with a mandatory line containing only three dash charac-
ters (---), the standard YAML sub-document separator. The
PdfType key is also usually set here, to declare whether this
member is a central or error/replica PDF member. Any other
metadata key may also be declared at member-level, possi-
bly overriding set-level values; this is particularly the case
for special quark mass or αS systematic variation sets.

PDF member-level metadata can be loaded without need-
ing to load the much larger data block by use of the
LHAPDF::mkPDFInfo(...) factory functions.

5.2 PDF grid data format

Within the 〈setname〉 directory, each PDF member has its
own file named 〈setname〉_〈nnnn〉.dat, where 〈nnnn〉 is
a 4-digit zero-padded representation of the member number
within the set – for example member 0 is “0000” and member
51 is “0051” – reasonably assuming that there will be no need
for PDF sets with more than 10,000 members. The “central”
PDF set member must always be number 0.

The splitting of PDF set data into one file per member per-
mits faster random access to individual members (the central
member being the most common), and permits an extreme
space optimisation for circumstances which require it: PDF
data directories may be cut down to only contain the subset
of members which are going to be used. While not generally
recommended, this may give a significant space saving and
be useful for resource-constrained applications – for exam-
ple, to allow LHC experiments’ Grid installations to contain
the central members of many PDF sets where distribution of

the full sets would make unreasonable demands on Grid sites
and kit distribution.

As already described, the first section in each .dat file
contains a YAML header of member-specific metadata, until
the --- separator line. After this line, the grid data begins.
Each subgrid in Q is treated separately and should be listed
in the file in order of increasing Q bin, separated again by
--- separator lines. The file must be terminated by such a
line after the last subgrid data block.

Within each subgrid block there is a three-line header then
a large number of lines giving the PDF values at each (x, Q)

point. The first line in the header is a space-separated, ordered
list of x knot values; the second is a similar list of Q knot
values; and the third is a list of the particle ID codes to be
given in the data block to follow. Note that although the inter-
polator/extrapolator implementations operate canonically in
Q2 (or log Q2) to avoid expensive square-root function calls
in typical usage, in the data files we always use Q to give the
scale: this is for ease of interpretation and debugging, since
physicists find it more natural to interpret scales related to
e.g. the masses or transverse momenta of produced particles
than the squares of such quantities. The particle codes listed
on the third header line are in the standard PDG ID scheme,
and must be given in the order that columns of PDF values
will be presented in the remainder of the subgrid block. It
is anticipated that the “generator specific” range of PDG ID
codes may be used in future to permit valence/sea decompo-
sitions or aliasing of PDF components in the LHAPDF data
files, but there has not yet been demand for such features.

The gridded PDF value data comes next, with each line
giving an x f (x; Q) value for each of the parton ID codes
given in the final line of the block header. The order of lines
corresponds to a nested pair of loops over the x and Q knot
lists given in the block header, e.g. what would result from
the pseudocode

for x in {x}:
for Q in {Q}:

write x fi (x; Q2) for i in PIDs

The lines hence come in groups of lines with fixed x , each
group containing as many lines as there are Q knots, with
the total subgrid containing |{x}| × |{Q}| lines of x f grid
data in addition to the three header lines that specify the knot
positions and parton flavours. The GridPDF parser makes
many consistency checks on the correctness of the format.

5.3 αS interpolation data format

If the interpolation scheme is used for getting αS values from
a PDF (AlphaS_Type = ipol), the interpolation knot αS

values and Q positions are given as lists of floating point
values for the metadata keys AlphaS_Vals andAlphaS_Qs
respectively. These are used for log-cubic interpolation in the

123

Eur. Phys. J. C (2015) 75 :132 Page 11 of 20 132

usual way. Naturally the two lists must be of the same length.
Subgrid boundaries in Q are expressed by a repetition of the
boundary Q value – the corresponding αS values should be
given as the αS limits from below and above the boundary.

5.4 Index file

The LHAPDF::mkPDF(int), LHAPDF::lookupPDF(int),
and LHAPDF::lookupLHAPDFID(string, int) factory
functions make use of the global LHAPDF ID code and its
mapping to PDF members. This mapping is done via the
pdfsets.indexfile, which must be found in the search paths
for these lookup functions to work. This file contains three
data columns separated by whitespace: the LHAPDF ID, the
set name, and the set’s latest data version. The only entries in
the index file are the first entries in each PDF set, since the ID
codes and containing sets of any member may be extracted
from these.

The LHAPDF ID index codes are given in each PDF set
.info file via the SetIndex metadata key, which gives the
LHAPDF ID number of the first (central) member in the set.
To ease maintenance work and minimise errors, the index file
is generated automatically by loading and querying the.info

files from all the PDF sets. LHAPDF’s online documentation
of available PDF sets is also generated by this method.

5.5 Distribution and updating

LHAPDF 6 breaks the tight binding of PDF data files and
the LHAPDF code library: releases of new PDF set data now
happens in general out of phase with software releases, per-
mitting much faster release of PDF sets for use via LHAPDF.
This was a major design goal of LHAPDF 6.

The sets are distributed as 〈setname〉.tar.gz archive
files, each one expanding to the 〈setname〉 directory which
contains the set’s metadata (.info) and data (.dat) files. A
typical PDF set with 50 members and 5 quark flavours cor-
responds to a 5–10 MB compressed tarball, which on expan-
sion will occupy 20–30 MB. The 100-member NNPDF sets,
which also include top (anti)quark PDFs, are somewhat larger
atO(30 MB) compressed andO(80 MB) expanded; sets with
fewer members or fewer flavours require correspondingly
less disk space. Directly using the unexpanded tarballs is not
supported, but a trick to do so will be described in Sect. 9.

The only update required for full usability of a new PDF
set is an updated version of the pdfsets.indexfile, although
this is only needed for PDF use via the LHAPDF ID code:
access to PDFs by set-name + set-member number does not
use the index file and is encouraged for robustness and human
readability. New official PDF set data will be uploaded to the
LHAPDF website [21] along with an updated, automatically
generated version of the pdfsets.index file. Official PDF

sets will also be distributed, both tarballed and expanded, via
the CERN AFS and CVMFS distributed file systems.

Officially supported PDF sets must contain the
DataVersion integer metadata key to allow for tracking of
bugfix releases of the set data files. The latest such number
is written into the pdfsets.index file, and can be used to
detect when an update is available for a PDF set installed
on a user’s system. LHAPDF 6 provides and installs a PDF
data management script simply called lhapdf, with an inter-
face similar to the Debian/Ubuntu Linux apt-get command:
calling lhapdf list and lhapdf install will respec-
tively list and install PDFs from the Web, lhapdf update

will download the latest index file from the LHAPDF web-
site, and lhapdf upgrade will download updated versions
of PDF set files if notified as available in the current index file.
The rest of the script features are interactively documented
by calling lhapdf --help.

In future PDF sets may be released which require
LHAPDF features such as newer grid formats, which are only
available after a particular LHAPDF release. In this situation,
which has not yet been encountered, the set should declare the
MinLHAPDFVersion metadata flag to have an integer value
corresponding to the earliest LHAPDF 6 version with which
it is compatible. This integer version code will be described
in Sect. 8.

6 PDF uncertainties

Over the last decade or so, it has become standard practice
for PDF fits to propagate the experimental uncertainties on
the fitted data points and provide a number of alternative
PDF members in addition to the central member. An esti-
mate of PDF uncertainties on either the PDFs themselves,
or derived quantities such as parton luminosities or cross-
sections, can then easily be calculated with a simple formula
using the quantity calculated for all members of the PDF set.
Correlations between two quantities can also be calculated,
for example, to establish the sensitivity of a particular cross-
section to a PDF of a particular flavour. However, in practice,
there are multiple formulae in common use depending on the
PDF set together with a variety of different confidence lev-
els, requiring some specialist knowledge from the user in
order to apply the correct formula, and potentially leading to
mistakes by non-experts that could severely underestimate or
overestimate the importance of PDF uncertainties. Moreover,
each user or code that calculates PDF uncertainties needs to
implement the correct formula for each PDF set and possibly
rescale uncertainties to a desired confidence level, typically
with branching based on the name of the PDF set, resulting
in a vast duplication of effort.

Starting from LHAPDF 5.8.8 first steps were taken
towards a more automatic calculation of PDF uncertain-

123

132 Page 12 of 20 Eur. Phys. J. C (2015) 75 :132

ties by providing Fortran subroutines GetPDFUncType,
GetPDFuncertainty and GetPDFcorrelation that would
attempt to use the appropriate formulae based on the name
of the grid format. However, C++ versions of these func-
tions were not implemented and it was not straightforward
to discern the confidence level of a given PDF set. Starting
from LHAPDF 6.1.0 member functions were implemented
in the PDFSet class making use of the new set-level meta-
data, specifically ErrorType and ErrorConfLevel, with
several extensions to the original Fortran subroutines. Here
we describe these functions and the formulae implemented
based on the chosen PDF set, for each of the three cur-
rently supported values of ErrorType, namely hessian,
symmhessian or replicas.5 An example program
(testpdfunc.cc) demonstrates the basic functionality. See,
for example, Section 2.2.3 of Ref. [4] for a more comprehen-
sive review of the different approaches, and Refs. [22,23] for
more discussion of the relevant formulae.

6.1 set.uncertainty(values, cl,
alternative)

This function takes as input a vector of values and returns a
PDFUncertainty structure containing a central value,
asymmetric (errplus and errminus) and symmetric
(errsymm) uncertainties, and the scale factor used to rescale
uncertainties to the desired confidence level (cl, in per-
cent), by default 1-sigma = erf(1/

√
2) � 68.268949 %.

The formulae used for the calculation depend on the value of
ErrorType and are hidden from the user, but for reference we
give the different formulae below for each ErrorType. The
alternative option is only relevant for the replicas

case.

hessian: Given a central PDF member S0 and 2Npar

eigenvector PDF members S±
i (i = 1, . . . , Npar), where

Npar is the number of fitted parameters, the central value
F0 and asymmetric (σ±

F) or symmetric (σF) PDF uncer-
tainties on a PDF-dependent quantity F(S) are given by:

F0 = F(S0), F+
i = F(S+

i), F−
i = F(S−

i), (10)

σ+
F =

√√√√√
Npar∑

i=1

[max(F+
i − F0, F−

i − F0, 0)]2, (11)

σ−
F =

√√√√√
Npar∑

i=1

[max(F0 − F+
i , F0 − F−

i , 0)]2, (12)

5 The more complicated prescription for the HERAPDF/ATLAS “VAR”
model and parametrisation errors differs between the different sets and
is not currently supported.

σF = 1

2

√√√√√
Npar∑

i=1

(F+
i − F−

i)2. (13)

symmhessian: For the simpler case where only a central
PDF member S0 and Npar eigenvector PDF members Si
(i = 1, . . . , Npar) are provided, the central value and
PDF uncertainties are calculated as:

F0 = F(S0), Fi = F(Si), (14)

σ+
F = σ−

F = σF =

√√√√√
Npar∑

i=1

(Fi − F0)2. (15)

replicas: Given a set of Nrep equiprobable Monte
Carlo replica PDF members Sk (k = 1, . . . , Nrep),
created either by making fits to randomly shifted data
points or by randomly sampling the parameter space,
the central value and PDF uncertainties are by default
(alternative=false) given by the average and stan-
dard deviation over the replica sample:

F0 = 〈F〉 = 1

Nrep

Nrep∑

k=1

F(Sk), (16)

σ+
F = σ−

F = σF =

√√√√√ 1

Nrep − 1

Nrep∑

k=1

[F(Sk) − F0]2

=
√

Nrep

Nrep − 1
[〈F2〉 − 〈F〉2]. (17)

Alternatively (if alternative=true), a confidence inter-
val (with level cl) is constructed from the probability
distribution of replicas, with the central value F0 given
by the median, then the interval [F0 −σ−

F , F0 +σ+
F] con-

tains cl% of replicas, while the symmetric uncertainty is
simply defined as σF = (σ+

F + σ−
F)/2.

6.2 set.correlation(valuesA, valuesB)

This function takes as input two vectors valuesA and
valuesB, containing values for two quantities A and B
computed using all PDF members, and returns the correla-
tion cosine cos φAB ∈ [−1, 1]. Values of cos φAB ≈ 1 mean
that A and B are highly correlated, values of ≈ −1 mean
that they are highly anticorrelated, while values of ≈ 0 mean
that they are uncorrelated. Again, we give the different for-
mulae below for each ErrorType, although these formulae
are invisible to the user.

123

Eur. Phys. J. C (2015) 75 :132 Page 13 of 20 132

hessian: The correlation cosine is calculated as:

cos φAB = 1

4 σA σB

Npar∑

i=1

(A+
i − A−

i) (B+
i − B−

i), (18)

where the uncertainties σA and σB are calculated using
the symmetric formula, Eq. (13).
symmhessian: Similarly, the correlation cosine is:

cos φAB = 1

σA σB

Npar∑

i=1

(Ai − A0) (Bi − B0). (19)

replicas: In the Monte Carlo approach:

cos φAB = Nrep

Nrep − 1

〈AB〉 − 〈A〉〈B〉
σA σB

, (20)

where the average 〈A〉 and standard deviation σA are
defined in Eqs. (16) and (17), respectively.

6.3 set.randomValueFromHessian(values,
randoms, symmetrise)

This function will generate a random value from a vector of
values, containing values for a quantity F computed using
all PDF members of a hessian (or symmhessian) PDF
set, and a vector of random numbers randoms sampled from a
Gaussian distribution with mean zero and variance one. Ran-
dom values generated in this way [23] can subsequently be
used for applications such as Bayesian reweighting [24–26]
or combining predictions from different PDF fitting groups
(as an alternative to taking the envelope) [4]. Below we give
the formulae used for each relevant ErrorType.

hessian: For the option symmetrise=false, we build
a random value of a quantity F according to:

Fk = F(S0) +
Npar∑

j=1

[F(S±
j) − F(S0)] |Rk

j |, (21)

where either S+
j or S−

j is chosen depending on the sign

of the Gaussian random number Rk
j . We can repeat

this procedure to generate Nrep random values, where
k = 1, . . . , Nrep. However, this asymmetric prescription
means that the average 〈F〉 over the Nrep values does
not tend to the best-fit F(S0) for large values of Nrep.
Hence the default behaviour (symmetrise=true) is to
use a symmetrised formula ensuring this condition:6

6 This formula corrects Eq. (6.5) of Ref. [23] to preserve correlations
by not taking the absolute value of the quantity in square brackets.

Fk = F(S0) + 1

2

Npar∑

j=1

[
F(S+

j) − F(S−
j)

]
Rk
j . (22)

symmhessian: In this case the symmetrise option has
no effect and the formula is:

Fk = F(S0) +
Npar∑

j=1

[F(S j) − F(S0)] Rk
j . (23)

An example program (hessian2replicas.cc) is pro-
vided that uses the randomValueFromHessian function to
convert an entire hessian (or symmhessian) PDF set into
a corresponding PDF set of Monte Carlo replicas.

7 PDF reweighting

A common use of PDFs is reweighting of event samples to
behave as if they had originally been generated with PDFs
other than the one that was actually used. This is particularly
an effective strategy when applying a PDF uncertainty pro-
cedure such as the PDF4LHC recommendation [27] which
involves predictions from ∼200 PDF members – generat-
ing 200 independent MC samples is unrealistic and hence
reweighting is a common approach. The reweighting fac-
tor for a leading-order hadron–hadron process from PDF
x f (x; Q2) to PDF xg(x; Q2) is defined as

w = x1gi/B1(x1; Q2)

x1 fi/B1(x1; Q2)
· x2g j/B2(x2; Q2)

x2 f j/B2(x2; Q2)
. (24)

But we must note limitations in this strategy: a single well-
defined set of partonic initial conditions is only defined at tree
level, where there are no real- and virtual-emission counter-
terms to deal with. Reweighting higher-order calculations
where counter-terms are involved requires deeper knowl-
edge of the event generation than is typically available to
users who wish to retrospectively reweight an existing event
sample – it is much more appropriately done by the NLO
MC generator code itself, and this is supported by at least
the Sherpa [28], POWHEG-BOX [29], and MadGraph5_-
aMC@NLO [30] generator packages.

Further limitations are that PDF reweighting is typically
applied only at the fixed-order matrix element level. Parton-
shower-matched event simulations also include PDF terms
in the Sudakov form factors that appear in initial-state radi-
ation emission probabilities, and these should strictly also
be reweighted – but doing so consistently would require a
sum over possible emission histories, which has yet to be
formalised or implemented in such programs. And finally
there is the issue of αS consistency: if reweighting PDFs
then appearances of the strong coupling – ideally both in the

123

132 Page 14 of 20 Eur. Phys. J. C (2015) 75 :132

matrix element and shower – should also be reweighted. As
this tends not to be done, PDF reweighting should only be
done between PDFs with similar αS values in the scale range
of the process. In particular reweightings between LO and
NLO PDFs, which tend to have very different αS values, are
strongly discouraged.

LHAPDF 5 provided no built-in support for reweight-
ing, since the operation in Eq. (24) is numerically trivial.
However it has transpired that within experimental collab-
orations there was demand for a “tool” to assist with this
calculation. In the interests of usability LHAPDF 6 hence
provides helper functions for computation of reweighting
factors, in the LHAPDF/Reweighting.h header file. These
are divided into two categories – single-beam functions
which calculate the individual weighting factors for each
beam, and two-beam functions which multiply together
the weights for the two beams. The single-beam func-
tion signature is LHAPDF::weightxQ2(i, x, Q2, pdf_f,

pdf_g, aschk=0.05), which will reweight x fi (x; Q2) →
xgi (x; Q2). The optional aschk argument gives a thresh-
old for the relative difference in αS(Q2) between the two
PDFs before the LHAPDF system will print a warning: this
tolerance may be set negative to disable checking, but this
is not advised for physics reasons. The pdf_f,g arguments
to this function may be given either as (const) references
to PDF objects or as any kind of (smart or raw) PDF pointer.
The equivalent two-beam functions have the same form, only
generalised to have two parton ID and two x arguments.

8 LHAPDF5/PDFLIB compatibility

Due to the ubiquity of LHAPDF as a source of PDF infor-
mation in HEP software, it would be unrealistic to release
LHAPDF 6 without also providing a route for this mass of
pre-existing code to continue to work.

8.1 Legacy code interfaces

To this end, legacy interfaces have been provided to the For-
tran LHAPDF and PDFLIB interfaces, and to the LHAPDF 5
C++ interface. These are written in C++, and following the
naming used in LHAPDF 5 to denote the backward com-
patibility interface with PDFLIB, are called the “LHAGlue”
interface. It is entirely localised to the LHAGlue.h and
LHAGlue.cc files within LHAPDF 6.

The Fortran compatibility interfaces are implemented
in C++ using extern “C” linkage and the GCC Fortran
symbol mangling conventions. Since there is a mismatch
between the unlimited, dynamic memory allocation model
of LHAPDF 6’s native C++ interface and the static, pre-
allocated slots model of LHAPDF 5, a state machine was
implemented to manage PDF object creation and deletion
in numbered slots via the Fortran LHAPDF 5 initpdfsetm

and initpdfm routines. For simplicity many of the C++
LHAPDF 5 API functions were implemented via calls to
these Fortran state-machine functions to reproduce the
LHAPDF 5 behaviour.

Since the data format has changed in LHAPDF 6 and there
are no longer any data files with the LHAPDF 5 .LHpdf

or .LHgrid file extensions, calls to initpdfsetm which
specify a name with such an extension will simply have it
stripped off before continuing with PDF loading. There is
a special case of this for the CTEQ6L1 PDF [31], which
was accidentally implemented in LHAPDF 5 with the mis-
spelt name cteq6ll.LHpdf: this name will automatically be
translated to the correct name, cteq6l1, by which it is called
in LHAPDF 6.

The legacy interfaces also contain a special case behaviour
in the reporting of �

(4)
QCD and �

(5)
QCD, which never worked

correctly for the LHAPDF 5 PDFLIB-type common-block
interface to PYTHIA 6 [32]. This value reporting is fixed in
LHAPDF 6, but in the meantime many tunes of PYTHIA 6’s
physics modelling have been built around the assumption
that an invalid value would be reported and PYTHIA would
default to 0.192, the �

(4)
QCD value of the CTEQ5L PDF [33].

Since PYTHIA 6 is itself now largely replaced by its succes-
sor, Pythia 8 [34], and it is important that many of these tunes
continue to work with an implicitly incorrect �QCD value,
a boolean metadata key Pythia6LambdaV5Compat has been
provided to trigger the old physically incorrect but practically
convenient behaviour. This flag is set true by default in the
system lhapdf.conf file, and may be changed in this file or
by runtime use of the metadata API.

8.2 Version detection hooks

As well as these compatibility interfaces, LHAPDF 6 pro-
vides mechanisms to allow C++ applications which use
LHAPDF 5 to detect which version they are compiling
against and hence migrate smoothly to the new version. Three
C++ preprocessor macros are provided for this purpose:

LHAPDF_VERSION provides a string version of the 3-
integer release version tuple (cf. the current release 6.1.4);
LHAPDF_VERSION_CODE is a version of this information
encoded into a single integer by multiplying the first and
second numbers by 10,000 and 100 respectively, then
adding the three numbers together (making the 6.1.4
release have a single-integer code of 60104);
LHAPDF_MAJOR_VERSION is the first number in the ver-
sion 3-tuple, as an integer (i.e. 6 for version 6.1.4).

These macros can be portably accessed by #include’ing
the LHAPDF/LHAPDF.h header, which is available in both ver-
sion 5 and version 6, and the integer codes can be used as
a preprocessor test to separate code for calling LHAPDF 5

123

Eur. Phys. J. C (2015) 75 :132 Page 15 of 20 132

routines from the new, more powerful LHAPDF 6 ones, for
example:

#include “LHAPDF/LHAPDF.h”

#if LHAPDF_MAJOR_VERSION == 6

〈LHAPDF 6 code〉
#else

〈LHAPDF 5 code〉
#endif

8.3 Uptake and prospects

The legacy interfaces have been successfully tested with
a variety of widely-used MC generator codes, including
PYTHIA 6 [32], HERWIG 6 [35], POWHEG-BOX [29], and
aMC@NLO [30]. The main C++ parton shower generators,
from Sherpa 2.0.0 [28], Herwig++ 2.7.1 [36], and Pythia
8.200 [34] onwards all support LHAPDF 6 via the native
C++ API. The global LHAPDF ID code is still in use and
will continue to be allocated for submitted PDFs, meaning
that the PDFLIB and LHAPDF 5 Fortran interfaces can con-
tinue to be used for some time, and will now return more cor-
rect values in some circumstances (e.g. αS values in multi-set
mode).

An improved Fortran interface to LHAPDF 6 is intended
but has not yet progressed beyond initial stages; we welcome
input from the Fortran MC generator community in particular
on what features they would like to see.

9 Benchmarking and performance

The re-engineering of LHAPDF has impact upon the memory
and CPU performance of the library. The main performance
target in the redesign was to greatly reduce the multiple-GB
static memory requirement of an LHAPDF 5 build with full
multiset functionality. We describe the effect on this perfor-
mance metric in the following section, and also mention the
impact on CPU performance and data-file disk space require-
ments. We also describe some possible avenues for further
performance improvements.

9.1 Memory requirements

The memory problems of LHAPDF 5 fundamentally stem
from the Fortran 77 limitation to static memory allocation,
and the use of large static arrays for PDF value interpolation
in each PDF family’s “wrapper” routine (i.e. the code which
interfaced the native PDF group code into the LHAPDF 5
framework). By the time of LHAPDF 5.9.1, the prolifera-
tion of such wrapper routines meant that 2.04 GB of static
memory was declared as required by the libLHAPDF library.
This static memory requirement was incompatible with LHC

Table 2 Static memory requirements in kB for LHAPDF version 5
and 6 before any PDF allocation, broken down into the requirements
for function, initialised data, and uninitialised data. LHAPDF 6 is much
lighter on all counts, but the overwhelmingly most important number
is the reduction in uninitialised data from more than 2 GB down to less
than 1 MB. LHAPDF 6 memory only becomes substantial when PDF
objects are created, and is proportional to the grid sizes of those PDFs

Version Functions Init. data Uninit. data

5.9.1 1509.1 142.0 2,039,405.4

6.1.5 265.3 8.5 1.6

computing systems, and the restricted memory builds used
to work around process accounting limits were suitable only
for the most basic sort of event generation; working around
LHAPDF’s technical limitations became a rite of passage in
LHC data analysis.

The dynamic memory model in LHAPDF 6 completely
solves this problem, as illustrated by the static memory infor-
mation obtained by running the size command on the equiv-
alent libraries between versions 5 and 6 of LHAPDF: this
information is shown in Table 2. All static memory require-
ments have been greatly reduced by the version 6 redesign,
and the total static memory footprint is now just 280 kB, but
the headline figure is the reduction in static uninitialised data
size from more than 2 GB to a negligible 1.6 kB. This does
not reflect the total memory requirements of LHAPDF 6 in
active use – allocating a GridPDF will typically require a
few hundred kB, and loading a whole set into memory will
require O(10 MB), but the user is now fully in control of
when they allocate and deallocate that memory, as well as
being able to load single PDF set members, an option not
available in LHAPDF 5.

9.2 CPU performance

LHAPDF 6 was not specifically engineered for CPU perfor-
mance gains, since this was not typically a severe issue with
LHAPDF 5. However, particularly because of the approach
taken to multiple parton-flavour evolution in GridPDF inter-
polation, there is some impact on CPU performance.

In LHAPDF 5 the performance was dependent on which
PDF set was being used, as each wrapper routine was imple-
mented independently and some were better optimised than
others; however, the evolvePDF and xfx routines always
returned a 13-element array of PDF values for the gluon +
2 × 6 quark flavours. They hence tended to be implemented
such that the x–Q2 “positional” part of the interpolation
weights was only computed once, rather than being redun-
dantly recomputed for every flavour at that point. This means
that LHAPDF 6 interpolation is currently slightly slower than
for LHAPDF 5 if all flavours are evaluated at every (x, Q2)

point; however, if only one flavour is required at a phase

123

132 Page 16 of 20 Eur. Phys. J. C (2015) 75 :132

Table 3 Times taken for phase space integration and CKKW-merged
event generation using the Sherpa MC event generator with LHAPDF 5
(t5) and LHAPDF 6 (t6) via interface code optimised for each LHAPDF
version, and the speed improvement ratio t5/t6. In all cases LHAPDF 6
runs faster than v5, in some (process- and PDF-specific) cases, faster
by factors of 2–6

Process/PDF t5 t6 t5/t6

Cross-section integrations, 1M phase space points

CT10

pp → j j 23’10” 9’17” 2.5

pp → 		 4’12” 2’02” 2.1

pp → H (ggF) 0’20” 0’15” 1.3

NNPDF23nlo

pp → j j 54’40” 9’28” 5.8

pp → 		 8’06” 2’33” 3.2

pp → H (ggF) 0’25” 0’11” 2.3

CKKW event generation, 100k pp → ≤ 4 jet events

CT10

Weighted 43’02” 35’47” 1.2

Unweighted 5h04’39” 4h30’26” 1.1

NNPDF23nlo

Weighted 47’47” 27’20” 1.7

Unweighted 6h44’47” 4h48’26” 1.4

space point, then LHAPDF 6 is significantly faster since
it does not need to interpolate an extra 12 values which
will not be used. Legacy code written to use the PDFLIB
or LHAPDF 5 interfaces is often structured to make use
of this feature, and such code may be slightly slower with
LHAPDF 6. However, where code can be rewritten to make
use of a single-flavour approach, significant speed-ups can be
achieved, as shown in Table 3 which gives timing information
obtained with the Sherpa event generator [28]. Retrospective
PDF reweighting operations using the LHAPDF 6 API, as
described in Sect. 7, should see particularly noticeable per-
formance increases with LHAPDF 6, since the initial-state
parton IDs are already known and hence only two parton
flavours need to be evolved per event.

For code which has not been rewritten to use the
LHAPDF 6 API, a performance improvement may be imple-
mented in a future LHAPDF 6 version, explicitly adding
caching of positional interpolation weights between evolu-
tion calls, so that consecutive evaluations at the same phase
space point do not need to fully recompute the PDF inter-
polation. In an extreme case all required PDF derivatives at
grid knots could also be pre-computed, similarly to how the
knot point log x and log Q2 are currently computed during
PDF initialisation; however, this would be likely to introduce
a memory bottleneck in the computation, and methods such
as use of space-filling curves to optimise CPU cache usage
would add significant complication.

Additional CPU performance improvements are also
being considered, in particular use of vectorised (and cur-
rently CPU-architecture-specific) SSE or AVX instructions
for parallel interpolation of all flavours, or multiple simulta-
neous PDF queries. Vectorisation works best when there are
no conditional branchings, hence re-engineering the spline
interpolation to make best use of vectorisation would involve
removing the current if-branching used to identify the edges
of Q subgrids and instead using extrapolated “halos” sur-
rounding each subgrid. However, such an approach may have
numerical consequences, particularly in how the edges of the
grid and hand-over to extrapolation is handled, and will not
be taken lightly. We welcome feedback on the extent to which
particle physics computations are CPU-bound by LHAPDF
interpolation.

Equivalent concerns apply to the possibility to use general-
purpose graphical processing units (GP GPUs) for vectorised
PDF evolution; parallel evolution of O(13) parton flavours
would not justify the trade-off of extra GPU code-complexity
and platform-specificity. An alternative use would be to com-
pute many points in parallel, but this is often not a natural
use since many applications are Markov Chains where the
next step is conditional on the result at the current one. It
could benefit PDF reweighting, however, and should GPU
implementations of matrix element event generation codes
become prevalent [37,38] then it will be natural for LHAPDF
to support GPU operation. For the time being we prefer
not to prematurely optimise for use-cases which may not
manifest.

Parallel execution at the multi-thread level, or across mul-
tiple processes with shared read-only memory, may also be
useful in PDF reweighting and does not have the techni-
cal overhead of GPGPU programming. LHAPDF 6 does not
include any specific mechanisms to interface with multi-core
frameworks such as OpenMP or MPI, but is largely safe
to use with applications written to use them. Since there is
some global state for the global configuration and the PDFSet

objects created and returned by LHAPDF::getPDFSet(),
LHAPDF 6 is not 100 % thread-safe; but if all changes
to global and set-level configuration are made before the
concurrent block, then use of PDF querying operations
on PDF objects allocated locally to each thread should be
safe.

A final, usually very minor, speed improvement has been
seen in the initialisation time of LHAPDF 6 PDF members.
Since members are now located in individual files rather than
within one large file for the whole set, random access to a
particular PDF no longer requires “scrolling” through the
rest of the file and loading the rest of the set’s members. This
speed improvement is not usually noticeable because the time
taken to load a PDF set in either LHAPDF version is far less
than 1 s. Some unusual applications may need to reload PDFs
from file very frequently, however, and for such situations we

123

Eur. Phys. J. C (2015) 75 :132 Page 17 of 20 132

have made use of a custom fast parser of numeric data from
ASCII files, where the speed-up is achieved by ignoring the
possibility of wide-character types (e.g. Unicode) which are
implicitly handled by C++’s I/O stream types. This optimi-
sation makes LHAPDF 6 loading of whole PDF sets as fast
as in LHAPDF 5. A further speed-up at initialisation time,
if really desired, can be achieved by zipping the PDF set
directories into .zip files – this trick is described in the next
section, since the main effect is upon disk space rather than
significant speed improvements.

9.3 Disk space requirements

The disk space requirements of LHAPDF 6 data sets are
largely similar to those of their LHAPDF 5 equivalents. For
example, the CT10nlo PDF set file is 21 MB in LHAPDF 5
and the equivalent LHAPDF 6 directory contains 33 MB of
data files; showing the opposite trend, the NNPDF 2.3 NLO
PDFs are all typically 95 MB in LHAPDF 5 and 84 MB in
LHAPDF 6.

LHAPDF 6’s use of directories and member-specific data
files within does permit an extreme disk-space optimisation
where .dat files which will not be used can be removed
from the set directory. This is not recommended in typical
usage, but may be found to be helpful when e.g. the cen-
tral members of many PDF sets need to be available, but
error sets are not needed at all. A less extreme optimisation
is to compress each .dat grid data file into .dat.zip or
.dat.gz file and use the zlibc library to access them as if
they were unzipped. This can be done without modifying any
code by (on Linux systems) setting the$LD_PRELOAD envi-
ronment variable to the path to zlibc’s uncompress.so
library, and the typical compression factor of 3–4 reduces
the disk space needed to store the data and can also speed up
PDF initialisation. There are typically too many portability
issues with this approach to currently make zipped data files
standard in LHAPDF 6, but the option exists for applications
which need it.

10 PDF migration and validation

A major task, as substantial as writing the new library, has
been the migration of PDFs from the multitude of LHAPDF 5
formats to the new GridPDF format and interpolator, and then
validating their faithfulness to the originals. This has been
done in several steps, starting with a Python script which used
the LHAPDF 5 interface (with some extensions) to extract
the grid knots and dump the PDF data at the original knot
points into the new format. This script has undergone exten-
sive iteration, as support was added for subgrids, member-
specific metadata, etc., and to allow more automation of the
conversion process for hundreds of PDFs.

The choice was made to only convert the most recent PDF
sets in each family unless there were specific requests for
earlier ones: this collection is more than 200 PDF sets, and
only a few older PDFs have been requested in addition to the
latest sets.

To validate PDFs, a comparison system was developed,
using a C++ code to dump PDF x f values in scans across
log x and log Q (as well as αS values in log Q) in the ranges
x ∈ [10−10, 1] and Q ∈ [1, 104] GeV, with 10 sample points
per decade in each variable. For scans in x , fixed values of
Q ∈ {10, 50, 100, 200, 500, 1000, 2000, 5000} GeV were
used, and for the scans in Q, fixed x ∈ {10−8, 10−6, 10−4,

10−2, 0.1, 0.2, 0.5, 0.8} were used. The same C++ code was
used – with some compile-time specialisation – to dump val-
ues from both LHAPDF 5 and 6, to ensure exactly equivalent
treatment of the two versions.

The corresponding data files from each version were then
compared to each other using a difference metric which cor-
responds to the fractional deviation of the v6 value from the
original v5 one in regions where the x f value is large, but
which suppresses differences as the PDFs go to zero, to min-
imise false alarms. An ad hoc difference tolerance of 10−3

was chosen on consultation with PDF authors as a level to
which no-one would object, despite differences in opinion on
e.g. preferred interpolation schemes. This level, as illustrated
in Fig. 1 for the CT10nlo central PDF member validation, has
been achieved almost everywhere for the majority of PDFs.
Several differences were found this way, which helped with
debugging the LHAPDF 6 code, the migration system, and
occasionally the numerical stability of the original PDF’s
interpolation grid.

Before being officially made available for download from
the LHAPDF website and AFS & CVMFS locations, the val-
idation plots resulting from this process had to be checked
by the original set authors as well as the LHAPDF 6 team. To
date more than 200 PDF sets, from the ATLAS, CTEQ & CJ
[39,40], HERAPDF [41], MRST [12,42,43], MSTW [44–
46], and NNPDF [47,48] fitting collaborations, have been
approved in this way. In addition, over 100 new sets have
been supplied directly to LHAPDF in the new native data
format from the JR [49], METAPDF [50], MMHT [51], and
NNPDF [52] collaborations. Tools to help with PDF migra-
tion from LHAPDF 5 and validation of migrated or indepen-
dently constructed PDFs may be found in the migration

subdirectory of the LHAPDF source package, but only in the
developers’ version available from the Mercurial repository.

11 Summary and prospects

After a lengthy public testing period, the first official
LHAPDF 6 version, 6.0.0, was released in August 2013. As
described, this new version of LHAPDF maintains compat-

123

132 Page 18 of 20 Eur. Phys. J. C (2015) 75 :132

Fig. 1 Example comparison plots for the validation of the CT10nlo
[39] central gluon PDF, showing the PDF behaviour as a function of x
on the left and Q on the right. The upper plots show the actual PDF
shapes with both the v5 and v6 versions overlaid, and the lower plots
contain plots of the corresponding v5 vs. v6 regularised accuracy met-
rics. The differences between v5 and v6 cannot be seen in the upper

plots, since the fractional differences are everywhere below one part in
1000 except right at the very lowest Q point where the two PDFs freeze
in very slightly different ways. The oscillatory difference structures
arise from small differences in the interpolation between the identical
interpolation knots

ibility with applications written to use the LHAPDF 5 code
interfaces, while providing much more powerful models for
dynamic allocation of PDF memory and for parton density
metadata.

The new design also provides a unified data format and
routines for PDF interpolation, which decouples new releases
of PDF sets from the slower release cycle of the LHAPDF
software library. The new design which allows very general
parton content has also proven useful for the new generation
of NNPDF sets which include polarised partons and pho-
ton constituents [53,54], and for implementing fragmenta-
tion functions using the PDF interpolation machinery. Sev-
eral PDF sets have already been supplied directly to the
LHAPDF 6 library in the new native format, which simplifies
and speeds up the release of new PDFs for PDF users and
authors alike.

The new code design vastly reduces the memory require-
ments of the library compared to the several GB demanded by
LHAPDF 5, meaning that it can efficiently use multiple full
PDF sets at the same time – a task which was unfeasible with
Grid-distributed builds of LHAPDF 5. Gains in CPU perfor-
mance, although a smaller effect than the fix to LHAPDF 5’s

pathological memory requirements, are also possible with the
new structure due to the ability to interpolate single flavours
at a time rather than being forced to always evolve all of a
PDF’s constituent flavours at the same time: this particularly
improves performance in reweighting applications where
at most two parton flavours need to be evolved per event.
There is room for further CPU performance improvements
by adding explicit caching of some interpolation coefficients
at a given (x, Q2) point, and with more work the code can be
optimised to allow use of vectorised CPU instructions. Addi-
tion of flavour aliasing or compressed data file reading could
reduce the data size on disk. However, all such performance
optimisations need to be judged according to the real-world
benefits which they offer, against the code complexity which
they typically introduce.

Finally, LHAPDF 6 provides new tools for PDF uncer-
tainty and reweighting calculations, to respond to the increas-
ingly complex ways in which particle physics experiment and
phenomenology use PDFs.

At present the scope of LHAPDF 6 is intentionally more
LHC-focused than LHAPDF 5. Accordingly, no QCD evolu-
tion is planned for the library since this functionality ended

123

Eur. Phys. J. C (2015) 75 :132 Page 19 of 20 132

up virtually unused in LHAPDF 5. Several quality external
libraries [8,55,56] exist to perform this evolution and gener-
ate the grid files – or if desired, the PDF class can be derived
from to call an evolution library at runtime. Similarly, there
is at present no plan to support resolved virtual photon struc-
ture functions or transverse-momentum-dependent PDFs,
which require additional parameters in the interpolation
space.

Nuclear corrections to nucleon PDFs are also not currently
supported in a transparent way, but this is planned for a near-
future LHAPDF version. In the meantime, external nuclear
correction factors such as the EPS sets [57] can be applied
explicitly to nucleon PDFs from LHAPDF. Nuclear PDFs
with the corrections already “hard-coded” into LHAPDF 6
grids are also trivially supported, since these are indistin-
guishable from nucleon PDFs, other than via the Particle

metadata key which can declare the nucleus/ion as the parent
particle in place of the usual proton – this is another strength
of the decision to use the standard PDG particle ID number
scheme in LHAPDF 6.

In summary, LHAPDF 6 is fully operational at the planned
level, offers very significant improvements in performance
and capabilities over LHAPDF 5, and is recommended as
the production version of LHAPDF in the high-precision era
of collider physics which begins with LHC Run 2.

Acknowledgments Thanks to Jeppe Andersen, Juan Rojo, Luigi del
Debbio, Richard Ball, and Nathan Hartland for helpful suggestions and
inputs on PDF collaboration requirements, which were invaluable in
evolving this design. Many thanks also to David Hall, who provided
the lhapdf data management script, to David Mallows for early help
with the interpolator code and Python interface, and to Gavin Salam for
several suggestions and a fast numeric ASCII parser code. AB wishes
to acknowledge support from a Royal Society University Research Fel-
lowship, a CERN Scientific Associateship, and IPPP Associateships
during the period of LHAPDF 6 development. IPPP grants also sup-
ported the work of SL, MR, and David Mallows on this project. KN
thanks the University of Glasgow College of Science & Engineering
for a PhD studentship scholarship.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. H. Plothow-Besch, PDFLIB: a Library of all available parton den-
sity functions of the nucleon, the pion and the photon and the corre-
sponding alpha-s calculations. Comput. Phys. Commun. 75, 396–
416 (1993)

2. O.S. Bruning, P. Collier, P. Lebrun, S. Myers, R. Ostojic et al.,
LHC Design Report. 1. The LHC Main Ring, CERN-2004-003-V-
1, CERN-2004-003

3. J.M. Campbell, J. Huston, W. Stirling, Hard interactions of quarks
and gluons: a primer for LHC physics. Rep. Prog. Phys. 70, 89
(2007). arXiv:hep-ph/0611148

4. S. Forte, G. Watt, Progress in the determination of the partonic
structure of the proton. Ann. Rev. Nucl. Part. Sci. 63, 291–328
(2013). arXiv:1301.6754

5. M. Whalley, D. Bourilkov, R. Group, The Les houches accord PDFs
(LHAPDF) and LHAGLUE. arXiv:hep-ph/0508110

6. D. Bourilkov, R.C. Group, M.R. Whalley, LHAPDF: PDF use from
the tevatron to the LHC. arXiv:hep-ph/0605240

7. W. Giele, E.N. Glover, I. Hinchliffe, J. Huston, E. Laenen et al., The
QCD/SM working group: summary report. arXiv:hep-ph/0204316

8. M. Botje, QCDNUM: fast QCD evolution and convolution. Com-
put. Phys. Commun. 182, 490–532 (2011). arXiv:1005.1481

9. S. Frixione, B.R. Webber, Matching NLO QCD computa-
tions and parton shower simulations. JHEP 0206, 029 (2002).
arXiv:hep-ph/0204244

10. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computa-
tions with parton shower simulations: the POWHEG method. JHEP
0711, 070 (2007). arXiv:0709.2092

11. R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau et al., Four-
lepton production at hadron colliders: aMC@NLO predictions with
theoretical uncertainties. JHEP 1202, 099 (2012). arXiv:1110.4738

12. A. Martin, R. Roberts, W. Stirling, R. Thorne, Parton distribu-
tions incorporating QED contributions. Eur. Phys. J. C 39, 155–161
(2005). arXiv:hep-ph/0411040

13. E.L. Berger, P.M. Nadolsky, F.I. Olness, J. Pumplin, Light gluino
constituents of hadrons and a global analysis of hadron scattering
data. Phys. Rev. D 71, 014007 (2005). arXiv:hep-ph/0406143

14. Particle Data Group Collaboration, J. Beringer et al., Review of
particle physics (RPP). Phys. Rev. D 86, 010001 (2012)

15. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four loop
beta function in quantum chromodynamics. Phys. Lett. B 400, 379–
384 (1997). arXiv:hep-ph/9701390

16. K.G. Chetyrkin, J.H. Kuhn, C. Sturm, QCD decoupling at four
loops. Nucl. Phys. B 744, 121–135 (2006). arXiv:hep-ph/0512060

17. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Strong coupling con-
stant with flavor thresholds at four loops in the modified minimal-
subtraction scheme. Phys. Rev. Lett. 79, 2184–2187 (1997)

18. B. Schmidt, M. Steinhauser, CRunDec: a C++ package for running
and decoupling of the strong coupling and quark masses. Comput.
Phys. Commun. 183, 1845–1848 (2012). arXiv:1201.6149

19. YAML 1.2: YAML Ain’t Markup Language. http://yaml.org
20. yaml-cpp: a YAML parser and emitter for C++. https://code.

google.com/p/yaml-cpp/
21. LHAPDF website. https://lhapdf.hepforge.org
22. G. Watt, Parton distribution function dependence of benchmark

Standard Model total cross sections at the 7 TeV LHC. JHEP 1109,
069 (2011). arXiv:1106.5788

23. G. Watt, R.S. Thorne, Study of Monte Carlo approach to exper-
imental uncertainty propagation with MSTW 2008 PDFs. JHEP
1208, 052 (2012). arXiv:1205.4024

24. NNPDF Collaboration, R.D. Ball et al., Reweighting NNPDFs:
the W lepton asymmetry. Nucl. Phys. B 849, 112–143 (2011).
arXiv:1012.0836

25. R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte et al.,
Reweighting and unweighting of parton distributions and the LHC
W lepton asymmetry data. Nucl. Phys. B 855, 608–638 (2012).
arXiv:1108.1758

26. H. Paukkunen, P. Zurita, PDF reweighting in the Hessian matrix
approach. JHEP 1412, 100 (2014). arXiv:1402.6623

27. M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J.
Feltesse et al., The PDF4LHC Working Group Interim Recom-
mendations. arXiv:1101.0538

123

http://arxiv.org/abs/hep-ph/0611148
http://arxiv.org/abs/1301.6754
http://arxiv.org/abs/hep-ph/0508110
http://arxiv.org/abs/hep-ph/0605240
http://arxiv.org/abs/hep-ph/0204316
http://arxiv.org/abs/1005.1481
http://arxiv.org/abs/hep-ph/0204244
http://arxiv.org/abs/0709.2092
http://arxiv.org/abs/1110.4738
http://arxiv.org/abs/hep-ph/0411040
http://arxiv.org/abs/hep-ph/0406143
http://arxiv.org/abs/hep-ph/9701390
http://arxiv.org/abs/hep-ph/0512060
http://arxiv.org/abs/1201.6149
http://yaml.org
https://code.google.com/p/yaml-cpp/
https://code.google.com/p/yaml-cpp/
https://lhapdf.hepforge.org
http://arxiv.org/abs/1106.5788
http://arxiv.org/abs/1205.4024
http://arxiv.org/abs/1012.0836
http://arxiv.org/abs/1108.1758
http://arxiv.org/abs/1402.6623
http://arxiv.org/abs/1101.0538

132 Page 20 of 20 Eur. Phys. J. C (2015) 75 :132

28. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann
et al., Event generation with SHERPA 1.1. JHEP 0902, 007 (2009).
arXiv:0811.4622

29. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for
implementing NLO calculations in shower Monte Carlo programs:
the POWHEG BOX. JHEP 1006, 043 (2010). arXiv:1002.2581

30. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni et al.,
The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower
simulations. JHEP 1407, 079 (2014). arXiv:1405.0301

31. J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky et al., New
generation of parton distributions with uncertainties from global
QCD analysis. JHEP 0207, 012 (2002). arXiv:hep-ph/0201195

32. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and
manual. JHEP 0605, 026 (2006). arXiv:hep-ph/0603175

33. CTEQ Collaboration, H. Lai et al., Global QCD analysis of parton
structure of the nucleon: CTEQ5 parton distributions. Eur. Phys. J.
C 12, 375–392 (2000). arXiv:hep-ph/9903282

34. T. Sjostrand, S. Mrenna, P.Z. Skands, A brief introduction to
PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008).
arXiv:0710.3820

35. G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri et al.,
HERWIG 6: an event generator for hadron emission reactions with
interfering gluons (including supersymmetric processes). JHEP
0101, 010 (2001). arXiv:hep-ph/0011363

36. M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton et al.,
Herwig++ physics and manual. Eur. Phys. J. C 58, 639–707 (2008).
arXiv:0803.0883

37. K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer,
Fast calculation of HELAS amplitudes using graphics processing
unit (GPU). Eur. Phys. J. C 66, 477–492 (2010). arXiv:0908.4403

38. W. Giele, G. Stavenga, J.-C. Winter, Thread-scalable evalua-
tion of multi-jet observables. Eur. Phys. J. C 71, 1703 (2011).
arXiv:1002.3446

39. H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky et al., New
parton distributions for collider physics. Phys. Rev. D 82, 074024
(2010). arXiv:1007.2241

40. A. Accardi, J. Owens, W. Melnitchouk, The CJ12 parton distribu-
tions, PoS DIS2013, 040 (2013)

41. H1 Collaboration, ZEUS Collaboration, V. Radescu, Hera precision
measurements and impact for LHC predictions. arXiv:1107.4193

42. A. Sherstnev, R. Thorne, Parton distributions for LO generators.
Eur. Phys. J. C 55, 553–575 (2008). arXiv:0711.2473

43. A. Sherstnev, R. Thorne, Different PDF approximations useful for
LO Monte Carlo generators. arXiv:0807.2132

44. A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for
the LHC. Eur. Phys. J. C 63, 189–285 (2009). arXiv:0901.0002

45. A. Martin, W. Stirling, R. Thorne, G. Watt, Uncertainties on αS in
global PDF analyses and implications for predicted hadronic cross
sections. Eur. Phys. J. C 64, 653–680 (2009). arXiv:0905.3531

46. A. Martin, W. Stirling, R. Thorne, G. Watt, Heavy-quark mass
dependence in global PDF analyses and 3- and 4-flavour parton
distributions. Eur. Phys. J. C 70, 51–72 (2010). arXiv:1007.2624

47. NNPDF Collaboration, R.D. Ball et al., Unbiased global determi-
nation of parton distributions and their uncertainties at NNLO and
at LO. Nucl. Phys. B 855, 153–221 (2012). arXiv:1107.2652

48. R.D. Ball, V. Bertone, S. Carrazza, C.S. Deans, L. Del Debbio et al.,
Parton distributions with LHC data. Nucl. Phys. B 867, 244–289
(2013). arXiv:1207.1303

49. P. Jimenez-Delgado, Delineating the polarized and unpolarized par-
tonic structure of the nucleon. arXiv:1410.2431

50. J. Gao, P. Nadolsky, A meta-analysis of parton distribution func-
tions. JHEP 1407, 035 (2014). arXiv:1401.0013

51. L. Harland-Lang, A. Martin, P. Motylinski, R. Thorne, Parton dis-
tributions in the LHC era: MMHT 2014 PDFs. arXiv:1412.3989

52. The NNPDF Collaboration, R.D. Ball et al., Parton distributions
for the LHC Run II. arXiv:1410.8849

53. NNPDF Collaboration, E.R. Nocera, R.D. Ball, S. Forte, G.
Ridolfi, J. Rojo, A first unbiased global determination of polar-
ized PDFs and their uncertainties. Nucl. Phys. B 887, 276–308
(2014). arXiv:1406.5539

54. NNPDF Collaboration, R.D. Ball et al., Parton distributions
with QED corrections. Nucl. Phys. B 877, 290–320 (2013).
arXiv:1308.0598

55. G. Salam, J. Rojo, The HOPPET NNLO parton evolution package.
arXiv:0807.0198

56. V. Bertone, S. Carrazza, J. Rojo, APFEL: a PDF evolution library
with QED corrections. Comput. Phys. Commun. 185, 1647–1668
(2014). arXiv:1310.1394

57. K. Eskola, H. Paukkunen, C. Salgado, EPS09: a new generation
of NLO and LO nuclear parton distribution functions. JHEP 0904,
065 (2009). arXiv:0902.4154

123

http://arxiv.org/abs/0811.4622
http://arxiv.org/abs/1002.2581
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/hep-ph/0201195
http://arxiv.org/abs/hep-ph/0603175
http://arxiv.org/abs/hep-ph/9903282
http://arxiv.org/abs/0710.3820
http://arxiv.org/abs/hep-ph/0011363
http://arxiv.org/abs/0803.0883
http://arxiv.org/abs/0908.4403
http://arxiv.org/abs/1002.3446
http://arxiv.org/abs/1007.2241
http://arxiv.org/abs/1107.4193
http://arxiv.org/abs/0711.2473
http://arxiv.org/abs/0807.2132
http://arxiv.org/abs/0901.0002
http://arxiv.org/abs/0905.3531
http://arxiv.org/abs/1007.2624
http://arxiv.org/abs/1107.2652
http://arxiv.org/abs/1207.1303
http://arxiv.org/abs/1410.2431
http://arxiv.org/abs/1401.0013
http://arxiv.org/abs/1412.3989
http://arxiv.org/abs/1410.8849
http://arxiv.org/abs/1406.5539
http://arxiv.org/abs/1308.0598
http://arxiv.org/abs/0807.0198
http://arxiv.org/abs/1310.1394
http://arxiv.org/abs/0902.4154

	LHAPDF6: parton density access in the LHC precision era
	Abstract
	1 Introduction
	1.1 Definitions and conventions

	2 History and evolution of LHAPDF
	2.1 Performance problems
	2.2 Correctness problems
	2.3 Maintainability problems
	2.4 Summary of LHAPDF5 issues

	3 Design of LHAPDF6
	3.1 PDF value access
	3.2 PDF metadata
	3.3 Object and memory management
	3.4 PDF value calculation
	3.4.1 Interpolator system
	3.4.2 Extrapolation system

	3.5 αS system

	4 Usage examples
	4.1 C++ example
	4.2 Python example
	4.3 Fortran example (same as for LHAPDF5)

	5 Data formats
	5.1 Metadata format
	5.1.1 System-level metadata
	5.1.2 Set-level metadata
	5.1.3 Member-level metadata

	5.2 PDF grid data format
	5.3 αS interpolation data format
	5.4 Index file
	5.5 Distribution and updating

	6 PDF uncertainties
	6.1 set.uncertainty(values, cl, alternative)
	6.2 set.correlation(valuesA, valuesB)
	6.3 set.randomValueFromHessian(values, randoms, symmetrise)

	7 PDF reweighting
	8 LHAPDF5/PDFLIB compatibility
	8.1 Legacy code interfaces
	8.2 Version detection hooks
	8.3 Uptake and prospects

	9 Benchmarking and performance
	9.1 Memory requirements
	9.2 CPU performance
	9.3 Disk space requirements

	10 PDF migration and validation
	11 Summary and prospects
	Acknowledgments
	References

