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A B S T R A C T

This article considers academic energy modelling as a scientific practice. While models and modelling have been
of considerable interest in energy social science research, few studies have brought together approaches from
philosophy of science and anthropology to examine energy models both conceptually and in the applied sense.
We develop a conceptual approach on epistemological ethics that distinguishes between epistemic values – such
as accuracy, simplicity, and adequate representation – and non-epistemic values – such as policy relevance,
methodological limitations, and learning – built into energy models. The research question is: how do modellers
articulate and negotiate epistemic values and what does this imply for the status of models in scientific practice
and policymaking? The empirical part of the article draws from ethnographic fieldwork and interviews amongst
40 energy modellers in university research groups in the UK from two complementary arenas: scholars preparing
their PhD in modelling and scholars working in a large-scale energy modelling project. Our research uses eth-
nographic methods to complement themes recognised in earlier literatures on modelling, demonstrating what
models and modellers know about the energy system and how they come to know it in particular ways.

1. Introduction

Energy social science and transitions research have shown con-
siderable interest in models and modelling in recent years. Holtz and
colleagues summarise a model as a representation of reality that for-
malises, simplifies, and stylises a part of that reality [1]. Modelling de-
notes practices where the boundaries of a modelled system – a target
system – are designated and components of it are selected to the model
based on research objectives. These generic descriptions open an im-
portant epistemological ethics issue on what modellers know about the
energy system and how they come to know it.

Addressing this concern in appropriate depth requires a new ap-
proach, which we develop and advance in this article by building a
framework to analyse ethical values in modelling. We focus on energy
models in two ways: as methods that pursue new knowledge and as
scientific practice in its own right. To study these objects, we combine
tools from philosophy of science with anthropological and ethnographic
studies of energy and infrastructures [2].

As philosophy of science has shown, the specifications and archi-
tectures of models have different kinds of qualities. Drawing from

scholarly debate over recent decades, Diekmann and Peterson sum-
marise certain kinds of qualities as epistemic values, including accuracy,
simplicity, and adequate representation of the target system [3]. These
values are called epistemic because following them is primarily done in
the pursuit of new knowledge. Models can have several other built-in
values depending on their specific purpose, such as learning about the
target system's sustainability, reliability, or safety; or considerations on
the limits of research methods. These can be described as non-epistemic
values of models, because they are first and foremost aimed at objectives
other than attaining new knowledge.

When used in practical problem-solving contexts, models integrate
both epistemic and non-epistemic values, since applied models are
shaped by specific problem framings. The overall quality of these
models does not, therefore, rely only on epistemic criteria, but also on
pragmatic solution-oriented considerations and on desired behaviours
of the target system. This raises important and often overlooked ques-
tions on how epistemic values are embedded alongside non-epistemic
values in the modelling process. Our article examines these issues by
asking: how do modellers articulate and negotiate epistemic values and what
does that imply for the status of models in scientific practice and
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policymaking? We address this question by focusing on the modelling of
energy systems performance especially in the context of sustainable
energy transitions and energy systems integration.

Numerous modelling techniques and approaches are used in energy
modelling, drawing on different scientific disciplines such as en-
gineering, statistics, economics, computer science, mathematics, psy-
chology, and marketing. Efforts to address long-term energy goals often
build on system models that simulate the performance of aspects of the
energy system under specified possible conditions, policy interventions,
or changing practices [4,5]. It is not straightforward to make such long-
term evaluations (20 years or more) in an environment determined by
complex interactions between technological, economic, social, cultural,
and institutional spheres. In contrast with the more clear-cut possibi-
lities for prediction in purely physical science domains such as classical
mechanics, foresight in a complex domain such as whole energy sys-
tems is typically characterised by the interplay between different causal
processes which may be too complex to be fully represented in any
useful modelling process [6]. This problem is directly linked with
epistemic and non-epistemic values: a major difference exists between
modelling the energy system in the shorter, operational term, often
grounded in empirical trends, compared with using longer-term plan-
ning and exploratory models to simulate envisioned (possible future)
energy systems.

From an epistemic point of view, modelling and simulation as sci-
entific practices raise challenging questions ranging from the re-
presentational value of models to the types of learning that models may
enable [7]. In this paper, we take the main epistemological issues and
points of view related to modelling and simulation as discussed in
philosophy of science as a starting point for reflection. The empirical
part of the paper (ethnographic fieldwork research by two researchers)
examines modelling in practice in two arenas that complement each
other. We studied the modelling practices by researchers from a large
UK research consortium, the National Centre for Energy Systems In-
tegration (CESI), alongside a wider group of academic energy modellers
in the UK. The latter were mainly postgraduate students still developing
their modelling skills and knowledge as part of their doctoral research.
This strategy aimed to cover both skilled practitioners and those being
brought into the modelling culture, to help us to uncover the relevant
competences and skills needed to become a modeller [8]. Our general
interest in modellers and modelling was inspired by recent anthro-
pological scholarship that has examined the active use of models and
how diverse kinds of model turn energy problems into objects of
knowledge and action [9,10].

The rest of the article is structured as follows. Section 2 starts with a
discussion of literature on epistemic values in modelling, while Section
3 sets out the materials and methods used. We use the philosophical
questions and debates as a heuristic tool to explore the epistemic
questions and concerns raised by energy modellers in their day-to-day
practice (Sections 4–7). Section 8 summarises and discusses the con-
sequence of our findings, highlighting the conclusions to be drawn from
our ethnographic approach, complementing discussions on the pro-
spects and limitations of modelling in the scholarly literature.

2. Literature review

Energy system models are formalised representations of a target
energy system and can be described as vehicles for learning about the
behaviour of these systems. But what kind of learning do they enable?
To answer this question, scholars in the philosophy of science have
elaborated general classifications of computer models as tools for
knowledge development. Keller, for example, makes a distinction be-
tween three types of models [11]:

i) Models based on proven theories and mathematical abstractions of
a real-world target system.

ii) Models whose calculations provide responses (data) in ‘what-if’

simulations, where the behaviour of a real-world target system is
represented by a set of equations based on theoretical insights, but
whose results cannot be verified empirically.

iii) Models that simulate the behaviour of entities, for example the si-
mulation of artificial agents in agent-based modelling.

In a similar vein, the scholarly literature on energy social research
and modelling has provided numerous classifications of energy models
used by academics and policymakers. Scholars in Imperial College in
the UK have recognised four different “modelling families”: i) energy
system optimisation models; ii) energy system simulation models; iii)
power systems and electricity market models; and iv) qualitative and
mixed-methods scenarios [12]. Another review by modelling scholars at
University College London distinguishes between bottom-up models
(which are best at addressing technological details of energy systems,
such as MARKAL-TIMES); top-down models (which replace detail with
understanding of large-scale energy-economy interactions, such as
GEM-E3); and hybrid models that mix the two approaches [13]. These
are by no means the only ways to classify energy models and these
different classifications seem to work mainly for particular subgroups of
modelling scholars. To pick just two more examples: Subramanian et al.
divide energy models by their modelling approach (computational,
mathematical vs. physical) and their field (process systems engineering
vs. energy economics) [14]; while Lund et al. describe two archetypes
of energy systems modelling, one being prescriptive investment opti-
misation or optimal solutions, the other an analytical simulation or
alternatives assessment approach [15]. For our purposes, it is therefore
firstly interesting to explore how energy modellers classify the models
at their disposal, since this gives an indication about the goal-direct-
edness of their modelling effort and how their approach to model
typologies might inform their approach to making models (Section 4).

Secondly, it is well-known that many different models of the same
target system can be constructed [16]. Parker points out that computer
simulation studies perform model calculations based on numerical
solving techniques, which can only approximate analytical model so-
lutions [17]. Thus, while some energy models are used to solve physical
equations, they may offer just approximations of physical laws. Fur-
thermore, many energy systems models do not primarily aim to ap-
proximate physical laws but focus on systems dynamics such as re-
presentations of supply and demand. For these kinds of systems model,
it is not the approximation that makes the models ‘opaque’ but the
dependence of the model on large amounts of data and assumptions
that may not be available to the modeller. In other words, these models
have ‘black box’ characteristics [9]. The question in this context is,
which approximations and kinds of epistemic ‘opaqueness’ are accep-
table to energy modellers and why (see Section 5)?

Closely related to this is the representational value of models and
simulations. Energy system models are constructed and used to learn
something about the ‘real-world’ energy system. Yet the relation be-
tween simulations derived from running models and the target (the
‘real energy system’) is actively debated from an epistemological point
of view. For a significant degree, this depends on how the ‘target’ is
construed. Grüne-Yanoff and Weirich argue that,

the target can be a prepared description of data, obtained by ob-
servation of real-world objects or events. These data are then ‘pre-
pared’ by re-describing it in more abstract ways, for example, by
curve fitting. The relation between simulation and world is then
seen as a relation between the mathematical structure of the simu-
lation (typically, a trajectory though state space) and the mathe-
matical structure of the prepared data re-description. [18] (p. 24)

In other words, the typical target of a model or simulation is only a
composite part of ‘the real world’. In this view, the epistemic truth
value of models and simulations is predicated on isolating the operation
of certain causal factors from the complex interaction of factors in the
real world.
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The relationship between models and representation is also high-
lighted in energy social research literature. A frequently expressed view
is summarised by Sovacool and colleagues when they state that “the
reliability of energy models is often low because they are overly sen-
sitive to cost assumptions and ignore other major drivers of energy
policy and behaviour such as social equity, politics, and unforeseen
technological advances” [19] (p. 95). In the energy models of buildings,
this issue manifests in the “performance gap” critique, e.g., observing
that realised energy savings from retrofits are often significantly lower
than those “predicted by engineering models” [20] (p. 726). amongst
the cited reasons for this kind of disparity between model and ob-
servation, well as factors such as improper installation and occupant
behaviour, are “modelling inaccuracies”. Such poor predictive cap-
abilities lead some modellers and model users to advocate the use of
modelling mainly as a tool to challenge existing assumptions or ‘mental
models’ [21]. For our purposes, it is important to consider how the
representativeness of energy models is understood and interpreted by
energy modellers, and whether the way that epistemic values are ar-
ticulated and related to non-epistemic values of models help to clarify
this problem (Section 6).

Finally, Laes argues that it is useful to look at energy modelling and
foresight from a constructivist perspective, which views foresight as a
combined scientific-political practice [22]. In this reading, energy
system models fulfil their role as ‘boundary objects’ [23], spanning the
domains of science and decision making. Models such as these acquire
different meanings in different social worlds, but their structure is still
common enough to make them recognisable. The MARKAL energy
model used in the UK, for example, gained influence by bringing to-
gether different professional communities with shared interests [24]. As
science studies scholarship suggests, computer models are simulta-
neously scientific and political [25]: models have public and policy
functions and are often explicitly made to be useful for the policy
community [26,27].

One important function of scientific foresight exercises has been to
protect scientists from accusation of bias or illegitimacy – because the
exercises are situated clearly as ‘official’ or ‘technical’ objects of ad-
visory science, and hence confusion with ‘pure’ research science is
avoidable – while protecting policy makers from accusations of al-
lowing technocratic intrusions into their domain of competency [28]. A
known example that illustrates these two these principles is the UK
Government's Aqua Book, which provides guidance on producing
“quality analysis” for the government when using analytical models
[29]. Indeed, an increasing amount of scholarship now exists on the
policy implications and policy relevance of energy models [4,30-33].
Section 7 delves deeper into modellers’ perspectives on the imagined
profile of the policy users of their models.

3. Materials and methods

This article is based on empirical research carried out under the
auspices of the National Centre for Energy Systems Integration (CESI), a
5-year research centre project funded by the Engineering and Physical
Sciences Research Council (EPSRC) UK, and co-funded by industrial
partners including Siemens, in partnership with distribution network
operators and others.

CESI is a multidisciplinary consortium that includes social and
economic sciences as well as engineering, mathematics, computer sci-
ence, and other related disciplines. As stated in the project description:
“The Centre …[aims] to understand how we can optimise the energy
network, drive down customer bills and inform future government
policy”. [34]

The role of two authors of this paper was to conduct an analysis of
the energy modelling process itself, and to bring social science knowl-
edge to energy systems integration processes. In this paper, we draw on
fieldwork that was conducted in two related modelling arenas. Firstly,
the authors spent a term in university modelling groups, interviewing

28 engineering modellers conducting PhDs in engineering on energy-
related modelling topics. We targeted ‘novices’ in our study as a way to
make explicit the relevant “cognitive schemas, communicative com-
petences, and social skills” [8] (p. 154) that modellers learn along with
technical modelling techniques. Secondly, we interviewed 12 modellers
who were directly involved in the CESI project, to learn about how
modellers in a modelling institution – in this case, a large-scale UK
research project – position themselves with regards to issues recognised
in philosophy of science.

The interviewees were mainly based in engineering and physical
sciences, though some had academic backgrounds that were not in
energy systems. 13 of the subjects (one third) were women. Nearly all
the subjects were project researchers, but a few of them were at lecturer
level.1 Our research design was inspired by the classic laboratory stu-
dies in Science and Technology Studies (STS) [35-37]. Like these stu-
dies, our enquiry aimed to establish a direct relation with expert actors,
staying in their environment, observing and describing their practices,
interacting with them, participating in their everyday routines, and
striving to learn the meanings of their actions. Here this ethnographic
approach involves going to where energy models are produced and the
modelling tools configured as part of daily practice.2

4. A functional model typology

In this section, we will describe the different models deployed
particularly in energy modelling and the types of epistemic questions
that they raise. One foundational distinction within the CESI project
that is found more generally in energy systems modelling, distinguished
operational models and planning models. Operational models address the
functioning of energy systems, such as transmission and distribution of
electricity and gas under different infrastructural and resource condi-
tions. Operational models draw on epistemic values of prediction and
accuracy: terms such as particular, determination, and simulation are
central for how the modellers understood these kinds of model. Planning
models provide representations of future infrastructure and energy
systems components. They were seen as more tentative than the op-
erational models. Planning focuses on what future energy systems could
possess and might operate. Planning models are aimed at exploration
rather than determination of energy systems in models.

In considering the values incumbent in energy modelling, we noted
another key distinction reported by energy modellers: between physical
models and statistical models. In the case of energy demand models,
physical models are based on physical theory: for example, how air
moves in a building or how heat is transferred between materials.

1 We stress an important point on the generalization of our findings from
qualitative research. Most of the interviewees are from a small number of in-
stitutions and almost all of them had background in engineering and physics. If
we were conducting a representative survey, this would be a caveat. However,
our ethnography does not aim at probabilistic but at theoretical sampling [8] of
the modelling process and its epistemic and non-epistemic values. This means
that we chose the CESI project researchers and PhD students as our informants
because they are relevant to address the research question. The article is not
aimed at generalizing about what happens in all modelling research groups or
the behaviour of all energy modellers everywhere. Rather, it aims providing
new understanding on how modellers understand the ethical epistemic qualities
of their models and relate those to non-epistemic values, drawing from and
complementing existing literature on these topics.

2 However, this research also differs from classic laboratory studies in one
respect: our material spans more than one laboratory or other single sites of
expert knowledge [38,39]. Several groups from various UK universities were
included in the CESI consortium and in our study and most of the PhD students
did not work for CESI but were based in a related engineering research group.
In the field work, we were also interested in observing how situations in par-
ticular field sites interrelate to other sites that matter for models and their
epistemic and non-epistemic values: such as the organization of research groups
and relations to target ‘end users’ in industries and policy [36].
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Statistical models are built from datasets often based on actual mea-
surements of energy usage and the use of statistical techniques. They
resemble an inductive approach to energy usage based on recorded
patterns and practice and how these can be explained by statistical
tools, such as models or combinations of them. A scholar in this area
explained to us:

Statistical modelling is basically where we try to understand some
real-world problems first of all and then we try to collect the in-
formation or data. it could be qualitative or quantitative. We try to
analyse those data, to understand what are the statistical char-
acteristics of those data and then we try to develop the modelling
framework.

This approach leads to an important methodological challenge: a
model's ‘quantitative’ outputs (numbers) are often not the only scien-
tifically significant outcome of that model. First, real-world problems
determine what kinds of models are developed to begin with. Second,
according to the modellers in the study, a number is often not a suffi-
cient scientific result from a model. What is needed, rather, is a ‘story’
about what underlies these outputs and which inputs should have been
modelled. This is particularly apparent in explanations of demand
where the practices happening in a household in everyday life may go
some way to explain why patterns of energy demand are shaped in a
particular way [40]. Energy demands vary according to hour, day,
month, and season. They are shaped both by what the demand modeller
calls “deterministic physical processes” – such as lights turning on or off
at a certain time during the day in a number of houses – and “stochastic
processes” – such as visits from friends. A model output cannot reveal
this composition of demand as such, but knowing the ‘story’ or a
‘narrative’ underpinning it can influence further model development.3

In sum, classifications of the models reveal a large roster of meth-
odologies, forms of proof, knowledge bases, and research aims, such
that the models have different epistemic qualities that need to be ne-
gotiated and articulated to the designers of other kinds of models. This
adds to our overall interest in modelling as a scientific practice. Any
modelling approach to complex problems will acknowledge that models
cannot be treated as one entity but the modellers we studied developed
typologies of models as part of their work. They also need to actively
articulate and negotiate the limits of formal mathematical modelling
and its interplay with sense-making activities (narratives, storylines).
Design of models involved discrete decisions on the epistemic elements
that a model would or would not address. Different models have related
but potentially different relationships to representations of reality,
different material impacts, and different potential target end users,
themes which we discuss next.

5. Choice of models within the same functional category

In the context of energy systems integration, the limitations of
current modelling practices have been clearly recognised. Their short-
comings include the inability of the most prevalent high-level static
models to develop “integrated representations of the physics, en-
gineering, social, spatial, temporal, or stochastic aspects of real energy
systems” [50]. Various business and technological uncertainties, the
effects of climate change, behavioural dynamics, and technological
interdependencies posed further limitations to existing models, framed
in epistemic terms: the models do not ‘know’ enough about these

aspects of energy systems. Developing a model often starts from epis-
temic premises: what epistemic qualities will the model be able to ad-
dress?

According to our interviews with the wider set of modellers, de-
veloping a model might mean first designing relevant relations between
the knowledge known or data held, and the knowledge sought. This
might be done in a hand-written sketch, for example, or on a spread-
sheet, to help the modeller derive an equation for the function required.
The choice of a tool – more accurately, a mathematical solver (i.e.
software packages that solve equations or find the best statistical model
to cover a dataset) has consequences for solving these equations.
Modellers need to be aware of the approximations that the model makes
and whether those are fit for the purpose of the research. The modelling
tool has material implications for the processes that are being modelled
and what can be known about them, such that an epistemic quality like
‘accuracy’ is adjusted in relation to the model's purpose – i.e. it is de-
signed into the model. As a statistical modeller explained this, “when
we do modelling, we start with some kinds of assumption about what
kind of accuracy we are looking for”.

For the PhD students embarking on modelling research, the mod-
elling tool was sometimes passed on by PhD supervisors or immediate
predecessors in the same research project, and sometimes they were
guided by peers. One subject told us that modellers just have to select a
modelling tool that others in the group know how to use so that help
could be sought if the model did not work. That said, there were also
occasions where the model was selected at will – such as the start of a
PhD project, designing a new course, or sometimes replacing the model
with another in the middle of an ongoing project. In these decision
situations, a number of classifications were used though which mod-
ellers tried to resolve and understand this problem of what model to
use.

One example of such distinctions appeared between open source
models and proprietary models. The former was seen as more malleable
for academic research; the latter made modelling easier, but were
morally evaluated as “lazy”. On the other hand, an open source model
also introduced particular difficulties. They often had a smaller cohort
of users and had gone through less product testing. As one senior
modeller explained, “if you use an open-source model, the interface is
probably more difficult to use, it's less efficient, it's more likely to
crash.” There is an indication of computational friction in running these
models as this quote shows. Paul N. Edwards, studying climate mod-
elling, refers to this friction as “the struggle involved in transforming
data into information and knowledge” [51] (p. 84). In sum, the dis-
tinction between open source and proprietary models shows how
choices are made by the modellers. These choices concern epistemic
values: the convenience of proprietary models is contrasted with the
epistemic quality of open-source models. But they also concern non-
epistemic values: open-source models can contribute not only to pursuit
of knowledge, but also to trust in how the models work [52] and a
commitment to greater egalitarianism in science [53].

The choices that the modellers made were also decisions about
epistemic qualities concerning the material effects of certain kinds of
models. An existing model might be apt at representing certain qualities
– such as high-level, static energy systems – but less capable of re-
presenting integrated, interactive, and complex energy systems. These
epistemic values in modelling are reflectively clearly articulated by the
modellers themselves.

6. Models and representation

In this section, we discuss further the notion of ‘accuracy’ amongst
the expert modellers. Almost every modeller we spoke to explicitly
acknowledged that the common critique of models as inaccurate pre-
dictive tools is not only a simplification, but also a misunderstanding
[54]. We were told that planning models should not be used for pre-
dictive purposes, such as investment decisions, because they cannot

3 Linking ‘quantitative’ and ‘qualitative’ knowledge is often addressed using
the idea of a scenario, especially when future technological, economic, and
social situations are concerned [10]. CESI participants have also been engaged
in building their own scenarios, including so-called ‘hybrid’ scenarios that in-
tegrate narrative stories with modelled numbers. Scenario methodologies have
been developed by several commercial actors such as Shell and are also widely
used in energy research [41-49].
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represent future uncertainty well enough. One of the developers of a
planning model told that using these scenarios for predicting could even
be worse than “no planning at all”. This begs the question, if planning
models are not be used for prediction and investment planning, then
what are they for? Similarly, in the domain of energy demand, we were
told that a building model cannot be used to predict how people's en-
ergy bills will evolve. This would constitute an ‘improper’ use of the
model and give misleading results – the UK's Energy Performance
Certificates (EPC) were cited as a notable example of inappropriate use.
Instead of predicting bills, building models should be used to approx-
imate the physics of a building and draw on that for understanding
changes – such as changes in heating demand over time.

Models are representations of a more complex energy system. They
can – sometimes but not always – be validated against empirical data to
better resemble that system. For example, one of the work packages of
CESI was explicitly called “validation and demonstration”. This work
package uses seven different demonstrator sites across the UK to “test
specific energy system arrangements as a service” [55]. Our broader
interviews with UK modellers uncovered several different ways to do
model validation. These include laboratory experiments i.e. building
what has been modelled (such as an engine) and measuring its beha-
viour in order to reconfigure the model. If that is not possible, as with
future energy systems, one could also look at other modellers’ results
and validate the model against another model. If neither of the two are
available, as in some life-cycle assessments of energy technologies, one
could also validate the methodology: i.e. ask whether the model mea-
sures things in the way others do.

One of the modellers aligned with the CESI demand modelling
distinguished between two kinds of approach to model validation. First,

I'm developing the model for synthesizing the energy demand, so I
do it at the individual profile level. So all the statistical property of
empirical data should match with the synthetic data. And for that
we checked, like, percentile distribution, probability density dis-
tribution, all the statistics such as mean standard deviation, all these
things.

Second, “because these are the time series, you want to check some
of the key properties of the time series: auto correlation function,
partial auto correlation functions and those type of things, periodicity.”
These principles point to the importance of epistemic values: the
knowledge of energy demand that the model synthesises should be in
correspondence with empirical knowledge.

Yet, the relationship between models and representation was not
only a problem solved by statistical methodologies. Models also must be
updated to adapt to a changing reality in the present and changing
expectations of the future. For example, current energy system models
have to take account of new developments in energy storage, or radical
changes in energy costs such as the recent dramatic decrease of UK
wind energy spot prices. Current debates about the emergence of
electric vehicles, and consequently the changing demand for EV char-
ging capacity also loom very large for energy demand modellers, and
they think a great deal about how this would affect the calculations in
their models.

Models themselves therefore also have futures, and the future of a
meticulously developed model may be deeply uncertain. To address
this, research models are rarely ‘finished’, in that they are always in a
state of development or revision. For the CESI operational models, for
example, the components of energy systems were determined by the
model structure, yet factors such as fuel prices, energy demands, and
energy resources might still change in unexpected ways and subject the
model to uncertainties. The planning models, running decades into the
future, confronted uncertainties more widely. In these timeframes, en-
ergy technologies and associated social and economic issues could po-
tentially change radically. This is another important expression of un-
certainty. It demands the formal analysis of uncertainties, a topic of
considerable recent interest amongst modellers and energy research

[4,56-58]. For example, knowledge about the activities of institutional
and political actors tends to be simplified by several current energy
models, making their usage difficult and uncertain in the implementa-
tion of energy policies [5].

This section has shown that, from an epistemic point of view,
models are not fatally compromised by being only partial representa-
tions of energy systems. That is to say, acknowledging the impossibility
of fully accurate representation does not mean abandoning rigour as an
epistemic quality. The wide acceptance of uncertainty analysis and
scenario methods in the CESI consortium shows that the modellers,
themselves, were reflective about the limits of the computer modelling.
Yet what those limitations would mean for how their models can be
legitimately used is a different question.

7. Policy and modelling

Rather than ‘accuracy’ or ‘prediction’, the modellers in CESI – and
especially the demand modellers, whom we mostly refer to below –
were considerably more interested in how their models get used and
where. We heard modellers repeat George E.P. Box's quote, “All models
are wrong, but some are useful.” This ‘usefulness’ was measured often
against hypothetical ‘end-users’, such as policy decision makers or in-
dustry companies. The bridge to these target end users of the models
attracted systematic effort and discussion.

For instance, one informant had developed a similar model in two
country contexts, in the UK and Bangladesh. The physics behind these
two models was similar and the modelling tools resembled each other
very closely. But the policy relevance had been markedly different in
these two contexts. He expressed how satisfied he had been with the
experience in the UK.

Every day we will be, like, okay we did this. And they [the regional
government] will be …working at different departments yet inter-
acting with each other. … (They say) we want this, we don't want
this, this is not right. What you have is an interaction. Then the
model gets better.

The term, ‘better model’ here is revealing. With some exceptions,
few modellers thought that their model is ‘better’ only if it becomes
more accurate. Reality can be approached by validation (as noted
above), but all models remain approximations. It would not be viable,
or even productive, to try to develop a full, Borgesian ‘correct’ model of
an energy system, a neighbourhood, or a building for example. On the
contrary, a model could be physically ‘inaccurate’ or methodologically
weak but still useful. A building modeller who had engaged in policy
advisory panels expressed this:

Weaknesses in methodology don't actually matter. That's what I get
from those kinds of (policy-facing) discussions. And you start to
think that actually, it doesn't matter if the answer is wrong because
it makes something, provides somebody with the right direction
when they are making a decision. It has failed as a physics tool but
succeeded as a decision-making tool. That's actually fine. I have no
problem with that at all. It is just that context, I mean because it is
chasing rainbows to try to get a model to be accurate – a building
model to be physically just literally accurate, empirically accurate –
because that's not what it is for. It is for making better decisions
around things.

This heavy stress on usefulness of models above truthfulness and the
view that “weaknesses in methodology don't actually matter” also
makes modellers shift political responsibility in their work. The more
the modellers consider that modelling is about policy usefulness, the
less they concern they seem to have around infringements of scientific
accuracy in final decisions. The respondent's “that's actually fine” il-
lustrates that for some modellers their goal may lie less in fighting for
the strengths of their scientific methods than the importance of the is-
sues raised by them being considered in eventual policy decisions. We
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could argue (provisionally) that by doing so some modellers consider
themselves more as providers of policy-useful modelling input rather
than adopting a political role in the debate to stress issues that may be
in line with their personal values.

Nevertheless, the possible applications by different users, and re-
presentation of these end users and uses [59] were often raised in
discussion as choices were made about next steps in the modelling
process. At the same time, and more generally, the policy relevance of
models seemed to be an inherent value of the models that many mod-
ellers regularly thought about. A workshop report by several CESI
participants summarised this:

Many of these research-needs under uncertainty analysis and else-
where might be summarised as “analysis for decision making in the
real world”, and research and practice should be designed with this
in mind. It is important to guard against matters such as collecting
data for the sake of having a large dataset, or confusing optimality in
the model world with a good decision in the real world – the real
goal being to identify decisions which one has logical reason to
believe are good ones in the real world. [60] (p. 9)

This interest in decision making, decision makers, and decision
support, and the ‘appropriate’ use of models by putative decision ma-
kers, permeated the epistemic and non-epistemic values of many
modellers that we interviewed and is of considerable interest in the
modelling literature [4,30-33]. This has implications for understanding
the epistemic values in these models – the models are ‘valuable’ when
they are serviceable to the policy makers and can be used ‘appro-
priately’ in a policy context.

8. Discussion and conclusions

This article set out to consider how energy modellers articulate and
negotiate epistemic values and examined what this implies for the
status of models in scientific practice and their use in policymaking. We
now discuss four main conclusions that highlight the significance of
using epistemological analysis to think about models. While these
findings confirm many common understandings of modelling literature,
our aim here is to consider whether using an ‘epistemic values’ ap-
proach can shed new light on the ethical implications of modelling as
scientific practice.

First, it is widely recognised that ‘models’ are diverse and fall into
distinct traditions. The focus on epistemology casts light on what dif-
ferent kinds of models know, and in the case of energy modelling, that
their knowledge may differ even within a single research project. An
important frame for the CESI project that we examined was a typology
of models, each with different epistemic qualities that need to be ar-
ticulated to other kinds of models to couple the models together.
Models used for infrastructure planning, for simulating an operational
integrated energy network, or for measuring energy demands in
buildings and dwellings have different methodologies, forms of proof,
knowledge bases, research aims, and needs for data for their validation.
They rely on related but distinct epistemic values. While the differences
between their purposes, data-definitions, techniques, and outputs were
recognised, the problem of divergent epistemic values was under-
communicated. This leads to difficulties in reconciling what are, in fact,
sometimes incompatible approaches, and explains why holistic energy
system modelling remains elusive.

Second, the design of the models examined here involved discrete
decisions on the epistemic qualities that models address. These epis-
temic qualities were reflectively articulated by the modellers, often
starting with the initial designs of research projects. The choice of
epistemic qualities of a model had material impacts on the modelling
itself. For instance, some models are more apt for static high-level en-
ergy systems, some more suited for representing an integrated, dy-
namic, and highly interactive energy systems. Open-source computer
models are more malleable and egalitarian for the scientific

community, whereas proprietary computer models are less prone for
computational frictions considering how they can be used. The ethno-
graphic approach enabled us to dig more empirically into situations
where these choices about epistemic qualities are actually made,
complementing the existing literature where many model assumptions
and data remain ‘black boxed’.

Third, from an epistemic point of view, models can approach and
approximate the energy systems, but are not meant to be accurate re-
presentations. The use of uncertainty analysis and scenario methods,
coupled with aspirations to validate models with data, shows that
modellers were critical of the limits of computer modelling. This ob-
servation is not new: there is a considerable amount of literature where
modellers themselves critique computer modelling. Our contribution is
in paying attention to the diversity of critiques of modelling. The limits
of models operate potentially very differently when modelling, for ex-
ample, a building, an energy network, or infrastructures of the future.

Fourth, we observed a widely shared interest in decision making,
decision support, and the ‘appropriate’ use of models by these decision
makers amongst the modellers we studied. This has implications for the
epistemic values in these models: the models were seen as the best
approximations of reality when they are serviceable to the policy ma-
kers and used in a policy context. The notion that energy models should
be policy relevant is not novel, but we contribute to this issue by
showing how modellers themselves articulated this value. We have
demonstrated how modellers saw policy relevance as a key form of
legitimacy for their models and how concerned they were when they
could not engage policy makers to put their models into legitimate use.
The needs of these ‘end users’ often built on the common sense of the
model designers – using general assumptions about how ‘policy deci-
sions’ are made, rather than in-depth knowledge of governance prac-
tices.

Our observations open areas for future research. This article was
based on ethnographic interviews and observations on important sites,
namely research groups whose task it is to develop energy computer
models. This methodology provides an often-overlooked view into the
construction of modelled knowledge in scientific practice. It remains an
empirical question which values – epistemic or non-epistemic – were
embedded in other contexts, such as industrial advisory board discus-
sions, the drafting of research grants, applications submitted to ethics
boards, or policy-level meetings between academic and business lea-
ders. Thus, our research provides a starting point for wider-ranging
multi-sited ethnographic analysis where fieldwork could be used to
chart the translation of values of modelling across different sites.

Further empirical research is needed, in particular, on the actual use
of energy-system models in governance contexts. Our findings suggest
that training in governance would also be appropriate for engineers
working in energy-policy related modelling. Modellers could bring
policy and modelling closer together via methods developed in tech-
nology and innovation studies. Co-creation approaches to modelling
might allow diverse end users to contribute to model design from the
start, defining key terms or uses. This would mean not only making
assumptions about which policy decisions relate to modelling but
opening that question for empirical inquiry and engagement from
policy makers, thus thinking anew the epistemic qualities in energy
models.
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