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EXTREME LOCALIZATION OF EIGENFUNCTIONS TO
ONE-DIMENSIONAL HIGH-CONTRAST PERIODIC PROBLEMS

WITH A DEFECT\ast 

MIKHAIL CHERDANTSEV\dagger , KIRILL CHEREDNICHENKO\ddagger , AND SHANE COOPER\S 

Abstract. Following a number of recent studies of resolvent and spectral convergence of
nonuniformly elliptic families of differential operators describing the behavior of periodic composite
media with high contrast, we study the corresponding one-dimensional version that includes a
``defect"": an inclusion of fixed size with a given set of material parameters. It is known that the
spectrum of the purely periodic case without the defect and its limit, as the period \varepsilon goes to zero,
has a band-gap structure. We consider a sequence of eigenvalues \lambda \varepsilon that are induced by the defect
and converge to a point \lambda 0 located in a gap of the limit spectrum for the periodic case. We show
that the corresponding eigenfunctions are ``extremely"" localized to the defect, in the sense that the
localization exponent behaves as exp( - \nu /\varepsilon ), \nu > 0, which has not been observed in the existing
literature. In two- and three-dimensional configurations, whose one-dimensional cross sections are
described by the setting considered, this implies the existence of propagating waves that are localized
to a vicinity of the defect. We also show that the unperturbed operators are norm-resolvent close to
a degenerate operator on the real axis, which is described explicitly.
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1. Introduction. The question of whether a macroscopic perturbation of ma-
terial properties in a periodic medium or structure (periodic composite) induces the
existence of a localized solution (bound state) to the time-harmonic version of the
equations of motion is of special importance from the physics, engineering, and math-
ematical points of view. Depending on the application context, such a solution can
have either an advantageous or undesirable effect on the behavior of systems con-
taining the related composite medium as a component. For example, in the context
of photonic (phononic) crystal fibers, perturbations of this kind have been exploited
for the transport of electromagnetic (elastic) energy over large distances with little
loss into the surrounding space; see, e.g., [14], [17]. In the mathematics literature,
proofs of the existence or nonexistence of such a localized solution have been carried
out using the tools of the classical asymptotic analysis of the governing equations
and spectral analysis of operators generated by the governing equations in various
``natural"" function spaces. The choice of the concrete class of equations and functions
under study is usually motivated by the applications in mind, and several works that
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have marked the development of the related analytical techniques cover a wide range
of operators and their relatively compact perturbations, e.g., [20], [3], [2], [10].

The present work is a study of localization properties for a class of composite
media that has been the subject of increasing interest in the mathematics and physics
literature recently, in view of its relation to the so-called metamaterials, e.g., man-
ufactured composites possessing negative refraction properties. It has been shown
in [8] that the spectrum of a stratified high-contrast composite, represented math-
ematically by a one-dimensional periodic second-order differential equation, has an
infinitely increasing number of gaps (lacunae) opening in the spectrum, in the limit
of the small ratio \varepsilon between the period and the overall size of the composite. This an-
alytical feature, analogous to the spectral property of multidimensional high-contrast
periodic composites shown in [22], provides a mathematical recipe for the use of such
materials in the physics context or technologies where the presence of localized modes
(generated by defects in the medium) has important practical implications. In the
physical context of photonic crystal fibers and within the mathematical setup of mul-
tidimensional high-contrast media, this link has been studied in [12], [5], [6]. In the
paper [12], a two-scale asymptotics for eigenfunctions of a high-contrast second-order
elliptic differential operator with a finite-size perturbation (defect) was derived. It
was shown that for eigenvalues \lambda in gaps of the spectrum of the (two-scale) opera-
tor representing the leading-order term of this asymptotics, there are sequences of
eigenvalues of the finite-period problems that converge to \lambda as \varepsilon \rightarrow 0. The subsequent
works [5], [6] developed a multiscale version of Agmon's approach [1] and proved that
the corresponding eigenfunctions of the limit operator decay exponentially fast away
from the defect. An important technical assumption in all these works is that the
low-modulus inclusions in the composite have a positive distance to the boundary of
the period cell, which is not possible to satisfy in one dimension.

In the more recent paper [8], a family of nonuniformly elliptic periodic one-
dimensional problems with high contrast was studied, which in practically relevant
situations corresponds to a stratified composite with alternating layers of homoge-
neous media with highly contrasting material properties. It was shown that the
spectra of the corresponding operators converge, as \varepsilon \rightarrow 0, to the band-gap spectrum
of a two-scale operator described explicitly in terms of the original material parame-
ters. Introducing a finite-size defect D into the setup of [8], one is led to consider the
operator

 - 
\bigl( 
a\varepsilon Du

\prime \bigr) \prime , a\varepsilon D > 0,

where a\varepsilon D takes values of order one on D and is \varepsilon -periodic (\varepsilon > 0) in \BbbR \setminus D with
alternating values of order one and \varepsilon 2. As was mentioned in [8, section 5.1], a formal
analysis suggests that the rate of decay of eigenfunctions localized in the vicinity of
the perturbation D is ``accelerated exponential,"" rather than just exponential as in
[6], in the sense that the decay exponent increases in absolute value as \varepsilon \rightarrow 0. The goal
of the present work is to provide a rigorous proof of this property, formulated below
as Theorem 2.4. In view of the above discussion, this new localization property can
be seen as a consequence of two features of the underlying periodic composite: loss of
uniform ellipticity (via the presence of soft inclusions in a moderately stiff material)
and the one-dimensional nature of the problem.

In addition to our main result, we formulate (section 3) a new characterization
of the limit spectrum for the unperturbed family of problems in the whole space
discussed in [8] and strengthen (section 6) the result of [8] by proving an order-sharp
norm-resolvent convergence estimate for this family (Theorem 2.2). In particular,
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EXTREME LOCALIZATION 5827

this new estimate implies order-sharp uniform asymptotic estimates, as \varepsilon \rightarrow 0, for the
related family of evolution semigroups; cf., e.g. [23] for a strong-convergence version
of this kind of result.

2. Problem formulation and main results. For \varepsilon , h \in (0, 1), we introduce
the sets

\Omega \varepsilon 
0 :=

\bigcup 
z\in \BbbZ 

(\varepsilon z, \varepsilon z + \varepsilon h) and \Omega \varepsilon 
1 :=

\bigcup 
z\in \BbbZ 

(\varepsilon z + \varepsilon h, \varepsilon z + \varepsilon ) = \BbbR \setminus \Omega \varepsilon 
0

and denote Y0 := (0, h), Y1 := (h, 1), Y := (0, 1). We define the \varepsilon -periodic functions

a\varepsilon (x) :=

\Biggl\{ 
\varepsilon 2a0(

x
\varepsilon ), x \in \Omega \varepsilon 

0,

a1(
x
\varepsilon ), x \in \Omega \varepsilon 

1,
\rho \varepsilon (x) = \rho (x\varepsilon ), \rho (y) :=

\Biggl\{ 
\rho 0(y), y \in Y0,

\rho 1(y), y \in Y1

(2.1)

for aj , a
 - 1
j , \rho j , \rho 

 - 1
j \in L\infty (Yj), j = 0, 1, periodic with period 1. It is convenient

to set a0 \equiv 0 on Y1 and a1 \equiv 0 on Y0; thus we can write, for example, a\varepsilon (x) =
\varepsilon 2a0(x/\varepsilon )+ a1(x/\varepsilon ). We denote \Omega 0 :=

\bigcup 
z\in \BbbZ (Y0 + z), \Omega 1 :=

\bigcup 
z\in \BbbZ (Y1 + z) and reserve

the notation z for an integer, unless stated otherwise. We will refer to the sets \Omega \varepsilon 
0,\Omega 0

and \Omega \varepsilon 
1,\Omega 1 as the soft and stiff component, respectively.

For a positive Lebesgue-measurable function w on a Borel set B \subset \BbbR , such that
w,w - 1 \in L\infty (B), we employ the notation L2

w(B) to indicate that the space L2(B) is
equipped with the inner product

(u, v)w :=

\int 
B

wuv, u, v \in L2(B).

For a closed and semibounded sesquilinear form \beta : H1(\BbbR ) \times H1(\BbbR ) \rightarrow \BbbC , the (self-
adjoint) operator A associated to \beta is densely defined in L2

w(\BbbR ) by the action Au = f,
where for a given f \in L2

w(\BbbR ), the function u \in H1(\BbbR ) is the solution to the integral
identity

\beta (u, v) =

\int 
\BbbR 
wfv \forall v \in H1(\BbbR ).

Henceforth, all function spaces we employ consist of complex-valued functions and
are over \BbbC .

For the sesquilinear form

\beta \varepsilon (u, v) :=

\int 
\BbbR 
a\varepsilon u\prime v\prime , u, v \in H1(\BbbR ),

we consider A\varepsilon , the operator defined in L2
\rho \varepsilon (\BbbR ) and associated to \beta \varepsilon . The spectrum

\sigma (A\varepsilon ) of A\varepsilon is absolutely continuous and, by introducing the rescaled Floquet--Bloch
transform \scrU \varepsilon (see (6.1)), we note that \sigma (A\varepsilon ) admits the representation

\sigma (A\varepsilon ) =
\bigcup 

\theta \in [0,2\pi )

\sigma (A\varepsilon 
\theta ),

where \sigma (A\varepsilon 
\theta ) is the spectrum of the L2

\rho (Y ) densely defined self-adjoint operator A\varepsilon 
\theta 

associated to the form

\beta \varepsilon 
\theta (u, v) :=

\int 
Y

\bigl( 
a0 + \varepsilon  - 2a1

\bigr) 
u\prime v\prime ,
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5828 M. CHERDANTSEV, K. CHEREDNICHENKO, AND S. COOPER

acting in the space H1
\theta (Y ) of functions u \in H1(Y ) that are \theta -quasiperiodic, i.e., such

that u(y) = exp(i\theta y)v(y), y \in Y, for some 1-periodic function v \in H1(Y ). For each
\varepsilon , \theta , the operator A\varepsilon 

\theta has compact resolvent and consequently its spectrum \sigma (A\varepsilon 
\theta ) is

discrete.
Consider the space

V\theta :=
\bigl\{ 
u \in H1

\theta (Y ) : u\prime = 0 on Y1
\bigr\} 

(2.2)

and its closure in L2
\rho (Y ), which we denote by V\theta , which we also equip with the norm

of L2
\rho (Y ). We introduce the densely defined operators A\theta in V\theta given by A\theta u = f,

where for all f \in V\theta the function u in the domain of A\theta is such that\int 
Y0

a0u
\prime v\prime =

\int 
Y

\rho fv \forall v \in V\theta .(2.3)

For each \theta , the operator A\theta has compact resolvent, and so \sigma (A\theta ) is discrete. In a
recent work [8] (see also section 6 of the present manuscript), the spectrum \sigma (A\varepsilon ) was
shown to converge in the Hausdorff sense to the union of the spectra of the operators
A\theta , i.e.,

lim
\varepsilon \rightarrow 0

\sigma (A\varepsilon ) =
\bigcup 

\theta \in [0,2\pi )

\sigma (A\theta ).(2.4)

Remark 2.1.
\bigcup 

\theta \in [0,2\pi ) \sigma (A\theta ) can be seen as the spectrum of a certain operator

A0 unitary equivalent to the direct integral of operators
\int \oplus 

A\theta ; see Appendix A for
the details.

In section 6, we construct infinite-order asymptotics (as \varepsilon \rightarrow 0) for the resolvents
of A\varepsilon 

\theta , uniform in \theta , with respect to theH1-norm and, in particular, prove the following
refinement of the result established in [8].

Theorem 2.2. The operator A\varepsilon 
\theta norm-resolvent converges to A\theta , uniformly in \theta ,

at the rate \varepsilon 2. More precisely, there exists a constant C > 0 such that\bigm\| \bigm\| (A\varepsilon 
\theta +1) - 1f  - (A\theta +1) - 1P\theta f

\bigm\| \bigm\| 
L2

\rho (Y )
\leq C\varepsilon 2| | f | | L2

\rho (Y ) \forall \theta \in [0, 2\pi ), f \in L2
\rho (Y ),

where P\theta is the orthogonal projection of L2
\rho (Y ) onto V\theta .

Consequently, since the spectra \sigma (A\varepsilon 
\theta ) and \sigma (A\theta ) are discrete, we have the fol-

lowing result: for each n \in \BbbN there exists a constant cn > 0 such that\bigm| \bigm| \lambda \varepsilon n(\theta ) - \lambda n(\theta )
\bigm| \bigm| \leq cn\varepsilon 

2 \forall \theta \in [0, 2\pi ), \varepsilon \in (0, 1).

Here, \{ \lambda \varepsilon n(\theta )\} n\in \BbbN , \{ \lambda n(\theta )\} n\in \BbbN are the eigenvalue sequences of A\varepsilon 
\theta , A\theta , respectively,

labeled in the increasing order.1 It follows that for sufficiently small \varepsilon , the spectrum
\sigma (A\varepsilon ) has a gap if the set

\bigcup 
\theta \sigma (A\theta ) contains a gap. In section 3 we give an example

of a class of coefficients for which this set contains infinitely many gaps. Furthermore,
we demonstrate that \lambda \in 

\bigcup 
\theta \sigma (A\theta ) if and only if the inequality\bigm| \bigm| \bigm| \bigm| v1(h) + (a0v

\prime 
2)(h) - \lambda v2(h)

\int 
Y1

\rho 1

\bigm| \bigm| \bigm| \bigm| \leq 2

1Notice that all the eigenvalues are simple due to the one-dimensional nature of the corresponding
problem.
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holds. Here v1 and v2 are the (\lambda -dependent) solutions of

 - (a0v
\prime 
j)

\prime = \lambda \rho 0vj on Y0, j = 1, 2,

subject to the conditions\Biggl( 
v1(0) v2(0)

(a0v
\prime 
1)(0) (a0v

\prime 
2)(0)

\Biggr) 
=

\Biggl( 
1 0

0 1

\Biggr) 
.

Remark 2.3. Note that any solution u of  - (a0u
\prime )\prime = \lambda \rho 0u is absolutely continuous

and so is its coderivative a0u
\prime . Hence, their value at any point y is well defined (unlike

the value of a0 or u\prime in general). This explains the use of notation (a0v
\prime 
j)(y), which

we will hold to throughout the paper.

Next, we introduce d - , d+ \in \BbbR , and on the set D = (d - , d+) replace the coeffi-
cients (2.1) by some uniformly positive and bounded functions aD, \rho D; namely, we
consider

a\varepsilon D(x) :=

\left\{     
aD(x), x \in D,

a1(
x
\varepsilon ), x \in \Omega \varepsilon 

1\setminus D,
\varepsilon 2a0(

x
\varepsilon ), x \in \Omega \varepsilon 

0\setminus D,
\rho \varepsilon D(x) :=

\left\{     
\rho D(x), x \in D,

\rho 1(
x
\varepsilon ), x \in \Omega \varepsilon 

1\setminus D,
\rho 0(

x
\varepsilon ), x \in \Omega \varepsilon 

0\setminus D.

We shall study the spectrum of the operator A\varepsilon 
D defined in L2

\rho \varepsilon 
D
(\BbbR ) and associated to

the form

\beta \varepsilon 
D(u, v) :=

\int 
\BbbR 
a\varepsilon Du

\prime v\prime , u, v \in H1(\BbbR ).(2.5)

As this operator arises from a compact perturbation of the coefficients of A\varepsilon , it is
well-known that the essential spectra of A\varepsilon 

D and A\varepsilon coincide; see, e.g., [10]. For
eigenvalues situated, for small values of \varepsilon , in the gaps of the essential spectrum of A\varepsilon 

D

(equivalently, in the gaps of the essential spectrum of A\varepsilon ), we expect the eigenfunctions
to be localized around the defect. In view of the above observation about the spectra
of A\varepsilon and A\theta , \theta \in [0, 2\pi ), we are therefore interested in the analysis of eigenfunctions
of A\varepsilon 

D corresponding to eigenvalues that are located in the gaps of the limit spectrum\bigcup 
\theta \sigma (A\theta ).
Consider the operator AN,D defined in L2

\rho 
D
(D) and associated to the form

\beta N,D(u, v) :=

\int 
D

aDu
\prime v\prime , u, v \in H1(D),(2.6)

acting in H1(D). The functions from the domain of AN,D satisfy the Neumann condi-
tion on the boundary ofD.We show that if the defectD is chosen so that the spectrum
\sigma (AN,D) has a nonempty intersection with \BbbR \setminus 

\bigcup 
\theta \sigma (A\theta ), then for sufficiently small \varepsilon 

the operator A\varepsilon 
D has nonempty point spectrum. Notice that we can always choose aD,

\rho D, d - and d+ such that this is true. Moreover, we demonstrate that for eigenvalue
sequences that converge to a point in \BbbR \setminus 

\bigcup 
\theta \sigma (A\theta ) the corresponding eigenfunctions

are localized to a small neighborhood of the defect. Namely, the eigenfunctions u\varepsilon 
exhibit accelerated exponential decay outside the defect in the sense that the function
exp
\bigl( 
dist(x,D)\nu /\varepsilon 

\bigr) 
u\varepsilon (x), x \in \BbbR , is an element of L2(\BbbR \setminus D) for sufficiently small \varepsilon ,

where the value \nu is determined by the distance of the limit point of \lambda \varepsilon to the set\bigcup 
\theta \sigma (A\theta ). These results are collated in the following theorem, which we prove in

sections 4 and 5.
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Theorem 2.4.
1. For every \lambda 0 \in \sigma (AN,D)\setminus 

\bigcup 
\theta \sigma (A\theta ) (which is always simple) there exists a

sequence of simple eigenvalues \lambda \varepsilon of A\varepsilon 
D converging to \lambda 0 and constants

C1, C2 > 0 such that

(2.7)

\bigm| \bigm| \lambda \varepsilon  - \lambda 0
\bigm| \bigm| \leq C1\varepsilon 

1/2,\bigm\| \bigm\| \bigm\| \bigm\| \sum 
j\in J\varepsilon 

c\varepsilon ju\varepsilon ,j  - u0

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(D)

\leq C2\varepsilon 
1/2,

\bigm\| \bigm\| \bigm\| \bigm\| \sum 
j\in J\varepsilon 

c\varepsilon ju\varepsilon ,j

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbR \setminus D)

\leq C2\varepsilon 
1/2,

where u0 is a normalized eigenfunction of AN,D corresponding to the eigen-
value \lambda 0, the set

(2.8) J\varepsilon :=
\bigl\{ 
j : | \lambda \varepsilon ,j  - \lambda 0| \leq C2\varepsilon 

1/2
\bigr\} 

is finite, and for each j \in J\varepsilon the function u\varepsilon ,j is the L2
\rho \varepsilon 
D
(\BbbR )-normalized

eigenfunction of A\varepsilon 
D with eigenvalue \lambda \varepsilon ,j .

2. Suppose that \lambda \varepsilon is an eigenvalue of A\varepsilon 
D for each \varepsilon and that \lambda \varepsilon \rightarrow \lambda 0 /\in 

lim
\varepsilon \rightarrow 0

\sigma (A\varepsilon ) =
\bigcup 

\theta \sigma (A\theta ). Then the L2(\BbbR )-normalized eigenfunctions u\varepsilon of A\varepsilon 
D

corresponding to the eigenvalues \lambda \varepsilon are localized in the following sense.
For \nu > 0, let g\nu /\varepsilon denote the exponentially growing function

(2.9) g\nu /\varepsilon (x) :=

\left\{   
1, x \in D,

exp

\biggl( 
\nu 

\varepsilon 
dist(x,D)

\biggr) 
, x \in \BbbR \setminus D,

and take \mu 1 to be the smallest by the absolute value root of the quadratic
function

(2.10) q(\mu ) := \mu 2  - 
\biggl( 
v1(h) + (a0v

\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1

\rho 1

\biggr) 
\mu + 1.

Then, for sufficiently small values of \varepsilon , the function g\nu /\varepsilon u\varepsilon is an element of

L2(\BbbR ) for all \nu <
\bigm| \bigm| ln | \mu 1| 

\bigm| \bigm| .
Remark 2.5. One can improve the eigenvalues convergence rate at least to | \lambda \varepsilon  - 

\lambda 0| \leq \widetilde C\varepsilon and in a rather generic case even to | \lambda \varepsilon  - \lambda 0| \leq \widetilde C\varepsilon 2 for some \widetilde C > 0 (im-
proving accordingly the convergence estimate for the eigenfunctions), by ``attaching""
the periodic structure to the defect D in a ``correct"" way; see the end of section 4 and
Theorem 4.2 for the details.

3. The limit spectrum of the unperturbed operator. Here we quantita-
tively characterize the limit spectrum (cf. (2.4))\bigcup 

\theta \in [0,2\pi )

\sigma (A\theta )

and establish criteria for the existence of spectral gaps. To this end we consider the
eigenvalue problem: find \lambda \in [0,\infty ) and u \in V\theta =

\bigl\{ 
v \in H1

\theta (Y ) : v\prime \equiv 0 on Y1
\bigr\} 
such

that
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(3.1)

h\int 
0

a0u
\prime v\prime = \lambda 

1\int 
0

\rho uv \forall v \in V\theta .

By taking test functions v \in C\infty 
0 (Y0) we deduce that u| Y0 is a weak solution to the

equation

(3.2)  - (a0u
\prime )\prime = \lambda \rho 0u

on Y0. For L
\infty -functions a0 and \rho 0, (3.2) holds pointwise almost everywhere, and by

integrating by parts in (3.1) we deduce that

(a0u
\prime )(h - ) v(h) - (a0u

\prime )(0+) v(0) = \lambda 

\int 
Y1

\rho 1uv \forall v \in V\theta .

Here f(z+) := lim
x\searrow z

f(x), and f(z - ) := lim
x\nearrow z

f(x) for a function f, whenever the corre-

sponding limit exists. Since any element v \in V\theta satisfies v(y) = ei\theta v(0), y \in Y1, the
above observations imply that u satisfies (3.1) if and only if w = u| Y0

\in H1(Y0) is a
weak solution of the problem

(3.3)

\left\{           
 - (a0u

\prime )\prime = \lambda \rho 0u in Y0,

u(h) = ei\theta u(0),

e - i\theta (a0u
\prime )(h - ) - (a0u

\prime )(0+) = \lambda u(0)

\int 
Y1

\rho 1.

We now describe the solutions to (3.3), equivalently (3.1).

3.1. Representation via a fundamental system. Due to the existence and
uniqueness theorem for linear first-order systems with locally integrable coefficients
(see, e.g., [21]), for all \lambda \in \BbbR the first-order system

(3.4) U \prime = AU, A :=

\Biggl( 
0 a - 1

0

 - \lambda \rho 0 0

\Biggr) 
,

has a fundamental solution system

V (\lambda , \cdot ) :=

\Biggl( 
v1(\lambda , \cdot ) v2(\lambda , \cdot )

(a0v
\prime 
1)(\lambda , \cdot ) (a0v

\prime 
2)(\lambda , \cdot )

\Biggr) 
,

so that any solution to  - (a0u
\prime )\prime = \lambda \rho 0u in Y0 is a linear combination of v1(\lambda , \cdot ) and

v2(\lambda , \cdot ), and

(3.5) V (\lambda , 0) =

\Biggl( 
v1(\lambda , 0) v2(\lambda , 0)

(a0v
\prime 
1)(\lambda , 0) (a0v

\prime 
2)(\lambda , 0)

\Biggr) 
=

\Biggl( 
1 0

0 1

\Biggr) 
;

cf. Remark 2.3. Note that the associated Wronskian of the system is constant:

detV (\lambda , y) = v1(\lambda , y)(a0v
\prime 
2)(\lambda , y) - v2(\lambda , y)(a0v

\prime 
1)(\lambda , y) = 1 \forall y \in Y0, \lambda \in \BbbR .

(3.6)

It follows from the above that all solutions u to (3.3) are of the form

u = c1v1 + c2v2(3.7)
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for some c1, c2 \in \BbbC . Substituting the representation (3.7) into the second and third
equations of (3.3) leads to the system\Biggl( 

v1(\lambda , h) - ei\theta v2(\lambda , h)

(a0v
\prime 
1)(\lambda , h) - ei\theta \lambda 

\int 
Y1
\rho 1 (a0v

\prime 
2)(\lambda , h) - ei\theta 

\Biggr) \Biggl( 
c1

c2

\Biggr) 
=

\Biggl( 
0

0

\Biggr) 
.(3.8)

For the existence of a nontrivial solution (c1, c2) to (3.8), and therefore nontrivial u
in (3.3), the value \lambda must necessarily solve the equation

2 cos \theta = D(\lambda ), D(\lambda ) := v1(\lambda , h) + (a0v
\prime 
2)(\lambda , h) - \lambda v2(\lambda , h)

\int 
Y1

\rho 1.(3.9)

Hence, the set (cf. (2.4)) \bigcup 
\theta \in [0,2\pi )

\sigma (A\theta )

consists of all nonnegative \lambda such that\bigm| \bigm| D(\lambda )
\bigm| \bigm| \leq 2.(3.10)

From the relation (3.9) we can deduce much more about the limit spectrum.
Setting \lambda k(\theta ), k \in \BbbN , \theta \in [0, 2\pi ), to the kth eigenvalue of A\theta labeled according to
the min-max principle, we define Ek : [0, 2\pi ) \rightarrow [0,\infty ) to be the kth spectral band
function given by \theta \mapsto \rightarrow \lambda k(\theta ). The name ``spectral band function"" comes from the
(clear) characterization: \bigcup 

\theta \in [0,2\pi )

\sigma (A\theta ) =
\bigcup 
k\in \BbbN 

RanEk.

We shall prove below the following result about the nature of the spectral band func-
tions.

Theorem 3.1.
1. The functions Ek, k \in \BbbN , are continuous and even around \theta = \pi : Ek(\theta ) =
Ek(2\pi  - \theta ), \theta \in [0, \pi ].

2. The functions E2m - 1(\cdot ), m \in \BbbN , are strictly increasing on (0, \pi ).
3. The functions E2m(\cdot ), m \in \BbbN , are strictly decreasing on (0, \pi ).
4. The spectral bands are given by the following intervals:

RanE2m - 1 =
\bigl[ 
\lambda 2m - 1(0), \lambda 2m - 1(\pi )

\bigr] 
, RanE2m =

\bigl[ 
\lambda 2m(\pi ), \lambda 2m(0)

\bigr] 
,

m \in \BbbN .

Let us focus on claim 4 of the above theorem. It informs us that the interval\bigl( 
\lambda 2m - 1(\pi ), \lambda 2m(\pi )

\bigr) 
(respectively,

\bigl( 
\lambda 2m(0), \lambda 2m+1(0)

\bigr) 
) is a spectral gap if and only if

\lambda = \lambda 2m - 1(\pi ) (respectively, \lambda = \lambda 2m(0)) is a simple eigenvalue of the antiperiodic
(respectively, periodic) limit problem (3.2).2 We now characterize when the eigenval-
ues of the periodic, antiperiodic problems are degenerate, i.e., have multiplicity two,
in terms of the fundamental system (v1, v2). At such points \lambda the spectral bands
touch and there are no gaps.

2It is straightforward to argue (cf. [18, Theorem XIII.89 (c)]) that each eigenvalue \lambda k(\theta ), k \in \BbbN ,
is always simple when \theta \in (0, \pi ).
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Proposition 3.2 (condition for the absence of spectral gaps). Fix n = 2m,
m \in \BbbN . Then \lambda n(0) = \lambda n+1(0) if and only if

v2(\lambda n(0), h) = 0, (a0v
\prime 
1)(\lambda n(0), h) = \lambda n(0)v1(\lambda n(0), h)\langle \rho 1\rangle ,

\langle \rho 1\rangle : =
\int 
Y1

\rho 1.
(3.11)

Similarly, if n = 2m - 1, m \in \BbbN , then \lambda n(\pi ) = \lambda n+1(\pi ) if and only if

(3.12) v2(\lambda n(\pi ), h) = 0, (a0v
\prime 
1)(\lambda n(\pi ), h) = \lambda n(\pi )v1(\lambda n(\pi ), h)\langle \rho 1\rangle .

Remark 3.3. Note that (3.11) is equivalent to

v2(\lambda n(0), h) = 0, (a0v
\prime 
2)(\lambda n(0), h) = 1,

v1(\lambda n(0), h) = 1, (a0v
\prime 
1)(\lambda n(0), h) = \lambda n(0)\langle \rho 1\rangle .

(3.13)

and that (3.12) is equivalent to

v2(\lambda n(\pi ), h) = 0, (a0v
\prime 
2)(\lambda n(\pi ), h) =  - 1,

v1(\lambda n(\pi ), h) =  - 1, (a0v
\prime 
1)(\lambda n(\pi ), h) =  - \lambda n(\pi )\langle \rho 1\rangle .

(3.14)

Sufficiency is obvious for both cases. For necessity, we shall consider \lambda = \lambda n(0). The
case \lambda = \lambda n(\pi ) is similar. We shall drop the argument (\lambda n(0), h) to neaten up the
derivation. By (3.6) and (3.11) we have

1 = v1a0v
\prime 
2  - v2a0v

\prime 
1 = v1a0v

\prime 
2.

Furthermore, since D(\lambda n(0)) = 2 (cf. (3.9)), then multiplying (3.9) by a0v
\prime 
2 (which is

seen to be nonzero from the above equation) we compute

2a0v
\prime 
2 = a0v

\prime 
2v1 + (a0v

\prime 
2)

2  - a0v
\prime 
2\lambda n(0)v2\langle \rho 1\rangle 

= 1 + (a0v
\prime 
2)

2.

Equivalently, (a0v
\prime 
2  - 1)2 = 0. Hence, (a0v

\prime 
2)(\lambda n(0), h) = 1, and therefore v1(\lambda n(0), h)

= 1, and (3.13) follows.

Proof of Proposition 3.2. Let us consider \lambda n(0), the case \lambda n(\pi ) is similar. Neces-
sity follows by noting that if \lambda = \lambda n(0) has multiplicity 2 then vi(\lambda , \cdot ), i = 1, 2, are
linear combinations of the orthogonal periodic eigenfunctions to the limit problem
(3.11). In particular the conditions vi(\lambda , h) = vi(\lambda , 0) and (a0v

\prime 
i)(\lambda , h) - (a0v

\prime 
i)(\lambda , 0) =

\lambda vi(\lambda , 0)\langle \rho 1\rangle , i = 1, 2, hold. Then (3.11) follows from the initial values v2(\lambda , 0) = 0
and (a0v

\prime 
1)(\lambda , 0) = 0.

For sufficiency, by (3.13) both the fundamental solutions satisfy the limit spectral
problem; i.e., they are linearly independent eigenfunctions of \lambda = \lambda n(0).

The proof of Theorem 3.1 readily follows, by arguing, for example, as in [9,
Chapter 2.3], from the following further analysis on the function D given by (3.9).

Lemma 3.4. The function D is analytic. Furthermore, the following assertions
hold.
(a) D\prime (\lambda ) \not = 0 when | D(\lambda )| < 2.
(b) D\prime \bigl( \lambda n(0)\bigr) = 0 if and only if (3.11) holds.

(c) If D\prime \bigl( \lambda n(0)\bigr) = 0, then D\prime \prime \bigl( \lambda n(0)\bigr) < 0.

(d) D\prime \bigl( \lambda n(\pi )\bigr) = 0 if and only if (3.12) holds.

(e) If D\prime \bigl( \lambda n(\pi )\bigr) = 0, then D\prime \prime \bigl( \lambda n(\pi )\bigr) > 0.
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Proof. The analyticity of D follows from that of \lambda \mapsto \rightarrow V (\lambda , h), which is well-
known to hold; see, for example, [21, Chapter 2].

Proof of (a). Differentiating D (cf. (3.9)) gives

(3.15) D\prime (\lambda ) = \partial \lambda v1(\lambda , h) + \partial \lambda (a0v
\prime 
2)(\lambda , h) - v2(\lambda , h)\langle \rho 1\rangle  - \lambda \partial \lambda v2(\lambda , h)\langle \rho 1\rangle .

Now if we differentiate both sides of (3.4) with respect to \lambda we get

\partial \lambda u
\prime = A\partial \lambda u+ (0, - \rho 0u1)\top .

Furthermore, if u = (vi, a0v
\prime 
i)

\top , then \partial \lambda u(\lambda , 0) = 0. Therefore by the variation of
constants method we deduce (recalling V is the fundamental system of (3.4)) that\Biggl( 

\partial \lambda vi(\lambda , h)

\partial \lambda (a0v
\prime 
i)(\lambda , h)

\Biggr) 
(3.16)

=

\left(  \int h

0
\rho 0(s)vi(\lambda , s)

\bigl[ 
v1(\lambda , h)v2(\lambda , s) - v2(\lambda , h)v1(\lambda , s)

\bigr] 
ds\int h

0
\rho 0(s)vi(\lambda , s)

\bigl[ 
(a0v

\prime 
1)(\lambda , h)v2(\lambda , s) - (a0v

\prime 
2)(\lambda , h)v1(\lambda , s)

\bigr] 
ds

\right)  .

Therefore, from (3.15), (3.16), after some algebra, we deduce that

(3.17) D\prime (\lambda ) = \alpha (\lambda , h)

\int h

0

\rho 0(s)v1(\lambda , s)v2(\lambda , s) ds - v2(\lambda , h)

\int h

0

\rho 0(s)v
2
1(\lambda , s) ds

+
\bigl[ 
(a0v

\prime 
1)(\lambda , h) - \lambda \langle \rho 1\rangle v1(\lambda , h)

\bigr] \int h

0

\rho 0(s)v
2
2(\lambda , s) ds - v2(\lambda , h)\langle \rho 1\rangle ,

and, from (3.6), (3.9), we readily compute

D(\lambda )2 = 4 + \alpha (\lambda , h)2 + 4
\bigl( 
v2(a0v

\prime 
1) - \lambda v1v2\langle \rho 1\rangle 

\bigr) 
(\lambda , h),(3.18)

\alpha (\lambda , s) :=
\bigl( 
v1  - a0v

\prime 
2 + \lambda v2\langle \rho 1\rangle 

\bigr) 
(\lambda , s).(3.19)

Multiplying (3.17) by 4v2(\lambda , h) and using (3.18), after some more algebra, we deter-
mine that

(3.20) 4v2(\lambda , h)D
\prime (\lambda ) =  - 

\bigl( 
4 - D(\lambda )2

\bigr) \int h

0

\rho 0(s)v
2
2(\lambda , s) ds - 4v22(\lambda , h)\langle \rho 1\rangle 

 - 
\int h

0

\rho 0(s)
\bigl( 
\alpha (\lambda , h)v2(\lambda , s) - 2v2(\lambda , h)v1(\lambda , s)

\bigr) 2
ds.

It follows from (3.20) that if | D(\lambda )| < 2, then 4v2(\lambda , h)D
\prime (\lambda ) < 0. In particular,

D\prime (\lambda ) \not = 0, i.e., (a) holds.
Proof of (b). Henceforth, we shall use the notation f for the value of a function

f(\lambda , s) at (\lambda n(0), h). Suppose that (3.11) holds. By Remark 3.3, equivalently (3.13)
holds. Then, by (3.19) we compute \alpha = 0 and, therefore, from (3.17) it follows that
D\prime (\lambda n(0)) = 0.

Next, we suppose that D\prime (\lambda n(0)) = 0 and prove that (3.11) holds. As \lambda n(0) is a
root of D(\cdot )2  - 4, we deduce from (3.20) that

0 =  - 4v22\langle \rho 1\rangle  - 
\int h

0

\rho 0(s)
\bigl( 
\alpha v2(\lambda n(0), s) - 2v2v1(\lambda n(0), s)

\bigr) 2
ds.
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Therefore v22 = v2(\lambda n(0), h)
2 = 0, and

\rho 0(s)
\bigl( 
\alpha v2(\lambda n(0), \cdot ) - 2v2v1(\lambda n(0), \cdot )

\bigr) 2
= 0.

Setting v2 = 0, above gives \alpha (\lambda n(0), h) = 0. It remains to show that
\bigl[ 
(a0v

\prime 
1)(\lambda n(0), h) - 

\lambda n(0)\langle \rho 1\rangle v1(\lambda n(0), h)
\bigr] 
= 0. Upon setting v2 = \alpha = 0 and \lambda = \lambda n(0) in (3.17) we

conclude

0 =
\bigl[ 
(a0v

\prime 
1)(\lambda n(0), h) - \lambda n(0)\langle \rho 1\rangle v1(\lambda n(0), h)

\bigr] \int h

0

\rho 0(s)v
2
2(\lambda n(0), s) ds.

Since v2(\lambda n(0), \cdot ) \not = 0 on (0, h) we deduce
\bigl[ 
(a0v

\prime 
1)(\lambda n(0), h) - \lambda n(0)\langle \rho 1\rangle v1(\lambda n(0), h)

\bigr] 
=

0, i.e., (3.11) holds.
Proof of (c). We shall prove that

(3.21)
1

2
D\prime \prime (\lambda n(0)) \leq 

\Biggl( \int h

0

\rho 0(s)v1(\lambda n(0), s)v2(\lambda n(0), s) ds

\Biggr) 2

 - 

\Biggl( \int h

0

\rho 0(s)v
2
1(\lambda n(0), s) ds

\Biggr) \Biggl( \int h

0

\rho 0(s)v
2
2(\lambda n(0), s) ds

\Biggr) 
.

Then, as v1(\lambda n(0), \cdot ) and v2(\lambda n(0), \cdot ) are linearly independent it follows from (3.21)
and the H\"older inequality that

1

2
D\prime \prime (\lambda n(0)) < 0.

Let us prove (3.21). First we make some preliminary calculations. By (3.16)
and (3.13), which holds since D\prime (\lambda n(0)) = 0 (cf. (b)) and Remark 3.3, we compute
(dropping the argument (\lambda n(0), h) as above)

\partial \lambda v1 =

\int h

0

\rho 0(s)v1(\lambda n(0), s)v2(\lambda n(0), s) ds,

\partial \lambda v2 =

\int h

0

\rho 0(s)v
2
2(\lambda n(0), s) ds,

\partial \lambda (a0v
\prime 
1) = \lambda n(0)\langle \rho 1\rangle \partial \lambda v1  - 

\int h

0

\rho 0(s)v
2
1(\lambda n(0), s) ds,

\partial \lambda (a0v
\prime 
2) = \lambda n(0)\langle \rho 1\rangle \partial \lambda v2  - \partial \lambda v1.

(3.22)

We now are going to differentiate both sides of (3.17) with respect to \lambda . Half of
the terms will immediately been seen to be zero. Indeed, if we take the first term
in the right-hand side of (3.17), differentiate it, and evaluate it at (\lambda n(0), h), then
because \alpha = 0 (cf. (3.19) and (3.13)) we deduce that

\partial \lambda 

\Biggl( 
\alpha (\lambda , h)

\int h

0

\rho 0(s)v1(\lambda , s)v2(\lambda , s) ds

\Biggr) 
= \partial \lambda \alpha 

\int h

0

\rho 0(s)v1(\lambda n(0), s)v2(\lambda n(0), s) ds.

The same is true for all the other terms. Therefore, differentiating (3.17) and bearing
in mind (3.22), we compute (after a little bit more algebra) that

(3.23) D\prime \prime (\lambda n(0)) = \partial \lambda \alpha \partial \lambda v1  - 2\partial \lambda v2

\Biggl( \int h

0

\rho 0(s)v
2
1(\lambda n(0), s) ds+ \langle \rho 1\rangle 

\Biggr) 
.
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From (3.22) we see that \partial \lambda v2 \geq 0 and so it follows from (3.23) that

D\prime \prime (\lambda n(0)) \leq \partial \lambda \alpha \partial \lambda v1  - 2\partial \lambda v2

\int h

0

\rho 0(s)v
2
1(\lambda n(0), s) ds.

We complete the proof of (3.21) (cf. (3.22)) if we can prove that

(3.24) \partial \lambda \alpha = 2\partial \lambda v1.

Multiplying (3.18) by v1(\lambda , s) and utilizing (3.6) gives

v1(\lambda , s)\alpha (\lambda , s) = v21(\lambda , s) - 1 - v2(\lambda , s)(a0v
\prime 
1)(\lambda , s) + \lambda v1(\lambda , s)v2(\lambda , s)\langle \rho 1\rangle .

Then, differentiating both sides of the above equation with respect to \lambda and evaluating
at (\lambda n(0), h) gives

\alpha \partial \lambda v1 + v1\partial \lambda \alpha 

= 2v1\partial \lambda v1  - (a0v
\prime 
1)\partial \lambda v2  - v2\partial \lambda (a0v

\prime 
1) + v1v2\langle \rho 1\rangle + \lambda n(0)\langle \rho 1\rangle (v2\partial \lambda v1 + v1\partial \lambda v2).

Upon utilizing (3.13), we deduce that (3.24) holds, and the proof of (c) follows.
The proofs of (d) and (e) are similar to that of (b) and (c).

Example 3.5. We end the subsection with the following simple example. Suppose
that a0, \rho 0 and \rho 1 are equal to unity on their support; then v1(\lambda , y) = cos(

\surd 
\lambda y),

v2(\lambda , y) = (1/
\surd 
\lambda ) sin(

\surd 
\lambda y), and

D(\lambda ) = 2 cos(
\surd 
\lambda h) - 

\surd 
\lambda sin(

\surd 
\lambda h)(1 - h).

In particular, we see that conditions (3.11) and (3.12) never hold and consequently
the (infinitely many) intervals\bigl( 

\lambda 2m - 1(\pi ), \lambda 2m(\pi )
\bigr) 
,

\bigl( 
\lambda 2m(0), \lambda 2m+1(0)

\bigr) 
, m \in \BbbN 

are gaps. Here \lambda k(0) (respectively, \lambda k(\pi )) is the kth zero of D - 2 (respectively, D+2).
These gaps become wider as k \rightarrow \infty .

3.2. Representation via a spectral decomposition. Consider the operator
\~A\theta defined on L2

\rho 0
(Y0) and associated to the form

\~\beta \theta (u, v) :=

\int 
Y0

a0u
\prime v\prime , u, v \in H1

\theta (Y0)

in the sense of procedure described in section 2. By virtue of the fact that the op-
erator \~A\theta has compact resolvent, its L2

\rho 0
(Y0)-orthonormal sequence of eigenfunctions

\{ \Phi (n)
\theta \} n\in \BbbN is complete in the space L2

\rho 0
(Y0). We denote by \mu n(\theta ), n \in \BbbN , the eigen-

values of \Phi 
(n)
\theta \in H1

\theta (Y0):

(3.25)

\int 
Y0

a0
\bigl( 
\Phi 

(n)
\theta 

\bigr) \prime 
v\prime = \mu n(\theta )

\int 
Y0

\rho 0\Phi 
(n)
\theta v \forall v \in H1

\theta (Y0).
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Multiplying the first equation in (3.3) by \Phi 
(n)
\theta and integrating by parts we have

\lambda 

\int 
Y0

\rho 0u\Phi 
(n)
\theta =  - 

\int 
Y0

(a0u
\prime )\prime \Phi 

(n)
\theta 

=  - 
\bigl( 
(a0u

\prime )(h - )\Phi 
(n)
\theta (h) - (a0u

\prime )(0+)\Phi 
(n)
\theta (0)

\bigr) 
+

\int 
Y0

a0u
\prime \bigl( \Phi (n)

\theta 

\bigr) \prime 
=  - 

\bigl( 
e - i\theta (a0u

\prime )(h - ) - (a0u
\prime )(0+)

\bigr) 
\Phi 

(n)
\theta (0) + \mu n(\theta )

\int 
Y0

\rho 0u\Phi 
(n)
\theta .

The third equation in (3.3) implies

\bigl( 
\mu n(\theta ) - \lambda 

\bigr) \int 
Y0

\rho 0u\Phi 
(n)
\theta = \lambda u(0)\Phi 

(n)
\theta (0)

\int 
Y1

\rho 1.

Therefore, upon performing a spectral decomposition of u in terms of \Phi 
(n)
\theta , i.e., setting

u =
\sum 
n\in \BbbN 

\zeta n\Phi 
(n)
\theta , \zeta n =

\int 
Y0

\rho 0u\Phi 
(n)
\theta ,

we see that

\zeta n =
\lambda 

\mu n(\theta ) - \lambda 
u(0)\Phi 

(n)
\theta (0)

\int 
Y1

\rho 1, n \in \BbbN .

In particular, one has u(0) =
\sum 

n\in \BbbN \zeta n\Phi 
(n)
\theta (0). Thus, we arrive at the statement: if

\lambda \in 
\bigcup 

\theta \sigma (A\theta ), then there exists \theta \in [0, 2\pi ) such that

(3.26)
\sum 
n\in \BbbN 

\lambda 

\mu n(\theta ) - \lambda 

\bigm| \bigm| \Phi (n)
\theta (0)

\bigm| \bigm| 2 =

\biggl( \int 
Y1

\rho 1

\biggr)  - 1

.

The converse statement is also true. Indeed, suppose that for some \theta \in [0, 2\pi )
the value \lambda satisfies (3.26), then we find that

\zeta n :=
\lambda 

\mu n(\theta ) - \lambda 
u(0)\Phi 

(n)
\theta (0)

\int 
Y1

\rho 1, n \in \BbbN 

satisfy

lim sup
n

| \zeta n| 2

bn
= 0, 0 \leq lim sup

n
\mu n(\theta )

| \zeta n| 2

bn
<\infty , bn :=

\lambda 

\mu n(\theta ) - \lambda 

\bigm| \bigm| \Phi (n)
\theta (0)

\bigm| \bigm| 2.
Since, by assumption, \sum 

n

bn =

\biggl( \int 
Y1

\rho 1

\biggr)  - 1

,

it follows that \sum 
n

| \zeta n| 2 <\infty ,
\sum 
n

\mu n(\theta )| \zeta n| 2 <\infty ,

that is, the function u =
\sum 

n\in \BbbN \zeta n\Phi 
(n)
\theta belongs to H1

\theta (Y0) and, consequently, to V\theta 
when extended by the constant u(h) into Y1. Moreover, direct calculation shows that
\lambda and u satisfy (3.1). Hence, we have shown that \lambda \in 

\bigcup 
\theta \sigma (A\theta ).
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4. Asymptotics of the defect eigenvalue problem. Suppose \lambda \varepsilon , u\varepsilon is an
eigenvalue-eigenfunction pair for the defect problem, that is,

 - (a\varepsilon Du
\prime 
\varepsilon )

\prime = \lambda \varepsilon \rho 
\varepsilon 
Du\varepsilon on \BbbR ,(4.1)

where u\varepsilon is continuous, subject to the interface conditions

aDu
\prime 
\varepsilon 

\bigm| \bigm| 
D

= a\varepsilon Du
\prime 
\varepsilon 

\bigm| \bigm| 
\BbbR \setminus D on \{ d - , d+\} (4.2)

and

a1u
\prime 
\varepsilon 

\bigm| \bigm| 
\Omega \varepsilon 

1\setminus D
= \varepsilon 2a0u

\prime 
\varepsilon 

\bigm| \bigm| 
\Omega \varepsilon 

0\setminus D
on

\bigl\{ 
x \in \BbbR \setminus D : x = \varepsilon (z + h) or x = \varepsilon z for some z \in \BbbZ 

\bigr\} 
.

(4.3)

In this section we study the behavior with respect to \varepsilon of the eigenvalues \lambda \varepsilon and
eigenfunctions u\varepsilon , using asymptotic expansions. We show that, up to the leading
order, the values of \lambda \varepsilon are described by an eigenvalue of the weighted Neumann--
Laplacian on the defect D; see (4.6) below. More precisely, we show that for each
eigenvalue \lambda 0 of (4.6) in a gap of

\bigcup 
\theta \sigma (A\theta ), there exists a sequence of eigenvalues \lambda \varepsilon 

of (4.1) converging to \lambda 0. However, it remains unclear whether every accumulation
point of \lambda \varepsilon inside a gap of

\bigcup 
\theta \sigma (A\theta ) belongs to the spectrum of (4.6).

We seek asymptotic expansions for the eigenvalues \lambda \varepsilon and eigenfunctions u\varepsilon of
(4.1)--(4.3) in the form

(4.4) \lambda \varepsilon = \lambda 0 + \varepsilon \lambda 1 + \varepsilon 2\lambda 2 + . . . ,

with

(4.5) u\varepsilon (x) =

\Biggl\{ 
u0(x) + \varepsilon u1(x) + \varepsilon 2u2(x) + . . . , x \in (d - , d+),

w0(
x
\varepsilon ) + \varepsilon 2w2(

x
\varepsilon ) + . . . , x \in ( - \infty , d - ) \cup (d+,\infty ).

We assume that functions wi, ui, i = 0, 1, 2, . . ., are continuous.

4.1. Governing equations. Substituting (4.4), (4.5) into (4.1) and (4.2) and
equating the \varepsilon 0-coefficient on the defect gives

(4.6)

\Biggl\{ 
 - (aDu

\prime 
0)

\prime = \lambda 0\rho Du0 on (d - , d+),

aDu
\prime 
0| D = 0 on \{ d - , d+\} ,

that is, \lambda 0 is an eigenvalue of the weighted Neumann--Laplace operator AN,D on the
defect, cf. (2.6). Note that this is true regardless of whether d - , d+ belong to \Omega \varepsilon 

1

or \Omega \varepsilon 
0. We fix u0 by setting \| u0\| L2

\rho D
(D) = 1.

For c \in \BbbR , let \lfloor c\rfloor \varepsilon and \lceil c\rceil \varepsilon denote the largest integer z such that \varepsilon z \leq c and
the smallest integer z such that c \leq \varepsilon z, respectively. Substituting (4.4), (4.5) into
(4.1), (4.3) and comparing the coefficients for different powers of \varepsilon in the resulting
expression yields

(4.7)

\left\{       
 - (a1w

\prime 
0)

\prime = 0 on Y1 + z,

(a1w
\prime 
0)((z + h)+) = 0,

(a1w
\prime 
0)((z + 1) - ) = 0
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and

(4.8)

\left\{             

 - (a0w
\prime 
0)

\prime = \lambda 0\rho 0w0 on Y0 + z,

 - (a1w
\prime 
2)

\prime = \lambda 0\rho 1w0 on Y1 + z,

(a1w
\prime 
2)((z + h)+) = (a0w

\prime 
0)((z + h) - ),

(a1w
\prime 
2)((z + 1) - ) = (a0w

\prime 
0)((z + 1)+)

for all

(4.9) z \in \scrI \varepsilon :=
\bigl\{ 
z \in \BbbZ : z \geq \lceil d+\rceil \varepsilon or z \leq \lfloor d - \rfloor \varepsilon  - 1

\bigr\} 
(that is, z \in \scrI \varepsilon if and only if the intersection of \varepsilon (Y + z) and D is empty). The
assertion (4.7) implies that a1w

\prime 
0 \equiv 0 on Y1 + z and therefore w0 is constant on each

such interval. By the second equation of (4.8) and the fact w0 is constant on each
interval Y1 + z, the function a1w

\prime 
2 has the form

(4.10) (a1w
\prime 
2)(y) = (a1w

\prime 
2)((z + h)+) - \lambda 0w0(z + h)

y\int 
z+h

\rho 1, y \in Y1 + z.

Combining (4.10), the fact that w0 is constant on Y1+z and the first and last equations
of (4.8) implies that for all z \in \scrI \varepsilon , one has\left\{           

 - (a0w
\prime 
0)

\prime = \lambda 0\rho 0w0 on Y0 + z,

w0 \equiv w0(z + h) = w0(z + 1) on Y1 + z,

(a0w
\prime 
0)
\bigl( 
(z + 1)+

\bigr) 
 - (a0w

\prime 
0)
\bigl( 
(z + h) - 

\bigr) 
=  - \lambda 0w0(z + h)

\int 
Y1

\rho 1.

(4.11)

The problem (4.11) fully governs the behavior of w0 in \BbbR \setminus (\lfloor d - \rfloor \varepsilon  - 1, \lceil d+\rceil \varepsilon ). We can
utilize the fundamental system (v1, v2) from section 3.1 to quantitatively characterize
w0. Indeed, since in each cell Y + z any solution to the first equation in (4.11) is a
linear combination of v1 and v2, one has

w0(y) =

\Biggl\{ 
lzv1(y  - z) +mzv2(y  - z), y \in Y0 + z,

lzv1(h) +mzv2(h), y \in Y1 + z
(4.12)

for constants lz,mz, z \in \scrI \varepsilon , where the expression on Y1 + z follows from the second
condition in (4.11). Using (3.5), the continuity of w0 and the jump of the coderivative
condition from (4.11), it is not difficult to derive the following recurrence relation:

\Biggl( 
lz+1

mz+1

\Biggr) 
=

\Biggl( 
v1(h) v2(h)

(a0v
\prime 
1)(h) - \lambda 0v1(h)

\int 
Y1
\rho 1 (a0v

\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1
\rho 1

\Biggr) \Biggl( 
lz

mz

\Biggr) 
.

(4.13)

Now, recalling the Wronskian property (3.6), we find that the characteristic polyno-
mial q of the matrix in (4.13) is (cf. (2.10))

q(\mu ) = \mu 2  - 
\biggl( 
v1(h) + (a0v

\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1

\rho 1

\biggr) 
\mu + 1.(4.14)
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The roots \mu 1, \mu 2 of q satisfy the identity \mu 1\mu 2 = 1 and the nature of w0 as it varies from
one period to the next is determined by the quantity v1(h)+(a0v

\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1
\rho 1.

Namely, if (cf. (3.10)) \bigm| \bigm| \bigm| \bigm| v1(h) + (a0v
\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1

\rho 1

\bigm| \bigm| \bigm| \bigm| \leq 2,

then the roots \mu 1, \mu 2 are complex conjugate with | \mu 1| = | \mu 2| = 1 and solutions w0 are
described by the linear span of two quasi-periodic functions with phase difference \pi .
In section 3 we demonstrated that \lambda 0 satisfies this constraint if and only if \lambda 0 belongs
to the limit spectrum

lim
\varepsilon \rightarrow 0

\sigma (A\varepsilon ) =
\bigcup 
\theta 

\sigma (A\theta ).

4.2. Construction of an approximate solution. For \lambda 0 in the gaps of this
limit spectrum, i.e., when \lambda 0 satisfies the inequality\bigm| \bigm| \bigm| \bigm| v1(h) + (a0v

\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1

\rho 1

\bigm| \bigm| \bigm| \bigm| > 2,

the roots \mu 1, \mu 2 of q (see (4.14)) satisfy | \mu 1| < 1 and | \mu 2| > 1. For such \lambda 0, we can
construct ``unstable"" solutions, one of which decays at +\infty and the other at  - \infty .
Indeed, denoting by \varkappa 1 and \varkappa 2 the eigenvectors of the matrix in (4.13) corresponding
to \mu 1 and \mu 2, respectively, we find in the interval [\lceil d+\rceil \varepsilon ,\infty ) that w0 given by (4.12),
(4.13) satisfies w0(y + 1) = \mu jw0(y) if (l\lceil d+\rceil \varepsilon ,m\lceil d+\rceil \varepsilon )

\top = \varkappa j , j = 1, 2. Similarly, in

the interval ( - \infty , \lfloor d - \rfloor \varepsilon ], one has w0(y) = \mu jw0(y - 1) if (l\lfloor d - \rfloor \varepsilon  - 1,m\lfloor d - \rfloor \varepsilon  - 1)
\top = \varkappa j ,

j = 1, 2. For w0 to decay to the left and right of the defect, we set (l\lceil d+\rceil \varepsilon ,m\lceil d+\rceil \varepsilon )
\top =

\varkappa 1 and (l\lfloor d - \rfloor \varepsilon  - 1,m\lfloor d - \rfloor \varepsilon  - 1)
\top = \varkappa 2. In this way we ensure that

(4.15)
w0(y + 1) = \mu 1w0(y) for y \in [d+/\varepsilon ,\infty ),

w0(y  - 1) = \mu  - 1
2 w0(y) = \mu 1w0(y) for y \in ( - \infty , d - /\varepsilon ],

where we have extended w0 to the intervals [d+/\varepsilon , \lceil d+\rceil \varepsilon ) and (\lfloor d - \rfloor \varepsilon , d - /\varepsilon ] by the
formulae w0(y) = \mu  - 1

1 w0(y + 1) and w0(y) = \mu  - 1
1 w0(y  - 1), respectively.

The function w0 to the right and to the left from the defect is defined up to
multiplication by a constant. The next natural step is to ``attach"" both parts of w0

to the solution u0 on the defect choosing the aforementioned constants appropriately.
However, there is a possibility that for particular values \varepsilon one has w0(d+/\varepsilon ) = 0 or
w0(d - /\varepsilon ) = 0. This requires that w0 be redefined near the boundary of D, which we
do next.

On each side of the defect D, there are two possibilities on the stiff component
\Omega 1\cap [d+/\varepsilon ,\infty ) (or \Omega 1\cap ( - \infty , d - /\varepsilon ]): either w0 does not vanish or w0 \equiv 0. In the latter
case, since w0 is not identically zero on the whole interval [d+/\varepsilon ,\infty ) (or ( - \infty , d - /\varepsilon ]),
it necessarily has an extremum inside each soft interval Y0 + z and a0w

\prime 
0 = 0 at the

points of extrema. If w0 does not vanish on the stiff component, we set

w0(y) = w0(\lceil d+\rceil \varepsilon + h), y \in [d+/\varepsilon , \lceil d+\rceil \varepsilon + h],(4.16a)

w0(y) = w0(\lfloor d - \rfloor \varepsilon ), y \in [\lfloor d - \rfloor \varepsilon , d - /\varepsilon ],(4.16b)

while in the case when w0 \equiv 0 on the stiff component there exist y\ast +, y
\ast 
 - \in Y0,

independent of \varepsilon , such that
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EXTREME LOCALIZATION 5841\bigm| \bigm| w0(\lceil d+\rceil \varepsilon + y\ast +)
\bigm| \bigm| = max

Y0+\lceil d+\rceil \varepsilon 
| w0| > 0,\bigm| \bigm| w0(\lfloor d - \rfloor \varepsilon  - 1 + y\ast  - )

\bigm| \bigm| = max
Y0+\lfloor d - \rfloor \varepsilon  - 1

| w0| > 0,

and we set

w0(y) = w0(\lceil d+\rceil \varepsilon + y\ast +), y \in [d+/\varepsilon , \lceil d+\rceil \varepsilon + y\ast +],(4.17a)

w0(y) = w0(\lfloor d - \rfloor \varepsilon  - 1 + y\ast  - ), y \in [\lfloor d - \rfloor \varepsilon  - 1 + y\ast  - , d - /\varepsilon ].(4.17b)

We then choose \varkappa 1 and \varkappa 2 so that the modified w0 matches the value of u0 at the
end-points of D:

w0(d+/\varepsilon ) = u0(d+), w0(d - /\varepsilon ) = u0(d - ).

Putting together (4.12), (4.16a)--(4.17b), it follows that the vectors \varkappa 1, \varkappa 2 do not
depend on \varepsilon . Hence, it is not difficult to see that so constructed w0 is bounded in L2

\rho 

uniformly in \varepsilon ,

(4.18) \| w0\| L2
\rho (\BbbR \setminus \varepsilon  - 1D) \leq C.

Next, we construct the corrector w2, treating first the right side of the defect.
According to the two possibilities above, we start by assuming that (4.16a) holds.
The second and the third equations in (4.8) determine w2 up to an arbitrary additive
constant in each interval

Y1 + z \subset 
\bigl[ 
\lceil d+\rceil \varepsilon + 1 + h,+\infty 

\bigr) 
.(4.19)

The choice of these constants is not important, except that w2 should remain ``con-
trolled,"" and in what follows, for simplicity, we set

w2(z + h) = 0.(4.20)

Note that the existence of w2 satisfying the second and third equations in (4.8) follows
from the last identity in (4.11). On the interval Y1 + \lceil d+\rceil \varepsilon we only require w2 to
satisfy the following conditions at its boundary:

(a1w
\prime 
2)
\bigl( 
(\lceil d+\rceil \varepsilon + 1) - 

\bigr) 
= (a0w

\prime 
0)
\bigl( 
(\lceil d+\rceil \varepsilon + 1)+

\bigr) 
,

(a1w
\prime 
2)
\bigl( 
(\lceil d+\rceil \varepsilon + h)+

\bigr) 
= w2(\lceil d+\rceil \varepsilon + h) = 0.

To this end we fix two smooth functions f1 and f2 such that 0 \leq f1 \leq 1, f1(1) = 1,
f1(y) = 0 for y \in [h, (h+ 1)/2], f2(y) = 0 for y = h, and y \in [(h+ 1)/2, 1], f2(y) < 0
for y \in (h, (h+ 1)/2). We define w2 on Y1 + \lceil d+\rceil \varepsilon by

w2(\lceil d+\rceil \varepsilon + y) :=  - (a0w
\prime 
0)
\bigl( 
(\lceil d+\rceil \varepsilon + 1)+

\bigr) 1\int 
y

a - 1
1 (f1 + cf2), y \in Y1,(4.21)

choosing the constant c so that w2(\lceil d+\rceil \varepsilon + h) = 0. Moreover, we have w2(\lceil d+\rceil \varepsilon 
+1) = 0. We set w2 = 0 on [d+/\varepsilon , \lceil d+\rceil \varepsilon +h]\cup [\lceil d+\rceil \varepsilon +1, \lceil d+\rceil \varepsilon +1+h]. Finally, in the
intervals Y0+z \subset [\lceil d+\rceil \varepsilon +2,+\infty ) we do not require w2 to satisfy any equation. Instead
we make a specific choice of w2 as follows. For a nonnegative function f \in C\infty 

0 (Y0),
f \not \equiv 0, we define

w2(z + y) := w2(z) + cz

\int y

0

f

a0
, y \in Y0, z \geq \lceil d+\rceil \varepsilon + 2,(4.22)
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where the coefficient cz is chosen so that w2 is continuous on [d+/\varepsilon ,+\infty ), namely,

cz =  - w2(z)

\biggl( \int 
Y0

f

a0

\biggr)  - 1

.(4.23)

In particular, we have

(a0w
\prime 
2)(z

+) = (a0w
\prime 
2)((z + h) - ) = 0.

Moving on to the second possibility, we assume that (4.17a) holds. Then on the
intervals Y1 + z \subset [\lceil d+\rceil \varepsilon + h,+\infty ) we choose w2 to satisfy the second and third
equations in (4.8) and the condition w2(z + h) = 0. We extend w2 by zero on
[d+/\varepsilon , \lceil d+\rceil \varepsilon + h), and on the intervals Y0 + z \subset [\lceil d+\rceil \varepsilon + 1,+\infty ) we define w2 as
in (4.22).

We define w2 to the left of the defect in a similar way. Namely, we assume first that
(4.16b) holds and define w2 according to (4.8) in the intervals Y1+z \subset ( - \infty , \lfloor d - \rfloor \varepsilon  - 1],
requiring w2(z+1) = 0. On [\lfloor d - \rfloor \varepsilon  - 1+h, \lfloor d - \rfloor \varepsilon ] we define w2 by a formula analogous
to (4.21) so that it satisfies the conditions

(a1w
\prime 
2)
\bigl( 
(\lfloor d - \rfloor \varepsilon  - 1 + h)+

\bigr) 
= (a0w

\prime 
0)
\bigl( 
(\lfloor d - \rfloor \varepsilon  - 1 + h) - 

\bigr) 
,

(a1w
\prime 
2)
\bigl( 
(\lfloor d - \rfloor \varepsilon ) - 

\bigr) 
= w2(\lfloor d - \rfloor \varepsilon ) = 0.

We then extend w2 by zero on (\lfloor d - \rfloor \varepsilon , d - /\varepsilon ] and define it on the intervals Y0 + z \subset 
( - \infty , \lfloor d - \rfloor \varepsilon  - 1 + h] according to (4.22).

Finally, if (4.17b) holds we define w2 according to (4.8) on the intervals Y1 + z \subset 
( - \infty , \lfloor d - \rfloor \varepsilon  - 1], additionally requiring that w2(z + 1) = 0, extend w2 by zero into
(\lfloor d - \rfloor \varepsilon  - 1, d - /\varepsilon ], and use (4.22) to define w2 on the intervals Y0 + z \subset ( - \infty , \lfloor d - \rfloor \varepsilon  - 
1 - h].

4.3. Justification of asymptotics. First we estimate the term w2. Assume
that (4.16a) holds, and consider w2 on [d+/\varepsilon ,+\infty ). A straightforward calculation
gives (cf. (4.8), (4.20))

w2(z + y) = (a0w
\prime 
0)((z + h) - )

y\int 
h

a - 1
1  - \lambda 0w0(z + h)

y\int 
h

\biggl( 
a - 1
1 (\cdot )

\cdot \int 
h

\rho 1

\biggr) 
,(4.24)

z \geq \lceil d+\rceil \varepsilon + 1, y \in Y1.

It follows from (4.22), (4.23), (4.24), and (4.15) that

w2(y + 1) = \mu 1w2(y) for y \in [\lceil d+\rceil \varepsilon + 1 + h,+\infty ),

and, thereupon,

((a0 + a1)w
\prime 
2)

\prime (y + 1) = \mu 1((a0 + a1)w
\prime 
2)

\prime (y) for y \in [\lceil d+\rceil \varepsilon + 1 + h,+\infty ).

With w2 and ((a0+a1)w
\prime 
2)

\prime clearly bounded in L2
\rho (d+/\varepsilon , \lceil d+\rceil \varepsilon +1+h) independently

of \varepsilon (cf. (4.21)), we conclude that

\| ((a0 + a1)w
\prime 
2)

\prime \| L2
\rho (d+/\varepsilon ,+\infty ) + \| w2\| L2

\rho (d+/\varepsilon ,+\infty ) \leq C

for a suitable constant C independent of \varepsilon .
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In an analogous way we derive the estimates for w2 on [d+/\varepsilon ,+\infty ) in the case
(4.17a) and on ( - \infty , d - /\varepsilon ] in the cases (4.16b), (4.17b). Thus we assert

\| ((a0 + a1)w
\prime 
2)

\prime \| L2
\rho (\BbbR \setminus \varepsilon  - 1D) + \| w2\| L2

\rho (\BbbR \setminus \varepsilon  - 1D) \leq C.(4.25)

Suppose now that \lambda 0 \in \sigma 
\bigl( 
AN,D

\bigr) 
\setminus 
\bigl( \bigcup 

\theta \sigma (A\theta )
\bigr) 
. The construction described above

guarantees that the function

u\varepsilon ,ap(x) :=

\Biggl\{ 
u0(x), x \in D,

w0(x/\varepsilon ) + \varepsilon 2w2(x/\varepsilon ), x \in \BbbR \setminus D
(4.26)

is continuous and has a continuous coderivative a\varepsilon Du
\prime 
\varepsilon ,ap, implying that u\varepsilon ,ap belongs

to the domain of the operator A\varepsilon 
D.

It follows from the spectral theorem for self-adjoint operators (see, e.g., [4]) that
for all functions f \in dom

\bigl( 
A\varepsilon 

D

\bigr) 
\subset L2

\rho \varepsilon 
D
(\BbbR ) such that \| f\| L2

\rho \varepsilon 
D
(\BbbR ) = 1, one has

dist
\bigl( 
\lambda 0, \sigma (A

\varepsilon 
D)
\bigr) 
\leq 
\bigm\| \bigm\| (A\varepsilon 

D  - \lambda 0)f
\bigm\| \bigm\| 
L2

\rho \varepsilon 
D
(\BbbR ).

Straightforward calculations show that, except for the small regions near the boundary
of the defect, we have

(4.27)

\rho \varepsilon D(A\varepsilon 
D  - \lambda 0)u\varepsilon ,ap

=

\left\{       
0, x \in D,

 - \varepsilon 2(a0w
\prime 
2)

\prime (x/\varepsilon ) - \varepsilon 2\lambda 0\rho 0(x/\varepsilon )w2(x/\varepsilon ), x \in \Omega \varepsilon 
0 \setminus \varepsilon [\lfloor d - \rfloor \varepsilon  - 1, \lceil d+\rceil \varepsilon + 1],

 - \varepsilon 2\lambda 0\rho 1(x/\varepsilon )w2(x/\varepsilon ), x \in \Omega \varepsilon 
1 \setminus \varepsilon [\lfloor d - \rfloor \varepsilon  - 1, \lceil d+\rceil \varepsilon + 1].

Near the boundary we need to consider each of the cases (4.16a)--(4.17b) separately.
Assume first that (4.16a) holds. Then we have

\rho \varepsilon D(A\varepsilon 
D  - \lambda 0)u\varepsilon ,ap

=

\left\{       
 - \lambda 0\rho (x/\varepsilon )w0(x/\varepsilon ), x/\varepsilon \in [d+/\varepsilon , \lceil d+\rceil \varepsilon + h],

 - \lambda 0\rho 1(x/\varepsilon )w0(x/\varepsilon ) - (a1w
\prime 
2)

\prime (x/\varepsilon )

 - \varepsilon 2\lambda 0\rho 1(x/\varepsilon )w2(x/\varepsilon ), x/\varepsilon \in [\lceil d+\rceil \varepsilon + h, \lceil d+\rceil \varepsilon + 1].

By construction, w0, w2 and (a1w
\prime 
2)

\prime are bounded continuous functions independent
of \varepsilon . Hence \rho \varepsilon D(A\varepsilon 

D  - \lambda 0)u\varepsilon ,ap is bounded in L\infty (d+, \varepsilon (\lceil d+\rceil \varepsilon +1)). Performing direct
calculations and applying a similar argument in the three remaining cases, we conclude
that \bigm\| \bigm\| \rho \varepsilon D(A\varepsilon 

D  - \lambda 0)u\varepsilon ,ap
\bigm\| \bigm\| 
L\infty (\varepsilon [\lfloor d - \rfloor \varepsilon  - 1,\lceil d+\rceil \varepsilon +1]\setminus D)

\leq C.

Since the size of the region \varepsilon [\lfloor d - \rfloor \varepsilon  - 1, \lceil d+\rceil \varepsilon + 1] \setminus D is of order \varepsilon , the latter
inequality together with (4.27) and (4.25) readily implies that\bigm\| \bigm\| (A\varepsilon 

D  - \lambda 0)u\varepsilon ,ap
\bigm\| \bigm\| 
L2

\rho \varepsilon 
D
(\BbbR ) \leq C\varepsilon 1/2(4.28)

for some constant C > 0.
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We establish the following result, which implies claim 1 of Theorem 2.4. In
particular, the second and third estimates in (2.7) follow from (4.18), (4.25), (4.26),
the estimate (4.30) below and the identity\bigm\| \bigm\| wi(\cdot /\varepsilon )

\bigm\| \bigm\| 
L2

\rho \varepsilon 
D
(\BbbR \setminus D)

= \varepsilon 1/2| | wi| | L2
\rho (\BbbR \setminus \varepsilon  - 1D), i = 0, 2.(4.29)

Theorem 4.1. Suppose that \lambda 0 \in \sigma 
\bigl( 
AN,D

\bigr) 
\setminus 
\bigl( \bigcup 

\theta \sigma (A\theta )
\bigr) 
.

1. There exists C1 > 0, independent of \varepsilon , such that

dist
\bigl( 
\lambda 0, \sigma (A

\varepsilon 
D)
\bigr) 
\leq C1\varepsilon 

1/2.

2. For sufficiently small \varepsilon there exist (simple) eigenvalues \lambda \varepsilon of A\varepsilon 
D such that

| \lambda \varepsilon  - \lambda 0| \leq C1\varepsilon 
1/2.

3. For sufficiently small \varepsilon the function u\varepsilon ,ap is an approximate eigenfunction of A\varepsilon 
D,

in the sense that there exists an \varepsilon -independent constant C2 > 0 and c\varepsilon j \in \BbbR such
that \bigm\| \bigm\| \bigm\| u\varepsilon ,ap  - 

\sum 
j\in J\varepsilon 

c\varepsilon ju\varepsilon ,j

\bigm\| \bigm\| \bigm\| 
L2

\rho \varepsilon 
D
(\BbbR )

\leq C2\varepsilon 
1/2,(4.30)

where the set J\varepsilon is defined by (2.8), and u\varepsilon ,j are appropriate eigenfunctions of A\varepsilon 
D.

Proof. Claim 1 of the theorem follows from (4.28) and the fact that

lim
\varepsilon \rightarrow 0

\| u\varepsilon ,ap\| L2
\rho \varepsilon 
D
(\BbbR ) = \| u0\| L2

\rho D
(D) = 1,

due to (4.18), (4.25), and (4.29). Claim 2 follows by noting that the essential spectra
of A\varepsilon 

D and A\varepsilon coincide and that \sigma (A\varepsilon ) = \sigma ess(A
\varepsilon ) converges, as \varepsilon \rightarrow 0, to

\bigcup 
\theta \sigma (A\theta ),

which \lambda 0 does not belong to. To prove claim 3, one can argue as in [19], or [11, section
11.1], using (4.28) and a spectral decomposition of u\varepsilon ,ap with respect to the operator
A\varepsilon 

D.

4.4. Improvement of the error bound. It is clear from the construction of
u\varepsilon ,ap that the main error term of order \varepsilon 1/2 comes from what is conventionally called
boundary layer, near the endpoints of the defect D. In fact, one can improve the error
bound (4.28) by ``attaching"" the \varepsilon -periodic structure to the defect in an appropriate
way, thereby preventing the appearance of the boundary effect. Our approach is
based on the behavior of the function w0; see the observation made in the beginning
of section 4.2 preceding the adjustment of w0. We provide the detailed construction
only at the right end of the defect D. The construction at the left end is completely
analogous.

First, let us assume that w0 in (4.15) has no extrema inside the soft intervals
[d+/\varepsilon ,\infty )\cap \Omega 0. Then w0 does not vanish on the stiff component [d+/\varepsilon ,\infty )\cap \Omega 1. In this
case we attach the periodic structure to D so that it touches the soft component, i.e.,
we define the soft and stiff components to the right of D via \Omega +

0 :=
\bigcup 

z(Y0+z+d+/\varepsilon )
and \Omega +

1 :=
\bigcup 

z(Y1 + z + d+/\varepsilon ), respectively, z = 0, 1, . . .. The definition of the
relevant notation, such as coefficients a\varepsilon D, \rho \varepsilon D, etc., should be adjusted in an obvious
way, however, we will not dwell on this. We define w0 on [d+/\varepsilon ,\infty ) according to
(4.11), (4.15), requiring w0(d+/\varepsilon ) = u0(d+). We construct w2 on [d+/\varepsilon + h,\infty )
according to (4.8) and (4.22), requiring w2(d+/\varepsilon + h + z) = 0, z = 0, 1, . . ., and set
w2 \equiv 0 on Y0 + d+/\varepsilon . Now the coderivative of w0(x/\varepsilon ) + \varepsilon 2w2(x/\varepsilon ) at d+ is equal to
\varepsilon (a0w

\prime 
0)((d+/\varepsilon )

+). We define a corrector \varepsilon u1 in D by setting (cf. (4.21))
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u1(x) :=  - (a0w
\prime 
0)
\bigl( 
(d+/\varepsilon )

+
\bigr) d+\int 
x

a - 1
D (f1 + cf2), x \in D.

Here the smooth functions f1 and f2 are chosen in the following way. Let the points
d1 and d2 be such that (d - + d+)/2 \leq d1 < d2 < d+. We require that 0 \leq f1 \leq 1,
f1(d+) = 1, f1(x) = 0 for x \in [d - , d2], f2(x) = 0 for x \in [d - , d1] \cup [d2, d+], f2(x) < 0
for x \in (d1, d2). Finally, the constant c is chosen so that u1 \equiv 0 on [d - , d1].

Now we assume that w0 in (4.15) has extrema inside the soft component [d+/\varepsilon ,
\infty ) \cap \Omega 0, i.e., there exists a point y\ast + \in Y0 such that | w0(y

\ast 
+ + z)| = maxY0+z | w0| 

and (a0w
\prime 
0)(y

\ast 
+ + z) = 0 for all z satisfying Y0 + z \subset [d+/\varepsilon ,\infty ) (note that w0 may

or may not vanish on the stiff component---it is not important). This situation is
rather generic, for example, for constant a0 and \rho 0 this assumption is true for any
\lambda 0 > a0\pi 

2/(\rho 0h
2). In this case we attach the periodic structure to D at the point

where | w0| attains its maximum: we define the soft and stiff components to the right
of D via \Omega +

0 :=
\bigcup 

z(Y0 - y\ast ++z+d+/\varepsilon )\cap (d+/\varepsilon ,\infty ), and \Omega +
1 :=

\bigcup 
z(Y1 - y\ast ++z+d+/\varepsilon )

respectively, z = 0, 1, . . .. Analogously to the above, w0 is defined according to (4.8),
(4.15), requiring w0(d+/\varepsilon ) = u0(d+), and w2 is defined according to (4.11) and (4.22)
on [d+/\varepsilon + h - y\ast +,\infty ), requiring w2(d+/\varepsilon + h - y\ast + + z) = 0, z = 0, 1, . . ., and we set
w2 \equiv 0 on [0, h - y\ast +]+d+/\varepsilon . Since the coderivative of w0(x/\varepsilon )+\varepsilon 

2w2(x/\varepsilon ) vanishes at
d+ by construction, we do not need any corrector term in D contrary to the previous
case. Thus we set u1 \equiv 0 in this case.

One can perform analogous construction on the left of D. In any case the new
approximate solution

u\varepsilon ,ap(x) :=

\Biggl\{ 
u0(x) + \varepsilon u1(x), x \in D,

w0(x/\varepsilon ) + \varepsilon 2w2(x/\varepsilon ), x \in \BbbR \setminus D

belongs to the domain of A\varepsilon 
D and satisfies

\rho \varepsilon D(A\varepsilon 
D  - \lambda 0)u\varepsilon ,ap =

\left\{       
 - \varepsilon (aDu

\prime 
1)

\prime (x) - \varepsilon \lambda 0\rho Du1(x), x \in D,

 - \varepsilon 2(a0w
\prime 
2)

\prime (x/\varepsilon ) - \varepsilon 2\lambda 0\rho 0(x/\varepsilon )w2(x/\varepsilon ), x \in \Omega \varepsilon 
0 \setminus D,

 - \varepsilon 2\lambda 0\rho 1(x/\varepsilon )w2(x/\varepsilon ), x \in \Omega \varepsilon 
1 \setminus D.

(We remind the reader that the notation a\varepsilon D, \rho \varepsilon D, \Omega \varepsilon 
0 and \Omega \varepsilon 

1 has to be redefined
accordingly to the above construction in each case).

In the case if w0 has no extrema inside the soft component at least on one of the
intervals ( - \infty , d - /\varepsilon ] or [d+/\varepsilon ,\infty ), the term u1 is nonzero. Then, similarly to (4.28),
we obtain an improved estimate\bigm\| \bigm\| (A\varepsilon 

D  - \lambda 0)u\varepsilon ,ap
\bigm\| \bigm\| 
L2

\rho \varepsilon 
D
(\BbbR ) \leq C\varepsilon .

However, if w0 has extrema inside the soft component on each of the intervals
( - \infty , d - /\varepsilon ] and [d+/\varepsilon ,\infty ), the term u1 \equiv 0, and we have\bigm\| \bigm\| (A\varepsilon 

D  - \lambda 0)u\varepsilon ,ap
\bigm\| \bigm\| 
L2

\rho \varepsilon 
D
(\BbbR ) \leq C\varepsilon 2.

The improved estimates for the error term immediately imply the following
statement.
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Theorem 4.2. Suppose that \lambda 0 \in \sigma 
\bigl( 
AN,D

\bigr) 
\setminus 
\bigl( \bigcup 

\theta \sigma (A\theta )
\bigr) 
and additionally the so-

lution w0 in (4.15) has extrema inside the soft component on each of the intervals
( - \infty , d - /\varepsilon ] and [d+/\varepsilon ,\infty ) (respectively, has no extrema inside the soft component at
least on one of the intervals ( - \infty , d - /\varepsilon ] or [d+/\varepsilon ,\infty )). Then one can attach compos-
ite structures on both sides of the defect D and define the approximate solution u\varepsilon ,ap
to the eigenvalue problem in a specific way described above, so that the assertions of
Theorem 4.1 hold with the improved estimates

dist
\bigl( 
\lambda 0, \sigma (A

\varepsilon 
D)
\bigr) 
\leq C1\varepsilon 

2 (resp., \leq C1\varepsilon ),\bigm| \bigm| \lambda \varepsilon  - \lambda 0
\bigm| \bigm| \leq C1\varepsilon 

2 (resp., \leq C1\varepsilon ),\bigm\| \bigm\| \bigm\| \bigm\| u\varepsilon ,ap  - 
\sum 
j\in J\varepsilon 

c\varepsilon ju\varepsilon ,j

\bigm\| \bigm\| \bigm\| \bigm\| 
L2

\rho \varepsilon 
D
(\BbbR )

\leq C2\varepsilon 
2 (resp., \leq C2\varepsilon )

(4.31)

for some C1, C2 > 0.

Remark 4.3. In the above theorem the attached structures do not need to be
periodic extensions of each other. In case of ``nonmatching"" periodic structures on
each side of the defect the essential spectrum of the resulting operator is exactly the
same as in the purely periodic case without the defect. This can easily be seen by
considering Weyl's sequences in each of the cases.

5. Extreme localization of defect eigenfunctions. The method of asymp-
totic expansions allows us to show that for any eigenvalue \lambda 0 of AN,D (cf. (2.6), (4.6))
in a gap of

\bigcup 
\theta \sigma (A\theta ) there exists a sequence of eigenvalues of A\varepsilon 

D converging to \lambda 0.
In this section we provide a statement on the rate of decay of eigenfunctions of A\varepsilon 

D

outside the defect. Namely, the fact that one-dimensional problems admit an explicit
form of solutions in terms of the fundamental system allows us to show that the eigen-
functions u\varepsilon decay at an accelerated exponential rate outside of the defect, which is
claim 2 of Theorem 2.4.

We assume a sequence of eigenvalues \lambda \varepsilon of A\varepsilon 
D converges to \lambda 0 \in \BbbR \setminus 

\bigcup 
\theta \sigma (A\theta ) as

\varepsilon \rightarrow 0, and consider the corresponding sequence u\varepsilon of L2(\BbbR )-normalized eigenfunc-
tions, i.e., \int 

\BbbR 
a\varepsilon Du

\prime 
\varepsilon \varphi 

\prime = \lambda \varepsilon 

\int 
\BbbR 
\rho \varepsilon Du\varepsilon \varphi \forall \varphi \in H1(\BbbR ).

Recalling the unitary operator \scrR \varepsilon : L2
\rho \varepsilon 
(\BbbR ) \rightarrow L2

\rho (\BbbR ) given by \scrR \varepsilon (f)(y) =

\varepsilon 1/2f(\varepsilon y), we note that for all z \in \scrI \varepsilon (see (4.9)), the function \~u\varepsilon := \scrR \varepsilon u\varepsilon solves

 - (a0\~u
\prime 
\varepsilon )

\prime = \lambda \varepsilon \rho 0\~u\varepsilon on Y0 + z,(5.1)

 - \varepsilon  - 2(a1\~u
\prime 
\varepsilon )

\prime = \lambda \varepsilon \rho 1\~u\varepsilon on Y1 + z(5.2)

and satisfies the interface conditions

\~u\varepsilon | Y0+z(z + h) = \~u\varepsilon | Y1+z(z + h), (a0\~u
\prime 
\varepsilon )
\bigl( 
(z + h) - 

\bigr) 
= \varepsilon  - 2(a1\~u

\prime 
\varepsilon )
\bigl( 
(z + h)+

\bigr) 
,

\~u\varepsilon | Y0+z+1(z + 1) = \~u\varepsilon | Y1+z(z + 1), (a0\~u
\prime 
\varepsilon )
\bigl( 
(z + 1)+

\bigr) 
= \varepsilon  - 2(a1\~u

\prime 
\varepsilon )
\bigl( 
(z + 1) - 

\bigr) 
.

(5.3)
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There exist solutions v\varepsilon 1, v
\varepsilon 
2 to the equation  - (a0u

\prime )\prime = \lambda \varepsilon \rho 0u, on Y0, and solutions
w\varepsilon 

1, w
\varepsilon 
2 to the equation  - \varepsilon  - 2(a1u

\prime )\prime = \lambda \varepsilon \rho 1u, on Y1, such that

\Biggl( 
v\varepsilon 1 v\varepsilon 2

a0v
\varepsilon 
1
\prime a0 v

\varepsilon 
2
\prime 

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
y=0

=

\Biggl( 
1 0

0 1

\Biggr) 
,

\Biggl( 
w\varepsilon 

1 w\varepsilon 
2

a1w
\varepsilon 
1
\prime a1 w

\varepsilon 
2
\prime 

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
y=h

=

\Biggl( 
1 0

0 1

\Biggr) 
.

(5.4)

The solution \~u\varepsilon to (5.1), (5.2), z \in \scrI \varepsilon , admits the representation

\~u\varepsilon (y) =

\Biggl\{ 
a\varepsilon zv

\varepsilon 
1(y  - z) + b\varepsilon zv

\varepsilon 
2(y  - z), y \in Y0 + z,

c\varepsilon zw
\varepsilon 
1(y  - z) + d\varepsilon zw

\varepsilon 
2(y  - z), y \in Y1 + z.

(5.5)

For all \varepsilon , the coefficients a\varepsilon z, b
\varepsilon 
z c

\varepsilon 
z and d\varepsilon z, z \in \scrI \varepsilon , are related to each other by the

conditions (5.3), as follows:

c\varepsilon z = a\varepsilon zv
\varepsilon 
1(h) + b\varepsilon zv

\varepsilon 
2(h), \varepsilon  - 2d\varepsilon z = a\varepsilon z(a0v

\varepsilon 
1
\prime )(h) + b\varepsilon z(a0v

\varepsilon 
2
\prime )(h),

a\varepsilon z+1 = c\varepsilon zw
\varepsilon 
1(1) + d\varepsilon zw

\varepsilon 
2(1), \varepsilon 2b\varepsilon z+1 = c\varepsilon z(a1w

\varepsilon 
1
\prime )(1) + d\varepsilon z(a1w

\varepsilon 
2
\prime )(1).

Eliminating c\varepsilon z and d\varepsilon z gives the iterative system

(5.6)

\Biggl( 
a\varepsilon z+1

b\varepsilon z+1

\Biggr) 
=M\varepsilon 

\Biggl( 
a\varepsilon z

b\varepsilon z

\Biggr) 
,

where the matrix M\varepsilon is given by

M\varepsilon =

\biggl( 
v\varepsilon 1(h)w

\varepsilon 
1(1)+\varepsilon 2(a0v\varepsilon 1

\prime )(h)w\varepsilon 
2(1) v\varepsilon 2(h)w

\varepsilon 
1(1)+\varepsilon 2(a0v\varepsilon 2

\prime )(h)w\varepsilon 
2(1)

\varepsilon  - 2v\varepsilon 1(h)(a1w
\varepsilon 
1
\prime )(1)+(a0v\varepsilon 1

\prime )(h)(a1w\varepsilon 
2
\prime )(1) \varepsilon  - 2v\varepsilon 2(h)(a1w

\varepsilon 
1
\prime )(1)+(a0v\varepsilon 2

\prime )(h)(a1w\varepsilon 
2
\prime )(1)

\biggr) 
.

(5.7)

It follows from the property that the modified Wronskian is constant,

det

\Biggl( 
v\varepsilon 1 v\varepsilon 2

a0v
\varepsilon 
1
\prime a0 v

\varepsilon 
2
\prime 

\Biggr) 
\equiv 1, det

\Biggl( 
w\varepsilon 

1 w\varepsilon 
2

a1w
\varepsilon 
1
\prime a1 w

\varepsilon 
2
\prime 

\Biggr) 
\equiv 1

that the characteristic polynomial of M\varepsilon is given by

det(M\varepsilon  - \mu I) = \mu 2  - \mu h\varepsilon + 1,

h\varepsilon = v\varepsilon 1(h)w
\varepsilon 
1(1) + \varepsilon 2(a0v

\varepsilon 
1
\prime )(h)w\varepsilon 

2(1)+\varepsilon 
 - 2v\varepsilon 2(h)(a1w

\varepsilon 
1
\prime )(1) + (a0v

\varepsilon 
2
\prime )(h)(a1w

\varepsilon 
2
\prime )(1).

(5.8)

Recalling, from section 3.1, the fundamental solutions v1, v2 of (cf. (3.5))

 - (a0u
\prime )\prime = \lambda 0\rho 0u in Y0,

satisfying \Biggl( 
v1(0) v2(0)

(a0v
\prime 
1)(0) (a0v

\prime 
2)(0)

\Biggr) 
=

\Biggl( 
1 0

0 1

\Biggr) 
,

we shall prove in the second half of this section the following property.
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Lemma 5.1. The following convergence holds:

lim
\varepsilon \rightarrow 0

h\varepsilon = v1(h) + (a0v
\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1

\rho 1.(5.9)

Assuming that (5.9) holds, since \lambda 0 \in \BbbR \setminus 
\bigcup 

\theta \sigma (A\theta ), or equivalently (see section
3.1) \lambda 0 is such that (cf. (3.10))\bigm| \bigm| \bigm| \bigm| v1(h) + (a0v

\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1

\rho 1

\bigm| \bigm| \bigm| \bigm| > 2,

for sufficiently small \varepsilon we find that | h\varepsilon | > 2.
As per the discussion in section 4, the eigenvalues \mu \varepsilon 

1, \mu 
\varepsilon 
2 of the matrix M\varepsilon satisfy

the identity \mu \varepsilon 
1\mu 

\varepsilon 
2 = 1 and the nature of \~u\varepsilon away from the defect is determined by the

coefficient h\varepsilon . In particular, if | h\varepsilon | > 2, then the roots \mu \varepsilon 
1, \mu 

\varepsilon 
2 are such that | \mu \varepsilon 

1| < 1
and | \mu \varepsilon 

2| > 1 and there exist linearly independent functions vg, vd on \BbbR \setminus 
\bigl( 
\lfloor d - \rfloor \varepsilon , \lceil d+\rceil \varepsilon 

\bigr) 
that grow and decay, respectively. In this case, for u\varepsilon to be an element of L2(\BbbR ) it is
necessary that u\varepsilon is proportional to the decaying solution vd, which takes the form

vd(x) =

\left\{         
exp

\biggl( 
ln | \mu \varepsilon 

1| 
\varepsilon 

dist(x,D)

\biggr) 
p\varepsilon 1(x/\varepsilon ), x \in [d+,\infty ),

exp

\biggl( 
ln | \mu \varepsilon 

1| 
\varepsilon 

dist(x,D)

\biggr) 
p\varepsilon 2(x/\varepsilon ), x \in ( - \infty , d - ]

for some periodic (respectively, antiperiodic) functions p\varepsilon 1, p
\varepsilon 
2, when h\varepsilon > 2 (respec-

tively, when h\varepsilon <  - 2). Therefore, for any \nu satisfying \nu <  - ln | \mu \varepsilon 
1| =

\bigm| \bigm| ln | \mu \varepsilon 
1| 
\bigm| \bigm| the

product g\nu /\varepsilon u\varepsilon is in L2(\BbbR ), where g\nu /\varepsilon is defined by (2.9). Then the third claim of
Theorem 2.4 follows by noticing that by (5.9) \mu \varepsilon 

1 converges to \mu 1, the smallest by
absolute value root of \mu 2  - h\mu + 1, where

h := v1(h) + (a0v
\prime 
2)(h) - \lambda 0v2(h)

\int 
Y1

\rho 1,

as \varepsilon \rightarrow 0.
It remains to prove the convergence (5.9).

Proof of Lemma 5.1. The vector field

\eta \varepsilon j :=

\Biggl( 
v\varepsilon j  - vj

a0v
\varepsilon 
j
\prime  - a0vj

\prime 

\Biggr) 
, j = 1, 2(5.10)

solves the initial-value problem

\eta \varepsilon j
\prime = \Phi \varepsilon \eta \varepsilon j +\Psi \varepsilon 

j in Y0, \eta \varepsilon j (0) = 0, j = 1, 2(5.11)

for the matrix \Phi \varepsilon and vector \Psi \varepsilon 
j , j = 1, 2, given by

\Phi \varepsilon =

\Biggl( 
0 a - 1

0

 - \lambda \varepsilon \rho 0 0

\Biggr) 
, \Psi \varepsilon 

j =

\Biggl( 
0

(\lambda 0  - \lambda \varepsilon )\rho 0vj

\Biggr) 
, j = 1, 2.

Since \lambda \varepsilon \rightarrow \lambda 0 the solutions to (5.11) converge uniformly on Y0 to the trivial solution
of

\eta \prime = \Phi \eta in Y0, \eta (0) = 0,
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where \Phi is the limit of \Phi \varepsilon , as \varepsilon \rightarrow 0 (see, e.g., [21, Theorem 1.6.1]). Namely, we have\bigm| \bigm| \eta \varepsilon j (y)\bigm| \bigm| = \bigm| \bigm| \eta \varepsilon j (y) - \eta (y)
\bigm| \bigm| \leq C | \lambda \varepsilon  - \lambda 0| , j = 1, 2,

for some constant C independent of \varepsilon . In particular, (5.10) implies that

lim
\varepsilon \rightarrow 0

v\varepsilon j (h) = vj(h), lim
\varepsilon \rightarrow 0

(a0v
\varepsilon 
j
\prime )(h) = (a0v

\prime 
j)(h), j = 1, 2.(5.12)

Similarly, it is easy to see that w\varepsilon 
j and a1w

\varepsilon 
j
\prime converge uniformly on Y1 to wj and

a1w
\prime 
j , where wj , j = 1, 2, are the solutions of (a1w

\prime )\prime = 0 satisfying\Biggl( 
w1(h) w2(h)

(a1w
\prime 
1)(h) (a1w

\prime 
2)(h)

\Biggr) 
=

\Biggl( 
1 0

0 1

\Biggr) 
.

Since w1 \equiv 1 and a1w
\prime 
2 \equiv 1 on Y1 we see that

(5.13)

\Biggl( 
w\varepsilon 

1 w\varepsilon 
2

a1w
\varepsilon 
1
\prime a1w

\varepsilon 
2
\prime 

\Biggr) 
\rightarrow 

\Biggl( 
1
\int y

h
a - 1
1

0 1

\Biggr) 
uniformly on Y1 as \varepsilon \rightarrow 0.

Furthermore, by the fundamental theorem of calculus and the fact - \varepsilon  - 2(a1w
\varepsilon 
1
\prime )\prime =

\lambda \varepsilon \rho 1w
\varepsilon 
1, we have

\varepsilon  - 2(a1w
\varepsilon 
1
\prime )(1) - \varepsilon  - 2(a1w

\varepsilon 
1
\prime )(h) =  - \lambda \varepsilon 

\int 1

h

\rho 1w
\varepsilon 
1,

and since\int 1

h

\rho 1w
\varepsilon 
1  - w\varepsilon 

1(h)

\int 1

h

\rho 1 =

\int 1

h

\rho 1
\bigl( 
w\varepsilon 

1  - w\varepsilon 
1(h)

\bigr) 
=

\int 
Y1

\rho 1(y)

\biggl( \int y

h

w\varepsilon 
1
\prime 
\biggr) 

dy,

it follows that\bigm| \bigm| \bigm| \bigm| \varepsilon  - 2(a1w
\varepsilon 
1
\prime )(1) - \varepsilon  - 2(a1w

\varepsilon 
1
\prime )(h) + \lambda \varepsilon w

\varepsilon 
1(h)

\int 1

h

\rho 1

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \lambda \varepsilon \int 
Y1

\rho 1(y)

\biggl( \int y

h

w\varepsilon 
1
\prime 
\biggr) 

dy

\bigm| \bigm| \bigm| \bigm| 
\leq | \lambda \varepsilon | | | \rho 1| | L\infty | | w\varepsilon 

1
\prime | | L\infty ,

which together with (5.13) implies

lim
\varepsilon \rightarrow 0

\bigm| \bigm| \bigm| \bigm| \varepsilon  - 2(a1w
\varepsilon 
1
\prime )(1) - \varepsilon  - 2(a1w

\varepsilon 
1
\prime )(h) + w\varepsilon 

1(h)\lambda \varepsilon 

\int 1

h

\rho 1

\bigm| \bigm| \bigm| \bigm| = 0.

Taking into account the initial conditions (5.4) we obtain

lim
\varepsilon \rightarrow 0

\varepsilon  - 2
\bigl( 
a1w

\varepsilon 
1
\prime \bigr) (1) =  - \lambda 0

\int 
Y1

\rho 1.(5.14)

Finally, assertions (5.12), (5.13), and (5.14) imply (5.9), as required.

6. Resolvent estimates for the problem without defect. In this section we
study the behavior of the unperturbed periodic operator A\varepsilon in the operator norm as
\varepsilon \rightarrow 0. In particular, we construct a full asymptotic expansions for the resolvent of A\varepsilon 

using a version of the asymptotic framework developed in [7]; see Theorem 6.2 below.
This directly implies the order-sharp operator norm resolvent convergence estimate,
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uniform in \theta , formulated in Theorem 2.2. The latter, in turn, implies the uniform in
\theta convergence, as \varepsilon \rightarrow 0, of the spectral band functions \lambda \varepsilon n(\theta ) to \lambda n(\theta ), n \in \BbbN , which
is also order-sharp.

Recall the operator A\varepsilon in L2
\rho \varepsilon (\BbbR ) associated with the sesquilinear form

\beta \varepsilon (u, v) =

\int 
\Omega \varepsilon 

1

a1(
\cdot 
\varepsilon )u

\prime v\prime +

\int 
\Omega \varepsilon 

0

\varepsilon 2a0(
\cdot 
\varepsilon )u

\prime v\prime , u, v \in H1(\BbbR ).

By a scaled version of the Floquet--Bloch transform,3 which is given as the continuous
extension of the following action on, e.g., continuous functions with compact support

(\scrU \varepsilon f)(\theta , y) =

\sqrt{} 
\varepsilon 

2\pi 

\sum 
z\in \BbbZ 

f
\bigl( 
\varepsilon (y  - z)

\bigr) 
ei\theta z, y \in Y, \theta \in [0, 2\pi ),(6.1)

we see that \scrU \varepsilon unitarily maps L2
\rho \varepsilon 
(\BbbR ) to the Bochner space L2

\bigl( 
0, 2\pi ;L2

\rho (Y )
\bigr) 
and

\scrU \varepsilon A
\varepsilon f(\theta , \cdot ) = A\varepsilon 

\theta \scrU \varepsilon f(\theta , \cdot ). Here, A\varepsilon 
\theta is the operator defined in L2

\rho (Y ) and associated
with the form

\beta \varepsilon 
\theta (u, v) :=

\int 
Y0

a0u
\prime v\prime + \varepsilon  - 2

\int 
Y1

a1u
\prime v\prime , u, v \in H1

\theta (Y ).

We recall that H1
\theta (Y ) is the complex Hilbert space of H1(Y )-functions that are \theta -

quasiperiodic. We equip the space H1
\theta (Y ) with the graph norm

| | | u| | | :=

\sqrt{} \int 
Y0

a0| u\prime | 2 +
\int 
Y1

a1| u\prime | 2 +
\int 
Y

\rho | u| 2(6.2)

and consider the subspace

V\theta :=
\bigl\{ 
v \in H1

\theta (Y ) : v\prime \equiv 0 in Y1
\bigr\} 

and its orthogonal complement V \bot 
\theta in H1

\theta with respect to the inner product associated
with | | | \cdot | | | . The following result, established in [8], is of fundamental importance in
studying the asymptotics of A\varepsilon , equivalently A\varepsilon 

\theta .

Lemma 6.1. There exists a constant CP > 0, independent of \theta , such that

(6.3) | | | P\bot 
\theta u| | | \leq CP| | 

\surd 
a1u

\prime | | L2(Y1) \forall u \in H1
\theta (Y ),

where P\bot 
\theta is the orthogonal projection of H1

\theta (Y ) onto V \bot 
\theta .

For \theta \in [0, 2\pi ) and all f \in L2
\rho (Y ), we consider the resolvent problem

(6.4)  - 
\bigl( 
(\varepsilon  - 2a1 + a0)u

\varepsilon 
\theta 
\prime \bigr) \prime + \rho u\varepsilon \theta = \rho f on (0, 1).

We look for an asymptotic expansion of u\varepsilon \theta in the form

(6.5) u\varepsilon \theta =

\infty \sum 
n=0

\varepsilon 2nu
(2n)
\theta , u

(2n)
\theta \in H1

\theta (Y ) \forall n \in \BbbN .

The following result holds.

3See Appendix A below for further information on the Floquet--Bloch transform.
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Theorem 6.2. For each \theta \in [0, 2\pi ) and f \in L2
\rho (Y ), consider the unique solution

u
(0)
\theta \in V\theta to the problem\int 

Y0

a0(u
(0)
\theta )\prime \varphi \prime +

\int 
Y

\rho u
(0)
\theta \varphi =

\int 
Y

\rho f\varphi \forall \varphi \in V\theta ,

and for all n \in \BbbN consider the unique solution u
(2n)
\theta \in V \bot 

\theta to

 - 
\Bigl( 
a1
\bigl( 
u
(2n)
\theta 

\bigr) \prime \Bigr) \prime 
=
\Bigl( 
a0
\bigl( 
u
(2(n - 1))
\theta 

\bigr) \prime \Bigr) \prime  - \rho u
(2(n - 1))
\theta + \delta 1n\rho f,

where \delta 1n is the Kronecker delta function. Then, for each N \in \BbbN the sum

U
(N)
\theta :=

N\sum 
n=0

\varepsilon 2nu
(2n)
\theta 

approximates the solution u\varepsilon \theta to (6.4) in the following sense:

| | | u\varepsilon \theta  - U
(N)
\theta | | | \leq C

2(N+1)
P \varepsilon 2(N+1)

\bigm\| \bigm\| f\bigm\| \bigm\| 
L2

\rho (Y )
.

Remark 6.3. By an application of the min-max principle, Theorem 6.2 implies
that the nth eigenvalue \lambda \varepsilon n(\theta ) of the operator A\varepsilon 

\theta is \varepsilon 2-close, uniformly in \theta , to the
nth eigenvalue \lambda n(\theta ) of A\theta , i.e., for each n \in \BbbN there exists a constant cn > 0 such
that \bigm| \bigm| \lambda \varepsilon n(\theta ) - \lambda n(\theta )

\bigm| \bigm| \leq cn\varepsilon 
2 \forall \theta \in [0, 2\pi ).

In particular, this indirectly implies, since \lambda n is the uniform limit of continuous func-
tions, that \lambda n is continuous in \theta . A direct proof of this fact can be arrived at by the
definition of the operators A\theta and the continuity properties (in the Hausdorff sense)
of their domains D(A\theta ); see [8, Appendix B].

Proof. Substituting (6.5) into (6.4) and equating powers of \varepsilon yields a system of

recurrence relations for the functions u
(2n)
\theta , n \in \BbbN . The first equation in this system,

which corresponds to \varepsilon  - 2, is

(6.6)  - 
\Bigl( 
a1
\bigl( 
u
(0)
\theta 

\bigr) \prime \Bigr) \prime 
= 0 on (0, 1),

which implies that u
(0)
\theta \in V\theta =

\bigl\{ 
v \in H1

\theta (Y ) : v\prime \equiv 0 on Y1
\bigr\} 

(recall that a1 \equiv 0
on Y0). The remaining equations, obtained by considering the terms of order \varepsilon 2j ,
j = 0, 1, 2, . . . , are

 - 
\Bigl( 
a1
\bigl( 
u
(2n)
\theta 

\bigr) \prime \Bigr) \prime 
=
\Bigl( 
a0
\bigl( 
u
(2(n - 1))
\theta 

\bigr) \prime \Bigr) \prime  - \rho u
(2(n - 1))
\theta + \delta 1n\rho f on (0, 1), n \in \BbbN ,

(6.7)

where, as before, \delta in denotes the Kronecker delta function. The existence of solutions
to differential equations with degenerate coefficients such as (6.7) was first studied
in [13] for the case \theta = 0, and it was shown therein that existence is guaranteed by
inequalities of the type (6.3). By following this general framework, and it can be
readily shown that (6.3) implies the following result.
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Lemma 6.4. For a given F \in H - 1
\theta (Y ), the dual space of H1

\theta (Y ), there exist (in-
finitely many) solutions u \in H1

\theta (Y ) to the problem\int 
Y1

a1u
\prime \varphi \prime =H - 1

\theta (Y ) \langle F,\varphi \rangle H1
\theta (Y ) \forall \varphi \in H1

\theta (Y ),

if and only if F satisfies the condition

H - 1
\theta (Y )\langle F, v\rangle H1

\theta (Y ) = 0 \forall v \in V\theta .

Such solutions are unique in V \bot 
\theta , i.e., for any two solutions u1, u2 one has

u1  - u2 \in V\theta .

Consequently, the system (6.7) is solvable if and only if the conditions

(6.8)

\int 
Y0

a0(u
(2n)
\theta )\prime \varphi \prime +

\int 
Y

\rho u
(2n)
\theta \varphi = \delta 0n

\int 
Y

\rho f\varphi \forall \varphi \in V\theta , n+ 1 \in \BbbN 

hold. The equation for n = 0 uniquely determines u
(0)
\theta and for n \geq 1, due to the choice

(6.2) of the norm on H1
\theta (Y ), demonstrates that u

(2n)
\theta \in V \bot 

\theta . Substituting \varphi = u
(0)
\theta 

into the identity (6.8) for n = 0, recalling (6.2), the fact that a1(u
(0)
\theta )\prime \equiv 0 and using

the Cauchy--Schwarz inequality, we obtain

| | | u(0)\theta | | | 2 \leq \| f\| L2
\rho (Y )

\bigm\| \bigm\| u(0)\theta 

\bigm\| \bigm\| 
L2

\rho (Y )
.

Hence, u
(0)
\theta satisfies the bound

(6.9) | | | u(0)\theta | | | \leq \| f\| L2
\rho (Y ) \forall \theta \in [0, 2\pi ).

By Lemmas 6.1 and 6.4, the solution u
(2n)
\theta \in V \bot 

\theta to (6.7) is unique and

(6.10) | | | u(2n)\theta | | | \leq CP

\bigm\| \bigm\| \surd a1(u(2n)\theta )\prime 
\bigm\| \bigm\| 
L2(Y1)

.

Equations (6.7) and the orthogonality of V\theta and V \bot 
\theta with respect to the inner product

associated with the norm (6.2), in particular, the orthogonality of u
(0)
\theta and u

(2)
\theta , imply

that\int 
Y1

a1

\bigm| \bigm| \bigm| \bigl( u(2n)\theta 

\bigr) \prime \bigm| \bigm| \bigm| 2
= \delta 1n

\int 
Y

\rho fu
(2n)
\theta  - (1 - \delta 1n)

\biggl( \int 
Y0

a0
\bigl( 
u
(2(n - 1))
\theta 

\bigr) \prime \bigl( 
u
(2n)
\theta 

\bigr) \prime 
+

\int 
Y

\rho u
(2(n - 1))
\theta u

(2n)
\theta 

\biggr) 
, n \geq 1,

and (6.10) yields

| | | u(2)\theta | | | \leq C2
P

\bigm\| \bigm\| f\bigm\| \bigm\| 
L2

\rho (Y1)
, | | | u(2n)\theta | | | \leq C2

P| | | u(2(n - 1))| | | , n \geq 2.

By iterating the above inequalities we establish that

(6.11) | | | u(2n)\theta | | | \leq C2n
P

\bigm\| \bigm\| f\bigm\| \bigm\| 
L2

\rho (Y1)
, n \geq 1.
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Having identified each term in the expansion, for each n \in \BbbN we define the
remainder R\varepsilon 

\theta (dropping the index N for brevity), according to the formula

(6.12) u\varepsilon \theta =

N\sum 
n=0

\varepsilon 2nu
(2n)
\theta + \varepsilon 2NR\varepsilon 

\theta ,

and find, via (6.6) and (6.7), that R\varepsilon 
\theta \in H1

\theta (Y ) solves the problem

 - 
\bigl( 
(\varepsilon  - 2a1 + a0)(R

\varepsilon 
\theta )

\prime \bigr) \prime + \rho R\varepsilon 
\theta = \delta 0N\rho f +

\bigl( 
a0(u

(2N)
\theta )\prime 

\bigr) \prime  - \rho u
(2N)
\theta on (0, 1),

that is, \int 
Y1

\varepsilon  - 2a1(R
\varepsilon 
\theta )

\prime v\prime +

\int 
Y0

a0(R
\varepsilon 
\theta )

\prime v\prime +

\int 
Y

\rho R\varepsilon 
\theta v

= \delta 0N

\int 
Y

\rho fv  - 
\int 
Y0

a0(u
(2N)
\theta )\prime v\prime  - 

\int 
Y

\rho u
(2N)
\theta v \forall v \in H1

\theta (Y ).

Setting v \in V\theta , recalling the norm (6.2) and (6.8), demonstrates that R\varepsilon 
\theta \in V \bot 

\theta .
Additionally, setting v = R\varepsilon 

\theta above implies that

\varepsilon  - 2

\int 
Y1

a1
\bigm| \bigm| (R\varepsilon 

\theta )
\prime \bigm| \bigm| 2 \leq \delta 0N

\int 
Y

\rho fR\varepsilon 
\theta  - 

\int 
Y0

a0(u
(2N)
\theta )\prime (R\varepsilon 

\theta )
\prime  - 
\int 
Y

\rho u
(2N)
\theta R\varepsilon 

\theta ,

and inequalities (6.3), (6.11), along with another application of the Cauchy--Schwarz
inequality yields

| | | R\varepsilon 
\theta | | | \leq C

2(N+1)
P \varepsilon 2\| f\| L2

\rho (Y ).

Finally, by combining this inequality with (6.12) we deduce that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u\varepsilon \theta  - N\sum 
n=0

\varepsilon 2nu
(2n)
\theta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq C2(N+1)\varepsilon 2(N+1)\| f\| L2
\rho (Y ),

as required.

Appendix A. Norm-resolvent asymptotics of \bfitA \bfitvarepsilon and the approximating
operator \bfitA \bfzero .

We consider the space H to be the closure in L2
\rho (\BbbR ) of

H+ :=
\Bigl\{ 
v \in H1(\BbbR ) : v\prime \equiv 0 on \Omega 1 :=

\bigcup 
z\in \BbbZ 

(Y1 + z)
\Bigr\} 
.

Both H and H+ are Hilbert spaces when equipped with the inner products inherited
from L2

\rho (\BbbR ) and H1(\BbbR ), respectively, and clearly H+ is dense in H with continuous
embedding (recall \rho is taken to be uniformly positive and bounded). The norm of
H+, which is the standard H1-norm, is equivalent to the graph norm

| | \cdot | | H+ :=
\Bigl( 
| | \cdot | | 2L2

\rho (\BbbR ) + \beta 0(\cdot , \cdot )
\Bigr) 1/2

,(1.1)

where \beta 0 is the sesquilinear form

\beta 0(u, v) :=

\int 
\Omega 0

a0u
\prime v\prime , u, v \in H+.
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We shall henceforth consider H+ to be equipped with the graph norm (1.1), and
denote by H - the dual space consisting of bounded linear functionals on H+. As \beta 0

is a nonnegative closed symmetric sesquilinear form, it generates a densely defined
nonnegative self-adjoint linear operator A0 in H. The domain D(A0) is the dense
subset of H+ consisting of the solutions to the problem: for each f \in H+ we consider
u \in H+ the unique solution to the problem

\beta 0(u, v) +

\int 
\BbbR 
\rho uv =

\int 
\BbbR 
\rho fv \forall v \in H+,

and set A0u = f  - u for u \in D(A0). The operator A0 is unitarily equivalent to the

fiber integral operator
\int \oplus 

A\theta (cf. Remark 2.1) and the unitary map is given by the
continuous extension of the Floquet--Bloch transform \scrU (cf. [15, section 2.2]) which
acts on smooth functions f with compact support as

\scrU f(\theta , y) := 1\surd 
2\pi 

\sum 
z\in \BbbZ 

f(y  - z)ei\theta z, \theta \in [0, 2\pi ), y \in Y .

Indeed, \scrU is well known to be a unitary operator between L2
\rho (\BbbR ) and the Bochner

space L2
\bigl( 
0, 2\pi ;L2

\rho (Y )
\bigr) 
, and it is straightforward to see that

\scrU A0f(\theta ; \cdot ) = A\theta \scrU f(\theta ; \cdot ), \forall f \in L2
\rho (\BbbR ), \theta \in [0, 2\pi ).

Furthermore, it is clear that \scrU unitarily maps H+ to the space L2(0, 2\pi ;V\theta ) (we recall
that V\theta =

\bigl\{ 
v \in H1

\theta (Y ) : v\prime \equiv 0 on Y1
\bigr\} 
). It is easy to verify that the spectrum of A0

coincides with the union of the spectra of A\theta over all \theta \in [0, 2\pi ), i.e.,

\sigma (A0) =
\bigcup 
\theta 

\sigma (A\theta ) =
\bigcup 
n\in \BbbN 

\bigl[ 
min
\theta 
\lambda n(\theta ),max

\theta 
\lambda n(\theta )

\bigr] 
.

Theorem 2.2 implies in particular that A\varepsilon is order-O(\varepsilon 2) close in the norm-resolvent
sense to A0 (up to unitary equivalence), i.e., there exists a constant C > 0 such that\bigm\| \bigm\| \scrR \varepsilon (A

\varepsilon + 1) - 1\scrR  - 1
\varepsilon  - (A0 + 1) - 1

\bigm\| \bigm\| 
L2

\rho (\BbbR )\rightarrow L2
\rho (\BbbR )

\leq C\varepsilon 2

for all \varepsilon \in (0, 1), where\scrR \varepsilon : L
2
\rho \varepsilon (\BbbR ) \rightarrow L2

\rho (\BbbR ) is the unitary transformation\scrR \varepsilon (f)(y) =

\varepsilon 1/2f(\varepsilon y).

Appendix B. Spectral decomposition of \bfitA \bfzero .
As the operator A0 is self-adjoint, it has a spectral decomposition, and we shall

now characterize the spaceH+ and its dualH - in terms of a realization of this spectral
decomposition. For each \theta , the self-adjoint operator A\theta has compact resolvent and
for each of its eigenvalues \lambda n(\theta ), n \in \BbbN , we denote by \psi n(\theta ; .) the corresponding
L2
\rho (Y )-normalized eigenfunction. Then the mapping \Psi given by

\Psi f(\theta ; \cdot ) = \{ cn(\theta )\} n\in \BbbN , cn(\theta ) :=

\int 
Y

\rho (y)f(\theta , y)\psi n(\theta ; y) dy

unitarily maps L2
\bigl( 
0, 2\pi ;L2

\rho (Y )
\bigr) 
to h := L2(0, 2\pi ; \ell 2) so that

\Psi 
\bigl( 
\scrU A0f

\bigr) 
(\theta , n) = \lambda n(\theta )\Psi 

\bigl( 
\scrU f
\bigr) 
(\theta , n),
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where for u \in h, we denote by u(\theta , n) is the nth element of the sequence u(\theta ). It is
easy to verify that \Psi \circ \scrU unitarily maps H+ to

h+ :=
\bigl\{ 
u(\theta , n) \in h :

\bigl( 
\lambda n(\theta ) + 1

\bigr) 1/2
u(\theta , n) \in h

\bigr\} 
.

By standard duality arguments (see, for example, [16, Chapter 1) section 6.2], we
show that \Psi \circ \scrU unitarily maps H - , the dual space of bounded linear functionals on
H+, to

h - :=
\bigl\{ 
f : (0, 2\pi ) \rightarrow \ell 2 measurable :

\bigl( 
\lambda n(\theta ) + 1

\bigr)  - 1/2
f(\theta , n) \in h

\bigr\} 
,

in the sense that F \in H - if and only if there exists f \in h - such that

H - \langle F, v\rangle H+ =
\sum 
n\in \BbbN 

\int 2\pi 

0

f(\theta , n)
\bigl( 
\Psi \scrU 
\bigr) 
v(\theta , n) d\theta \forall v \in H+,

and we have

| | F | | H - 1 =

\sqrt{}    \sum 
n\in \BbbN 

\int 2\pi 

0

\bigm| \bigm| f(\theta , n)\bigm| \bigm| 2
\lambda n(\theta ) + 1

d\theta .
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