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Abstract

Clique-width is a well-studied graph parameter owing to its use in under-
standing algorithmic tractability: if the clique-width of a graph class G is
bounded by a constant, a wide range of problems that are NP-complete in
general can be shown to be polynomial-time solvable on G. For this reason, the
boundedness or unboundedness of clique-width has been investigated and de-
termined for many graph classes. We survey these results for hereditary graph
classes, which are the graph classes closed under taking induced subgraphs. We
then discuss the algorithmic consequences of these results, in particular for the
Colouring and Graph Isomorphism problems. We also explain a possi-
ble strong connection between results on boundedness of clique-width and on
well-quasi-orderability by the induced subgraph relation for hereditary graph
classes.
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1 Introduction

Many decision problems are known to be NP-complete [84], and it is generally
believed that such problems cannot be solved in time polynomial in the input size.
For many of these hard problems, placing restrictions on the input (that is, insist-
ing that the input has certain stated properties) can lead to significant changes in
the computational complexity of the problem. This leads one to ask fundamental
questions: under which input restrictions can an NP-complete problem be solved
in polynomial time, and under which input restrictions does the problem remain
NP-complete? For problems defined on graphs, we can restrict the input to some
special class of graphs that have some commonality. The ultimate goal is to obtain
complexity dichotomies for large families of graph problems, which tell us exactly
for which graph classes a certain problem is efficiently solvable and for which it stays
computationally hard. Such dichotomies may not always exist if P 6= NP [129], but
rather than solving problems one by one, and graph class by graph class, we want
to discover general properties of graph classes from which we can determine the
tractability or hardness of families of problems.

1.1 Width Parameters

One way to define a graph class is to use a notion of “width” and consider the set
of graphs for which the width is bounded by a constant. Though it will not be our
focus, let us briefly illustrate this idea with the most well-known width parameter,
treewidth. A tree decomposition of a graph G = (V,E) is a tree T whose nodes
are subsets of V and has the properties that, for each v in V , the tree nodes that
contain v induce a non-empty connected subgraph, and, for each edge vw in E,
there is at least one tree node that contains v and w. See Figure 1 for an illustration
of a graph and one of its tree decompositions. The sets of vertices that form the
nodes of the tree are called bags and the width of the decomposition is one less than
the size of the largest bag. The treewidth of G is the minimum width of its tree
decompositions. One can therefore define a class of graphs of bounded treewidth;
that is, for some constant c, the collection of graphs that each have treewidth at
most c. The example in Figure 1 has treewidth 2. Moreover, it is easy to see

A B

C D

E F

G

ABD

ACD

CDF

CEF FG

Figure 1: A graph, and a tree decomposition of the graph.
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that trees form exactly the class of graphs with treewidth 1. Hence, the treewidth
of a graph can be seen as a measure that indicates how close a graph is to being
a tree. Many graph problems can be solved in polynomial time on trees. For
such problems it is natural to investigate whether restricting the problem to inputs
that have bounded treewidth still yields algorithmic tractability. An approach that
often yields polynomial-time algorithms is to apply dynamic programming over the
decomposition tree. A disadvantage of this approach is that only sufficiently sparse
graphs have bounded treewidth.

We further discuss reasons for focussing on width parameters in Section 1.2, but
let us first note that there are many alternative width parameters, each of which
has led to progress in understanding the complexity of problems on graphs.

Clique-width, the central width parameter in our survey, is another well-known
example, which has received significant attention since it was introduced by Cour-
celle, Engelfriet and Rozenberg [56] at the start of the 1990s. Clique-width can
be seen as a generalisation of treewidth that can deal with dense graphs, such as
complete graphs and complete bipartite graphs, provided these instances are suffi-
ciently regular. We will give explain this in Section 3, where we also give a formal
definition, but, in outline, the idea is, given a graph G, to determine how it can
be built up vertex-by-vertex using four specific graph operations that involve as-
signing labels to the vertices. The operations ensure that vertices labelled alike will
keep the same label and thus, in some sense, behave identically. The clique-width
of G is the minimum number of different labels needed to construct G in this way.
Hence, if the clique-width of a graph G is small, we can decompose G into large sets
of similarly behaving vertices, and these decompositions can be exploited to find
polynomial-time algorithms (as we shall see later in this paper).

We remark that many other width parameters have been defined including
boolean-width, branch-width, MIM-width, MM-width, module-width, NLC-width,
path-width and rank-width, to name just a few. These parameters differ in strength,
as we explain below; we refer to [95,111,116,164] for surveys on width parameters.

Given two width parameters p and q, we say that p dominates q if there is
a function f such that p(G) ≤ f(q(G)) for all graphs G. If p dominates q but
not the reverse, then p is more general than q, as p is bounded for larger graph
classes: whenever q is bounded for some graph class, then this is also the case for p,
but there exists an infinite family of graphs for which the reverse does not hold.
If p dominates q and q dominates p, then p and q are equivalent . For instance,
MIM-width is more general than boolean-width, clique-width, module-width, NLC-
width and rank-width, all of which are equivalent [42, 114,151,154,164]. The latter
parameters are more general than the equivalent group of parameters branch-width,
MM-width and treewidth, which are, in turn, more general than path-width [59,
155, 164]. To give a concrete example, recall that the treewidth of the class of
complete graphs is unbounded, in contrast to the clique-width. More precisely, a
complete graph on n ≥ 2 vertices has treewidth n−1 but clique-width 2. As another
example, the reason that rank-width and clique-width are equivalent is because the
inequalities rw(G) ≤ cw(G) ≤ 2rw(G)+1− 1 hold for every graph G [151]. These two
inequalities are essentially tight [150], and, as such, the latter example also shows
that two equivalent parameters may not necessarily be linearly, or even polynomially,
related.
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1.2 Motivation for Width Parameters

The main computational reason for the large interest in width parameters is that
many well-known NP-complete graph problems become polynomial-time solvable if
some width parameter is bounded. There are a number of meta-theorems which
prescribe general, sufficient conditions for a problem to be tractable on a graph
class of bounded width. For treewidth and equivalent parameters, such as branch-
width and MM-width, one can use the celebrated theorem of Courcelle [51]. This
theorem, slightly extended from its original form, states that for every graph class of
bounded treewidth, every problem definable in MSO2 can be solved in time linear in
the number of vertices of the graph.1 In order to use this theorem, one can use the
linear-time algorithm of Bodlaender [17] to verify whether a graph has treewidth at
most c for any fixed constant c (that is, c is not part of the input). However, many
natural graph classes, such as all those that contain graphs with arbitrarily large
cliques, have unbounded treewidth.

We have noted that clique-width is more general than treewidth. This means
that if we have shown that a problem can be solved in polynomial time on graphs
of bounded clique-width, then it can also be solved in polynomial time on graphs of
bounded treewidth. Similarly, if a problem is NP-complete for graphs of bounded
treewidth, then the same holds for graphs of bounded clique-width. For graph
classes of bounded clique-width, one can use several other meta-theorems. The
first such result is due to Courcelle, Makowsky and Rotics [58]. They proved that
graph problems that can be defined in MSO1 are linear-time solvable on graph
classes of bounded clique-width.2 An example of such a problem is the well-known
Dominating Set problem. This problem is to decide, for a graph G = (V,E) and
integer k, if G contains a set S ⊆ V of size at most k such that every vertex of G−S
has at least one neighbour in S.3

1.3 Focus: Clique-Width

As mentioned, in this survey we focus on clique-width. Despite the usefulness
of boundedness of clique-width, our understanding of clique-width itself is still very
limited. For example, although computing the clique-width of a graph is known to
be NP-hard in general [77],4 the complexity of computing the clique-width is open
even on very restricted graph classes, such as unit interval graphs (see [107] for some
partial results). To give another example, the complexity of determining whether a
given graph has clique-width at most c is still open for every fixed constant c ≥ 4.

1MSO2 refers to the fragment of second order logic where quantified relation symbols must have
arity at most 2, which means that, with graphs, one can quantify over both sets of vertices and
sets of edges. Many graph problems can be defined using MSO2, such as deciding whether a graph
has a k-colouring (for fixed k) or a Hamiltonian path, but there are also problems that cannot be
defined in this way.

2MSO1 is monadic second order logic with the use of quantifiers permitted on relations of arity 1
(such as vertices), but not of arity 2 (such as edges) or more. Hence, MSO1 is more restricted than
MSO2. We refer to [55] for more information on MSO1 and MSO2.

3Several other problems, such as List Colouring and Precolouring Extension are
polynomial-time solvable on graphs of bounded treewidth [113], but stay NP-complete on graph
of bounded clique-width; the latter follows from results of [113] and [20], respectively; see also [88].

4It is also NP-hard to compute treewidth [4] and parameters equivalent to clique-width, such as
NLC-width [98], rank-width (see [110,149]) and boolean-width [159].
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On the positive side, see [49] for a polynomial-time algorithm for c = 3 and [75] for
a polynomial-time algorithm, for every fixed c, on graphs of bounded treewidth.

To get a better handle on clique-width, many properties of clique-width, and re-
lationships between clique-width and other graph parameters, have been determined
over the years. In particular, numerous graph classes of bounded and unbounded
clique-width have been identified. This has led to several dichotomies for various
families of graph classes, which state exactly which graph classes of the family have
bounded or unbounded clique-width. However, determining (un)boundedness of
clique-width of a graph class is usually a highly non-trivial task, as it requires a
thorough understanding of the structure of graphs in the class. As such, there are
still many gaps in our knowledge.

A number of results on clique-width are collected in the surveys on clique-
width by Gurski [95] and Kamiński, Lozin and Milanič [116]. Gurski focuses on
the behaviour of clique-width (and NLC-width) under graph operations and graph
transformations. Kamiński, Lozin and Milanič also discuss results for special graph
classes. We refer to a recent survey of Oum [150] for algorithmic and structural
results on the equivalent width parameter rank-width.

1.4 Aims and Outline

In Section 2 we introduce some basic terminology and notation that we use
throughout the paper. In Section 3 we formally define clique-width. In the same
section we present a number of basic results on clique-width and explain two gen-
eral techniques for showing that the clique-width of a graph class is bounded or
unbounded. For this purpose, in the same section we also list a number of graph op-
erations that preserve (un)boundedness of clique-width for hereditary graph classes.

A graph class is hereditary if it is closed under taking induced subgraphs, or
equivalently, under vertex deletion. Due to its natural definition, the framework of
hereditary graph classes captures many well-known graph classes, such as bipartite,
chordal, planar, interval and perfect graphs; we refer to the textbook of Brandstädt,
Le and Spinrad [34] for a survey. As we shall see, boundedness of clique-width has
been particularly well studied for hereditary graph classes. We discuss the state-
of-the-art and other known results on boundedness of clique-width for hereditary
graph classes in Section 4. This is all related to our first aim: to update the paper
of Kamiński, Lozin and Milanič [116] from 2009 by surveying, in a systematic way,
known results and open problems on boundedness of clique-width for hereditary
graph classes.

Our second aim is to discuss algorithmic implications of the results from Sec-
tion 4. We do this in Section 5 by focussing on two well-known problems. We
first discuss implications for the Colouring problem, which is well known to be
NP-complete [133]. We focus on (hereditary) graph classes defined by two forbidden
induced subgraphs. Afterwards, we consider the algorithmic consequences for the
Graph Isomorphism problem. This problem can be solved in quasi-polynomial
time [7]. It is not known if Graph Isomorphism can be solved in polynomial time,
but it is not NP-complete unless the polynomial hierarchy collapses [160]. As such,
we define the complexity class GI, which consists of all problems that can be poly-
nomially reduced to Graph Isomorphism and a problem in GI is GI-complete if
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Graph Isomorphism can be polynomially reduced to it. The Graph Isomor-
phism problem is of particular interest, as there are similarities between proving
unboundedness of clique-width of some graph class and proving that Graph Iso-
morphism stays GI-complete on this class [161].

Our third aim is to discuss a conjectured relationship between boundedness of
clique-width and well-quasi-orderability by the induced subgraph relation. If it can
be shown that a graph class is well-quasi-ordered, we can apply several powerful
results to prove further properties of the class. This is, for instance, illustrated by
the Robertson-Seymour Theorem [157], which states that the set of all finite graphs
is well-quasi-ordered by the minor relation. This result makes it possible to test in
cubic time whether a graph belongs to some given minor-closed graph class [156]
(see [112] for a quadratic algorithm). For the induced subgraph relation, it is easy
to construct examples of hereditary graph classes that are not well-quasi-ordered.
Take, for instance, the class of graphs of degree at most 2, which contains an infinite
anti-chain, namely the set of all cycles.

If every hereditary graph class that is well-quasi-ordered by the induced subgraph
relation also has bounded clique-width, then all algorithmic consequences of having
bounded clique-width would also hold for being well-quasi-ordered by the induced
subgraph relation. However, Lozin, Razgon and Zamaraev [142] gave a negative
answer to a question of Daligault, Rao and Thomassé [69] about this implication,
by presenting a hereditary graph class of unbounded clique-width that is neverthe-
less well-quasi-ordered by the induced subgraph relation. Their graph class can be
characterized only by infinitely many forbidden induced subgraphs. This led the
authors of [142] to conjecture that every finitely defined hereditary graph class that
is well-quasi-ordered by the induced subgraph relation has bounded clique-width,
which, if true, would still be very useful. All known results agree with this conjec-
ture, and we survey these results in Section 6. In the same section we explain that
the graph operations given in Section 3 do not preserve well-quasi-orderability by
the induced subgraph relation. However, we also explain that a number of these
operations can be used for a stronger property, namely well-quasi-orderability by
the labelled induced subgraph relation.

In Section 7 we conclude our survey with a list of other relevant open problems.
There, we also discuss some variants of clique-width, including linear clique-width
and power-bounded clique-width.

2 Preliminaries

Throughout the paper we consider only finite, undirected graphs without multi-
ple edges or self-loops.

Let G = (V,E) be a graph. The degree of a vertex u ∈ V is the size of its
neighbourhood N(u) = {v ∈ V | uv ∈ E}. For a subset S ⊆ V , the graph G[S]
denotes the subgraph of G induced by S, which is the graph with vertex set S and
an edge between two vertices u, v ∈ S if and only if uv ∈ E. If F is an induced
subgraph of G, then we denote this by F ⊆i G. Note that G[S] can be obtained
from G by deleting the vertices of V \ S. The line graph of G is the graph with
vertex set E and an edge between two vertices e1 and e2 if and only if e1 and e2
share a common end-vertex in G.
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An isomorphism from a graph G to a graph H is a bijective mapping f : V (G)→
V (H) such that there is an edge between two vertices u and v in G if and only if
there is an edge between f(u) and f(v) in H. If such an isomorphism exists then G
and H are said to be isomorphic. We say that G is H-free if G contains no induced
subgraph isomorphic to H.

Let G = (V,E) be a graph. A set K ⊆ V is a clique of G and G[K] is complete
if there is an edge between every pair of vertices in K. If G is connected, then a
vertex v ∈ V is a cut-vertex of G if G[V \ {v}] is disconnected, and a clique K ⊂ V
is a clique cut-set of G if G[V \ K] is disconnected. If G is connected and has at
least three vertices but no cut-vertices, then G is 2-connected . A maximal induced
subgraph of G that has no cut-vertices is a block of G. If G is connected and has no
clique cut-set, then G is an atom.

The graphs Cn, Pn and Kn denote the cycle, path and complete graph on n
vertices, respectively. The length of a path or a cycle is the number of its edges.
The distance between two vertices u and v in a graph G is the length of a shortest
path between them. For an integer r ≥ 1, the r-th power of G is the graph with
vertex set V (G) and an edge between two vertices u and v if and only if u and v are
at distance at most r from each other in G.

If F and G are graphs with disjoint vertex sets, then the disjoint union of F
and G is the graph G+ F = (V (F ) ∪ V (G), E(F ) ∪ E(G)). The disjoint union of s
copies of a graph G is denoted sG. A forest is a graph with no cycles, that is, every
connected component is a tree. A forest is linear if it has no vertices of degree at
least 3, or equivalently, if it is the disjoint union of paths. A leaf in a tree is a vertex
of degree 1. In a complete binary tree all non-leaf vertices have degree 3.

Let S and T be disjoint vertex subsets of a graph G = (V,E). A vertex v is
(anti-)complete to T if it is (non-)adjacent to every vertex in T . Similarly, S is
(anti-)complete to T if every vertex in S is (non-)adjacent to every vertex in T . A
set of vertices M is a module of G if every vertex of G that is not in M is either
complete or anti-complete to M . A module of G is trivial if it contains zero, one or
all vertices of G, otherwise it is non-trivial . We say that G is prime if every module
of G is trivial.

A graph G is bipartite if its vertex set can be partitioned into two (possibly
empty) subsets X and Y such that every edge of G has one end-vertex in X and
the other one in Y . If X is complete to Y , then G is complete bipartite. For two
non-negative integers s and t, we denote the complete bipartite graph with partition
classes of size s and t, respectively, by Ks,t. The graph K1,t is also known as the
(t + 1)-vertex star . The subdivision of an edge uv in a graph replaces uv by a
new vertex w and edges uw and vw. We let K+

1,t and K++
1,t be the graphs obtained

from K1,t by subdividing one of its edges once or twice, respectively (see Figure 2
for examples).

A graph is complete r-partite, for some r ≥ 1, if its vertex set can be parti-
tioned into r independent sets V1, . . . , Vr such that there exists an edge between two
vertices u and v if and only if u and v do not belong to the same set Vi. Note
that a non-empty graph is complete r-partite for some r ≥ 1 if and only if it is
(P1 + P2)-free.

Let G = (V,E) be a graph. Its complement G is the graph with vertex set V
and an edge between two vertices u and v if and only if uv is not an edge of G.
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K+
1,t (t = 5 shown) K++

1,t (t = 5 shown)

Figure 2: The graphs K+
1,t and K++

1,t .

diamond = 2P1 + P2 gem = P1 + P4 house = P5 domino

Sh,i,j Cn Kn Pn

((h, i, j) = (1, 2, 3) shown) (n = 5 shown) (n = 5 shown) (n = 5 shown)

Figure 3: Some common graphs used throughout the paper.

We say that G is self-complementary if G is isomorphic to G. The complement of a
bipartite graph is a co-bipartite graph.

The graphsK1,3, 2P1 + P2, P1 + P4, and P5 are also known as the claw , diamond ,
gem, and house, respectively. The latter three graphs are shown in Figure 3, along
with the domino. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw ,
which is the tree with one vertex x of degree 3 and exactly three leaves, which are
of distance h, i and j from x, respectively. Note that S1,1,1 = K1,3, S1,1,2 = K+

1,3

and S1,1,3 = K++
1,3 . See Figure 3 for an example. We let S be the class of graphs

every connected component of which is either a subdivided claw or a path on at
least one vertex. The graph Th,i,j with 0 ≤ h ≤ i ≤ j denotes the triangle with
pendant paths of length h, i and j, respectively. That is, Th,i,j is the graph with
vertices a0, . . . , ah, b0, . . . , bi and c0, . . . , cj and edges a0b0, b0c0, c0a0, apap+1 for
p ∈ {0, . . . , h − 1}, bpbp+1 for p ∈ {0, . . . , i − 1} and cpcp+1 for p ∈ {0, . . . , j − 1}.
Note that T0,0,0 = C3 = K3. The graphs T0,0,1 = P1 + P3, T0,1,1, T1,1,1 and T0,0,2 are



Clique-Width for Hereditary Graph Classes 11

T0,0,1 = paw T0,1,1 = bull T1,1,1 = net T0,0,2 = hammer

Figure 4: Examples of graphs Th,i,j .

also known as the paw , bull , net and hammer , respectively; see also Figure 4. Also
note that Th,i,j is the line graph of Sh+1,i+1,j+1. We let T be the class of graphs
that are the line graphs of graphs in S. Note that T contains every graph Th,i,j and
every path (as the line graph of Pt is Pt−1 for t ≥ 2).

Let G = (V,E) be a graph. For an induced subgraph F ⊆i G, the subgraph
complementation operation, which acts on G with respect to F , replaces every edge
in F by a non-edge, and vice versa. If we apply this operation on G with respect
to G itself, then we obtain the complement G of G. For two disjoint vertex subsets S
and T in G, the bipartite complementation operation, which acts on G with respect
to S and T , replaces every edge with one end-vertex in S and the other one in T by
a non-edge and vice versa. We note that applying a bipartite complementation is
equivalent to applying a sequence of three consecutive subgraph complementations,
namely on G[S ∪ T ], G[S] and G[T ].

Let G be a graph class. Denote the number of labelled graphs on n vertices
in G by gn. Then G is superfactorial if there does not exist a constant c such that
gn ≤ ncn for every n.

Recall that a graph class is hereditary if it is closed under taking induced sub-
graphs. It is not difficult to see that a graph class G is hereditary if and only if G
can be characterized by a unique set FG of minimal forbidden induced subgraphs.
A hereditary graph class G is finitely defined if FG is finite. We note, however, that
the set FG may have infinite size. For example, if G is the class of bipartite graphs,
then FG = {C3, C5, C7, . . .}. If F is a set of graphs, we say that a graph G is F-free
if G does not contain any graph in F as an induced subgraph. In particular, this
means that if a graph class G is hereditary, then G is exactly the class of FG-free
graphs. If F = {H1, H2, . . .} or {H1, H2, . . . ,Hp} for some p ≥ 0, we may also
describe a graph G as being (H1, H2, . . .)-free or (H1, H2, . . . ,Hp)-free, respectively,
rather than F-free; recall that if F = {H1} we may write H1-free instead.

Observation 2.1 Let H and H∗ be sets of graphs. The class of H-free graphs is
contained in the class of H∗-free graphs if and only if for every graph H∗ ∈ H∗, the
set H contains an induced subgraph of H∗.

Suppose H and H∗ are sets of graphs such that for every graph H∗ ∈ H∗, the
set H contains an induced subgraph of H∗. Observation 2.1 implies that any graph
problem that is polynomial-time solvable for H∗-free graphs is also polynomial-time
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solvable for H-free graphs, and any graph problem that is NP-complete for H-free
graphs is also NP-complete for H∗-free graphs.

We define the complement of a hereditary graph class G as G = {G | G ∈ G}.
Then G is closed under complementation if G = G. As FG is the unique minimal set
of forbidden induced subgraphs for G, we can make the following observation.

Observation 2.2 A hereditary graph class G is closed under complementation if
and only if FG is closed under complementation.

Let G be a graph. The contraction of an edge uv replaces u and v and their
incident edges by a new vertex w and edges wy if and only if either uy or vy was
an edge in G (without creating multiple edges or self-loops). Let u be a vertex
with exactly two neighbours v, w, which in addition are non-adjacent. The vertex
dissolution of u removes u, uv and uw, and adds the edge vw. Note that vertex
dissolution is a special type of edge contraction, and it is the reverse operation of
an edge subdivision (recall that the latter operation replaces an edge uv by a new
vertex w with edges uw and vw).

Let G and H be graphs. The graph H is a subgraph of G if G can be mod-
ified into H by a sequence of vertex deletions and edge deletions. We can de-
fine other containment relations using the graph operations defined above. We say
that G contains H as a minor if G can be modified into H by a sequence of edge
contractions, edge deletions and vertex deletions, as a topological minor if G can
be modified into H by a sequence of vertex dissolutions, edge deletions and ver-
tex deletions, as an induced minor if G can be modified into H by a sequence of
edge contractions and vertex deletions, and as an induced topological minor if G
can be modified into H by a sequence of vertex dissolutions and vertex deletions.
Let {H1, . . . ,Hp} be a set of graphs. If G does not contain any of the graphs
H1, . . . ,Hp as a subgraph, then G is (H1, . . . ,Hp)-subgraph-free. We define the terms
(H1, . . . ,Hp)-minor-free, (H1, . . . ,Hp)-topological-minor-free, (H1, . . . ,Hp)-induced-
minor-free, and (H1, . . . ,Hp)-induced-topological-minor-free analogously. Note that
graph classes defined by some set of forbidden subgraphs, minors, topological mi-
nors, induced minors, or induced topological minors are hereditary, as they are all
closed under vertex deletion.

Example 2.3 A graph is planar if it can be embedded in the plane in such a way
that any two edges only intersect with each other at their end-vertices. It is well
known that the class of planar graphs can be characterized by a set of forbidden
minors: Wagner’s Theorem [165] states that a graph is planar if and only if it is
(K3,3,K5)-minor-free.

We will also need the following folklore observation (see, for example, [90]).

Observation 2.4 For every F ∈ S, a graph is F -subgraph-free if and only if it is
F -minor-free.

A k-colouring of a graph G is a mapping c : V → {1, . . . , k} such that c(u) 6= c(v)
whenever u and v are adjacent vertices. The chromatic number of G is the smallest k
such that G has a k-colouring. The clique number of G is the size of a largest clique
of G.



Clique-Width for Hereditary Graph Classes 13

A graph G is perfect if, for every H ⊆i G, the chromatic number of H is equal
to the clique number of H. The Strong Perfect Graph Theorem [45] states that G
is perfect if and only if G is (C5, C7, C9, . . .)-free and (C7, C9, . . .)-free. A graph G
is chordal if it is (C4, C5, C6, . . .)-free and weakly chordal if it is (C5, C6, C7, . . .)-free
and (C6, C7, . . .)-free. A graph G is a split graph if it has a split partition, that is,
a partition of its vertex set into two (possibly empty) sets K and I, where K is a
clique and I is an independent set. It is known that a graph is split if and only if it is
(C4, C5, 2P2)-free [78]. A graph G is a permutation graph if line segments connecting
two parallel lines can be associated to its vertices in such a way that two vertices
of G are adjacent if and only if the two corresponding line segments intersect. A
graph G is a permutation split graph if it is both permutation and split, and G is
a permutation bipartite graph if it is both permutation and bipartite. A graph G is
chordal bipartite if it is (C3, C5, C6, C7, . . .)-free. A graph G is distance-hereditary if
the distance between any two vertices u and v in any connected induced subgraph
of G is the same as the distance of u and v in G. Equivalently, a graph is distance-
hereditary if and only if it is (domino, gem,house, C5, C6, C7, . . .)-free [9]. A graph
is (unit) interval if it has a representation in which each vertex u corresponds to an
interval Iu (of unit length) of the line such that two vertices u and v are adjacent if
and only if Iu ∩ Iv 6= ∅.

We make the following observation. A number of inclusions in Observation 2.5
follow immediately from the definitions and the Strong Perfect Graph Theorem. For
the remaining inclusions we refer to [34].

Observation 2.5 The following statements hold:
1. every split graph is chordal
2. every (unit) interval graph is chordal
3. every chordal graph is weakly chordal
4. every (bipartite or split) permutation graph is weakly chordal
5. every distance-hereditary graph is weakly chordal
6. every weakly chordal graph is perfect
7. every bipartite permutation graph is chordal bipartite, and
8. every (chordal) bipartite graph is perfect.

The containments listed in Observation 2.5 (and those that follow from them by
transitivity) are also displayed Figure 5. It is not difficult to construct counterex-
amples for the other containments. Indeed, for pairs of classes above for which we
have listed the minimal forbidden induced subgraph characterizations, these char-
acterizations immediately provide such counterexamples.

We now introduce the notion of treewidth formally. Recall from Section 1 that
treewidth expresses to what extent a graph is “tree-like”. A tree decomposition of a
graph G is a pair (T,X ) where T is a tree and X = {Xi | i ∈ V (T )} is a collection
of subsets of V (G), such that the following three conditions hold:

(i)
⋃

i∈V (T )Xi = V (G)

(ii) for every edge xy ∈ E(G), there is an i ∈ V (T ) such that x, y ∈ Xi and

(iii) for every x ∈ V (G), the set {i ∈ V (T ) | x ∈ Xi} induces a connected subtree
of T .



Clique-Width for Hereditary Graph Classes 14

perfect

bipartite weakly-chordal

permutationchordal bipartite chordal distance-hereditary

bipartite permutation split interval

unit intervalsplit permutation

Figure 5: The inclusion relations between well-known classes mentioned in the paper.
An arrow from one class to another indicates that the first class contains the second.

The width of the tree decomposition (T,X ) is max{|Xi| − 1 | i ∈ V (T )}, and the
treewidth tw(G) of G is the minimum width over all tree decompositions of G. If T
is a path, then (X,T ) is a path decomposition of G. The path-width pw(G) of G is
the minimum width over all path decompositions of G.

A quasi order ≤ on a set X is a reflexive, transitive binary relation. Two elements
x, y ∈ X in ≤ are comparable if x ≤ y or y ≤ x; otherwise they are incomparable.
A set of pairwise (in)comparable elements in ≤ is called an (anti)-chain. A quasi-
order ≤ is a well-quasi-order if every infinite sequence of elements x1, x2, x3, . . . in X
contains a pair (xi, xj) with xi ≤ xj and i < j, or equivalently, if ≤ has no infinite
strictly decreasing sequence and no infinite anti-chain. A partial order ≤ is a quasi-
order which is anti-symmetric, that is, if x ≤ y and y ≤ x then x = y. If we consider
two graphs to be “equal” when they are isomorphic, then all quasi orders considered
in this paper are in fact partial orders. As such, throughout this paper “quasi order”
can be interpreted as “partial order”.

For an arbitrary set M , we let M∗ denote the set of finite sequences of ele-
ments of M . A quasi-order ≤ on M defines a quasi-order ≤∗ on M∗ as follows:
(a1, . . . , am) ≤∗ (b1, . . . , bn) if and only if there is a sequence of integers i1, . . . , im
with 1 ≤ i1 < · · · < im ≤ n such that aj ≤ bij for j ∈ {1, . . . ,m}. We call ≤∗ the
subsequence relation.

The following lemma is well known and very useful when dealing with quasi-
orders.

Lemma 2.6 (Higman’s Lemma [109]) Let (M,≤) be a well-quasi-order. Then
(M∗,≤∗) is a well-quasi-order.
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3 Clique-Width

In this section we give a number of basic results on clique-width. We begin
by giving a formal definition.5 The clique-width of a graph G, denoted by cw(G),
is the minimum number of labels needed to construct G using the following four
operations:

1. Create a new graph with a single vertex v with label i. (This operation is
written i(v).)

2. Take the disjoint union of two labelled graphs G1 and G2 (written G1 ⊕G2).

3. Add an edge between every vertex with label i and every vertex with label j,
i 6= j (written ηi,j).

4. Relabel every vertex with label i to have label j (written ρi→j).

We say that a construction of a graph G with the four operations is a k-expression
if it uses at most k labels. Thus the clique-width of G is the minimum k for which G
has a k-expression. We refer to [57, 106, 108] for a number of characterizations of
clique-width and to [115] for a compact representation of graphs of clique-width k.

Example 3.1 We first note that cw(P1) = 1 and cw(P2) = cw(P3) = 2. Now
consider a path on four vertices v1, v2, v3, v4, in that order. Then this path can be
constructed using the four operations (using only three labels) as follows:

η3,2(3(v4)⊕ ρ3→2(ρ2→1(η3,2(3(v3)⊕ η2,1(2(v2)⊕ 1(v1)))))).

Note that at the end of this construction, only v4 has label 3. It is easy to see
that a construction using only two labels is not possible. Hence, we deduce that
cw(P4) = 3. This construction can readily be generalized to longer paths: for n ≥ 5
let E be a 3-expression for the path Pn−1 on vertices v1, . . . , vn−1, with only the
vertex vn−1 having label 3, then η3,2(3(vn) ⊕ ρ3→2(ρ2→1(E))) is a 3-expression for
the path Pn on vertices v1, . . . , vn, with only the vertex vn having label 3. Therefore
cw(Pn) = 3 for all n ≥ 4. Moreover, by changing the construction to give the first
vertex v1 on a path Pn (n ≥ 3) a unique fourth label, we can connect it to the
last constructed vertex vn of Pn (the only vertex with label 3) via an edge-adding
operation to obtain Cn. Hence, we find that cw(Cn) ≤ 4 for every n ≥ 3. In fact
cw(Cn) = 4 holds for every n ≥ 7 [145].

A class of graphs G has bounded clique-width if there is a constant c such that
the clique-width of every graph in G is at most c. If such a constant c does not
exist, we say that the clique-width of G is unbounded . A hereditary graph class G
is a minimal class of unbounded clique-width if it has unbounded clique-width and
every proper hereditary subclass of G has bounded clique-width.

The following two observations, which are both well known and readily seen,
give two graph classes of small clique-width. In particular, Proposition 3.3 follows

5The term clique-width and the definition in essentially same form we give here were introduced
by Courcelle and Olariu [59] based on operations and related decompositions from Courcelle, Engel-
friet and Rozenberg [56]; see also [55]. Although we consider only undirected graphs, the definitions
of [59] also covered the case of directed graphs. Other equivalent width parameters have also been
studied for directed graphs. For example, Kanté and Rao [118] considered the rank-width of directed
graphs.
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Figure 6: Walls of height 2, 3 and 4, respectively.

from Example 3.1 after observing that a graph of maximum degree at most 2 is
the disjoint union of paths and cycles. For more examples of graph classes of small
width, see, for instance, [26,27].

Proposition 3.2 Every forest has clique-width at most 3.

Proof Let T be a tree with a root vertex v. We claim that there is a 3-expression
which creates T such that, in the resulting labelled tree, only v has label 3. We
prove this by induction on |V (T )|. Clearly this holds when |V (T )| = 1. Otherwise,
let v1, . . . , vk be the children of v and let T1, . . . , Tk be the subtrees of T rooted
at v1, . . . , vk, respectively. By the induction hypothesis, for each i there is a 3-
expression which creates Ti such that, in the resulting labelled tree, only vi has
label 3. We take the disjoint union ⊕ of these expressions and let E be the resulting
3-expression. Then η3,2(3(v) ⊕ ρ3→2(ρ2→1(E))) is a 3-expression which creates T
such that, in the resulting labelled tree, only v has label 3. Therefore for every
tree T , there is a 3-expression that constructs T . Since a forest is a disjoint union
of trees, we can then use the ⊕ operation to extend this to a 3-expression for any
forest. The proposition follows. �

Proposition 3.3 Every graph of maximum degree at most 2 has clique-width at
most 4.

Recall that for general graphs, the complexity of computing the clique-width
of a graph was open for a number of years, until Fellows, Rosamund, Rotics and
Szeider [77] proved that this is NP-hard. However, Proposition 3.2 implies that we
can determine the clique-width of a forest F in polynomial time: if F contains an
induced P4, then cw(F ) = 3; if F is P4-free but has an edge, then cw(F ) = 2; and
if F = sP1 for some s ≥ 1, then cw(F ) = 1.

In contrast to Proposition 3.3, graphs of maximum degree at most 3 may have
arbitrarily large clique-width. An example of this is a wall of arbitrary height,
which can be thought of as a hexagonal grid. We do not formally define the wall,
but instead we refer to Figure 6, in which three examples of walls of different heights
are depicted; see, for example, [46] for a formal definition. Note that walls of height
at least 2 have maximum degree 3. The following result is well known; see for
example [116].

Theorem 3.4 The class of walls has unbounded clique-width.

As mentioned, clique-width is more general than treewidth. Courcelle and
Olariu [59] proved that cw(G) ≤ 4 · 2tw(G)−1 + 1 for every graph G (see [87] for
an alternative proof). Corneil and Rotics [50] improved this bound by showing that
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cw(G) ≤ 3 · 2tw(G)−1 for every graph G. They also proved that for every k, there

is a graph G with tw(G) = k and cw(G) ≥ 2

⌊
tw(G)

2

⌋
−1

. The following result shows
that for restricted graph classes the two parameters may be equivalent (see [53, 54]
for graph classes for which treewidth and clique-width are even linearly related).

Theorem 3.5 ([97]) For t ≥ 1, every class of Kt,t-subgraph-free graphs of bounded
clique-width has bounded treewidth.

Corollary 3.6 A class of graphs of bounded maximum degree has bounded clique-
width if and only if it has bounded treewidth.

Gurski and Wanke gave another connection between treewidth and clique-width.

Theorem 3.7 ([100]) A class of graphs G has bounded treewidth if and only if the
class of line graphs of graphs in G has bounded clique-width.

As mentioned in Section 1, boundedness of clique-width has been determined
for many hereditary graph classes. However, using the definition of clique-width
directly to prove that a certain hereditary graph class G has bounded clique-width
is often difficult. An alternative way to show that a hereditary graph class G has
bounded clique-width is to prove that for infinitely many values of n, the number of
labelled graphs in G on n vertices is at most the Bell number Bn [3], but this has
limited applicability. The following BCW Method is more commonly used:

Bounding Clique-Width (BCW Method)

1. If possible, consider only graphs in G that have some suitable property π.

2. Take a graph class G′ for which it is known that its clique-width is bounded.

3. For every graph G ∈ G (possibly with property π), reduce G to a graph in G′
by using a constant number of graph operations that do not change the clique-
width of G by “too much”.

Note that the subclass of graphs in G that have some property π in Step 1 need not
be hereditary. For example, it is known [18,139] that we may choose the property π
to be that of being 2-connected and that we can delete some constant number k of
vertices from a graph without affecting the clique-width by more than some bounded
amount. Then we could try to prove that G has bounded clique-width by showing
that for every 2-connected graph in G, we can delete no more than k vertices to
obtain a graph in some class G′ that we know to have bounded clique-width. We
give some concrete examples of this method in the next section.

The power of the method depends on both the graph property π in Step 1 and
the graph operations that we are allowed to use in Step 3. In particular we will
use graph operations to modify a graph G of some class G into the disjoint union of
some graphs that have a simpler structure than G itself. As a result, we can then
deal with these simpler graphs separately. This approach is particularly useful if G
is hereditary: if the simpler graphs are induced subgraphs of the original graph G,
then we can still make use of earlier deduced properties for G when dealing with
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the simpler induced subgraphs of G. Before giving important examples of these
operations and properties, we first formalize our approach.

Let k ≥ 0 be a constant and let γ be some graph operation. We say that a graph
class G′ is (k, γ)-obtained from a graph class G if the following two conditions hold:

1. every graph in G′ can be obtained from a graph in G by performing γ at most k
times, and

2. for every graph G ∈ G there exists at least one graph in G′ that can be obtained
from G by performing γ at most k times (note that G is not necessarily a
subclass of G′).

A graph operation γ preserves boundedness of clique-width if, for every finite
constant k and every graph class G, every graph class G′ that is (k, γ)-obtained
from G has bounded clique-width if and only if G has bounded clique-width. We
note that Condition 1 is necessary for this definition to be meaningful; without
this condition the class of all graphs (which has unbounded clique-width) would be
(k, γ)-obtained from every other graph class. Similarly, we also need Condition 2,
as otherwise every graph class would be (k, γ)-obtained from the class of all graphs.
If k = ∞ is allowed, then γ preserves boundedness of clique-width ad infinitum.
Similarly, a graph property π preserves boundedness of clique-width if, for every
graph class G, the subclass of G with property π has bounded clique-width if and
only if G has bounded clique-width. If necessary, we may restrict these definitions
to only be valid for some specific types of graph classes.

We refer to the survey of Gurski [95] for a detailed overview of graph operations
that preserve boundedness of clique-width and for bounds that tell us more precisely
by how much the clique-width can change when applying various operations.6 Here,
we only state the most important graph operations, together with two well-known
properties that preserve boundedness of clique-width.

Facts about clique-width:

Fact 1. Vertex deletion preserves boundedness of clique-width [139].

Fact 2. Subgraph complementation preserves boundedness of clique-width [116].

Fact 3. Bipartite complementation preserves boundedness of clique-width [116].

Fact 4. Being prime preserves boundedness of clique-width for hereditary graph
classes [59].

Fact 5. Being 2-connected preserves boundedness of clique-width for hereditary
graph classes [18,139].

Fact 6. Edge subdivision preserves boundedness of clique-width ad infinitum for
graph classes of bounded maximum degree [116].

6We note that some of these graph operations may exponentially increase the upper bound of
the clique-width.
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We note that Fact 3 follows from Fact 2, as bipartite complementations can be
mimicked by three subgraph complementations. Moreover, an edge deletion is a
special case of subgraph complementation, whereas an edge contraction is a vertex
deletion and a bipartite complementation. Finally, recall that an edge subdivision
is the reverse operation of a vertex dissolution, which can be seen as a type of edge
contraction. Hence, from Facts 1–3 it follows that edge deletion, edge contraction
and edge subdivision each preserve boundedness of clique-width.

Vertex deletions, edge deletions and edge contractions do not preserve bound-
edness of clique-width ad infinitum: one can take any graph class of unbounded
clique-width and apply one of these operations until one obtains the empty graph
or an edgeless graph. Hence, Facts 1–3 do not preserve boundedness of clique-width
ad infinitum. This holds even for graphs of maximum degree at most 3, as the class
of walls and their induced subgraphs has unbounded clique-width by Theorem 3.4.

In contrast, Fact 6 says that edge subdivisions applied on graphs of bounded
maximum degree do preserve boundedness of clique-width ad infinitum. We note
that Fact 6 follows from Corollary 3.6 and the fact that an edge subdivision does not
change the treewidth of a graph (see, for example, [140]). However, the condition on
the maximum degree is necessary for the “only if” direction of Fact 6. Otherwise,
as discussed in [67], one could start with a clique K on at least two vertices (which
has clique-width 2) and then apply an edge subdivision on an edge uv in K if and
only if uv is not an edge in some graph G of arbitrarily large clique-width with
|V (G)| = |V (K)|. This yields a graph G′ that contains G as an induced subgraph,
implying that cw(G′) ≥ cw(G), which is arbitrarily larger than cw(K) = 2.

As an aside, note that edge contractions do not increase the clique-width of
graphs of bounded maximum degree either. We can apply Corollary 3.6 again after
observing from the definition of treewidth that edge contractions do not increase
treewidth. However, the condition on the maximum degree is necessary here as
well; a (non-trivial) counterexample is given by Courcelle [52], who proved that the
class of graphs that are obtained by edge contractions from the class of graphs of
clique-width 3 has unbounded clique-width.

For the BCW Method, operations that preserve boundedness of clique-width may
be combined, but these operations may not always be used in combination with some
property π that preserves boundedness of clique-width. This is because applying a
graph operation may result in a graph that does not have property π. Moreover,
it is not always clear whether two or more properties that preserve boundedness of
clique-width may be unified into one property. For instance, every non-empty class
of 2-connected graphs is not hereditary and every class of prime graphs containing a
graph on more than two vertices is not hereditary. As such, it is unknown whether
Facts 4 and 5, which may only be applied on hereditary graph classes, can be
combined. That is, the following problem is open.

Open Problem 3.8 Let G be a hereditary class of graphs and let F be the class
of 2-connected prime graphs in G. If F has bounded clique-width, does this imply
that G has bounded clique-width?

To prove that a graph class G has unbounded clique-width, a similar method to
the BCW Method can be used.
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Unbounding Clique-Width (UCW Method)

1. Take a graph class G′ known to have unbounded clique-width.

2. For every graph G′ ∈ G′, reduce G′ to a graph in G by using a constant number
of graph operations that do not change the clique-width of G′ by “too much”.

By Theorem 3.4, we can consider the class of walls as a starting point for the
graph class G′. A k-subdivided wall is a graph obtained from a wall after subdividing
each edge exactly k times for some constant k ≥ 0. Combining Fact 6 with Theo-
rem 3.4 and the observation that walls of height at least 2 have maximum degree 3
leads to the following result.

Corollary 3.9 ([140]) For any constant k ≥ 0, the class of k-subdivided walls has
unbounded clique-width.

Corollary 3.9 has proven to be very useful. For instance, it can be used to obtain
the following result (recall that S is the class of graphs each connected component
of which is either a subdivided claw or a path).

Corollary 3.10 ([140]) Let {H1, . . . ,Hp} be a finite set of graphs. If Hi /∈ S for all
i ∈ {1, . . . , p}, then the class of (H1, . . . ,Hp)-free graphs has unbounded clique-width.

As a side note, we remark that “limit classes” of hereditary graph classes of
unbounded clique-width may have bounded clique-width. For instance, the class
of (Ck, . . . , C`)-subgraph-free graphs has unbounded clique-width for any two inte-
gers k ≥ 3 and ` ≥ k due to Corollary 3.9. However, for every k ≥ 3, the class
of (Ck, Ck+1, . . .)-subgraph-free graphs has bounded clique-width [137]. We refer
to [137] for more details on limit classes.

Corollary 3.9 is further generalized by the following theorem.

Theorem 3.11 ([67]) For m ≥ 0 and n > m + 1 the clique-width of a graph G is
at least b n−1m+1c + 1 if V (G) has a partition into sets Vi,j (i, j ∈ {0, . . . , n}) with the
following properties:

1. |Vi,0| ≤ 1 for all i ≥ 1

2. |V0,j | ≤ 1 for all j ≥ 1

3. |Vi,j | ≥ 1 for all i, j ≥ 1

4. G[∪nj=0Vi,j ] is connected for all i ≥ 1

5. G[∪ni=0Vi,j ] is connected for all j ≥ 1

6. for i, j, k ≥ 1, if a vertex of Vk,0 is adjacent to a vertex of Vi,j then i ≤ k
7. for i, j, k ≥ 1, if a vertex of V0,k is adjacent to a vertex of Vi,j then j ≤ k, and

8. for i, j, k, ` ≥ 1, if a vertex of Vi,j is adjacent to a vertex of Vk,` then |k−i| ≤ m
and |`− j| ≤ m.



Clique-Width for Hereditary Graph Classes 21

Many other constructions of graphs of large clique-width follow from Theo-
rem 3.11 using the UCW Method (possibly by applying Facts 1–3). For instance,
this is the case for square grids [145], whose exact clique-width was determined by
Golumbic and Rotics [91]. This is also the case for the constructions of Brandstädt,
Engelfriet, Le and Lozin [27], Lozin and Volz [143], Korpelainen, Lozin and May-
hill [124] and Kwon, Pilipczuk and Siebertz [128] for proving that the classes of
K4-free co-chordal graphs, 2P3-free bipartite graphs, split permutation graphs and
twisted chain graphs, respectively, have unbounded clique-width.

Constructions of graphs of arbitrarily large clique-width not covered by Theo-
rem 3.11 can be found in [91] and [35], which prove that unit interval graphs and
bipartite permutation graphs, respectively, have unbounded clique-width. We dis-
cuss these results in more detail in the next section, but we note the following.

First, the classes of split permutation graphs (and the analogous bipartite class of
bichain graphs) [5], unit interval graphs [136] and bipartite permutation graphs [136]
are even minimal hereditary graph classes of unbounded clique-width. Collins, Fo-
niok, Korpelainen, Lozin and Zamaraev [48] proved that the number of minimal
hereditary graphs of unbounded clique-width is infinite. Second, for classes, such
as split graphs, bipartite graphs, co-bipartite graphs and (K1,3, 2K2)-free graphs,
unboundedness of clique-width also follows from the fact that these classes are su-
perfactorial [18] and an application of the following result.

Theorem 3.12 ([18]) Every superfactorial graph class has unbounded clique-width.

4 Results on Clique-Width for Hereditary Graph Classes

In this section we survey known results on (un)boundedness of clique-width for
hereditary graph classes in a systematic way.7 The proofs of these results often
use the BCW Method or UCW Method. As mentioned earlier, many well-studied graph
classes are hereditary. From the point of view of clique-width, these are also natural
classes to consider, as the definition of clique-width implies that if a graph G contains
a graph H as an induced subgraph, then cw(H) ≤ cw(G).

Recall that a graph class G is hereditary if and only if it can be characterized by
a (possibly infinite) set of forbidden induced subgraphs FG . We start by giving a
dichotomy for the case when FG consists of a single graph H. This result is folklore:
observe that P4 has clique-width 3 and see [59] for a proof that P4-free graphs have
clique-width at most 2 and [67] for a proof of the other claims of Theorem 4.1.

Theorem 4.1 Let H be a graph. The class of H-free graphs has bounded clique-
width if and only if H is an induced subgraph of P4. Furthermore, a graph has
clique-width at most 2 if and only if it is P4-free.

Note that by Theorem 4.1 we can test whether a graph G has clique-width at
most 2 in polynomial time by checking whether G is P4-free. We recall that deciding
whether a graph has clique-width at most c is known to be polynomial-time solvable
for c = 3 [49], but open for c ≥ 4.

7The Information System on Graph Classes and their Inclusions [71] also keeps a record of many
graph classes for which boundedness or unboundedness of clique-width is known.
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As discussed in Section 1, an important reason for studying boundedness of
clique-width for special graph classes is to obtain more classes of graphs for which
a wide range of classical NP-complete problems become polynomial-time solvable.
Theorem 4.1 shows that this cannot be done for (most) classes of H-free graphs.
In order to find more graph classes of bounded clique-width, we can follow several
approaches that try to extend Theorem 4.1.

To give an example, Vanherpe [163] considered the class of partner-limited
graphs, which were introduced by Roussel, Rusu and Thuillier in [158]. A ver-
tex u in a graph G is a partner of an induced subgraph H isomorphic to P4 of G if
V (H)∪{u} induces at least two P4s in G. A graph G is said to be partner-limited if
every induced P4 has at most two partners. Vanherpe proved that the clique-width
of partner-limited graphs is at most 4. This result generalized a corresponding re-
sult of Courcelle, Makowsky and Rotics [58] for P4-tidy graphs, which are graphs in
which every induced P4 has at most one partner.

To give another example, Makowsky and Rotics [145] considered the classes of
(q, t)-graphs, which were introduced by Babel and Olariu in [8]. For two integers q
and t, a graph is a (q, t)-graph if every subset of q vertices induces a subgraph that
has at most t distinct induced P4s. Note that P4-free graphs are the (4, 0)-graphs,
whereas (5, 1)-graphs are also known as P4-sparse graphs; note that the latter class
of graphs is a subclass of the class of P4-tidy graphs. Makowsky and Rotics proved
the following result.

Theorem 4.2 ([145]) Let q ≥ 4 and t ≥ 0. Then the class of (q, t)-graphs has
bounded clique-width if

• q ≤ 6 and t ≤ q − 4, or

• q ≥ 7 and t ≤ q − 3

and it has unbounded clique-width if

• q ≤ 6 and t ≥ q − 3

• q = 7 and t ≥ q − 2, or

• q ≥ 8 and t ≥ q − 1.

Theorem 4.2 covers all cases except where q ≥ 8 and t = q − 2. Makowsky and
Rotics [145] therefore posed the following open problem (see also [116]).

Open Problem 4.3 Is the clique-width of (q, q − 2)-graphs bounded if q ≥ 8?

Below we list five other systematic approaches, which we discuss in detail in the
remainder of this section. First, we can try to replace “H-free graphs” by “H-free
graphs in some hereditary graph class X” in Theorem 4.1. We discuss this line of
research in Section 4.1.

Second, we may try to determine boundedness of clique-width of hereditary graph
classes G for which FG is small. However, even the classification for (H1, H2)-free
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graphs is not straightforward and is still incomplete. We discuss the state-of-the-
art for (H1, H2)-free graphs in Section 4.2. There, we also explain how results in
Section 4.1 are helpful for proving results for (H1, H2)-free graphs.8

Third, we may try to determine boundedness of clique-width for hereditary graph
classes G for which FG only contains graphs of small size. For instance, Brandstädt,
Dragan, Le and Mosca [26] classified boundedness of clique-width for those hered-
itary graph classes for which FG consists of 1-vertex extensions of P4. We discuss
their result, together with other results in this direction, in Section 4.3.

Fourth, we observe that P4 is self-complementary. As such we can try to extend
Theorem 4.1 to graph classes closed under complementation. Determining bounded-
ness of clique-width for such graph classes is also natural to consider due to Fact 2.
We present the current state-of-the-art in this direction in Section 4.4.

Fifth, we may consider hereditary graph classes that can be described not only in
terms of forbidden induced subgraphs but also using some other forbidden subgraph
containment. For instance, we can consider hereditary graph classes characterized
by some set F of forbidden minors. We survey the known results in this direction
in Section 4.5.

4.1 Considering H-Free Graphs Contained in Some Hereditary Graph Class

Theorem 4.1 shows that the class of H-free graphs has bounded clique-width
only if H is an induced subgraph of P4. In this section we survey the effect on
boundedness of clique-width of restricting the class of H-free graphs to just those
graphs that belong to some hereditary graph class X . Initially we do not want to
make the hereditary graph class X , in which we look for these H-free graphs, too
narrow. However, if we let X be too large, the classification might remain the same
as the one for general H-free graphs in Theorem 4.1. This is the case if we let X be
the class of perfect graphs, or even the class of weakly chordal graphs, which form
a proper subclass of perfect graphs by Observation 2.5.

Theorem 4.4 ([25]) Let H be a graph. The class of H-free weakly chordal graphs
has bounded clique-width if and only if H is an induced subgraph of P4.

If we restrict X further, then there are several potential classes of graphs to
consider, such as chordal graphs, permutation graphs and distance-hereditary graphs
(see also Figure 5). However, distance-hereditary graphs are known to have clique-
width at most 3 [91] (and hence their clique-width can be computed in polynomial
time using the algorithm of [49]). On the other hand, the classes of chordal graphs
and permutation graphs have unbounded clique-width. This follows from combining
Observation 2.5 with one of the following three theorems.

Theorem 4.5 ([91]) The class of unit interval graphs has unbounded clique-width.

8We emphasize that the underlying research goal is not to start classifying the case of three
forbidden induced subgraphs H1, H2 and H3 after the classification for two graphs H1 and H2

has been completed. Instead the aim is to develop new techniques through a systematic study, by
looking at hereditary graph classes from different angles in order to increase our understanding of
clique-width.
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F1 F2

Figure 7: The two graphs H for which the boundedness of clique-width of the class
of H-free chordal graphs is open.

Theorem 4.6 ([124]) The class of split permutation graphs has unbounded clique-
width.

Theorem 4.7 ([35]) The class of bipartite permutation graphs has unbounded
clique-width.

The case when X is the class of chordal graphs has received particular attention,
as we now discuss. Brandstädt, Engelfriet, Le and Lozin [27] proved that the class
of 4P1-free chordal graphs has unbounded clique-width. However, there are many
graphs H besides P4 for which the class of H-free chordal graphs has bounded
clique-width. A result of [50] implies that Kr-free chordal graphs have bounded
clique-width for every integer r ≥ 1. Brandstädt, Le and Mosca [32] showed that
(P1 + P4)-free chordal graphs have clique-width at most 8 and that P1 + P4-free
chordal graphs are distance-hereditary graphs and thus have clique-width at most 3.
Brandstädt, Dabrowski, Huang and Paulusma [25] proved that bull-free chordal
graphs have clique-width at most 3, improving a known bound of 8 [132]. The same
authors also proved that S1,1,2-free chordal graphs have clique-width at most 4, and
that the classes of K1,3 + 2P1-free chordal graphs, (P1+P1 + P3)-free chordal graphs
and (P1 + 2P1 + P2)-free chordal graphs each have bounded clique-width.

Combining all the above results [25, 27, 32, 50, 91, 145] leads to the following
summary for H-free chordal graphs; see Figure 7 for definitions of the graphs F1

and F2 and Figure 8 for pictures of all (maximal) graphs H for which the class of
H-free chordal graphs is known to have bounded clique-width.

Theorem 4.8 ([25]) Let H be a graph with H /∈ {F1, F2}. The class of H-free
chordal graphs has bounded clique-width if and only if:

(i) H = Kr for some r ≥ 1

(ii) H ⊆i bull

(iii) H ⊆i P1 + P4

(iv) H ⊆i gem

(v) H ⊆i K1,3 + 2P1

(vi) H ⊆i P1 + P1 + P3

(vii) H ⊆i P1 + 2P1 + P2, or

(viii) H ⊆i S1,1,2.

As can be seen from its statement, Theorem 4.8 leaves only two cases open,
namely F1 and F2; see also [25].
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S1,1,2 K1,3 + 2P1 P1 + P1 + P3 P1 + 2P1 + P2

bull Kr (r = 6 shown) P1 + P4 gem = P1 + P4

Figure 8: The graphs H listed in Theorem 4.8, for which the class of H-free chordal
graphs has bounded clique-width.

Open Problem 4.9 Determine whether the class of H-free chordal graphs has
bounded or unbounded clique-width when H = F1 or H = F2.

Recall that split graphs are chordal by Observation 2.5 and have been shown to
have unbounded clique-width [145] (this also follows from Theorem 4.6). We now
let X be the class of split graphs, that is, we consider classes of H-free split graphs,
and find graphs H for which the class of H-free split graphs has bounded clique-
width. We first note that as the class of split graphs is the class of (C4, C5, 2P2)-free
graphs [78], the complement of a split graph is also a split graph by Observation 2.2.
By Fact 2 this implies the following observation, which we discuss in more depth in
Section 4.4.

Observation 4.10 For a graph H, the class of H-free split graphs has bounded
clique-width if and only the class of H-free split graphs has bounded clique-width.

Brandstädt, Dabrowski, Huang and Paulusma considered H-free split graphs
in [24]. They considered the two cases H = F1 and H = F2 that are open for
H-free chordal graphs (Open Problem 4.9) and proved that the classes of F1-free
split graphs and F2-free split graphs have bounded clique-width. They showed the
same result for (bull +P1)-free split graphs, Q-free split graphs, (K1,3 + 2P1)-free
split graphs and F3-free split graphs; see Figure 9 for a description of each of these
graphs. They also proved that for every integer r ≥ 1, the clique-width of rP1-free
split graphs is at most r + 1. Moreover, they showed the following: if H is a graph
with at least one edge and at least one non-edge that is not an induced subgraph
of a graph in {F4, F4, F5, F5} (see Figure 10), then the class of H-free split graphs
has unbounded clique-width. Note that both F4 and F5 have seven vertices. The
6-vertex induced subgraphs of F4 are: bull +P1, F1, F3 and K1,3 +2P1. The 6-vertex
induced subgraphs of F5 are: bull +P1, F1, F2, F2, F3, F3 and Q. The above results
lead to the following theorem.
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F1 F2 F3

rP1 (r = 4 shown) bull +P1 Q K1,3 + 2P1

Figure 9: The graphs H from Theorem 4.11 for which the classes of H-free split
graphs and H-free split graphs have bounded clique-width.

F4 F5

Figure 10: The (only) two graphs for which it is not known whether or not the
classes of H-free split graphs and H-free split graphs have bounded clique-width.

Theorem 4.11 ([24]) Let H be a graph not in {F4, F4, F5, F5}. The class of H-free
split graphs has bounded clique-width if and only if:

(i) H = rP1 for some r ≥ 1

(ii) H = Kr for some r ≥ 1, or

(iii) H is an induced subgraph of a graph in {F4, F4, F5, F5}.

Theorem 4.11, combined with Observation 4.10, leaves two open cases: F4 (or
equivalently F4) and F5 (or equivalently F5); see also [24].

Open Problem 4.12 Determine whether the class of H-free split graphs has
bounded or unbounded clique-width when H = F4 or H = F5.

Note that a split graph with split partition (K, I) can be changed into a bipartite
graph with bipartition classes K and I by applying a subgraph complementation
on K. Hence, due to Fact 2, there is a close relationship between boundedness of
clique-width for subclasses of split graphs and for subclasses of bipartite graphs. As
such, it is natural to also consider the class of bipartite graphs as our class X . We
note that the relationship between split graphs and bipartite graphs involves some
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sP1 (s = 5 shown) K1,3 + 3P1 K1,3 + P2

P1 + P5 P1 + S1,1,3 S1,2,3

Figure 11: The graphs H for which the class of H-free bipartite graphs has bounded
clique-width.

subtleties as a split graph can have two non-isomorphic split partitions and a (dis-
connected) bipartite graph may have more than one bipartition (see [24] for a precise
explanation). Nevertheless, results on boundedness of clique-width for H-free bipar-
tite graphs, which we discuss below, have proved useful in proving Theorem 4.11.

Lozin [135] proved that the clique-width of S1,2,3-free bipartite graphs is at
most 5. He previously proved this bound in [134] for (sun4, S1,2,3)-free bipartite
graphs where sun4 is the graph obtained from a 4-vertex cycle on vertices u1, . . . , u4
by adding four new vertices v1, . . . , v4 with edges uivi for i ∈ {1, . . . , 4}. Fouquet,
Giakoumakis and Vanherpe [81] proved that (P7, S1,2,3)-free bipartite graphs have
clique-width at most 4.

Lozin and Volz [143] used the above results to continue the study of [140] into
boundedness of clique-width of H-free bipartite graphs. They fully classified the
boundedness of clique-width for a variant of H-free bipartite graphs called strongly
H`-free graphs, where H is forbidden with respect to a specified bipartition given by
some labelling ` (which is unique if H is connected). Dabrowski and Paulusma [66]
proved a similar (but different) dichotomy for a relaxation of this variant called
weakly H`-free graphs, which is the variant used for proving some of the cases in
Theorem 4.11. We refer to [66] for an explanation of strongly and weakly H`-free
bipartite graphs. Using the above results Dabrowski and Paulusma [66] also gave a
full classification for H-free bipartite graphs, that is, with H forbidden as an induced
subgraph, as before; see also Figure 11.

Theorem 4.13 ([66]) Let H be a graph. The class of H-free bipartite graphs has
bounded clique-width if and only if:

(i) H = sP1 for some s ≥ 1
(ii) H ⊆i K1,3 + 3P1

(iii) H ⊆i K1,3 + P2

(iv) H ⊆i P1 + S1,1,3, or
(v) H ⊆i S1,2,3.

We refer to [23] for some specific bounds on the clique-width of subclasses of
H-free split graphs, bipartite graphs and co-bipartite graphs obtained from a de-
composition property of 1-Sperner hypergraphs.
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We continue our discussion on finding suitable graph classes X for which the
classification of boundedness of the clique-width of its H-free subclasses differs from
the (general) classification for H-free graphs in Theorem 4.1. Theorem 4.5 states
that the class of unit interval graphs has unbounded clique-width. Unit interval
graphs are contained in the class of interval graphs, which are contained in the
class of chordal graphs by Observation 2.5. Hence, as well as narrowing the class of
chordal graphs to split graphs, it is also natural to consider unit interval graphs and
interval graphs to be the class X . We recall that the class of unit interval graphs is a
minimal hereditary graph class of unbounded clique-width [136]. Hence the clique-
width of H-free unit interval graphs is bounded if and only if H is a unit interval
graph. We refer to [147] for bounds on the clique-width of certain subclasses of unit
interval graphs and pose the following open problem.

Open Problem 4.14 Determine for which graphs H the class of H-free interval
graphs has bounded clique-width.

As mentioned earlier, instead of chordal graphs we can consider other subclasses
of weakly chordal graphs as our class X , such as permutation graphs (the contain-
ment follows from Observation 2.5). Recall that even the classes of split permutation
graphs and bipartite permutation graphs have unbounded clique-width, as stated in
Theorems 4.6 and 4.7, respectively. Hence, we could also take each of these three
graph classes as the class X . However, we recall that the classes of split permu-
tation graphs [5] and bipartite permutation graphs [136] are minimal hereditary
graph classes of unbounded clique-width. Hence, the clique-width of H-free split
permutation graphs is bounded if and only if H is a split permutation graph, and
similarly, the clique-width of H-free bipartite permutation graphs is bounded if and
only if H is a bipartite permutation graph. Recall that Theorem 4.1 states that
the class of H-free graphs has bounded clique-width if and only if H is an induced
subgraph of P4 and that Theorem 4.4 states that the same classification holds if we
restrict to H-free weakly chordal graphs. Brignall and Vatter proved that the same
classification also holds if we further restrict to H-free permutation graphs.

Theorem 4.15 ([40]) Let H be a graph. The class of H-free permutation graphs
has bounded clique-width if and only if H is an induced subgraph of P4.

Proof Let H be a graph and note that if H is not a permutation graph, then the
class of H-free permutation graphs equals the class of permutation graphs, which
has unbounded clique-width by Theorem 4.1. We may therefore assume that H
is a permutation graph. If H is an induced subgraph of P4 then the class of H-
free permutation graphs is a subclass of the class of P4-free graphs and in this case
Theorem 4.1 completes the proof.

The class of C3-free permutation graphs is equal to the class of bipartite permu-
tation graphs, which has unbounded clique-width by Theorem 4.7. Since the class
of permutation graphs is closed under complementation (in the definition of permu-
tation graphs, reverse the order of intersections of the line segments with one of the
parallel lines), Fact 2 implies that 3P1-free permutation graphs also have unbounded
clique-width. It therefore remains to consider the case when H is a (C3, 3P1)-free
graph that is not an induced subgraph of P4.
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It is easy to verify that the only (C3, 3P1)-free graph on more than four vertices
is C5. Since C5 is not a permutation graph, we may assume that H has at most four
vertices. By inspection, the only (C3, 3P1)-free graphs H on at most four vertices
that are not induced subgraphs of P4 are C4 and 2P2. As C5 is not a permutation
graph, the class of (C4, 2P2)-free permutation graphs is equal to the class of split
permutation graphs, which has unbounded clique-width by Theorem 4.6. Therefore
the class ofH-free permutation graphs has unbounded clique-width ifH ∈ {C4, 2P2}.
This completes the proof. �

Recall from Observation 2.5 that bipartite permutation graphs are chordal bi-
partite, and that by Theorem 4.7 the class of bipartite permutation graphs has
unbounded clique-width. From these two facts it follows that the class of chordal bi-
partite graphs has unbounded clique-width. In contrast, Lozin and Rautenbach [138]
proved that K+

1,t-free chordal bipartite graphs have bounded clique-width (recall

that K+
1,t is the graph obtained from the star K1,t by subdividing one of its edges).

Subdividing all three edges of the claw K1,3 yields the graph S2,2,2. As every bipar-
tite permutation graph is S2,2,2-free chordal bipartite, the class of S2,2,2-free chordal
bipartite graphs has unbounded clique-width, again due to Theorem 4.7.

The above discussion leads to the following open problems. Let Et denote the
graph obtained from the star K1,t+1 after subdividing exactly two of its edges.
Kamiński, Lozin and Milanič [116] asked the question: for which t, does the class of
Et-free chordal bipartite graphs have bounded clique-width? For t ≤ 2, the class of
Et-free graphs has bounded clique-width by Theorem 4.13, as E2 = S1,2,2. Hence
t = 3 is the first open case. By taking the class of chordal bipartite graphs as the
class X , we can pose a more general open problem.

Open Problem 4.16 Determine for which graphs H the class of H-free chordal
bipartite graphs has bounded clique-width.

Boliac and Lozin [18] proved that for a graph H, the class of H-free claw-free
graphs has bounded clique-width if and only if H ⊆i P4, H ⊆i paw or H ⊆i K3 +P1

(see also the more general Theorem 4.18 in Section 4.2). Line graphs form a subclass
of the class of claw-free graphs. Gurski and Wanke [101] proved that if a line graph
has a vertex whose non-neighbours induce a subgraph of clique-width k, then it has
clique-width at most 8k + 4, which would imply, for instance, that (P1 + P4)-free
line graphs have clique-width at most 18 (they then improved this bound to 14). In
fact we can show the following classification for the boundedness of clique-width of
(H1, . . . ,Hp)-free line graphs. Recall that S is the class of graphs every connected
component of which is either a subdivided claw or a path on at least one vertex,
whereas T consists of all line graphs of graphs in S.

Theorem 4.17 Let {H1, . . . ,Hp} be a finite set of graphs. Then the class of
(H1, . . . ,Hp)-free line graphs has bounded clique-width if and only if Hi ∈ T for
some i ∈ {1, . . . , p}.

Proof First suppose that Hi ∈ T for some i ∈ {1, . . . , p}. By definition of T ,
it follows that Hi is the line graph of some graph F ∈ S. Because F is in S,
forbidding F as a (not necessarily induced) subgraph ofG is the same as forbidding F
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as a minor by Observation 2.4. Moreover, F is planar. By a result of Bienstock,
Robertson, Seymour and Thomas [13], every graph that does not contain some fixed
planar graph as a minor has bounded path-width. Hence, the class of F -subgraph-
free graphs has bounded path-width and consequently, bounded treewidth. Then,
by Theorem 3.7, the class of Hi-free graphs, and thus the class of (H1, . . . ,Hp)-free
graphs, has bounded clique-width.

Now suppose thatHi /∈ T for every i ∈ {1, . . . , p}. Then everyHi has a connected
component H ′i /∈ T . We may assume without loss of generality that each Hi is a
line graph (otherwise forbidding it does not affect the class defined; if no Hi is a
line graph, then the class of (H1, . . . ,Hp)-free line graphs is the class of all line
graphs, which has unbounded clique-width [18]). Since every H ′i /∈ T , every H ′i is
not isomorphic to K3. Hence, for every H ′i there exists a unique graph F ′i such
that H ′i is the line graph of F ′i (see, for example, [103]). Since H ′i /∈ T , it follows
that F ′i /∈ S, which means that there exists a positive integer ki, such that the class
of F ′i -subgraph-free graphs contains the class of ki-subdivided walls. We let k =
max{ki | 1 ≤ i ≤ p}. Then the class of (F ′1, . . . , F

′
p)-subgraph-free graphs contains

the class of k-subdivided walls. As the class of k-subdivided walls has unbounded
clique-width by Corollary 3.9, it follows that the class of (F ′1, . . . , F

′
p)-subgraph-free

graphs has unbounded clique-width and hence unbounded treewidth [59]. Then, by
Theorem 3.7, the class of (H ′1, . . . ,H

′
p)-free line graphs has unbounded clique-width.

Since the class of (H1, . . . ,Hp)-free line graphs contains the class of (H ′1, . . . ,H
′
p)-

free line graphs, it follows that the class of (H1, . . . ,Hp)-free line graphs also has
unbounded clique-width. �

4.2 Forbidding A Small Number of Graphs

As discussed, even the case when only two induced subgraphs H1 and H2 are
forbidden has not yet been fully classified, and there are only partial results for
the cases where three or four induced subgraphs are forbidden. Besides the class
of (C4, C5, 2P2)-free graphs (split graphs) [145], it is, for example, known that the
classes of (C4,K1,3,K4, diamond)-free graphs [18,27] and (3P2, P2+P4, P6, gem)-free
graphs have unbounded clique-width [67]. Recall that the gem is the graph P1 + P4

(see Figure 3) and that the hammer is the graph T0,0,2 (see Figure 4). It is known
that the clique-width of (hammer, gem, S1,1,2)-free graphs is at most 7 [33]. However,
unlike the case for two forbidden induced subgraphs, no large-scale systematic study
has been initiated for finitely defined hereditary graphs classes with more than two
forbidden induced subgraphs; in Sections 4.3 and 4.4, respectively, we discuss two
studies [14, 26] with partial results in this direction. In this section, we focus only
on (H1, H2)-free graphs.

Despite the classification for H-free graphs (Theorem 4.1) and many existing re-
sults for (un)boundedness of clique-width for (H1, H2)-free graphs [18,24,27,30–32,
36, 61, 62, 65] over the years, the number of open cases (H1, H2) was only recently
proven to be finite, in [67]. This was done by combining the existing known results
together with a number of new results for (H1, H2)-free graphs, and led to a clas-
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sification that left 13 non-equivalent open cases.9 This number has been reduced
to five non-equivalent open cases by four later papers [14, 19, 60, 63], and the cur-
rent state-of-the-art is as follows (recall that S is the class of graphs each connected
component of which is either a subdivided claw or a path and see also Figures 3, 4
and 11 in which a number of the graphs mentioned below are displayed).

Theorem 4.18 ([19]) Let G be a class of graphs defined by two forbidden induced
subgraphs. Then:

1. G has bounded clique-width if it is equivalent to a class of (H1, H2)-free graphs
such that one of the following holds:

(i) H1 or H2 ⊆i P4

(ii) H1 = Ks and H2 = tP1 for some s, t ≥ 1

(iii) H1 ⊆i paw and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3, P1 + P5,
P1 + S1,1,2, P2 + P4, P6, S1,1,3 or S1,2,2

(iv) H1 ⊆i diamond and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3

(v) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5

(vi) H1 ⊆i K3 + P1 and H2 ⊆i K1,3, or

(vii) H1 ⊆i 2P1 + P3 and H2 ⊆i 2P1 + P3.

2. G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free
graphs such that one of the following holds:

(i) H1 6∈ S and H2 6∈ S
(ii) H1 /∈ S and H2 6∈ S

(iii) H1 ⊇i K3 + P1 or C4 and H2 ⊇i 4P1 or 2P2

(iv) H1 ⊇i diamond and H2 ⊇i K1,3, 5P1, P2 + P4 or P6

(v) H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3

(vi) H1 ⊇i K4 and H2 ⊇i P1 + P4 or 3P1 + P2, or

(vii) H1 ⊇i gem and H2 ⊇i P1 + 2P2.

Example 4.19 As an example of how results from Section 4.1 were useful in prov-
ing Theorem 4.18, consider the case when (H1, H2) = (K4, 2P1 + P3). In [25], it
was shown that (K4, 2P1 + P3)-free graphs have bounded clique-width. This was
proven as follows. First, Theorem 4.8 was applied to solve the case when the given
(K4, 2P1 + P3)-free graph G is chordal. If G is not chordal, then G must contain a
cycle C of length at least 4. As G is (2P1 + P3)-free, C can have length at most 7.
This leads to a case distinction depending on the length of C. In each case, the set
of vertices of G not on C is partitioned according to the intersection of their set of
neighbours with C. This partition is then analysed and the facts from Section 3
are used to modify G into a graph belonging to a class known to have bounded
clique-width.

9Given four graphs H1, H2, H3, H4, the classes of (H1, H2)-free graphs and (H3, H4)-free graphs
are said to be equivalent if the unordered pair H3, H4 can be obtained from the unordered pair
H1, H2 by some combination of the operations: (i) complementing both graphs in the pair, and (ii)
if one of the graphs in the pair is 3P1, replacing it with P1 + P3 or vice versa. If two classes are
equivalent, then one of them has bounded clique-width if and only if the other one does [67].
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As mentioned earlier, Theorem 4.18 does not cover five (non-equivalent) cases;
see also [19].

Open Problem 4.20 Does the class of (H1, H2)-free graphs have bounded or un-
bounded clique-width when:

(i) H1 = K3 and H2 ∈ {P1 + S1,1,3, S1,2,3}

(ii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}

(iii) H1 = gem and H2 = P2 + P3.

As discussed in [63], it would be interesting to find out if H-free bipartite graphs
and H-free triangle-free graphs have the same classification with respect to the
boundedness of their clique-width. It follows from Theorems 4.13 and 4.18 that the
evidence so far is affirmative. Nevertheless, Open Problem 4.20.(i) shows that two
remaining cases still need to be solved, namely H = P1 + S1,1,2 and H = S1,2,3.

We will prove two partial results for the two cases in Open Problem 4.20.(i).
These results also illustrate some of the previously discussed techniques. Namely,
we show that the class of prime (K3, C5, S1,2,3)-free graphs has bounded clique-width
(Proposition 4.22) and that the class of (K3, C5, P1+S1,1,3)-free graphs has bounded
clique-width (Proposition 4.23). Combining Propositions 4.22 and 4.23 with Fact 4
implies that in both cases of Open Problem 4.20.(i) we need only consider prime
graphs that contain C5 as an induced subgraph.

For Proposition 4.22 we need the following lemma, which follows from [60,
Lemma 8].10 Proposition 4.23 is a new result.

Lemma 4.21 ([60]) If G is a prime (K3, C5, S1,2,3)-free graph, then G is either
bipartite or a cycle.

Proposition 4.22 The class of prime (K3, C5, S1,2,3)-free graphs has bounded
clique-width.

Proof If a (K3, C5, S1,2,3)-free graph is bipartite, then it is an S1,2,3-free bipartite
graph and we are done by Theorem 4.13. If it is a cycle then it has maximum
degree 2, and we are done by Proposition 3.3. By Lemma 4.21 this completes the
proof. �

Proposition 4.23 The class of (K3, C5, P1 +S1,1,3)-free graphs has bounded clique-
width.

Proof Let G be a (K3, C5, P1+S1,1,3)-free graph. Since the clique-width of a graph
equals the maximum of the clique-width of its components, we may assume that G is
connected. We may assume that G is not bipartite, otherwise it is a (P1+S1,1,3)-free
bipartite graph, in which case it has bounded clique-width by Theorem 4.13. As G is
(C3, C5)-free (since C3 = K3), it contains an induced odd cycle C on k vertices, say

10[60, Lemma 8] is about (K3, C5, S1,2,3)-free graphs without false twins, that is, without pairs
of non-adjacent vertices which have the same set of neighbours. Prime graphs have no false twins
by definition.
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v1, v2, . . . , vk in that order, where k ≥ 7. We may assume without loss of generality
that C is an odd cycle of minimum length in G.

If V (G) = V (C), then G has maximum degree 2 and we can use Proposition 3.3.
From now on we assume that G contains at least one vertex not on C. Suppose
that there is a vertex v that is adjacent to at least two vertices of C. As C has
minimal length and G is (C3, C5)-free, v must be adjacent to precisely two vertices
of C, which must be at distance 2 from each other on C.

For i ∈ {1, . . . , k}, let Vi be the set of vertices outside C that are adjacent
to vi−1 and vi+1 (subscripts on vertices and vertex sets are interpreted modulo k
throughout the proof), and let Wi be the set of vertices whose unique neighbour in C
is vi. Finally, let U be the set of vertices that have no neighbour in C. Thus every
vertex in G is in C, U or in some set Vi or Wi for some i ∈ {1, . . . , k}. Moreover, as G
is connected, there must be at least one set of the form Vi or Wi that is non-empty.
We may assume without loss of generality that there is a vertex v ∈ V1 ∪W2. If
k ≥ 9 then G[v7, v2, v, v1, v3, v4, v5] is a P1 + S1,1,3, a contradiction. We conclude
that k = 7.

We now prove five claims, the first of which follows immediately from the fact
that G is K3-free.

Claim 1. For i ∈ {1, . . . , 7}, Vi and Wi are independent sets.

Claim 2. For every i ∈ {1, . . . , 7}, Vi and Wi are complete to U , and |U | ≤ 1.
Suppose, for contradiction, that a vertex x ∈ V1∪W2 is non-adjacent to y ∈ U . Then
G[y, v2, x, v1, v3, v4, v5] is a P1+S1,1,3, a contradiction. By symmetry, this proves the
first part of the claim. Now suppose that U contains at least two vertices y and y′.
Then v ∈ V1 ∪W2 is adjacent to both y and y′. Since G is K3-free, it follows that y
and y′ are not adjacent. Then G[v6, v, y, y

′, v2, v3, v4] is a P1+S1,1,3, a contradiction.
This proves the second part of the claim.

Claim 3. For i ∈ {1, . . . , 7}, |Wi| ≤ 1.
Suppose that x, y ∈ W1. By Claim 1, we find that x is non-adjacent to y. Then
G[v6, v1, x, y, v2, v3, v4] is a P1 + S1,1,3, a contradiction. The claim follows by sym-
metry.

A set of vertices is large if it contains at least two vertices and small otherwise.

Claim 4. For i, j ∈ {1, . . . , 7}, if vi is adjacent to vj and at least one of Vi and Vj
is large, then Vi is complete to Vj.
Suppose that there are vertices x, x′ ∈ V2 and y ∈ V3 such that y is non-adjacent
to x′. By Claim 1, x is non-adjacent to x′. Then G[x′, y, x, v2, v4, v5, v6] or
G[y, v1, x, x

′, v7, v6, v5] is a P1 + S1,1,3 if y is adjacent or non-adjacent to x, re-
spectively, a contradiction. The claim follows by symmetry.

Claim 5. For distinct i, j ∈ {1, . . . , 7}, if a vertex of Vi has a neighbour in Vj, then vi
is adjacent to vj.
Since G is K3-free, for every i the set Vi is anti-complete to the set Vi+2. Moreover,
if i and j are such that the vertices vi and vj are at distance more than 2 on the
cycle, then Vi and Vj must be anti-complete, as otherwise there would be a smaller
odd cycle than C in G, contradicting the minimality of k. This proves Claim 5.

Let G′ be the graph obtained from G by deleting all vertices in small sets Vi, Wi

or U (note that in doing this we delete at most 7 + 7 + 1 = 15 vertices). By Fact 1,
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it is sufficient to show that G′ has bounded clique-width. Let V ′i be Vi if Vi is large
and ∅ otherwise. By Claims 2 and 3, G′ only contains vertices in C and the sets V ′i .
By Claim 1, each set V ′i is independent. Furthermore, by Claim 4, if vi and vj are
adjacent vertices of C then V ′i is complete to V ′j . By Claim 5, for all other choices of i
and j, the set V ′i is anti-complete to V ′j . This implies that for every i ∈ {1, . . . , 7},
the set V ′i ∪ {vi} is a module that is an independent set. We apply seven bipartite
complementations, namely between Vi and Vi+1 for i ∈ {1, . . . , 7}. This yields an
edgeless graph, which has clique-width 1. By Fact 3, it follows that G′ has bounded
clique-width. Hence G has bounded clique-width. This completes the proof. �

4.3 Forbidding Small Induced Subgraphs

Theorem 4.1 states that a class of H-free graphs has bounded clique-width if
and only if H is an induced subgraph of P4. As discussed, one way to obtain more
graph classes of bounded clique-width is to extend P4 by one extra vertex, but then
we need to forbid at least one other graph as an induced subgraph besides this
1-vertex extension of P4. In this context, Brandstädt and Mosca [37] classified the
boundedness of clique-width for H-free graphs, where H is a subset of the set of
P4-sparse graphs with five vertices. Brandstädt, Hoàng and Le [29] proved that
(bull, S1,1,2, S1,1,2)-free graphs have bounded clique-width. Brandstädt, Dragan, Le
and Mosca proved the following more general dichotomy containing the results of [29,
37]; see also Figure 12.

Theorem 4.24 ([26]) Let H be a set of 1-vertex extensions of P4. The class of
H-free graphs has bounded clique-width if and only if H is not a subset of any of the
following sets:

(i) {P1 + P4, P5, S1,1,2, banner, C5, S1,1,2},
(ii) {P1 + P4, P5, S1,1,2, banner, C5, S1,1,2},

(iii) {P1 + P4, P5, S1,1,2, banner, banner, C5, bull},
(iv) {P1 + P4, P5, S1,1,2, banner, banner, C5, bull} or

(v) {P5, banner, banner, C5, P5}.

Brandstädt, Engelfriet, Le and Lozin [27] considered all sets H of graphs on
at most four vertices and determined for which such sets H the class of H-free
graphs has bounded clique-width. They proved the following dichotomy for sets H
of 4-vertex graphs and showed that all cases involving at least one graph with fewer
than four vertices follow from known cases (see also Theorems 4.1 and 4.18); the
graphs in Theorem 4.25 are displayed in Figure 13.

Theorem 4.25 ([27]) Let H be a set of 4-vertex graphs. The class of H-free graphs
has bounded clique-width if and only if H is not a subset of any of the following sets:

(i) {C4, 2P2}
(ii) {K4, 2P2}

(iii) {C4, 4P1}
(iv) {K4,diamond, C4, claw}
(v) {4P1, 2P1 + P2, 2P2,K3 + P1}

(vi) {K4,diamond, C4, paw,K3 + P1}, or
(vii) {4P1, 2P1 + P2, 2P2, P1 + P3, claw}.
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S1,1,2 banner P5

banner chair = S1,1,2 P1 + P4 gem = P1 + P4

house = P5 bull = bull C5 = C5

Figure 12: The 1-vertex extensions of P4.

K4 = diamond = C4 = paw = claw = K1,3 =

4P1 2P1 + P2 2P2 P1 + P3 K3 + P1

4P1 = 2P1 + P2 = 2P2 = P1 + P3 = K3 + P1 =

K4 diamond C4 paw claw

P4 = P4

Figure 13: The graphs on four vertices.
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claw = K1,3 K1,3 = K3 + P1 P1 + P4 gem = P1 + P4

2P1 + P3 2P1 + P3 sP1 (s = 5 shown) sP1 (s = 5 shown)

Figure 14: Graphs H for which the clique-width of (H,H)-free graphs is bounded.

4.4 Considering Hereditary Graph Classes Closed Under Complementation

Recall that subgraph complementation preserves boundedness of clique-width by
Fact 2. It is therefore natural to consider hereditary classes of graphs G that are
closed under complementation. In this section we survey the known results for these
graph classes. Recall that by Observation 2.2 a hereditary graph class G is closed
under complementation if and only if H = FG is closed under complementation. We
start by considering the cases where |H| is small.

The only two non-empty self-complementary induced subgraphs of P4 are P1

and P4. Hence, from Theorem 4.1 it follows that the only self-complementary
graphs H for which the class of H-free graphs has bounded clique-width are H = P1

and H = P4. This result settles the |H| = 1 case and was generalized as follows.

Theorem 4.26 ([14]) For any set H of non-empty self-complementary graphs, the
class of H-free graphs has bounded clique-width if and only if either P1 ∈ H or
P4 ∈ H.

We now discuss the |H| = 2 case. By Theorem 4.26, it remains to consider the
case when H = {H1, H2} with H2 = H1 and H1 is not self-complementary. This
leads to the following classification, which also follows from Theorem 4.18. The
graphs in this classification are displayed in Figure 14.

Theorem 4.27 ([14]) For a graph H, the class of (H,H)-free graphs has bounded
clique-width if and only if H or H is an induced subgraph of K1,3, P1 +P4, 2P1 +P3

or sP1 for some s ≥ 1.

As we will see, the |H| = 3 case has not yet been fully settled. Up to per-
mutations of the graphs H1, H2, H3, a class of (H1, H2, H3)-free graphs is closed
under complementation if and only if Hi is self-complementary for all i ∈ {1, 2, 3},
or H1 = H2 and H3 is self-complementary (note that we may assume that H is
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minimal). By Theorem 4.26, we only need to consider the second case. By Theo-
rem 4.1, we may exclude the case when H3 = P1 or H3 = P4. The next two smallest
self-complementary graphs H3 are the C5 and the bull.

Blanché, Dabrowski, Johnson, Lozin, Paulusma and Zamaraev [14] proved that
the classification of boundedness of clique-width for (H,H,C5)-free graphs coincides
with the one of Theorem 4.27. This raised the question of whether the same is true
for other sets of self-complementary graphs F 6= {C5}. However, the bull is self-
complementary, and if F contains the bull, then the answer is negative, which can
be seen as follows. By Theorem 4.27, both the class of (S1,1,2, S1,1,2)-free graphs
and the class of (2P2, C4)-free graphs have unbounded clique-width. In contrast, by
Theorem 4.24, both the class of (S1,1,2, S1,1,2,bull)-free graphs and even the class of
(P5, P5,bull)-free graphs have bounded clique-width. However, as shown in the next
theorem, the bull turned out to be the only exception if we exclude the “trivial”
cases H3 = P1 and H3 = P4, which are the only non-empty self-complementary
graphs on fewer than five vertices.

Theorem 4.28 ([14]) Let F be a set of self-complementary graphs on at least five
vertices not equal to the bull. For a graph H, the class of ({H,H} ∪ F)-free graphs
has bounded clique-width if and only if H or H is an induced subgraph of K1,3,
P1 + P4, 2P1 + P3 or sP1 for some s ≥ 1.

By Theorems 4.26 and 4.28 the case |H| = 3 is settled except when H1 = H2

and H3 is the bull; see also [14].

Open Problem 4.29 For which graphs H does the class of (H,H, bull)-free graphs
have bounded clique-width?

In light of Theorem 4.28, Open Problem 4.29 can also be extended to sets F of
self-complementary graphs containing the bull.

4.5 Forbidding with Respect to Other Graph Containment Relations

In this section we survey results on (un)boundedness of clique-width for hered-
itary graph classes that can alternatively be characterized by some other graph
containment relation. In particular, when we forbid a finite collection of either sub-
graphs, minors or topological minors, it is possible to completely characterize those
graph classes that have bounded clique-width.

Theorem 4.30 ([67, 116]) Let {H1, . . . ,Hp} be a finite set of graphs. Then the fol-
lowing statements hold:

(i) The class of (H1, . . . ,Hp)-subgraph-free graphs has bounded clique-width if and
only if Hi ∈ S for some i ∈ {1, . . . , p}.

(ii) The class of (H1, . . . ,Hp)-minor-free graphs has bounded clique-width if and
only if Hi is planar for some i ∈ {1, . . . , p}.

(iii) The class of (H1, . . . ,Hp)-topological-minor-free graphs has bounded clique-
width if and only if Hi is planar and has maximum degree at most 3 for some
i ∈ {1, . . . , p}.
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2P1 + P3 gem = P1 + P4

Figure 15: The graphs H such that the class of H-induced-minor-free graphs has
bounded clique-width.

The graph classes in Theorem 4.30 have in common that the corresponding
containment relation allows edge deletions. If edge deletions are not permitted, then
the situation becomes less clear, as we already saw for the induced subgraph relation.
This is also true for the induced minor relation, for which only the following (non-
trivial) result is known. We refer to Figure 15 for a picture of the graphs 2P1 + P3

and P1 + P4 (recall that the latter graph is also known as the gem).

Theorem 4.31 ([10]) Let H be a graph. The class of H-induced-minor-free graphs
has bounded clique-width if and only if H ⊆i 2P1 + P3 or H ⊆i P1 + P4.

With an eye on Theorem 4.18, Theorem 4.31 leads to the following open problem.

Open Problem 4.32 Determine for which pairs of graphs (H1, H2) the class of
(H1, H2)-induced-minor-free graphs has bounded clique-width.

We end this section with two more open problems; we note that a class of
H-contraction-free graphs need not be hereditary and that Open Problem 4.33 is
trivial if we allow disconnected graphs, since edge contractions preserve the number
of components in a graph.

Open Problem 4.33 Determine for which graphs H the class of connected H-
contraction-free graphs has bounded clique-width.

Open Problem 4.34 Determine for which graphs H the class of H-induced-
topological-minor-free graphs has bounded clique-width.

5 Algorithmic Consequences

In this section we illustrate how bounding clique-width (or one of its equivalent
parameters) can be used to find polynomial-time algorithms to solve problems on
special graph classes, even when these problems are NP-hard on general graphs. In
Section 5.1 we discuss meta-theorems, and in Section 5.2 we show how they can be
used as part of a general strategy for solving problems. In Section 5.3 we focus on
atoms, which are often used as a specific ingredient for the general strategy. Finally,
in Sections 5.4 and 5.5 we look at two problems in particular, namely Colouring
and Graph Isomorphism, respectively. For other graph problems where bounded-
ness of clique-width is used to classify their computational complexity on hereditary
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graph classes, see, for example, [28,44]. We refer to [11,41,79,80,89] for parameter-
ized complexity results on clique-width.

5.1 Meta-Theorems

We observed in Section 1 that one of the advantages of showing that a graph
class has bounded clique-width is that one can apply meta-theorems that say that
any problem definable within certain constraints can be solved in polynomial time
on the class. We mentioned such a theorem concerning any problem that can be
defined in MSO1 [58]. The result of [58] has been extended by others to address
graph problems that cannot be defined in MSO1. An important example of such a
problem is the F-Partition problem, which asks, for a graph G and an integer k,
whether V (G) can be partitioned into (possibly empty) sets V1, . . . , Vk such that
every Vi induces a graph in F . In particular, if F consists of the edgeless graphs,
then the F-Partition problem is equivalent to the Colouring problem.

Espelage, Gurski and Wanke [74] gave a general method to show that on graphs
of bounded clique-width, F-Partition is polynomial-time solvable for a number of
graph classes F including complete graphs, edgeless graphs, forests and triangles.
Their method can also be applied to other problems, such as Hamilton Cycle (see
also [166] and see [12] for a faster algorithm) and Cubic Subgraph. Later, Kobler
and Rotics [121] proved that a variety of other NP-complete graph partition problems
(where either the set of vertices or the set of edges is partitioned) can be solved in
polynomial time for graphs of bounded clique-width. Again, their set of problems
includes Colouring (see [131] for the fastest known algorithm, parameterized by
clique-width, for finding a k-colouring if k is constant). However, their work also
captures other graph partition problems, such as List k-Colouring and Edge-
Dominating Set.

Gerber and Kobler [86] gave a framework of vertex partition problems with re-
spect to a fixed interval degree constraint matrix. They showed that these problems,
which include Induced Bounded Degree Subgraph, Induced k-Regular
Subgraph, H-Colouring andH-Covering, are all solvable in polynomial time on
graphs of bounded clique-width. In the same paper, they extended their framework
to include more general problems, such as Satisfactory Graph Partitioning
and Majority Domination Number. Rao [153] gave another family of vertex
partitioning problems that can be solved in polynomial time for graphs of bounded
clique-width. Besides Colouring, this family also includes Domatic Number,
Hamilton Cycle and F-Partition where F consists of complete and edgeless
graphs; perfect graphs; or H-free graphs, for an arbitrary fixed graph H.

The algorithms in [58, 74, 86, 92, 121] all require a c-expression of the input
graph G for some constant c. Recall that computing the clique-width of a graph is
NP-hard [77] (and that the complexity of deciding whether a graph has clique-width
at most c is still open for every constant c ≥ 4). Of course, this suggests we cannot
hope to compute a cw(G)-expression in polynomial time. However, it is sufficient to
use the algorithm of Seymour and Oum [151], which returns a c-expression for some
c ≤ 23 cw(G)+2 − 1 in O(n9 log n) time, or the later improvements of Oum [149] and
Hliněný and Oum [110] that provide cubic-time algorithms which yield a c-expression
for some c ≤ 8cw(G) − 1 and c ≤ 2cwG+1 − 1, respectively.
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We note that there exist problems that are polynomial-time solvable for graphs
of clique-width c, but NP-complete for graphs of clique-width d for constants c
and d with c < d. For example, this holds for the Disjoint Paths problem, which
is linear-time solvable for graphs of clique-width at most 2, but NP-complete for
graphs of clique-width at most 6 [99].

5.2 A General Strategy for Finding Algorithms

Below we describe an approach that has often been used as a general strategy
when we want to solve a problem Π on a graph class G. We suppose that there
exists some meta-algorithm A that can be used to solve Π on classes of bounded
clique-width. We say that the graph class G is reducible to some subclass G′ ⊆ G
with respect to Π if the following holds: if Π can be solved in polynomial time on G′,
then Π can also be solved in polynomial time on G. We can now state the following
general approach.

Clique-Width Method

1. Check if G has bounded clique-width (for instance, by using the BCW Method).

2. If so, then apply A. Otherwise choose between 3a and 3b.

3a. Reduce G to some subclass G′ of bounded clique-width and apply A.

3b. Partition G into two classes G1 and G2, such that G1 has bounded clique-width
and is as large as possible. Apply A to solve Π on G1. Use some problem-specific
algorithm to solve Π on G2.

To give an example where Step 3a of this method is used, we can let G′ be the class
that consists of all atoms in G. Recall that a connected graph is an atom if it has
no clique cut-set. Dirac [73] introduced the notion of a clique cut-set and proved
that every chordal graph is either complete or has a clique cut-set. As complete
graphs have clique-width 2, this means that chordal graphs that are atoms have
clique-width at most 2, whereas the class of chordal graphs has unbounded clique-
width (see, for example, Theorem 4.8). Over the years, decomposition into atoms
has become a widely used tool for solving decision problems on hereditary graph
classes. For instance, a classical result of Tarjan [162] implies that Colouring and
other problems, such as those of determining the size of a largest independent set
(Independent Set) or a largest clique (Clique), are polynomial-time solvable on
a hereditary graph class G if and only if they are polynomial-time solvable on the
atoms of G. We will discuss atoms in more detail in Section 5.3.

To give an example where Step 3b of this method is used, Fraser, Hamel, Hoàng,
Holmes and LaMantia [82] proved that Colouring can be solved in polynomial
time for (C4, C5, 4P1)-free graphs by proving that the non-perfect graphs from this
class have bounded clique-width and by recalling that Colouring can be solved in
polynomial time on perfect graphs [93].
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5.3 Atoms

As mentioned, atoms are an important example for Step 3a in the Clique-Width
Method. To determine new polynomial-time results for Colouring, Gaspers, Huang
and Paulusma [85] investigated whether there exist graph classes of unbounded
clique-width whose atoms have bounded clique-width. They found that this is not
the case for the classes of H-free graphs. That is, the classification for H-free atoms
coincides with the classification for H-free graphs in Theorem 4.1.

Theorem 5.1 ([85]) Let H be a graph. The class of H-free atoms has bounded
clique-width if and only if H is an induced subgraph of P4.

As split graphs are chordal by Observation 2.5, it follows that split atoms (split
graphs that are atoms) are complete graphs, and thus have clique-width at most 2,
whereas the class of general split graphs has unbounded clique-width [145]. As the
class of split graphs coincides with the class of (C4, C5, 2P2)-free graphs [78], Gaspers,
Huang and Paulusma [85] asked whether there exists a class of (H1, H2)-free graphs
of unbounded clique-width whose atoms form a class of bounded clique-width. They
proved that this is indeed the case by showing a constant bound on the clique-width
of atoms in the class of (C4, P6)-free graphs, which form a superclass of split graphs
(they used this to prove that Colouring is polynomial-time solvable for (C4, P6)-
free graphs).

Theorem 5.2 ([85]) Every (C4, P6)-free atom has clique-width at most 18.

We are not aware of any other examples, which leads us to ask the following
open problem (see also [85]).

Open Problem 5.3 Determine all pairs of graphs H1, H2 such that the class of
(H1, H2)-free graphs has unbounded clique-width, but the class of (H1, H2)-free atoms
has bounded clique-width.

Recall from Open Problem 4.20 that there are still five non-equivalent pairs
H1, H2 for which we do not know whether the clique-width of (H1, H2)-free graphs
is bounded or unbounded. Due to the algorithmic implications mentioned above,
the following problem is therefore also of interest.

Open Problem 5.4 Does the class of (H1, H2)-free atoms have bounded clique-
width when:

(i) H1 = K3 and H2 ∈ {P1 + S1,1,3, S1,2,3}

(ii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}

(iii) H1 = gem and H2 = P2 + P3.

5.4 Graph Colouring

Král’, Kratochv́ıl, Tuza, and Woeginger completely classified the complexity of
Colouring for H-free graphs.
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Theorem 5.5 ([126]) Let H be a graph. If H ⊆i P4 or H ⊆i P1 + P3, then
Colouring restricted to H-free graphs is polynomial-time solvable, otherwise it
is NP-complete.

For (H1, H2)-free graphs, the classification of Colouring is open for many pairs
of graphs H1, H2. A summary of the known results can be found in [88], but
several other results have since appeared [15, 43, 68, 85, 119, 120, 146]; see [68] for
further details. In relation to boundedness of clique-width, the following is of im-
portance. There still exist ten classes of (H1, H2)-free graphs, for which Colouring
could potentially be solved in polynomial time by showing that their clique-width is
bounded. That is, for these classes, the complexity of Colouring is not resolved,
and it is not known whether the clique-width is bounded. This list is obtained
by updating the list of [60], which contains 13 cases, with the result of [15] for
(H1, H2) = (2P1+P3, 2P1 + P3) and the results of [19] for (H1, H2) = (gem, P1+2P2)
and (H1, H2) = (P1 + P4, P1 + 2P2).

Open Problem 5.6 Can the Colouring problem be solved in polynomial time on
(H1, H2)-free graphs when:

(i) H1 ∈ {K3, paw} and H2 ∈ {P1 + S1,1,3, S1,2,3}

(ii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5}

(iii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}

(iv) H1 = P1 + P4 and H2 = P2 + P3

(v) H1 = gem and H2 = P2 + P3.

5.5 Graph Isomorphism

Grohe and Schweitzer [92] proved that Graph Isomorphism is polynomial-
time solvable for graphs of bounded clique-width. Hence, identifying graph classes
of bounded clique-width is of importance for the Graph Isomorphism problem.

The classification for the computational complexity of Graph Isomorphism
for H-free graphs can be found in a technical report of Booth and Colbourn [22],
who credited the result to an unpublished manuscript of Colbourn and Colbourn.
Another proof of this result appears in a paper of Kratsch and Schweitzer [127].

Theorem 5.7 ([22]) Let H be a graph. If H ⊆i P4, then Graph Isomorphism
for H-free graphs can be solved in polynomial time, otherwise it is GI-complete.

Note that Graph Isomorphism is polynomial-time solvable even for the class
of permutation graphs [47], which contains the class of P4-free graphs.

Schweitzer [161] observed great similarities between the techniques used for clas-
sifying boundedness of clique-width and classifying the complexity of Graph Iso-
morphism for hereditary graph classes. He proved that Graph Isomorphism is
GI-complete for any graph class G that allows a so-called simple path encoding and
also showed that every such graph class G has unbounded clique-width. Indeed, the
UCW Method relies on some clique-width-boundedness-preserving transformations of
an arbitrary graph from some known graph class G′ of unbounded clique-width, such
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as the class of walls, to a graph of the unknown class G. One way to do this is to
show that the graphs in G contain a simple path encoding of graphs from G′.

Kratsch and Schweitzer [127] initiated a complexity classification for Graph Iso-
morphism for (H1, H2)-free graphs. Schweitzer [161] extended the results of [127]
and proved that the number of unknown cases is finite, but did not explicitly list
what these cases were. As mentioned earlier, Graph Isomorphism is polynomial-
time solvable for graphs of bounded clique-width [92]. Bonamy, Dabrowski, Johnson
and Paulusma [19] therefore combined the known results for boundedness of clique-
width for bigenic classes (Theorem 4.18) with the results of [127] and [161] to obtain
an explicit list of only 14 cases, for which the complexity of Graph Isomorphism
was unknown. In the same paper they reduced this number to 7 and gave the fol-
lowing state-of-the-art summary; recall that K+

1,t and K++
1,t are the graphs obtained

from K1,t by subdividing one edge once or twice, respectively.

Theorem 5.8 ([19]) For a class G of graphs defined by two forbidden induced sub-
graphs, the following holds:

1. Graph Isomorphism is solvable in polynomial time on G if G is equivalent11

to a class of (H1, H2)-free graphs such that one of the following holds:

(i) H1 or H2 ⊆i P4

(ii) H1 and H2 ⊆i K1,t + P1 for some t ≥ 1

(iii) H1 and H2 ⊆i tP1 + P3 for some t ≥ 1

(iv) H1 ⊆i Kt and H2 ⊆i 2K1,t,K
+
1,t or P5 for some t ≥ 1

(v) H1 ⊆i paw and H2 ⊆i P2 + P4, P6, S1,2,2 or K++
1,t + P1 for some t ≥ 1

(vi) H1 ⊆i diamond and H2 ⊆i P1 + 2P2

(vii) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5 or

(viii) H1 ⊆i 2P1 + P3 and H2 ⊆i P2 + P3.

2. Graph Isomorphism is GI-complete on G if G is equivalent to a class of
(H1, H2)-free graphs such that one of the following holds:

(i) neither H1 nor H2 is a path star forest

(ii) neither H1 nor H2 is a path star forest

(iii) H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, P1 + 2P3, 2P1 + P4 or 3P2

(iv) H1 ⊇i K4 and H2 ⊇i K
++
1,4 , P1 + 2P2 or P1 + P4

(v) H1 ⊇i K5 and H2 ⊇i K
++
1,3

(vi) H1 ⊇i C4 and H2 ⊇i K1,3, 3P1 + P2 or 2P2

(vii) H1 ⊇i diamond and H2 ⊇i K1,3, P2 + P4, 2P3 or P6 or

(viii) H1 ⊇i P1 + P4 and H2 ⊇i P1 + 2P2.

As shown in [19], Theorem 5.8 leads to the following open problem.

11Equivalence is defined in the same way as for clique-width (see Footnote 9). If two classes are
equivalent, then the complexity of Graph Isomorphism is the same on both of them. [19].
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Open Problem 5.9 What is the complexity of Graph Isomorphism on (H1, H2)-
free graphs in the following seven cases?

(i) H1 = K3 and H2 ∈ {P7, S1,2,3}

(ii) H1 = K4 and H2 = S1,1,3

(iii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}

(iv) H1 = gem and H2 = P2 + P3

(v) H1 = 2P1 + P3 and H2 = P5.

For H-induced-minor-free graphs the classification for the complexity of Graph
Isomorphism is given in Theorem 5.10. Note that the second and third tractable
cases follow from Theorem 4.31 and the fact that Graph Isomorphism is
polynomial-time solvable on graphs of bounded clique-width [92]. We refer to Fig-
ure 15 for a picture of the graphs 2P1 + P3 and P1 + P4.

Theorem 5.10 ([10]) Let H be a graph. The Graph Isomorphism problem on
H-induced-minor-free graphs is polynomial-time solvable if:

(i) H is a complete graph,

(ii) H ⊆i 2P1 + P3 or

(iii) H ⊆i P1 + P4

and GI-complete otherwise.

6 Well-Quasi-Orderability

We recall that the Robertson-Seymour Theorem [157] states that the set of all
finite graphs is well-quasi-ordered by the minor relation. This result, combined with
the cubic-time algorithm of [156] for testing if a graph G contains some fixed graph H
as a minor, gives a cubic-time algorithm for testing whether a graph belongs to some
minor-closed graph class. Other known results on well-quasi-orderability include a
result of Ding [72], which implies that every class of graphs with bounded vertex
cover number is well-quasi-ordered by the induced subgraph relation and a result of
Mader [144], who showed that every class of graphs with bounded feedback vertex
number is well-quasi-ordered by the topological minor relation. Fellows, Hermelin
and Rosamund [76] simplified the proofs of Ding and Mader. They also showed that
every class of graphs of bounded circumference is well-quasi-ordered by the induced
minor relation. As applications they gave linear-time algorithms for recognizing
graphs from any topological-minor-closed graph class with bounded feedback vertex
number; any induced-minor-closed graph class of bounded circumference; and any
induced-subgraph-closed graph class with bounded vertex cover number.

The Robertson-Seymour Theorem also implies that there exist graph classes
of unbounded clique-width that are well-quasi-ordered by the minor relation. For
hereditary graph classes, the notion of well-quasi-orderability by the induced sub-
graph relation is closely related to boundedness of clique-width, but the exact re-
lationship between the two notions is not yet fully understood. In this section we
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survey results on well-quasi-orderability by the induced subgraph relation for hered-
itary classes, together with some more results for other containment relations.

In Section 1, we noted that Daligault, Rao and Thomassé [69] asked if every
hereditary graph class that is well-quasi-ordered by the induced subgraph relation
has bounded clique-width. Lozin, Razgon and Zamaraev [142] gave a negative an-
swer to this question. That is, they found an example of a hereditary graph class that
is well-quasi-ordered by the induced subgraph relation but has unbounded clique-
width. As the hereditary graph class in their example is not finitely defined (that
is, this graph class is defined by infinitely many forbidden induced subgraphs), they
conjectured the following.

Conjecture 6.1 ([142]) If a finitely defined hereditary class of graphs G is well-
quasi-ordered by the induced subgraph relation, then G has bounded clique-width.

We note that the reverse implication of the statement in Conjecture 6.1 is not
true. We can take the (hereditary) class of graphs of maximum degree at most 2,
which have clique-width at most 4 by Proposition 3.3. However, the class of graphs
of maximum degree at most 2 contains all cycles, which form an infinite anti-chain.
Furthermore, the class of graphs of maximum degree at most 2, is finitely defined:
it is the class of (claw,paw,diamond,K4)-free graphs.

6.1 Well-Quasi-Orderability Preserving Operations

In order to prove that some class of graphs is well-quasi-ordered by the in-
duced subgraph relation or not, we would like to use similar facts to those used
to prove boundedness or unboundedness of clique-width. This is not straightfor-
ward, as there is no analogue of Facts 1–6 for well-quasi-orderability by the induced
subgraph relation. We show this in the three examples below, but first we recall
that these facts concern, respectively, vertex deletion (Fact 1), subgraph comple-
mentation (Fact 2), bipartite complementation (Fact 3), being prime (Fact 4), being
2-connected (Fact 5), and edge subdivision for graphs of bounded maximum degree
(Fact 6).

Example 6.2 A counterexample for analogues of Facts 1–3 is formed by the class
of cycles [64]: deleting a vertex of a cycle, complementing the subgraph induced by
two adjacent vertices, or applying a bipartite complementation between two adjacent
vertices yields a path. The set of cycles is an infinite anti-chain with respect to the
induced subgraph relation, but the set of paths is well-quasi-ordered.

Example 6.3 A counterexample for analogues of Facts 4–5 is formed by the fol-
lowing class of graphs. For i ≥ 1, take a path of length i with end-vertices u and v
and add vertices u′, u′′, v′, v′′ with edges uu′, uu′′, vv′ and vv′′. Call the result-
ing graph Hi (see also Figure 16) and let H be the class of graphs Hi (and their
induced subgraphs). If i 6= j, then Hi is not an induced subgraph of Hj , which
implies that H is not well-quasi-ordered by the induced subgraph relation. How-
ever, the prime graphs of H are paths, which are well-quasi-ordered by the induced
subgraph relation. This shows that the analogue to Fact 4 does not hold for well-
quasi-orderability by the induced subgraph relation. The analogue to Fact 5 does
not hold either, as H contains no 2-connected graphs.
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· · ·

H1 H2 H3 H4 · · ·

Figure 16: The graphs Hi from Example 6.3.

Example 6.4 To obtain a counterexample for the analogue of Fact 6 we consider
the class of graphs H1 consisting of the graph H1 from Example 6.3 only. This class
is well-quasi-ordered by the induced subgraph relation. However, we can obtain the
class H in Example 6.3, which is not well-quasi-ordered, from H1 via edge subdivi-
sions. That is, for i ≥ 1, the graph Hi+1 is obtained from Hi by the subdivision of
an edge of the path of length i.

As these examples suggest, we need a stronger variant of well-quasi-orderability
by the induced subgraph relation. To define this variant, consider an arbitrary
quasi-order (W,≤). Then a graph G is a labelled graph if each vertex v of G is
equipped with a label lG(v) ∈ W . A graph F with labelling lF is a labelled induced
subgraph of G if F is isomorphic to an induced subgraph G′ of G such that there is an
isomorphism which maps each vertex v of F to a vertex w of G′ with lF (v) ≤ lG(w).
If (W,≤) is a well-quasi-order, then it is not possible for a graph class G to contain
an infinite sequence of labelled graphs that is strictly-decreasing with respect to
the labelled induced subgraph relation. We say that G is well-quasi-ordered by the
labelled induced subgraph relation if for every well-quasi-order (W,≤) the class G
contains no infinite anti-chains of labelled graphs.

Observation 6.5 Every graph class that is well-quasi-ordered by the labelled in-
duced subgraph relation is well-quasi-ordered by the induced subgraph relation.

Daligault, Rao and Thomassé proved the following result.

Theorem 6.6 ([69]) Every hereditary class of graphs that is well-quasi-ordered by
the labelled induced subgraph relation is finitely defined.

By Theorem 6.6 it is easy to prove that there exist hereditary graph classes
that are well-quasi-ordered by the induced subgraph relation but not by the labelled
induced subgraph relation. Korpelainen, Lozin and Razgon [125] gave the class
of linear forests as an example (see also Example 6.9 below). The same authors
conjectured that if a hereditary class of graphs G is defined by a finite set of forbidden
induced subgraphs, then G is well-quasi-ordered by the induced subgraph relation
if and only if it is well-quasi-ordered by the labelled induced subgraph relation.
However, Brignall, Engen and Vatter [38] recently found a counterexample for this
conjecture.

Theorem 6.7 ([38]) There exists a graph class G∗ with |FG∗ | = 14 that is well-
quasi-ordered by the induced subgraph relation but not by the labelled induced sub-
graph relation.



Clique-Width for Hereditary Graph Classes 47

Theorem 6.7 leads to the following open problem.

Open Problem 6.8 Does there exist a hereditary graph class G with |FG | ≤ 13 that
is well-quasi-ordered by the induced subgraph relation but not by the labelled induced
subgraph relation?

We consider an approach similar to one used for boundedness of clique-width. A
graph operation γ preserves well-quasi-orderability by the labelled induced subgraph
relation if, for every finite constant k and every graph class G, every graph class G′
that is (k, γ)-obtained from G is well-quasi-ordered by this relation if and only if G
is. We also say that a graph property π preserves well-quasi-orderability by the
labelled induced subgraph relation if for every graph class G, the subclass of G with
property π is well-quasi-ordered by the labelled induced subgraph relation if and
only if this is the case for G.

Facts about well-quasi orderability:

Fact 1. Vertex deletion preserves well-quasi-orderability by the labelled induced
subgraph relation [64].

Fact 2. Subgraph complementation preserves well-quasi-orderability by the la-
belled induced subgraph relation [64].

Fact 3. Bipartite complementation preserves well-quasi-orderability by the labelled
induced subgraph relation [64].

Fact 4. Being prime preserves well-quasi-orderability by the labelled induced sub-
graph relation for hereditary classes [6].

For labelled well-quasi-orders, there is no analogue to Fact 5 (on 2-connectivity)
and Fact 6 (on edge subdivision) as illustrated by the following counterexample.

Example 6.9 Let F be the (hereditary) class of linear forests. The class F contains
the class P of all paths on at least two vertices. If we label the end-vertices of every
path in P with one label and all other vertices with a second label incomparable with
the first, we obtain an infinite anti-chain with respect to the labelled induced sub-
graph relation (see also Figure 17). Hence F is not well-quasi-ordered by the labelled
induced subgraph relation. However, the restriction of F to 2-connected graphs is
the empty class, which is well-quasi-ordered by the labelled induced subgraph rela-
tion. Moreover, every graph of F has maximum degree at most 2. However, every
path of P can be obtained by repeatedly subdividing P2, and the class {P2} is well-
quasi-ordered by the labelled induced subgraph relation. We conclude that Facts 5
and 6 for clique-width do not have a counterpart for well-quasi-orderability by the
labelled induced subgraph relation.

As a final remark in this section, we note that it is easy to verify that graph classes
of bounded neighbourhood diversity (introduced in [130]) have bounded clique-width
and are well-quasi-ordered by the labelled induced subgraph relation. Moreover,
the same property also holds for graph classes of bounded uniformicity (introduced
in [123]) or bounded lettericity (introduced in [152]); uniformicity and lettericity are
more general than neighbourhood diversity.
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Figure 17: An anti-chain of paths under the labelled induced subgraph relation. The
two colours are incomparable.

6.2 Results for Hereditary Graph Classes

We now survey known results for well-quasi-orderability of hereditary graphs
by the induced subgraph relation. As we shall see, all known results agree with
Conjecture 6.1. We start with a result of Damaschke.

Theorem 6.10 ([70]) Let H be a graph. The class of H-free graphs is well-quasi-
ordered by the induced subgraph relation if and only if H ⊆i P4.

In fact, the same classification holds for the labelled induced subgraph rela-
tion [6], which means that if there is a hereditary class G which gives a positive
answer to Open Problem 6.8, then |FG | ≥ 2. We also note that the classification
of Theorem 6.10 coincides with the one of Theorem 4.1 for boundedness of clique-
width. In order to increase our understanding of well-quasi-orderability by the in-
duced subgraph relation we can follow the same approaches as done in Section 4 for
clique-width. However, considerably less work has been done on this subject.

Just as in Section 4, we can first restrict ourselves to H-free graphs contained in
some other hereditary graph class. In particular, results for H-free bipartite graphs,
such as those in [122], have shown to be useful. For instance, they have been used
to prove results on well-quasi-orderability for (H1, H2)-free graphs [123]. Combining
the results for H-free bipartite and H-free triangle-free graphs of [122,123] with the
results of [6,63,72] and Ramsey’s Theorem for the case when H = sP1 (s ≥ 1) yields
the following two classifications (see [63] for further explanation).

Theorem 6.11 ([63]) Let H be a graph. The class of H-free bipartite graphs is
well-quasi-ordered by the induced subgraph relation if and only if H = sP1 for some
s ≥ 1 or H is an induced subgraph of P1 + P5, P2 + P4 or P6.

Theorem 6.12 ([63]) Let H be a graph. The class of (K3, H)-free graphs is well-
quasi-ordered by the induced subgraph relation if and only if H = sP1 for some s ≥ 1
or H is an induced subgraph of P1 + P5, P2 + P4, or P6.

We note that the classifications of Theorem 6.11 and 6.12 coincide. In contrast,
we recall that it is not yet clear if the classifications for boundedness of clique-
width on H-free bipartite graphs and (K3, H)-free graphs also coincide; see Open
Problem 4.20.

We now present the state-of-the-art summary for well-quasi-orderability
for classes on (H1, H2)-free graphs, which is obtained by combining results
from [6,63,64,72,122,123]. Note that Theorem 6.13 implies Theorem 6.12.
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Theorem 6.13 ([63]) Let G be a class of graphs defined by two forbidden induced
subgraphs. Then:

1. G is well-quasi-ordered by the labelled induced subgraph relation if it is equiv-
alent12 to a class of (H1, H2)-free graphs such that one of the following holds:

(i) H1 or H2 ⊆i P4
(ii) H1 = Ks and H2 = tP1 for some s, t ≥ 1

(iii) H1 ⊆i paw and H2 ⊆i P1 + P5, P2 + P4 or P6
(iv) H1 ⊆i diamond and H2 ⊆i P2 + P3 or P5.

2. G is not well-quasi-ordered by the induced subgraph relation if it is equivalent
to a class of (H1, H2)-free graphs such that one of the following holds:

(i) neither H1 nor H2 is a linear forest
(ii) H1 ⊇i K3 and H2 ⊇i 3P1 + P2, 3P2 or 2P3

(iii) H1 ⊇i C4 and H2 ⊇i 4P1 or 2P2
(iv) H1 ⊇i diamond and H2 ⊇i 4P1, P2 + P4 or P6
(v) H1 ⊇i gem and H2 ⊇i P1 + 2P2.

Theorem 6.13 does not cover six cases, which are all still open (see also [63]).

Open Problem 6.14 Is the class of (H1, H2)-free graphs well-quasi-ordered by the
induced subgraph relation when:

(i) H1 = diamond and H2 ∈ {P1 + 2P2, P1 + P4}

(ii) H1 = gem and H2 ∈ {P1 + P4, 2P2, P2 + P3, P5}.

It follows from Theorems 4.18 and 6.13 that the class of (P1 + P4, P2 + P3)-free
graphs is the only class of (H1, H2)-free graphs left for which Conjecture 6.1 still
needs to be verified (see also [64]).

Open Problem 6.15 Is Conjecture 6.1 true for the class of (H1, H2)-free graphs
when H1 = P1 + P4 and H2 = P2 + P3?

Finally, instead of the induced subgraph relation or the minor relation, one can
also consider other containment relations. Ding [72] proved that for a graph H, the
class of H-subgraph-free graphs is well-quasi-ordered by the subgraph relation if and
only if H is a linear forest. This result can be readily generalized.

Theorem 6.16 Let {H1, . . . ,Hp} be a finite set of graphs. The class of
(H1, . . . ,Hp)-subgraph-free graphs is well-quasi-ordered by the subgraph relation if
and only if Hi is a linear forest for some i ∈ {1, . . . , p}.

Proof If Hi is a linear forest for some i ∈ {1, . . . , p}, then we can apply the result
of Ding [72]. Now suppose that every Hi either has a cycle or an induced claw. We
let g be the maximum girth over all Hi that contain a cycle. Then the set of cycles of
length at least g+ 1 is an infinite antichain of (H1, . . . ,Hp)-free graphs with respect
to the subgraph relation. �

12Equivalence is defined in the same way as for clique-width (see Footnote 9). If two classes are
equivalent, then one of them is well-quasi-ordered by the induced subgraph relation if and only if
the other one is [123].
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Kamiński, Raymond and Trunck [117] and B lasiok, Kamiński, Raymond and
Trunck [16] gave classifications for the contraction relation and induced minor re-
lation, respectively. We note that the connectivity condition in Theorem 6.17 is
natural, as the edgeless graphs form an antichain under the contraction relation.
We refer to Figure 15 for pictures of the graphs 2P1 + P3 and P1 + P4 in Theo-
rem 6.18.

Theorem 6.17 ([117]) Let H be a graph. The class of connected H-contraction-
free graphs is well-quasi-ordered by the contraction relation if and only if H ∈
{C3,diamond, P1, P2, P3}.

Theorem 6.18 ([16]) Let H be a graph. The class of H-induced-minor-free graphs
is well-quasi-ordered by the induced-minor relation if and only if H ⊆i 2P1 + P3 or
H ⊆i P1 + P4.

We pose the following two open problems.

Open Problem 6.19 Determine for which pairs of graphs (H1, H2) the class of
connected (H1, H2)-contraction-free graphs is well-quasi-ordered by the contraction
relation.

Open Problem 6.20 Determine for which pairs of graphs (H1, H2) the class of
(H1, H2)-induced-minor-free graphs is well-quasi-ordered by the induced minor rela-
tion.

For containment relations other than the induced subgraph relation we can ask
the following question: does there exist a containment-closed graph class of un-
bounded clique-width that is well-quasi-ordered by the same containment relation?
The Robertson-Seymour Theorem [157] tells us that that the class of all (finite)
graphs is well-quasi-ordered by the minor relation. Hence, if we forbid minors, we
can consider the class of all finite graphs, which has unbounded clique-width. By
Theorems 4.30.(i) and 6.16, we would need to forbid an infinite set of graphs for the
subgraph relation to find a positive answer to this question. A clique-cactus graph is
a graph in which each block is either a complete graph or a cycle (these graphs are
also known as cactus block graphs). The class of diamond-contraction-free graphs
coincides with the class of clique-cactus graphs [117]. As complete graphs and cycles
have clique-width at most 2 and 4, respectively, clique-cactus graphs have bounded
clique-width due to Fact 4. Hence, by Theorem 6.17 we would need to forbid a set of
at least two graphs for the contraction relation (when considering connected graphs).
The classification in Theorem 6.18 coincides with the classification in Theorem 4.31
for boundedness of the clique-width of H-induced-minor-free graphs. Hence we
would also need to forbid a set of at least two graphs for the induced minor relation.
We note that the hereditary graph class given in [142] (that is well-quasi-ordered
by the induced subgraph relation, but has unbounded clique-width) is not closed
under contractions, subgraphs or induced minors. Hence, this class does not give a
positive answer to the question for contractions, subgraphs or induced minors.
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7 Variants of Clique-Width

We have surveyed results and techniques for proving (un)boundedness of clique-
width for various families of hereditary graph classes and stated a number of open
problems. We conclude our paper with a brief discussion of some other variants of
clique-width. Lozin and Rautenbach [141] introduced the notion of relative clique-
width, whose definition is more consistent with the definition of treewidth. Com-
puting relative clique-width is NP-hard, as shown by Müller and Urner [148], but
the concept has not been studied for hereditary graph classes. Courcelle [52] and
Fürer [83] defined symmetric clique-width and multi-clique-width, respectively. Both
these width parameters are equivalent to clique-width [52,83]. As this survey focuses
on boundedness of clique-width, we therefore do not discuss these parameters any
further here. Instead we focus on two other variants, namely linear clique-width
(Section 7.1) and power-bounded clique-width (Section 7.2).

7.1 Linear Clique-Width

Linear clique-width [98,141], also called sequential clique-width, is defined in the
same way as clique-width except that in Operation 2 (the disjoint union operation)
of the definition of clique-width, at least one of the two graphs must consist of
a single vertex. Just as clique-width is equivalent to NLC-width and rank-width,
linear clique-width is equivalent to linear NLC-width [98] and linear rank-width (see,
for example, [150]).13 Moreover, just as is the case for clique-width, the notion of
linear clique-width is also not well understood, and similar approaches to those for
clique-width have been followed. To illustrate this, the following analogous results
to those for clique-width are known. Computing linear clique-width is NP-hard [77]
for general graphs, but it is polynomial-time solvable for forests [1] and distance-
hereditary graphs [2]. Moreover, graphs of linear clique-width at most 3 can be
recognized in polynomial time [104], but the computational complexity of recognizing
graphs of linear clique-width at most c is unknown for c ≥ 4 (see [105] for some
partial results for c = 4). Another analogous result is due to Gurski and Wanke who
proved the following theorem (compare to Theorem 3.7).

Theorem 7.1 ([100]) A class of graphs G has bounded path-width if and only if the
class of the line graphs of graphs in G has bounded linear clique-width.

By definition, every graph class of bounded linear clique-width has bounded
clique-width, but the reverse implication does not hold. For example, recall that
every P4-free graph has clique-width at most 2 by Theorem 4.1 and that every tree
has clique-width at most 3 by Proposition 3.2. In contrast, Gurski and Wanke [98]
proved that the class of P4-free graphs and even the class of complete binary trees
have unbounded linear clique-width. This led Brignall, Korpelainen and Vatter
to consider hereditary subclasses of P4-free graphs. They proved the following di-
chotomy result.

13We note that the corresponding variants for directed graphs were recently introduced by Gurski
and Rehs [96].
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Theorem 7.2 ([39]) A hereditary subclass of P4-free graphs has bounded linear
clique-width if and only if it contains neither the class of (C4, P4)-free graphs nor
the class of (2P2, P4)-free graphs.

We note that (C4, P4)-free graphs are also known as the trivially perfect or quasi-
threshold graphs.

To obtain an analogous result to Theorem 4.1, we state the following two results.
The first one is due to Gurski. The second can be easily derived from known results.

Theorem 7.3 ([94]) A graph has linear clique-width at most 2 if and only if it is
(2P2, 2P3, P4)-free.

Theorem 7.4 Let H be a graph. The class of H-free graphs has bounded linear
clique-width if and only if H is an induced subgraph of P1 +P2 or P3. Furthermore,
(P1 + P2)-free graphs and P3-free graphs have linear clique-width at most 2 and 3,
respectively.

Proof By Theorem 4.1 it suffices to consider the case when H is an induced sub-
graph of P4 and by Theorem 7.2 we may assume that H 6= P4. Let G be an H-free
graph. If H ⊆i P3, then every connected component of G is a complete graph.
Complete graphs are readily seen to have linear clique-width at most 2. Hence, G
has linear clique-width at most 3 (after creating each connected component, we re-
label all of its vertices to a third label). The only remaining case is H = P1 + P2.
Since P1+P2 is an induced subgraph of 2P2, 2P3 and P4, Theorem 7.3 implies that G
has linear clique-width at most 2. �

Theorem 7.4 leads to the following open problem.

Open Problem 7.5 Determine for which pairs of graphs (H1, H2) the class of
(H1, H2)-free graphs has bounded linear clique-width.

Just as is the case for clique-width, we expect that results on boundedness of
linear clique-width for H-free bipartite graphs would be useful for solving Open
Problem 7.5. We therefore also pose the following open problem.

Open Problem 7.6 Determine for which graphs H the class of H-free bipartite
graphs has bounded linear clique-width.

Finally, we can also prove an analogous result to Theorem 4.17.

Theorem 7.7 Let {H1, . . . ,Hp} be a finite set of graphs. Then the class of
(H1, . . . ,Hp)-free line graphs has bounded linear clique-width if and only if Hi ∈ T
for some i ∈ {1, . . . , p}.

Proof First suppose that Hi ∈ T for some i ∈ {1, . . . , p}. By definition of T , it
follows that Hi is the line graph of some graph Fi ∈ S. We repeat the arguments
of the proof of Theorem 4.17 to find that the class of Fi-subgraph-free graphs has
bounded path-width. Then, by Theorem 7.1, the class ofHi-free graphs, and thus the
class of (H1, . . . ,Hp)-free graphs, has bounded linear clique-width. Now suppose that
Hi /∈ T holds for every i ∈ {1, . . . , p}. By Theorem 4.17, the class of (H1, . . . ,Hp)-
free line graphs has unbounded clique-width, and thus unbounded linear clique-
width. �
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7.2 Power-Bounded Clique-Width

Recall that the r-th power of G (r ≥ 1) is the graph with vertex set V (G) and
an edge between two vertices u and v if and only if u and v are at distance at most r
from each other in G. Gurski and Wanke [102] proved that the clique-width of the
r-th power of a tree is at most r + 2 + max{b r2c − 1, 0} and that the r-th power of

a graph G has clique-width at most 2(r + 1)tw(G)+1 − 1.
A graph class G has power-bounded clique-width if there is a constant r such that

the graph class consisting of all r-th powers of all graphs from G has bounded clique-
width; otherwise G has power-unbounded clique-width. Hence, if a graph class has
bounded clique-width, it has power-bounded clique-width (we can take r = 1). The
reverse implication does not hold. This follows, for example, from a comparison of
Theorem 4.1 with the following classification for H-free graphs of Bonomo, Grippo,
Milanič and Safe.

Theorem 7.8 ([21]) Let H be a graph. Then the class of H-free graphs has power-
bounded clique-width if and only if H is a linear forest.

Bonomo, Grippo, Milanič and Safe also proved the following classification for
(H1, H2)-free graphs when both H1 and H2 are connected.

Theorem 7.9 ([21]) Let H1 and H2 be two connected graphs. Then the class of
(H1, H2)-free graphs has power-bounded clique-width if and only if

(i) at least one of H1 and H2 is a path, or

(ii) H1 = S1,i,j for some i, j ≥ 1 and H2 = T0,i′,j′ for some i′, j′ ≥ 0.

The case when H1 or H2 is disconnected has not yet been settled.

Open Problem 7.10 Determine for which pairs of graphs (H1, H2) the class of
(H1, H2)-free graphs has power-bounded clique-width.

We note that analogous results to Theorems 4.5 and 4.7 exist for power-bounded
clique-width; that is, the classes of bipartite permutation graphs and unit interval
graphs have power-unbounded clique-width [21]. For more open problems on power-
bounded clique-width, we refer to [21].
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