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The inherently unstable nature of domain walls makes their detection in laboratory experiments
extremely challenging. We propose a method to stabilize domain walls inside a cavity. The method requires
domain walls coupled to matter, a condition that is fulfilled by the symmetron model. We suggest two ways
in which the walls could be detected once stabilized: studying the trajectories of ultracold neutrons either
via the deflection angle of a neutron beam induced by the attraction towards the wall or through the time
difference of these particles passing through the wall. We give realistic estimates for these effects and
expect that they should be detectable experimentally.
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Introduction.—Domain walls are a particular class of
topological defects that exist in many areas of physics
[1,2]. Some domain walls appear in the gravity sector of
alternative theories for gravity, where the scalar field
which generates the walls couples to matter in a crucial
way. Many theoretical works study the properties of
topological defects in cosmology using both analytical
[3–5] and numerical techniques [6–13]. Their interactions
[14–18], gravitational effects [19–22], and emission of
gravitational waves [23] are well investigated. However,
efforts to detect them with cosmological observations
have failed so far [24].
Here we focus on the detection in laboratory experi-

ments. Unfortunately, it turns out that domain walls are
unstable and do not last long enough to be detected with
current experiments [25–28]. When the defects are coupled
to matter, they minimize their energy in high density
regions and move towards the walls of the experiment to
disappear altogether [28–30]. On the other hand, domain
walls can be stabilized inside a cavity by introducing a
distribution of matter in the center of the experiment where
the walls can attach themselves.
We focus on the symmetron model [31] although the

effects that we obtain are not exclusive to this model. Our
method only requires the domain walls to couple to matter.
For instance, it is possible to add a disformal coupling
to the conformal coupling without changing the existence
of the domain walls attached to matter overdensities.
Cosmological simulations with such a model were pre-
sented in Ref. [32], where topological defects were found.
The same effects could also appear in vector-tensor theories
in which the vector has a similar coupling as in the

symmetron case (see. e.g., Ref. [33]) or in the generalized
symmetron models discussed in Ref. [30].
We present ways of detecting domain walls too. These

strategies involve using neutral particles’ trajectories such as
ultracold neutrons (UCNs) going across the wall or grazing
the wall. UCNs have energies of the same order as the ones
of the topological defects; hence, they are ideal for detection.
Furthermore, there are already experiments where neutrons
are cooled down to the desired low velocities. In both cases,
either via the time difference compared to the situation with
no wall or the deflection angle induced by the attraction
towards the wall, we find that for particle beams with
macroscopic velocities in the meters-per-second ballpark,
and symmetron parameters compatible with previously
studied experimental situations [34,35], such as atomic
interferometry, the resulting effects should be detectable.
Symmetron model.—Stabilizing domain walls in cavity

experiments requires the scalar field to be coupled to matter.
We work with the symmetron model to present a realistic
setup [31]. Predictions and constraints to the model exist in
several contexts and spanning several orders of magnitude
in scales including laboratory experiments [28,36], solar
system scales [31,37], galaxy scales [38–41], galaxy clusters
[42–45], cosmological scales [46–50], and variations of
fundamental constants [51,52]. Furthermore, several symme-
tron N-body cosmological codes exist [44,53–58].
The model is defined by the action

S ¼
Z ffiffiffiffiffiffi

−g
p �

R −
1

2
∇aϕ∇aϕ − VðϕÞ

�
d4xþ SMðg̃ab;ψÞ;

ð1Þ
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where the Einstein gab and the Jordan g̃ab frame metrics are
conformally related [i.e., g̃ab ¼ A2ðϕÞgab]. The potential
and the conformal factor have the following forms:

VðϕÞ ¼ −
1

2
μ2ϕ2 þ 1

4
λϕ4 þ V0; ð2Þ

AðϕÞ ¼ 1þ 1

2

�
ϕ

M

�
2

; ð3Þ

where μ and M are mass scales which define the nature of
the effective potential in the presence of matter, and λ is a
dimensionless constant. When coupled to nonrelativistic
matter like the walls of a cavity in a laboratory experiment,
the equation of motion of the symmetron field takes the
following form when assuming a Minkowski background,
as always realistic in an earthbound experimental context,
and the quasistatic approximation for matter sources:

∇2ϕ ¼
�

ρ

M2
− μ2

�
ϕþ λϕ3: ð4Þ

The validity of this approximation in a cosmological
context was tested in Refs. [56,57]. In a nutshell, the scalar
field evolves in the following effective potential:

VðϕÞeff ¼
1

2

�
ρ

M2
− μ2

�
ϕ2 þ 1

4
λϕ4 þ V0: ð5Þ

Note that the potential is Z2 symmetric and that symmetry
breaking occurs at low energy. In regions of space when the
density is smaller than ρSSB ¼ μ2M2, the potential has two
minima and, thus, can give rise to domain walls. In the
opposite case, the Z2 symmetry is restored and the scalar
field is forced to oscillate around zero, screening the effects
of its associated fifth force and allowing it to be consistent
with Solar System observations [31]. This density depend-
ence is also responsible for the unique properties of the
domain walls which forces them to attach to high density
regions [29,30]. This is analogous to ferromagnetism where
domain walls interact with impurities (see, e.g., Ref. [59]).
We now describe how this effect can be used to stabilize a
wall inside vacuum cavities that are employed in usual
experimental setups.
Stabilization of a coupled domain wall inside a cavity.—

As coupled domain walls are attracted to high density
regions, we propose to stabilize them by introducing high
density areas inside the vacuum chamber of the experiment.
Thus the stabilizing process is the following: a phase
transition is forced by generating vacuum inside the cavity
(originally filled with a gas of density higher than ρSSB). As
the density is reduced, and during the resulting phase
transition, the field can fall into one or the other minima of
the effective potential and, thus, forms domain walls. This
scenario can be realized in the laboratory by reducing the

pressure of the gas inside the cavity to low values in a away
akin to what would happen cosmologically during the
cooling process of the Universe. In this case the phase
transition would happen for cosmological symmetrons
when the mass parameter μ induces a scalar force whose
range is a fraction of the cosmological horizon. We focus
on values of μ which are much larger and adapted to the
modest size of experimental cavities (i.e., for the range μ−1

of the scalar interaction smaller than the size of the cavity).
The resulting domain walls inside the cavity evolve
searching for high density regions where they can minimize
their energy. If any of the created walls happen to pass by
the stabilizing element and the geometry of the stabilizer is
correctly adapted to the model parameters, there is a non-
negligible probability that it will stay attached to it and
become stable.
We tested this process by running 2D simulations with

the code presented in Ref. [55] (already applied to coupled
domain walls in Ref. [29]). As the simulations are 2D, the
stabilizers are filaments with circular sections. Auxiliary
filaments lying in the walls of the cavity may provide more
control on the geometry of the final configuration. In these
particular examples, the cavity is a 2D box whose size
is 1 m.
Figure 1 shows four stages of the experiment for two

different configurations of the stabilizers. (i) Initial con-
dition (left). The cavity is filled with gas and the scalar field
is screened; i.e., its average value vanishes, with minimal
perturbations around zero. (ii) Symmetry breaking and
formation of a wall (middle left). Once the density of the
gas inside the cavity falls below the density of symmetry
breaking ρSSB, the scalar field collapses to one or the other
minima of the effective potential in different regions of
space. At this stage, there is no guarantee that the resulting
domain walls will survive. (iii) A survival domain wall is
trapped by the filaments (middle right). The wall is now
stable and will not collapse towards the walls of the cavity.
Strong perturbations still exist in the wall, which does not
have a straight configuration. (iv) Domain wall fully
stabilized and ready to be detected (right). The perturba-
tions in the wall are transferred to a background of scalar
waves that travel through the whole cavity and are reflected
on its sides. By doing this, the domain wall loses its kinetic
energy and adopts an almost straight configuration, with
minimal perturbations.
We estimated the probability of these events by running

1000 simulations with one stabilizing element in the center
of the cavity. About 15% of these experiments gave rise
to stable walls. The exact probability depends on the
geometrical properties of the cavity and of the stabilizing
elements. These simulations are inexpensive (i.e., fast) and
thus will not constitute an issue when developing a real
experiment.
The configurations of the filaments in Fig. 1 are the

simplest ones for which we found stable domain walls.
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However, this configuration is not unique. Differences in
the arrangement of stabilizing elements affect the way the
phase transition occurs and may increase the chances of
forming a wall when releasing the gas [29]. Furthermore,
moving sheets of material can be used to control the
initial configuration of the walls after the phase transition
occurred.
The upper row of Fig. 1 shows an example in which the

wall is attached to the filaments and thewalls of the cavity. In
a different configuration, which also appears spontaneously
in our simulations, the domain wall acquires the shape of a
ring passing through all the filaments and detached from the
walls of the cavity. The stability condition for such a
configuration was studied in Refs. [29,60].
Detection of a domain wall inside a cavity.—We propose

two different setups to detect stabilized domain walls both
based on how the trajectories of slow particles, such
as UCNs as presently used to search for chameleon fields
[61–64], are affected. Neutrons can have energies of the
order of 10−9 eV, which correspond to velocities of the
order of 1 m=sec. We also assume values for the free
parameters of the symmetron field compatible with the ones
probed by atomic interferometry technique:

ðμ0;M0; λ0Þ ¼ ð2.4 × 10−3 eV; 109 eV; 0.1Þ: ð6Þ

The value of μ is taken to be of the order of the dark energy
scale. This is compatible with the fact that the quantum

fluctuations due to the symmetron field of order μ4 could be
at the origin of the acceleration of the expansion of the
Universe. On the other hand, this large value of μ compared
to the Hubble rate nowH0 implies that the scalar interaction
mediated by the symmetron would have such a short range
in vacuum, of the order of 0.1 mm, that no fifth force
manifestation of the symmetron would occur in the large
scale structure of the Universe.
Trajectory of a massive particle around a domain wall:

The trajectory of the neutrons in the vicinity of a domain
wall satisfies Newton’s law:

ẍ ¼ −c2
∇ðϕ2Þ
2M2

: ð7Þ

The effects of the gravitational field of Earth can be effaced
by choosing the filaments to be vertical and studying the
motion of particles in the horizontal plane. The solution in
the x direction, which we choose perpendicular to the wall
and parallel to Earth’s surface, can be obtained by taking
into account that the Hamiltonian of the particle is con-
served in each direction separately:

Hx ¼
_x2

2
þ c2ϕ2

2M2
¼ const: ð8Þ

Using the domain wall solution [1,2] of the field equation
[Eq. (4)] and integrating once, we obtain the constraint

FIG. 1. Four stages of the generation of stable domain walls in a cavity. The colours correspond to the scalar field normalized to its
vacuum value. The black regions around each panel are associated to the walls of the cavity, where the scalar field remains always
screened. Each row corresponds to a different configuration of stabilizers while different columns show distinct phases in the evolution
of the field. From left to right: (i) initial condition, (ii) symmetry breaking and formation of the wall, (iii) capture of the wall by filaments
and (iv) wall fully stabilized.
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Z
xðtÞ

x0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − atanh2ðbxÞ

p ¼
ffiffiffiffiffiffiffiffiffi
2Hx

p
ðt − t0Þ; ð9Þ

where we have used the following definitions,

a≡ c2ϕ2
0

2HxM2
; b≡ 1

2λ0
; ð10Þ

ϕ0 ¼
μffiffiffi
λ

p ; λ0 ¼
ℏcffiffiffi
2

p
μ
; ð11Þ

where ϕ0 ¼ ðμ= ffiffiffi
λ

p Þ is the vacuum expectation value of the
field and λ0 ¼ 1=m0 is its Compton wavelength in vacuum
(see Ref. [29] for nonvacuum solutions). The numerical
value of ϕ0 for our fiducial model defined by Eq. (6) is
7.5 × 10−3 eV.We obtain the solution for the trajectory of a
test particle,

xðtÞ ¼
8<
:

1
b asinh

�
sinh ðωtþαÞffiffiffiffiffiffi

1−a
p

�
if a < 1

1
b asinh

�
sin ðωtþαÞffiffiffiffiffiffi

a−1
p

�
if a > 1;

ð12Þ

and its inverse,

tðxÞ ¼
(

1
ω farcsinh½

ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
sinh ðbxÞ� − αg if a < 1

1
ω farcsin ½

ffiffiffiffiffiffiffiffiffiffiffi
a − 1

p
sinh ðbxÞ� − αg if a > 1:

ð13Þ
There are two types of solutions depending on a, i.e.,

depending on the energy of the neutron in the x direction.
Figure 2 shows typical trajectories for initial conditions
associated with values of a greater (left) and smaller (right)
than one. At low energy, the neutron oscillates around the
domain wall due to the scalar attraction while at higher
energy the neutron is refracted with a deflection depending
on the strength of the scalar interaction. The characteristic

energy separating the two types of behavior is given by
Ex ¼ mNðμ2=2λM2Þ, where mN is the neutron mass. The
solutions are governed by the frequencies and initial phases,

ω ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hxja − 1j

p
¼ bvx0 ð14Þ

and

α ¼
	
arcsinh½ ffiffiffiffiffiffiffiffiffiffiffi

1 − a
p

sinhðbx0Þ� if a < 1

arcsin ½ ffiffiffiffiffiffiffiffiffiffiffi
a − 1

p
sinhðbx0Þ� if a > 1;

ð15Þ

respectively. Solutions are oscillatory for particles that are
close enough to thewall and have a small transverse velocity.
Proposed experiments: The motion of a neutral test

particle (e.g., a neutron) can be probed by two kinds of
experiments. First, neutrons can be launched, for instance,
from the bottom wall of the vacuum chamber moving
upwards [i.e., with v ¼ ðϵ; 1Þ m= sec]. Small values of ϵ
will give oscillatory trajectories. The period of these
oscillations around the wall is shown in Fig. 3 for different
values of the transverse velocity ϵ. Since the periods are of
the order of a few seconds and the total velocity of the
neutrons is of the order of a few meters per second, the
trajectory of the neutrons has a macroscopic displacement
with respect to the trajectory that they would have in the
absence of the domain wall and, thus, could be detected.
There is a minimal period which corresponds to the limit
ðx0; vx0Þ → ð0; 0Þ:

Pmin ¼
ffiffiffi
8

p
πℏη1; ð16Þ

where we have η1 ¼
ffiffiffi
λ

p
M=μ2. The numerical value of Pmin

for the fiducial model defined by Eq. (6) is 0.3 sec.
A different experiment could be realized by launching

the neutrons in the transverse direction, for instance,
moving from the left to the right walls of the cavity

FIG. 2. Examples of trajectories of UCNs in the surroundings
of a wall. The trajectories to the left and right correspond to
values of a greater than and smaller than one, respectively.
Different curves correspond to different angles of the initial
velocity. Note that the horizontal axes have different scale in
different panels.

FIG. 3. Period of oscillations of a particle moving around a wall
as a function of its initial position with respect to the wall. The
three curves correspond to three different transverse velocities in
meters per second. The horizontal line is the minimum period
given in Eq. (16).

PHYSICAL REVIEW LETTERS 122, 091102 (2019)

091102-4



[i.e., with v ¼ ð1; 0Þ m= sec]. These initial conditions are in
the regime a < 1 and, thus, the particles will move through
the wall having only a small perturbation in their transverse
velocity: particles will accelerate when approaching the
wall and decelerate when moving away from it. Thus, there
will be a difference in the arrival times between perturbed
and unperturbed trajectories. This difference can be calcu-
lated by analyzing the asymptotic behavior of the trajectory
in the initial and final positions of the particle:

Δt ¼
ffiffiffi
2

p ℏc3

ðvx0Þ3
η2; ð17Þ

where we have defined η2 ¼ μ=ðM2λÞ. Typical values of
Δt are shown in Fig. 4 for different multiples of the

parameter η2 associated to Eq. (6). This particular model
in connection with UCNs traveling at 1 m= sec (red
curve) gives a difference in arrival times of the order
of 10−9 sec.
We have estimated the range of parameters of the

model which could be tested experimentally. First, we
consider perturbations to UCNs’ trajectories which
could be detected when the period of oscillation around
the wall would be of the order of the time they take to
cross the cavity. Assuming a speed of 1 m=s and a cavity of
1 m, testable models are those with a period oscillation
smaller than 1 sec. This constrains η1. Similarly, we can
assume a minimum measurable time delay (for instance
of 10−9 sec) and obtain a constraint on η2. Figure 5
shows the resulting exclusion regions. They cover
regions of the parameter space that cannot be accessed
otherwise [65].
Conclusions.—We have described the stabilization of

symmetron domain walls in the vacuum chamber of an
experiment when stabilizing filaments are present. The
walls are the result of the symmetry breaking phase
transition in the cavity when the gas density is lowered
below the symmetry breaking scale. We have shown
numerically how this process can be realized in an efficient
way. Moreover, we have illustrated how to test for the
presence of the walls in a cavity by calculating measurable
effects that such a wall would have on UCNs’ trajectories.
For neutrons with velocities around 1 m=s, the deviation of
their trajectories would be macroscopic for symmetron
models with a scalar force range of the order of 0.1 mm, as
previously tested by atomic interferometry, and whose
quantum fluctuations are in the right ballpark to generate
the acceleration of the expansion of the Universe.

FIG. 4. Difference in arrival time of UCNs that travel across a
wall in a direction perpendicular to it as a function of the initial
velocity with respect to the wall and for different multiples of η2
corresponding to Eq. (6).

FIG. 5. Exclusion regions. Oscillations of UCNs that travel parallel to a wall (blue) and time delay of arrival of UCNs that travel
perpendicular to a wall (orange).
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