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Abstract

Using the simple ‘allosteron’ model, we show that it is possible in principle to elicit pathways

by which fluctuation allostery affects self-assembly of protein complexes. We treat the cases of

(1) protein fibrils and nucleation, (2) n-mer protein complexes, and (3) show how the elastic and

(weakly) attractive association interactions in a family of protein-like soft nanoscale objects can

be tuned in a way that defines exclusive self-associating families.
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I. GENERAL INTRODUCTION

An alternative, but less familiar, mechanism of allosteric signalling compared to that

of structural change, exploits the modification that substrate binding in general applies to

the amplitudes of thermal fluctuations around the mean structure of an allosteric protein.

Since such a restriction of random motion constitutes in turn a change in entropy, the

full allosteric free energy may contain components that arise purely by this route [1]. A

feature of this mechanism is that to contribute to non-local allosteric interaction, the longer-

wavelength low-frequency ‘global’ modes of motion are recruited, rather than the higher-

frequency and more local motions (such as side-group oscillation). Successful models of

protein dynamics that capture the effect are therefore coarse-grained rather than atomically-

resolved. Specific models of particular protein systems at various degrees of coarse-graining

have been constructed [2–5], which show that the orders of magnitude of real allosteric

free energies can be generated by such restriction of dynamical correlations alone. An

equivalent statement of the effect is a restriction of thermally-accessible states on binding

[6]. Similar challenges are presented to experiments, which need to identify the large-scale

dynamical changes at many points on a protein on substrate-binding, and to connect them

to thermodynamics. NMR [7], X-ray analysis of B-factors and isothermal calorimetry [8]

have been deployed in comparison with modelling.

At the simplest level of theoretical approach to this phenomenon of ‘fluctuation allostery’,

use of the toy model of a protein at the coarsest possible level, with just one (harmonic) de-

gree of freedom, has been extremely instructive. This simple unit, which can be represented

without loss of generality as the scissor structure of Fig. 1 (a) (although other spatial and

geometric representations are equally applicable, as any normal mode within the harmonic

approximation is mathematically equivalent), possesses the minimal requirements of: (1) an

internal structure that supports thermal structural fluctuations, (2) one or more potential

effector binding sites with internal rules that modify the internal fluctuations, and (3) a

route to bind to other units, see Fig. 1 (b).

It is straightforward to calculate the free energy F (κ) of a single harmonic degree of free-

dom over its fluctuation spectrum, constrained by a spring constant κ. Since the relevance

of this treatment of the normal modes of crude protein models is restricted to low-frequency,

global modes, it is appropriate to use the classical (continuous-energy) approximation to the
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(a) (b)

FIG. 1. (Colour online) Schematic of the allosteron (a), and its binding (b).

harmonic-oscillator partition function Z∞:
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with Boltzmann’s constant kB, temperature T , and a length scale λ for normalisation.

Modelling the fluctuation restriction of effector binding as a modulation of the effective

spring constant for the internal mode by the dimensionless increment δ, allows a simple and

direct calculation of the allosteric free energy ∆∆F of even a single degree of freedom. Since

a single dynamical mode of a mechanical system is typically extended across the protein, it

will in general offer more than one potential binding sites, which are also close to anti-nodes

of the global mode, where substrate binding will, in general, affect the value of κ. If two

successive effector binding events take κ −→ κ+ δ −→ κ+ 2δ:

∆∆F = F
(

(1 + 2δ)κ
)

+ F (κ)− 2F
(

(1 + δ)κ
)

= kBT ln

(

1 + 2δ

(1 + δ)2

)

(2)

We have called this minimal fundamental building block for models of allosteric systems,

the ‘allosteron’ [9]. In a natural extension of the single-mode allosteron unit, allosteric

interaction between dimers can be modelled at the simplest possible level by associating two

allosterons into a dimer [see Fig. 1 (b)], introducing a single new parameter of the harmonic

coupling between them, κc. At any level of approximation within linear response, the elastic

part of the Hamiltonian H relevant to entropy-driven allostery (without contributions of

momenta) is a quadratic form in the vector x of allosterons’ degrees of freedom, with the

(spring-constant) Hessian matrix H:

H =
κ

2
x
T Ĥx, (3)
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written in terms of a dimensionless form, Ĥ, of H in units of κ. If two allosterons with

internal modes governed by spring constants κ1 and κ2 meet in association, the Hessians H1

and H2 in terms of the two single degrees of freedom (x1, x2), one per monomer, before and

after their weak association are:

H1 =





κ1 0

0 κ2



 H2 =





κ1 + κc −κc

−κc κ2 + κc



 (4)

The entropic free energy of binding, from the introduction of the coupling interaction be-

tween two free allosterons is

∆F = kBT ln

[

det (H1)

det (H2)

]

(5)

= kBT ln

[

1 + κc

(

1

κ1

+
1

κ2

)]

This is, of course, positive definite as it represents a reduction in internal entropy of structural

fluctuations on binding. The full free energy of binding will include an enthalpic term ∆U ,

so ∆Fbind = ∆F +∆U , for which we will develop a simple model below, in Section IV.

Such an approach has been used successfully as the coarsest-level model for allosteric

protein dimers [2–4], in decorated form as a basis for theories of mode-coupling to local fast

dynamics [3], and as a generator of fitness landscapes in the evolution of allosteric systems

[8]. In spite of its extreme simplicity, this toy-model approach to protein dimers, for example,

has delivered highly non-trivial insights, such as a region of its three-dimensional parameter

space where a dimer may exhibit negative co-operativity [4].

Within a graded series of approximations to protein dynamics, the allosteron model sits

at a similar level of coarse-graining to the Rotational Translational Block (RTB) approxima-

tion [10]. The strong elastic inhomogeneities within proteins that render the RTB picture

appropriate also suggest that the dominance, for some purposes, of a few low frequency and

long-range dynamic modes is a valid one. Allostery without structural change, driven by

modulation of thermal fluctuations, which depends on long-range information transfer, is

one such application. As the degree of approximation is refined, we arrive at models that

resolve individual residues (such as Elastic Network Models — ENM’s [8, 11–13]), and finally

at all-atomistic models [8].

In this work, we apply the allosteron model to elucidate the potential contributions of

internal fluctuation entropy to protein self-assembly. The concatenation of fiber-forming
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proteins, for example, is not usually thought of as an example of allostery. However, if we

think of the two effector molecules for an allosteric protein as copies of the protein itself,

then the connection is evident. There will, in general, be a modification of the internal

fluctuations in a protein when it joins a self-assembling complex or fibre. In principle, this

generates a non-equivalence of binding free-energies for each protein in the complex, even

when these are structurally identical and when there is no mean change in structure on

binding. In the following, we explore this insight, at the level of the allosteron model, in

two cases: In Section II, for protein fibrils of arbitrary molecular weight; in Section III,

for ligand-binding of finite protein n-mers. Section IV then explores another possibility

identified by this approach — that of elastically-tuned families of proteins that possess weak

mutual and exclusive association.

II. SELF-ASSEMBLY OF ALLOSTERON CHAINS

Protein fibrils that consist of reversibly bound proteins may be viewed as supramolecular

‘living’ polymers that grow and break up [14–16]. At steady state, the chain lengths of

polymers obey equilibrium statistics, and may therefore be controlled by the thermodynamic

properties of the building blocks. These properties include an enthalpic and entropic gain

or penalty of monomer association to the polymer. Because of structural, hydrophobic and

electronic effects, to name a few, the free energy of monomer association to a polymer often

depends on the length of the oligomer. Consequently, polymerisation is often cooperative

and the degree of polymerisation strongly depends on the cooperativity factor [14, 17–19].

The entropic and energetic contributions that lead to (cooperative) supramolecular poly-

merisation can easily be included in the allosteron model. For instance, the association of

a monomer can be entropically penalised by stiffening the monomer through an increase of

their internal spring constant κ 7→ ακ with α > 0, even in absence of coupling, i.e., Kc = 0.

The entropic penalty of dimerisation is then ∆Snucl = 2kB lnα, whereas the entropic penalty

of elongation is only ∆Selong = kB lnα. Hence, the allosteron model captures the entropic

origin for cooperativity by a statistical-mechanics description [20]. The novel feature of the

allosteron model is that the internal modes of the monomers are coupled (Kc > 0), which

enables entropic allosteric signalling along the backbone of the polymer. In this section, we

show that coupling leads to an entropic interaction range of
√
Kc monomers, as well as an
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increase in the polymerisation concentration by a factor of
√
Kc.

We predict these phenomena from the allosteron model by investigating the equilibrium

statistics of an allosteron solution in a volume V [21, 22]. The grand potential of the mixture

is given by

Ω

V kBT
=

∞
∑

N=1

ρ(N)

[

ln(ρ(N)υ)− 1− ln(ZN)−
µN

kBT

]

. (6)

In this expression, ρ(N) is the number density of chains of length N (note that we consider

a monomer to be a chain of length N = 1), υ is the interaction volume of a monomer, ZN

is the partition function of a chain of length N and µ is its chemical potential.

The partition function of the chain is obtained from the Hamiltonian where allosterons

with spring constant κ bind through a binding energy ǫ at an entropic cost dictated by the

coupling-spring constant κc. This bead-spring-like Hamiltonian is constructed by enhancing

Eq (3) by an enthalpic term ǫ to giveH = 1
2
κxTĤNx−ǫ(N−1). The dimensionless Hessian is

a tridiagonal matrix of which the main-diagonal elements are given by M11 = MNN = 1+Kc

and by Mnn = 1+ 2Kc for 1 < n < N . Further, the first upper and lower diagonal elements

equal −Kc, whereas all other matrix elements equal zero. The partition function is given by

ZN =

∫

dNx exp

(

− H
kBT

)

= ZN
1

1
√

det ĤN

e
− ǫ

kBT
(N−1)

, (7)

with Z1 ≡
√

2πkBT/κ the partition function of a free monomer, see Eq. (1).

We minimise the grand potential in Eq. (6) to find that we can write the solution for the

distribution function as

ρ(N) =
1

υ
KNe

−(g−µ̃)N/kBT , (8)

where we have defined the free energy of aggregation g ≡ −ǫ − kBT ln(
√
w), the chemical

potential µ̃ ≡ ǫ − µ − kBT lnZ1/
√
w and the equilibrium constant KN ≡

√

wN−1/det ĤN .

The subsidiary definition w ≡ 1/2 + Kc +
√
1 + 4Kc/2 guarantees that the equilibrium

constant equals unity for the monomers, N = 1, but converges to a finite value for large N ,

see SI.

Indeed, from the Hamiltonian of the chain we deduce that the entropic interactions be-

tween monomers along the backbone extend over a distance of a persistence length
√
Kc.

For chains shorter than this, the stiffness may be considered large and it can be shown that
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det ĤN ≈ NKN−1
c , see SI. For infinitely long chains, however, we find that det ĤN = σwN−1,

where σ is a constant cooperativity factor : If the cooperativity factor is unity then monomer

association to a chain is independent of the chain length and polymerisation is ‘isodesmic’.

For small values of σ, elongation is considerably easier than dimerisation and polymerisa-

tion is cooperative. In the present case, the value of the cooperativity factor follows from

the fact that the two limits of det ĤN must crossover at N =
√
Kc. This gives the weak

dependence σ ∝ K
−1/4
c , which suggests that, in absence of ligand binding to the monomers,

the allosteron model virtually predicts isodesmic polymerisation.

We confirm this by finalising our calculation of the chain-length distribution of the poly-

mers via a calculation of the chemical potential, µ, which is implicitly given by the mass

balance φ =
∑∞

N=1 Nρ(N)υ, with φ the overall volume fraction of the monomers [21, 22].

By introducing the mass action (proportional to the experimentally controllable monomer

concentration) X = X(φ, T ;Kc, ǫ) ≡ φ exp(g/kBT ), we cast the mass balance in the form

X(φ, T ; ǫ,Kc) =
∞
∑

N=1

NKNe
−µ̃N/kBT . (9)

We numerically extract the chemical potential and insert it into Eq. (8) to obtain the length

distribution of the chains.

From this distribution we obtain the fraction of polymerised material, f , and the number-

averaged degree of polymerisation, N̄n. Figure 2 shows these quantities as a function of the

mass action for a coupling constant Kc ranging from 0 to 104. We have scaled the mass

action using Xp = 2.34, at which half of the material is polymerised for the true isodesmic

case, Kc = 0 [21]. As expected, supramolecular polymerisation remains close to isodesmic:

The polymerisation curve maintains its symmetric S shape, and the degree of polymerisation

for X ≫ Xp, given by N̄n ∝
√

X/σ, only weakly depends on Kc through σ ≈ K
−1/4
c .

Nevertheless, the crossover concentration and crossover temperature may be affected by

the entropic coupling between the monomers through the coupling parameter Kc. Indeed,

in the isodesmic limit (KN = 1 for all N) the polymerisation temperature is

Tp =
∆Hp

∆Sp

∝ 1/ ln
√

Kc, (10)

with ∆Hp ≡ ǫ the enthalpy of polymerisation and ∆Sp ≡ k{B} ln(
√
w/4φ) the entropy

of polymerisation. We hence find that the polymerisation temperature is only weakly af-

fected by the coupling constant. In contrast, the polymerisation concentration is much more
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FIG. 2. (Colour online) Fraction of polymerised material f (top), and number-averaged degree of

polymerisation N̄n (bottom), as a function of the mass action X for coupling constants Kc ranging

from 0 to 104. The mass action is scaled using Xp = 2.34, see main text.

strongly affected. This quantity is given by

φp =
1

4
exp

(

−∆Hp − T∆Sp

kBT

)

∝
√

Kc. (11)

This shift in polymerisation concentration originates from the stiffening of not only the

associating monomer, but also of the monomers within a distance ∝
√
Kc from the chain

end. The interaction range, as well as the shift in polymerisation concentration, may be

reduced by increasing the internal spring constants of the monomers to κ 7→ ακ, which

leads to Kc 7→ Kc/α. We speculate that this could be achieved by the binding of activators,

such as ligands, to the monomers. The phenomena of ligand-induced dimerisation and

polymerisation can potentially be addressed using the allosteron model. It should be noted

that this generates a copolymer that consists of both activated and non-activated monomers.

As we have seen, the range of entropic interaction exceeds the nearest-neighbour distance,

and currently available Ising-like models cannot be applied directly [23]. We address this in

forthcoming work. The importance of entropic signalling is not limited to supramolecular

polymerisation alone, but is also of crucial importance to the allosteric properties of proteins,

as we discuss in the following.

III. ALLOSTERIC INTERACTIONS ON RING COMPLEXES

In this section, we apply the model of coupled allosterons —as exploited for polymeri-

sation above— to the ligand-binding cooperativity (allostery) of polymers of fixed size.
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Specifically, we aim at the relative entropy changes induced by binding, conditional on prior

binding events. Many proteins are known to occur as ring oligomers, such as the oxygen car-

rier, ferro-protein haemoglobin, or to form multi-protein complexes of ring topology. Due to

their doubly connected and intrinsically stable structure, rings are promising candidates to

display entropy-driven allostery without conformational change [1]. In fact, for the hetero-

tetramer haemoglobin, the cooperative O2 binding is well known [24], yet the underlying

mechanism is still a matter of active research [25, 26]. From a modelling point of view,

rings’ periodic boundary conditions suggest the possibility of generalising results obtained

for small rings to larger ones.

A. Model

We briefly recall the main ingredients of the coupled-allosteron picture, located within

the class of elastic network models (ENM) [11, 27]: Each allosteron, called ‘unit’ in what

follows for the sake of brevity, possesses an internal ‘breathing’ mode [5, 28, 29], modelled

as a single harmonic degree of freedom, of spring constant κ, see Fig. 1. One unit can

represent a monomer, a protomer such as a helix dimer, or a protein, and interacts with

its two neighbours on the ring via a harmonic mode of constant κc, of relative strength

Kc ≡ κc/κ. The dimensionless Hessian matrix Ĥ which encodes the network’s connectivity

takes for a tetramer (four-unit) ring the form

Ĥ =















1 + 2Kc −Kc 0 −Kc

−Kc 1 + 2Kc −Kc 0

0 −Kc 1 + 2Kc −Kc

−Kc 0 −Kc 1 + 2Kc















(12)

A first approach to model ligand binding is to assume a bound unit’s internal mode to

change in strength, according to κ 7→ ακ. By taking this to be the only binding-induced

modification of interactions, we arrive at a single-parameter model of binding. A more

differentiated picture of allostery emerges from invoking a two-parameter model, in which

ligand-binding is assumed to affect also the strength of the harmonic coupling to the neigh-

bouring units, according to κc 7→ βκc. The mappings in Ĥ which reflect this model of

binding, exemplified for unit i, take 1 7→ α and Kc 7→ βKc in the ith diagonal entry, and

multiply off-diagonal entries in both the ith row and the ith column by β.
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B. Allosteric Free Energies

In order to quantify the entropy-induced cooperativity between successive binding events,

we analyse differences of entropic free energies of binding, such as the allosteric free energy

for two bindings,

∆∆F2,1 = F2 − 2F1 + F0. (13)

Herein, F are total free energies computed via the determinant of Ĥ, and subscripts 0, 1,

and 2 refer to the state with no, one ligand, and two ligands bound, respectively.

C. Trimer Rings

Despite its simplicity, a trimer ring may illustrate transparently the mechanism of cooper-

ativity (of both signs) at work between states of different binding degrees. Indeed, allosteric

interactions exist between the three units, pairwise neighbours in this case.

The values and spacing of free energies of binding, ∆F , for the ith binding defined as

∆F ≡ Fi − F0, for no, one site, two, and eventually all sites binding a ligand, computed

within the one-parameter binding model, are plotted in Fig. 3 (a). Cumulative binding is

seen to be cooperative, i.e., favoured by the differences of ∆F , for all values of α and Kc.

The map of the particular allosteric free energy ∆∆F2,1 [cf., Eq. (13)] against α and Kc, in

Fig. 3 (b), shows explicitly the purely cooperative allostery predicted by this model.

In part, this prediction may be traced back to the one-parameter model of binding,

which rescales diagonal elements of the Hessian Ĥ only, combined with the logarithmic

dependence of the free energy on the (eigenfrequency) spectrum of Ĥ [5]. A more trimer-

specific explanation relates to the mentioned degeneracy as regards nearest neighbours:

Local decrease [increase] of the extent of thermal fluctuations and the associated entropy

loss [gain], induced by changing one internal-mode strength, automatically carries over to all

remaining units, which in a trimer are all directly coupled. Therefore, the entropy change

upon altering another internal-mode strength is smaller in modulus than that for a previous

binding.

Within the two-parameter model of binding, we find that both cooperativity and anti-

cooperativity of successive bindings (both signs of ∆∆F ) can occur, dependent on the set

of modifiers, (α, β), and the initial ratio Kc of coupling to internal-mode strength. Maps
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FIG. 3. (Colour online) Trimer ring, one-parameter binding model: (a) Binding free energies

∆F (α) for Kc = 5. (b) Allosteric free energy ∆∆F2,1(α, r).

of ∆∆F2,1(α, β) such as in Fig. 4, parameterised by Kc, indicate anti-cooperative binding

to arise particularly for strengthened internal mode and weakened coupling. Larger values

of Kc or α cause more pronounced allosteric interactions, i.e., a larger range of values of

∆∆F2,1.

D. Tetramer Rings

Haemoglobin is one of the most prominent proteins of tetramer-ring topology. In contrast

to binding to a trimer ring, successive binding to the four units can proceed via more than one

pathway, so that both number and configuration of bound ligands [29] have to be specified

in ∆F . The energy-level plot for a tetramer within the one-parameter model of binding is

provided in Fig. 5. It reveals that two ligands at diametrical sites of the tetramer ring, either
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FIG. 5. (Colour online) Tetramer ring, one-parameter binding model: Binding free energies ∆F (α)

for Kc = 5.

stiffening or weakening the respective internal modes, are entropically slightly less favourable

than two ligands at adjacent sites. If we recall the plausibility argument for cooperativity

on a trimer, via entropy-cost transfer between nearest neighbours through local change of

fluctuations, the ordering of the ∆F agrees with intuition. As in the trimer case, calculations

based on the one-parameter model of binding predict only positive allostery.

Already these minimal examples of cyclic coupling demonstrate nontrivial allosteric in-

teractions of subtle parameter dependence between units with binding sites.
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IV. DYNAMIC ALLOSTERY GENERATES TUNED WEAK ATTRACTION

Weak association of proteins is determined by a balance of the attractive forces operative

at the mutual surfaces of interaction, and entropic repulsion. The attractive forces may have

for their origin van-der-Waals, hydrophobic or screened electrostatic effects. The entropic

repulsion arises from the penalty that their association generates from the constraints it

places on the amplitude of internal structural fluctuations. A general question of interest

is whether this delicate balance can be ‘tuned’ in different ways. This might allow distinct

families of weakly-associating nanoparticles (or proteins in the biological case) which bind

reversibly among themselves, but which do not associate with other, differently-tuned, fam-

ilies. Here, we use the simple ‘allosteron’ model, with both coupling spring constants and

enthalpic surface forces derived from Lennard-Jones potentials, to explore the possibility for

such entropic tuning.

Starting from the entropic free energy of binding, ∆F , given in Eq. (5), and the total free

energy ∆Fbind = ∆F +∆U , we construct a simple model for both the enthalpic term, ∆U ,

and the spring constant κc. As a general model for weakly attractive interactions between

protein surfaces we choose the Lennard-Jones potential

U(r) =
A

r12
− B

r6
(14)

One of the advantages of a physics-based phenomenological model such as the L-J po-

tential is that it is able to illustrate and work with the correlation between the enthalpic

binding strength ∆U = min [U(r)] = U(rmin) and κc = U ′′(rmin). Using the parameterised

form of the interaction gives

∆U = −B2

4A
κc = U ′′(rmin) = γ

B7/3

A4/3
(15)

with γ =

[

156

27/3
− 42

24/3

]

≃ 14.3

Combining these allows a single-degree-of-freedom parameterisation of the set of possible

L-J couplings, using ∆U as the free variable, and finding:

κc = 44/3γB−1/3 (∆U)4/3 (16)

The dimensionless free energy at the potential minimum f = ∆Fbind/kBT can be written

in terms of a dimensionless potential energy minimum x = U(rmin)/kBT as

f(x) = ln[1 + ax4/3]− x (17)
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Fig. 6 plots this function for various values of the renormalised coupling constant, a. Note
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FIG. 6. (Colour online) Dimensionless free-energy function f(x) from Eq. (17), for different values

of a.

that the asymptotic form decreases linearly with x as it must from the dominance of the

enthalpic interaction, but there exist other values of x, corresponding to a ‘tuning’ of the

L-J coupling to the inner elastic strength of the proteins (the κi), which lead to a family

of shallow local minima. The depth and value of this minimum increases with decreasing a

(see Fig. 6). There is a lower critical value of a ≃ 1.4 below which the minimum disappears.

A word is necessary on the values of the interaction strengths, which are of course very

small (of order kBT/50). However, this corresponds to the response of a single dynamical

mode of internal motion only. In practice, there will be many internal modes that are

coupled to the surface interaction, sufficient to create an associative energy of the order of

kBT . Should two proteins from different families attract, the mutual free energy of attraction

will have the same form as the entropy/enthalpy function within a single family, but will not

be at the tuned minimum potential. This permits the emergence of interprotein potentials

that generate weakly associated clusters for proteins within ‘tuned’ families exclusively.

V. DISCUSSION

The allosteron model constitutes the maximal level of coarse-graining within models for

protein dynamics that still captures the physics of thermally excited modes of deformation

within proteins and their complexes. In spite of this level of simplicity, the model is never-
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theless able to make non-trivial predictions about the contribution of structural fluctuations

to the statistical mechanics of complexation, in terms of the ratio of coupling to internal

interactions Kc.

When applied as a building block of supramolecular polymers, the allosteron model is

not only capable of capturing cooperativity in the usual way, but also predicts entropic

allosteric signalling along the backbone of the chain. When a monomer associates to the

chain, a number of
√
Kc monomers near the chain end are entropically penalised, which

causes an increase of the polymerisation concentration by a factor
√
Kc. We find that a

reduction of the polymerisation concentration may be triggered through ‘activation’ of the

monomers, e.g., by stimuli such as ligand binding that modify the coupling constant to

Kc 7→ Kc/α.

We have also investigated ligand binding to allosteron complexes that represent ring-type

proteins. In this case, binding is assumed to modify the strengths of both internal and

coupling interactions and predicts a palette of cooperative binding behaviour even for small

rings. In particular, maps of the allosteric free energy for two binding events in the parameter

space of the two spring modifiers show regions of negative allostery and an intriguing non-

monotonic dependence. Further studies along these lines might extend to inter-ring coupling,

possibly adding to the understanding of allostery without conformational change reported

for chaperonins [30].

When an allosteron coupling model is derived from a specific model for intermolecular

potentials, we find the possibility to ‘tune’ the surface attraction and the internal elasticity

of soft nanoparticles in general, and proteins in particular. Simultaneous tuning of the

dimensionless interparticle coupling Kc and the enthalpy of binding creates ‘families’ of

particles that possess weak mutual associativity (and thereby potential allosteric activity of

other, enzymatic, kinds).

The application of the allosteron model to the three cases of small, specifically-bound

clusters, large specifically-bound fibrils, and non-specific binding have all revealed subtle

phenomena that are open to experimental investigation.
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