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GRAPHICAL ABSTRACT

The Cu/Gr/Cu ultrathin foil is synthe-
sized by one-step electrochemical route.
Cu is deposited successively on sub-
strate and GO under different over-
potentials.

The foil is of thickness as thin as 4-5 um
and twice tension strength enhance-
ment.

The high performances are attributed to
strong interface bonding and graphene.
This work can also be used to other
metal/Gr/metal layered composites.
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A layered structure has a better effect on improving performance of the graphene-reinforced composites due to
its unique two-dimensional structure and excellent properties. In this paper, a novel “one-step” electrochemical
route was proposed for synthesizing the graphene-reinforced ultrathin copper (Cu) foil with high performance.
The process includes: 1) A loose graphene oxide (GO) membrane, was prepared by electrophoresis deposition
(EPD), that allows Cu ions passing through; 2) According to the difference of Cu deposition potential on different
substrates, a potential step was designed for electrodepositing Cu successively on both sides of the GO mem-
brane, i.e., the bottom Cu layer forms under low over-potential, while the top Cu layer forms under high over-
potential. The experimental results show that the foil thickness reaches to as thin as 4-5 pm, and the tensile
strength is almost twice as large as that of pure Cu foil. The process is simple, controllable and possible mass pro-
duction, and expected to further practical applications in fields of Cu clad plate, printed circuit board and lithium-
ion battery cathode collector system for saving raw material and also the space. In addition, this work proposes a

new idea for preparing the layered composites via electrochemical route.
© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

As an important raw material, electrolytic copper (Cu) foil has been
widely used in areas, such as Cu clad plate (CCL), printed circuit board
(PCB), and lithium ion battery cathode collector system [1]. For in-
stance, in lithium ion battery, Cu foil is not only the carrier of negative
electrode, but also acts as the electron collection and conduction [2]. In
commercial applications, to produce ultrathin Cu foil with high-
strength and high-conductivity is still a challenge [3]. In general, ultra-
thin copper foil is defined as thickness of <12 um [4]. In order to improve
its performance, many strategies have been proposed including opti-
mizing the electrodeposition process [5] and adding nano-
reinforcements, such as Si3Ny4 [6], graphite, [7] carbon nanotubes, [8,9]
graphene [10,11], and so on.

As a two-dimensional planar structure of a single atomic layer of car-
bon, Graphene (Gr) is of a theoretical thickness 0.35 nm and its carbon
atoms are all tightly connected with each other in the form of sp? hy-
bridization. Therefore, Gr each lattice consists of a stable hexagonal
structure formed by three sigma bonds, which results in unique proper-
ties, such as carrier mobility reach up to 200,000 cm?/(V-s) at room
temperature [12,13], and tensile strength up to 130 GPa and elastic
modulus to 1.1 TPa. In addition to broad application prospects in the
fields of microelectronics, energy, information and so on, Gr is especially
considered to be an ideal reinforcement in composites [14-16].

In recent years, high performance Cu-Gr composites prepared by
electrochemical deposition have attracted much attentions [17-19].
The basic approach is to add Gr or GO or its derivatives into the electro-
lyte, and treats it with ultrasound or surfactant for uniform dispersion.
And then the co-deposition of copper and graphene are occurred on
the cathode under electrical current to form a film or coating. Table 1
lists the summary of researches on Cu-based composites containing Gr
and carbon nanotubes (CNTs). Obviously, the Gr co-deposition greatly
increases the mechanical properties of Cu foil, and also makes its electri-
cal conductivity slightly improve or remains unchanged. In comparison,
some work on layered Cu-carbon nanocomposite films exhibit better
enhancing effect on mechanical properties, such as up to 1.5 GPa com-
pressive strength. The ultra-high strengths of the Cu-Gr nanolayered
structures indicate the effectiveness of graphene in blocking dislocation
propagation across the Cu-Gr interface [22]. Besides, Yi et al. [23] pre-
pared a sandwich structural CNTs/Cu/CNTs composite, where a tem-
plate method was used for preparing the freestanding CNTs network
film. Then, using the film as the cathode, two anodic electrodes were ap-
plied during electrodeposition, so that the electrodeposition could occur
simultaneously on both sides of the CNTs film.

In generally, commercial Cu foil is divided into several thickness
ranges, i.e., thick foil (>70 um), conventional foil (18 um-70 um), thin
foil (12 pm-18 um) and ultrathin foil (<12 um), respectively [25]. And,
the tensile strength is around 350 MPa. Therefore, the value higher
than 400 MPa is called the high-performance Cu foil.

Obviously, because of low strength, the ultrathin foil is prone to
wrinkle and tearing, which make its production, transportation and ap-
plication very difficult. At present, the carrier method is adopted to

prepare the ultrathin Cu foil in industry, which refers to a process,
i.e., deposit the ultrathin Cu foil firstly on a thick Cu foil, and then
peels it off [26]. Obviously, the operation of this process is tedious and
the industrial production cost is high, meanwhile the performance of
the ultrathin Cu foil has not been improved.

Electrophoretic deposition (EPD) is a surface treatment technology
that has been widely used in processing advanced ceramics and coat-
ings. In brief, EPD is a process for depositing charged colloidal particles
on electrode under electric field. By using EPD technology many re-
searches prepared the dense GO films as corrosion resistant coatings
[27-30].

This paper proposed a novel process to prepare the layered Cu/Gr/Cu
composite foil, i.e., according to the difference of Cu deposition potential
on different substrates, a potential step was designed for electrochemi-
cal deposition, which achieved the one-step preparation of the Cu/Gr/
Cu ultrathin foil, as shown in Fig. 1. The foil's thickness reached to as
thin as 4-5 um and had a twice tension strength enhancement, which
was firstly reported. The process is of advantages, such as simple and
controllable, and expects to further mass production in industry. Fur-
ther practical applications are expected in the areas, such as the Cu
clad plate (CCL), printed circuit board (PCB), and lithium ion battery
cathode collector system for saving row material and also the space. In
addition, this work provides a new idea for preparing the layered com-
posites via electrochemical route.

2. Experimental section
2.1. Preparation of the EPD-GO film

All experimental reagents were in analytical grades, and deionized
water was utilized to prepare the electrolyte. Fig. 1 illustrates the prep-
aration process of the Sandwich-type Cu/Gr/Cu ultrathin foil. The de-
tailed process for preparing the EPD-GO film was as follows:

1) Graphene oxide (GO) was synthesized from natural graphite pow-
ders by a modified Hummers' method and the detailed process oper-
ations was described in supporting information.

2) GO was first dispersed in deionized water and sonicated for 10 min
at room temperature. A uniform and stable aqueous solution con-
taining 0.5 mg-ml ™" of GO was obtained.

3) Adirect current (DC) electrophoresis method was used by using a
DC power supply (KXN-3010D, Zhaoxin, China). Both the cathode
and anode were Type 304 stainless steel with a size of
30 mm * 50 mm * 0.5 mm and the applied voltage was fixed at
5V, while the electrophoresis time varied from 10 s to 60 s.

4) A hydrous EPD-GO film was obtained on the anode and dried in the
air for later use. This loose film allowed Cu ions to permeate through
and contacted with the stainless steel substrate.

2.2. Preparation of the Sandwich-type Cu/Gr/Cu layered composite foil

In view of the difference of the Cu deposition potential on different
substrates, a potential step method in a three-electrode system was

Table 1
A site view on carbon nanomaterials reinforced copper-based composites.
Composition Method Thickness Properties (compared with Cu foil) Ref.
(um)
Cu-Gr DCED 20 Tensile strength, hardness and elastic modulus of the Cu-Gr foil increased by 35%, [18]
42% and 33%, respectively.
Cu-Gr PRED 12 Young's modulus, yield strength and tensile strength of the Cu-Gr foil increased [20]
by 17%,39.1% and 21.1%, respectively
Cu-Gr PRED 30 Hardness and elastic modulus of the Cu-Gr foil increased by 96% and 30% [21]
Multi-layer (Cu/graphene) CVD single graphene 3 1.5 GPa compressive strength [22]
Sandwich-tye CNTs/Cu/CNTs DCED with a template method ~ 10-30 Electrical conductivity of the composite prepared in BAPB up to 2.02 x 10° Scm~!.  [23]
Laminated (CNT/Cu) Dip-Coating 7.5 (Cu/CNTs) 2 Cu nanocomposites show 45% higher yield strength [24]

Note: Gr is graphene, CNTs is carbon nanotubes, DCED is direct current electrodeposition, PRED is pulse reverse electrodeposition, CVD is chemical vapor deposition.
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Fig. 1. Schematic diagram of preparation of the sandwich-type Cu/Gr/Cu ultrathin foil.

designed for preparing the sandwich-type Cu/Gr/Cu foil by using an
electrochemical workstation (CHI6G60E, Chenhua, China). The system
consisted of a platinum foil with a large area, a mercury/mercuric sulfate
(Hg/Hg,S0,4) as the counter electrode, and a reference electrode. As
shown in Fig. 2, the process was performed in an electrolyte consisting
of 100 g-L~! CuS0O4, 30 g-L~! H,S0,, and the specific steps were: 1) had
a thin EPD-GO film on the SS substrate; 2) carried out electrochemical
deposition at a low overpotential (—0.55 V vs. Hg/Hg,S0,4) to allow
Cu ions passing through the GO film and get to SS substrate to form
the bottom Cu layer; 3) Shift to a high overpotential (—0.65 V vs. Hg/
Hg,S0,4) to obtain the top Cu layer. In general, the Cu/Gr/Cu ultrathin
foil could be stripped directly from the stainless steel substrate due to
the inferior adhesive property, which was similar to the continuous pro-
duction in industry. It also described in our previous work [20]. The foil
samples were blown dry by hair drier for the subsequent characteriza-
tions and tests. For comparison, pure Cu foil was also prepared by
using the same method.

2.3. Characterizations

The morphologies and chemical compositions of the GO and the foil
samples were characterized using several analysis instruments,
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Fig. 2. Schematic diagram of the potential step method with corresponding SEM
morphologies.

including a scanning electron microscope (SEM) (S-4800, Hitachi,
Japan, and SIRON, FEI, The Netherlands) equipped with an energy-
dispersive X-ray spectroscopy (EDS); a transmission electron micro-
scope (TEM) (JEM-2100, JEOL, Japan), with the acceleration voltage of
200 kV; a Fourier transform infrared spectrometer (FT-IR, Nicolet iS10,
Thermo Fisher, USA) with a scanning range of 525-4000 cm ™' and a
laser scanning confocal micro-Raman spectrometer (Raman) (LabRAM
HR, HORIBA, France) with a laser excitation wavelength of 488 nm
and scans with an extended range of 1000-3000 cm™".

Absorbance of GO was measured by using a diffuse reflectance spec-
tra of a UV-vis spectrophotometer (UV-2550; Shimadzu, Kyoto, Japan)
in absorption mode, in which deionized water was used as a back-
ground between 190 nm and 800 nm scopes.

24. Property measurements

The tensile strength of the samples was measured by an electronic
universal testing machine (model CMT6203, MTS systems Co., Ltd.) in
accordance with the testing method IPC-TM-650, where the foil width
was 12.7 mm and tensile rate was 2 mm-min~". After tensile test, the
cross-section fracture surfaces were observed by using SEM. The Gr
strengthening mechanism was expressed by the following equation
[31,32]:

Oc = Om + A0 T + A0p + AOcr (1)

where o, and o,,, were tensile strength of the composite and matrix, re-
spectively. 0;5, Op and Ogg were the strengthening contributions from
load transfer, dislocation strengthening and grain refinement, respec-
tively. The square resistance of the foil samples was measured using a
four-point probe instrument (RTS-9, 4 Probes Tech, China). The resistiv-
ity of all samples was calculated using the following equation:

p=d-Rs 2)

where p, d and R, were resistivity, thickness and square resistance of the
foils, respectively.
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3. Experimental results

Fig. 3 shows the microstructural characterizations of GO. SEM and
TEM observations revealed that GO was of a nearly transparent lamellar
structure and crimped at the edges. The strong diffraction spots of
selected-area electron diffraction (SAED) pattern demonstrated it a
well-defined hexagonal structure, and high crystallinity [33]. The FT-IR
spectrum showed the GO surface contained oxygen-containing func-
tional groups [34], involving O—H (hydroxy) stretching vibration near
3190 cm~!, (=0 (carboxyl/carbonyl) stretching near 1719 cm™,
C=C (aromaticring) near 1621 cm~', and C—O (alkoxy) stretching
near 1043 cm™ . These groups would improve the dispersion of GO in
aqueous. The UV-vis spectra had a peak at 227 nm, which was due to
m — 1" of C=C bond, and a shoulder at ~290-300 nm, corresponding
to n — m* transition of the (=0 bond [35]. The Raman spectrum indi-
cated it was a typical GO, i.e., D peak near 1360 cm™' revealing the
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defect density due to the lattice vibration leaving the Brillouin zone cen-
ter; G peak near 1586 cm™ ! was caused by sp? hybridization of carbon
atoms of in-plane vibration; 2D peak near 2700 cm™ ' was the phonon
resonance second-order Raman peak indicating the way of carbon
atoms stack in graphene; and the scattering of D peak and 2D peak in
the valley generates the D+ G peak near 2935 cm™' [36-38].

Fig. 4 shows the SEM morphologies of the EPD-GO films with differ-
ent durations. When the EPD time was short, the GO film exhibited a flat
surface with fewer folds. The EDS element mapping, as shown in Fig. S1,
also indicates that GO was successfully electrodeposited on the SS sub-
strate. However, for the longer deposition time, the GO film became
higher stack and fold significantly, due to the increased thickness.

Further, the compactness of the EPD-GO film was tested by measur-
ing the open circuit potential (E,cp) - time (T) curve and linear sweep
voltammetry (LSV) curve in the copper sulphate electrolyte, respec-
tively, as shown in Fig. 5. In general, the E,¢,-T curve is used to study

Transmittance (a.u.)

1500 2000 2500 3000 3500

Wavenumber (cm™)

4000

(f) 300

250
200

150

Intensity (a.u.)

100

50

2000 2500

Raman shift (cm™)

1000 1500 3000

Fig. 3. Microstructural characterizations of graphene oxide (GO). (a) SEM morphology; (b) TEM micrograph; (c) SAED pattern of the sheet in (b); (d) FT-IR spectrum; (e) UV-vis spectrum;

(f) Raman spectrum.
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Fig. 4. SEM morphologies of the EPD-GO film with different durations. (a) electrophoresis for 10 s; (b) high magnification; (c) electrophoresis for 60 s; (d) high magnification.

the sensitivity of the interaction between working electrode and elec-
trolyte as well as the probability of corrosion reaction. The more nega-
tive the E,p, the stronger the action, and the stronger corrosion. In the
present case, as shown in Fig. 5 (a), Eocp Of the EPD-GO film varied
from the positive potential close to the freestanding GO film to the neg-
ative potential of the SS as time increasing, which revealed that the elec-
trolyte could pass through the EPD-GO film and interacted with the SS
substrate. Similarly, Cu ions exhibited different deposition potentials
on SS, EPD-GO and freestanding GO film, as shown in Fig. 5(b). There-
fore, these results provided a possibility to prepare the Cu/Gr/Cu layered
foil by using such an uncompact EPD-GO film.

Fig. 6 shows the SEM surface morphologies of the bottom Cu layer.
As the deposition time increased, the Cu deposition on the SS surface
continuously took place and became more and more compact, and
eventually formed a thin Cu layer. The EDS elements mapping also con-
firmed the Cu deposition growth on the SS substrate, as shown in

0.1
(2)
= Free-standing GO film
F 00
o
7]
=)
T EPD-GO film on SS
g
?; -0.2
o 0.3
’ Strainless steel (SS)
04 . . i
100 200 300 400
Time (s)

Figs. S2 and S3. In addition, the Cu surface showed a good appearance,
as shown in Fig. 6(g), and the portion within the black dotted frame
will be used for cross-section observation after tensile test, As shown
in Fig. 6(h).

Numerous studies have demonstrated that GO can be reduced to re-
duced GO (or Gr) during electrochemical deposition. In the present
work, from Raman spectra (Fig. S4), it could be seen that the peak
strength ratio (Ip/Ig) of the Gr in the Cu/Gr/Cu foil decreased signifi-
cantly, when compared with the EPD-GO film, which indicated that
GO was reduced to Gr during the foil preparation.

In addition, in order to observe the Sandwich structure more clearly
under SEM, two kinds of composite foils with different Gr interlayers
thickness were prepared, i.e., the Cu/Gr1/Cu foil with thinner Gr inter-
layer, and the Cu/Gr2/Cu foil with relatively thicker Gr interlayer.
Fig. 7 shows the EDS elemental mappings of the cross-sectional Cu/
Gr2/Cu foil. The Sandwich structure was clearly observed and the Gr

-0.02
(b) Free-standing GO film
0.00

0.02f
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Fig. 5. (a) Eop - T curves; (b) linear sweep voltammetry curves.
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Fig. 6. SEM morphologies of the bottom Cu layer obtained with different deposition time at different magnifications; (a) and (b) 1 min; (c) and (d) 5 min; (e) and (f) 10 min; (g) general

view of the foil; (h) foil after tensile test.

thickness was about 0.7 um. The presence of O element was attributed
to the cuprous oxide formation during electrodeposition.

Fig. 8 shows the SEM morphologies of the foils' tensile fracture sur-
faces. It could be seen that the total foil thickness was about
4.2-4.5 ym including the Gr interlayer < 0.7 pm, which was much less
than the thickness 10 pm of commercial ultrathin foil, while in Fig. 8
(b), the Gr interlayer was too thin to be observed. In addition, from
the top view, the edges of the pure Cu foil fracture surface were rela-
tively flat, while the two composite foils showed jagged and tearing
edges, which indicated a high ductility and strong interface bonding
strength between Gr and Cu [39-41]. Fig. S4 shows the Raman peak of
Cu,0, which again confirmed the Cu oxidation during electrodeposition
process. This result was also consistent with other researchers [42,43].

Fig. 9 illustrates the test results of tensile strength and electrical
properties of the different foils. Obviously, compared with pure Cu foil
(270 MPa), the Cu/Gr1/Cu foil with thinner Gr interlayer exhibited the
highest tensile strength up to 535 MPa, i.e., almost double the value.
In regarding to the electrical conductivity of the foils, the resistivity
was calculated by using the following equation:

p=d-R 3)

where p is the resistivity, d is the thickness and R; is the square resis-
tance. As shown in Fig. 9 (b), the resistivities of the Cu/Gr1/Cu foil
with thinner Gr interlayer and pure Cu foil were comparable, but the
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Fig. 7. Cross-sectional EDS elemental mappings of the Cu/Gr/Cu foil. (a) SEM image; (b) Cu element; (c) C element; (d) O element.

Cu/Gr2/Cu foil with relatively thicker Gr interlayer increased
significantly.

4. Discussion

In general, there are three possible strengthening mechanisms ac-
counting for the enhanced strength of the metal - Gr composites,
i.e., load transfer strengthening [44], dislocation strengthening [22]
and grain refinement [21], and it can be expressed by the following
equation [31,33]:

O¢ = Oy + A0 + AOp + AOGr (4)

where 0. and oy, represent tensile strength of the composite and matrix,
respectively; 0r1, Op and Ogg are the strengthening contributions from
load transfer, dislocation strengthening and grain refinement,
respectively.

For the Sandwich-type Cu/Gr2/Cu layered composite foil, the
strengthening effect of was proposed to the following mechanism:

1) Effective load transfer is the most important strengthening mecha-
nism, due to Gr large specific surface area and high aspect ratio,
and the load transfer efficiency depends on the interfacial bonding
strength. In the present work, such interface was built by the forma-
tion of Cu-O-C bonding during electrodeposition, which not only
strengthened the load transfer effect, but also fully utilized the in-
trinsic performance of Gr.

Dislocation strengthening effect. Many studies indicated that Gr

played a barrier to block dislocation slip [32,45], which caused the

high dislocation density at the interface.

3) Grain refinement effect. In our previous work, it was demonstrated
that Gr provided more active sites for metal electrodeposition,
which hindered the growth of metal crystal nucleus, and resulted
in the refined grains [21,46].

\S]
—

However, for the Cu/Gr2/Cu foil with thick Gr interlayer, the ten-
sile strength decreased obviously, as shown in Fig. 9(a), which could
be attributed to the impeding of the Cu ions penetration through the
thicker Gr layers. Therefore, the top Cu layer would quickly nucleate
and grow under high overpotential and further hindered the Cu ions
penetration. Alternatively, the GO film failed to form a strong inter-
face bonding with Cu. The detailed mechanism was schematically
illustrated in Fig. 10. Additionally, Fig. S5 also confirmed this
mechanism.

Regarding electrical property of the Sandwich-type Cu/Gr/Cu lay-
ered composite foil, the resistance comes mainly from three factors,
i.e., Cu, Gr and the Cu/Gr interface [47-49]. Obviously, the resistance
of Cu is fixed, and therefore, the final variation determined by the
other two factors, i.e., reduction degree of GO into Gr during electrode-
position and the Cu/Gr interfacial resistance. In general, the dense tran-
sition layer is in favor of higher electrical conductivity, while the loose
one tends to hinder the electron conduction in composites [50,51]. Con-
sequently, for the present samples, the thinner Gr interlayer was of a
strong bonding interface between Cu and Gr, which would result in
small resistivity, while the relatively thicker Gr interlayer had a higher
resistivity due to the loose Gr structure. This phenomenon could also
be interpreted diagrammatically from Fig. 10.

5. Conclusions

In order to challenge the mass production of ultrathin Cu foil in in-
dustry, a new electrochemical route is proposed to synthesize a kind
of Sandwich-type Cu/Gr/Cu layer composite foil, regarding Gr's strong
mechanical and electrical properties.

1) The “one-step” preparation process is based upon two principles,
i.e., the loose GO film from EPD method allows Cu ions penetration,
and there are different Cu deposition potentials on different
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Fig. 8. Lateral view of fracture SEM morphologies of the foil fractural surfaces after tensile test. (a) and (b) pure Cu foil; (¢) and (d) Cu/Gr1/Cu foil; (e) and (f) Cu/Gr2/Cu foil.

substrates. Therefore, the bottom Cu layer forms during low poten- and comparing to pure Cu foil, it tensile strength increases to almost
tial step, while the top Cu layer forms during high potential step. twice value, while the electrical conductivity is basically unchanged.
2) By adjusting the electrodeposition time and using thinner GO film, 3) This process is of advantages, such as simple, controllable and possi-
the thickness of the Cu/Gr/Cu foil can reaches to as thin as 4-5 pm, ble large-scale production in industry. It is expected to be broadly
(a) 500 cucricu | (b) 4.16
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Fig. 9. Mechanical and electrical properties of the foils. (a) Stress-stain curves; (b) resistivity.
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Fig. 10. Schematic diagram of the Cu/Gr/Cu foil formation. (a) Cu/Gr1/Cu with thinner Gr interlayer; (b) Cu/Gr2/Cu foil with relatively thicker Gr interlayer.

used in the areas, such as the Cu clad plate (CCL), printed circuit
board (PCB), and lithium ion battery cathode collector system for
saving row material and also the space.

4) This work introduces a new idea for preparing the layered compos-
ites via electrochemical process, and it can be applied in other
materials.
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