
Computer Physics Communications 240 (2019) 120–137

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

AGPU compatible quasi-Monte Carlo integrator interfaced to
pySecDec✩

S. Borowka a, G. Heinrich b,∗, S. Jahn b, S.P. Jones a,b, M. Kerner b,c, J. Schlenk d

a Theoretical Physics Department, CERN, Geneva, Switzerland
b Max Planck Institute for Physics, Föhringer Ring 6, 80805 München, Germany
c Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
d Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, UK

a r t i c l e i n f o

Article history:
Received 22 December 2018
Received in revised form 20 February 2019
Accepted 27 February 2019
Available online 7 March 2019

Keywords:
Perturbation theory
Feynman diagrams
Multi-loop
Numerical integration

a b s t r a c t

The purely numerical evaluation of multi-loop integrals and amplitudes can be a viable alternative
to analytic approaches, in particular in the presence of several mass scales, provided sufficient
accuracy can be achieved in an acceptable amount of time. For many multi-loop integrals, the fraction
of time required to perform the numerical integration is significant and it is therefore beneficial
to have efficient and well-implemented numerical integration methods. With this goal in mind,
we present a new stand-alone integrator based on the use of (quasi-Monte Carlo) rank-1 shifted
lattice rules. For integrals with high variance we also implement a variance reduction algorithm
based on fitting a smooth function to the inverse cumulative distribution function of the integrand
dimension-by-dimension.

Additionally, the new integrator is interfaced to pySecDec to allow the straightforward evaluation
of multi-loop integrals and dimensionally regulated parameter integrals. In order to make use of
recent advances in parallel computing hardware, our integrator can be used both on CPUs and CUDA
compatible GPUs where available.
Program summary
Program Title: pySecDec, qmc
Program Files doi: http://dx.doi.org/10.17632/dnrkf5jxzh.2
Licensing provisions: GNU General Public License v3
Programming language: python, FORM, C++, CUDA
External routines/libraries: catch [1], gsl [2], numpy [3], sympy [4], Nauty [5], Cuba [6], FORM [7],
Normaliz [8]. The program can also be used in a mode which does not require Normaliz.
Journal reference of previous version: Comput. Phys. Commun. 222 (2018) 313–326.
Does the new version supersede the previous version?: Yes
Nature of problem: Extraction of ultraviolet and infrared singularities from parametric integrals
appearing in higher order perturbative calculations in quantum field theory. Numerical integration
in the presence of integrable singularities (e.g. kinematic thresholds).
Solution method: Algebraic extraction of singularities within dimensional regularization using iterated
sector decomposition. This leads to a Laurent series in the dimensional regularization parameter ϵ
(and optionally other regulators), where the coefficients are finite integrals over the unit-hypercube.
Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are
handled by choosing a suitable integration contour in the complex plane, in an automated way. The
parameter integrals forming the coefficients of the Laurent series in the regulator(s) are provided in
the form of libraries which can be linked to the calculation of (multi-) loop amplitudes.
Restrictions: Depending on the complexity of the problem, limited by memory and CPU/GPU time.
References:
[1] https://github.com/philsquared/Catch/.
[2] http://www.gnu.org/software/gsl/.
[3] http://www.numpy.org/.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655)..

∗ Corresponding author.
E-mail address: gudrun@mpp.mpg.de (G. Heinrich).

https://doi.org/10.1016/j.cpc.2019.02.015
0010-4655/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2019.02.015
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.02.015&domain=pdf
https://github.com/philsquared/Catch/
http://www.gnu.org/software/gsl/
http://www.numpy.org/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:gudrun@mpp.mpg.de
https://doi.org/10.1016/j.cpc.2019.02.015
http://creativecommons.org/licenses/by/4.0/

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 121

[4] http://www.sympy.org/.
[5] http://pallini.di.uniroma1.it/.
[6] T. Hahn, ‘‘CUBA: A Library for multidimensional numerical integration,’’ Comput. Phys. Commun.
168 (2005) 78 [hep-ph/0404043], http://www.feynarts.de/cuba/.
[7] J. Kuipers, T. Ueda and J. A. M. Vermaseren, ‘‘Code Optimization in FORM,’’ Comput. Phys. Commun.
189 (2015) 1 [arXiv:1310.7007], http://www.nikhef.nl/~form/.
[8] W. Bruns, B. Ichim, B. and T. Römer, C. Söger, ‘‘Normaliz. Algorithms for rational cones and affine
monoids.’’ http://www.math.uos.de/normaliz/.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

High energy particle physics is in an era where the current
underlying theory, the Standard Model (SM), is very well tested
experimentally, as well as consistent and therefore predictive
from a theoretical point of view. This means that we can control
the SM predictions very well, and so should be able – at least in
principle – to identify physics beyond the SM even if it is showing
up only in small deviations.

In practice, there are several obstacles when trying to increase
the precision of theoretical predictions. Focusing on problems
accessible to perturbation theory, a major obstacle is the fast in-
crease in complexity of the calculation as the number of loops and
the number of kinematic scales increases. Despite the remarkable
progress that has been achieved in the analytic calculation of
multi-loop amplitudes and integrals in the last few years, an-
alytical approaches are only at the beginning of a journey into
largely unexplored mathematical territory if the function class of
the results goes beyond multiple polylogarithms (MPLs), typically
involving elliptic or hyper-elliptic functions, see e.g. [1–13].

On the other hand, (semi-)numerical approaches do not nec-
essarily become less efficient if the result leaves the class of
MPLs. This is one of the reasons why it is important to develop
numerical methods which are fast and accurate enough to pro-
vide results where analytic approaches are at their limits. Sector
decomposition [14–17] is an example of such a method; other re-
cent semi-numerical methods are described e.g. in Refs. [18–26].
Sector decomposition is a procedure which can be applied to di-
mensionally regulated integrals in order to factorize singularities
in the regulator. The resulting finite parameter integrals, which
form the coefficients at each order in the regulator, can then be
numerically integrated. There are several public implementations
of sector decomposition [27–35]. Recently, an analytical method,
based on sector decomposition followed by a series expansion
in the Feynman parameters and analytic integration, has been
worked out in Ref. [36].

Currently, in the publicly available sector decomposition tools,
numerical integration mostly relies on either deterministic inte-
gration rules for integrals of low dimensionality or Monte Carlo
integration, as implemented in the Cuba library [37,38]. However,
the integration error for Monte Carlo integration scales only like
1/

√
n, where n is the number of samples, which limits the accu-

racy that can be obtained in a given integration time. To improve
on this, a different integration method has to be chosen. One such
method is the quasi-Monte Carlo (QMC) method [39], where the
integration error scales like 1/n or better, rather than 1/

√
n. In

order for this scaling to be achieved, the integrand functions need
to fulfil certain requirements. The QMC method discussed herein
was first applied to functions produced by the sector decom-
position algorithm in Ref. [40], where it was shown practically
that the conditions for 1/n or better scaling are usually met
and the good performance of Graphics Processing Units (GPUs)
when evaluating such functions was also demonstrated. An ap-
plication of quasi-Monte Carlo methods to two- and three-loop

integrals also has been presented in Ref. [41]. The QMC method,
implemented to run on GPUs, has already been applied suc-
cessfully to phenomenological applications involving multi-scale
two-loop integrals including Higgs–boson pair production [42,43]
and H+jet production [44] at NLO.

In this work, we present a new stand-alone QMC integrator
capable of utilizing multiple cores of Central Processing Units
(CPUs) and multiple Graphics Processing Units (GPUs). We also
present a new version of the program pySecDec which makes
available our QMC implementation as an additional integrator.
Furthermore, we present and implement a method for combining
the QMC integration with importance sampling. We emphasize
that our QMC implementation can also be straightforwardly used
outside of the pySecDec context.

The outline of the paper is as follows. In Section 2 we give
an overview on the QMC method as implemented in our pro-
gram and describe our variance reduction procedure. Section 3
is dedicated to the stand-alone usage of the QMC integrator
library, we also describe the design of the library and some basics
regarding the use of GPUs. In Section 4 we explain the usage
of the QMC integrator within pySecDec and describe various
examples. Section 5 is dedicated to profiling the QMC method and
our implementation. After we conclude in Section 6, we provide
detailed API documentation in Appendix.

2. Description of the QMC method

2.1. Quasi-Monte Carlo integration

Our aim is to numerically compute the multiple integral of a
function f : Rd

→ R or f : Rd
→ C over a d-dimensional unit

hypercube [0, 1]d,

I[f] ≡

∫
[0,1]d

dx f (x) ≡

∫ 1

0
dx1 · · · dxd f (x1, . . . , xd) . (1)

In this section we will briefly introduce the concept of quasi-
Monte Carlo integration and state the most relevant results and
formulae. The study of QMC integration has produced a vast
amount of literature, for a more thorough review we refer the
reader to the existing mathematical literature, for example
Refs. [39,45] and references therein.

Unlike Monte Carlo integrators, quasi-Monte Carlo (QMC) in-
tegrators are based on a predominantly deterministic numerical
integration. An unbiased estimate Q̄n,m[f] of the integral I[f] can
be obtained from the following (QMC) cubature rule, known as a
rank-1 shifted lattice (R1SL) rule [39]:

I[f] ≈ Q̄n,m[f] ≡
1
m

m−1∑
k=0

Q (k)
n [f],

Q (k)
n [f] ≡

1
n

n−1∑
i=0

f
({

iz
n

+ ∆k

})
. (2)

The rank of the rule denotes the minimal number of generating
vectors required to generate the lattice rule. In this work we will

http://www.sympy.org/
http://pallini.di.uniroma1.it/
http://www.feynarts.de/cuba/
http://www.nikhef.nl/~form/
http://www.math.uos.de/normaliz/
http://creativecommons.org/licenses/by/4.0/

122 S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137

Fig. 1. (Left panel) A d = 2 dimensional R1SL with n = 55 points, generating vector z = (1, 34) and random shift ∆0 . (Right panel) A R1SL produced with three
additional random shifts, which can be used to estimate the mean-square error as described in the text.

consider only rank-1 lattices i.e. those generated by a single gen-
erating vector. The estimate of the integral depends on the num-
ber of lattice points n and the number of random shifts m. The
shift vectors ∆k ∈ [0, 1)d are d-dimensional vectors with com-
ponents consisting of independent, uniformly distributed random
real numbers in the interval [0, 1). The generating vector z ∈ Zd is
a fixed d-dimensional vector of integers coprime to n. The curly
brackets indicate that the fractional part of each component is
taken, such that all arguments of f remain in the interval [0, 1).

A reliable estimate of the integral can be obtained even with-
out random shifts provided that the lattice is sufficiently large,
however, the random shifts allow the remaining error to be
estimated. More precisely, an unbiased estimate of the mean-
square error can be obtained from the random shifts of the lattice
according to

σ 2
n,m[f] ≡ Var[Q̄n,m[f]] ≈

1
m(m − 1)

m−1∑
k=0

(Q (k)
n [f] − Q̄n,m[f])2 . (3)

In typical applications only 10–20 random shifts are required to
obtain a reliable estimate of the error.

In Fig. 1 an example shifted lattice is shown. In the left panel
a single lattice is displayed. The zeroth point is shifted from
the origin by the random shift vector ∆0. Further points are
generated by adding z/n and wrapping back into the unit square
as necessary. The lattice displayed contains a total of n = 55
points. In the right panel, three additional shifted lattices are
displayed. They are generated by shifting the original lattice and
can be used to produce an estimate of the integration error using
Eq. (3).

The classical theoretical error bounds on QMC rules take the
form of a product

|I[f] − Qn[f]| ≤ D(t0, . . . , tn−1)V [f], (4)

where ti are the cubature points generated by the generating
vector(s), D is the discrepancy of the point set and V is the
variation of f . The discrepancy depends only on the points and the
variation depends only on the integrand. If f can be differentiated
once with respect to each variable then it can be proven that for
a particular choice of cubature points (or, equivalently, a partic-
ular generating vector) QMC methods converge as O((log n)d/n).
This error bound grows exponentially with dimension, seemingly
implying that QMC integration is not useful in a large number of
dimensions.

However, by working with weighted function spaces, it can be
shown that the error bound can be independent of the dimension
provided that the variables of the integrand f have some varying
degree of importance. In the modern literature, error bounds have
been studied in terms of the product

|I[f] − Qn[f]| ≤ eγ (t0, . . . , tn−1)∥f ∥γ , (5)

where eγ is the worst case error in a weighted function space with
weights γ and ∥f ∥γ is the norm of f in the weighted space.

Following Ref. [39] we will discuss two function spaces
(Sobolev spaces and Korobov spaces) that allow important prop-
erties of the QMC to be proven. In both cases we will state
theorems from the literature that bound the worst case error for
a rank-1 shifted lattice rule in the corresponding function space.
By definition, the worst case error for a shifted lattice rule in
the weighted function space is the largest possible error for any
function with norm less than or equal to 1,

eγ (z,∆) ≡ sup
∥f ∥γ≤1

|I[f] − Qn[f]|. (6)

Here we use the notation eγ (z,∆) in place of eγ (t0, . . . , tn−1) to
refer to the worst case error of the point set generated by z (the
generating vector) and ∆ (the random shift vector). The shift
averaged worst case error, eshγ (z), is given by averaging the worst
case error over uniformly distributed shifts in [0, 1]d. The choice
of weights, γ , affects both the norm of the function and the worst
case error. Choosing large weights leads to a smaller norm but
larger worst case error and vice versa.

First we consider a Sobolev space spanned by functions f with
square integrable (weak) derivatives ∂ |a|f (x)

∂xa
and a ∈ {0, 1}d. The

norm of f in the weighted Sobolev space can be written as

∥f ∥2
Sobolev,γ =

∑
u⊆{1,...,d}

1
γu

∫
[0,1]|u|

(∫
[0,1]d−|u|

∂ |u|f (x)
∂xu

dx−u

)2

dxu.

(7)

Note that the norm depends only on the mixed first derivative
because we never differentiate more than once with respect to
a particular variable. It can be shown [39,46] that for functions
belonging to such a space a R1SL rule exists for which the shift
averaged worst case error is given by

[eshSobolev(z)]
2

≤

⎛⎝ 1
ψ(n)

∑
∅̸=u⊆{1,...,d}

γ λu

(
2ζ (2λ)
(2π2)λ

)|u|

⎞⎠ 1
λ

(8)

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 123

for all λ ∈ (1/2, 1]. Here ζ is the Riemann zeta function and ψ is
the Euler totient function. This formula indicates that, for suitably
chosen weights, R1SL rules can have a convergence rate close to
O(n−1) independently of d for functions belonging to a Sobolev
space.

The Korobov function space is a space of periodic functions
which are α times differentiable in each variable. The parameter
α is known as the smoothness parameter and characterizes the
rate of decay of the Fourier coefficients of the integrand. The norm
of f in the weighted Korobov space is given by

∥f ∥2
Korobov,γ =

∑
h∈Zd

∏
j∈u(h) |hj|

2α

γu(h)
|f̂ (h)|2, (9)

where u(h) := {j ∈ {1, . . . , d} : hj ̸= 0} and f̂ (h) are the Fourier
coefficients of the integrand, given by

f̂ (h) =

∫
[0,1]d

f (x)e−2π ih·xdx. (10)

For functions belonging to a Korobov space with smoothness α
the shift averaged worst case error is given by

[eshKorobov(z)]
2

≤

⎛⎝ 1
ψ(n)

∑
∅̸=u⊆{1,...,d}

γ λu (2ζ (2αλ))
|u|

⎞⎠ 1
λ

, (11)

for all λ ∈ (1/(2α), 1]. The best convergence rate is obtained
when λ → 1/(2α), which yields a convergence close to O(n−α)
independently of d (for suitably chosen weights). Functions which
are smooth but not periodic can be periodized by an integral
transform as described in Section 2.3. This can improve the rate
of convergence of quasi-Monte Carlo integration but may also
increase the variance (or norm) of the function, especially in high
dimensions.

2.2. Generating vectors

The convergence of the rank-1 lattice rule given in Eq. (2)
depends on the choice of the generating vector z and in particular
the worst case errors given in Eqs. (8) and (10) can only be
achieved with specific choices of z. An efficient algorithm to con-
struct good generating vectors z is the component-by-component
construction [47], where a generating vector in d dimensions is
obtained from a d−1 dimensional one by selecting the additional
component such that the worst-case error is minimal. This allows
to construct the generating vectors with a cost of O(d n log n).

We provide generating vectors for different fixed lattice sizes
n, which have been obtained for a Korobov space with product
weights γu =

∏
i∈u γi, where we set all weights equal, γi = 1/d.

More details on the generating vectors provided with the QMC
library are given in Appendix A.3.

2.3. Transformations

Lattice rules perform particularly well for continuous and
smooth functions which are periodic with respect to each vari-
able. Sector decomposed functions are typically continuous and
smooth but not periodic. However, they can be periodized by a
suitable change of variables x = φ(u),

I[f] ≡

∫
[0,1]d

dx f (x) =

∫
[0,1]d

du ωd(u)f (φ(u)) (12)

where

φ(u) = (φ(u1), . . . , φ(ud)), ωd(u) =

d∏
j=1

ω(uj) and

ω(u) = φ′(u).

(13)

In practice, the periodizing transform may be specified in terms
of the weight function, ω, in which case the change of variables
is given by

φ(u) ≡

∫ u

0
dt ω(t). (14)

We have implemented the following periodizing transforma-
tions:

• Korobov transforms [48–50],
• Sidi transforms [51],
• Baker’s transform [52].

The Korobov transform is defined by the polynomial weight func-
tion

ωr0,r1 (u) =
ur0 (1 − u)r1∫ 1

0 dt t r0 (1 − t)r1
= (r0+r1+1)

(
r0 + r1

r0

)
ur0 (1−u)r1 ,

(15)

The weight parameters r0, r1 are usually chosen to be equal. The
behaviour of the integrand near the endpoints should be taken
into account when choosing the weight parameters r , as the
variance of the integral can depend critically on their choice.
Asymmetric Korobov transforms with r0 ̸= r1 can be beneficial
in cases where the integrand approaches a singularity near one
of the endpoints, while the other endpoint does not exhibit any
singular behaviour.

Sidi transforms [49,51] are trigonometric integral transforms
with a weight proportional to (sinπu)r :

ωr (u) =
(sinπu)r∫ 1

0 dt (sinπ t)r
=
π

2r

Γ (r + 1)
Γ ((r + 1)/2)2

(sinπu)r . (16)

The Sidi transforms may be used to periodize an integrand in a
similar manner to the Korobov transforms. One potentially nega-
tive feature of the Sidi transforms is that several trigonometric
functions need to be computed for each sample of the inte-
grand. This can increase the cost (in terms of machine operations)
considerably, especially for relatively simple integrands.

The baker’s transformation [52] (also called ‘‘tent transforma-
tion’’), given by

φ(u) = 1 −
⏐⏐2u − 1

⏐⏐ =

⎧⎪⎨⎪⎩
2u if u ≤

1
2
,

2 − 2u if u >
1
2
,

(17)

can be applied to achieve close to O(n−2) convergence for non-
periodic integrands. The transform periodizes the integrand by
mirroring rather than forcing it to a particular value on the
integration boundary. Naively the fact that the transform is dis-
continuous might lead us to expect a poor asymptotic scaling (due
to the fact that the transform is not smooth). However, an analysis
based on considering the transform as a modification of the lattice
rather than of the integrand allows the convergence of O(n−2)
to be proven. In a moderate number of dimensions (d ≳ 9) the
baker’s transform typically does not increase the variance of the
integrand as much as the Korobov and Sidi transforms. Therefore,
although it has a slower convergence rate, the baker’s transform
can still prove useful.

A critically important point to consider when choosing a pe-
riodization strategy is the number of dimensions in which the
integration will be performed. In particular, applying a peri-
odizing transform can increase the variance of the integrand
exponentially with its dimension d. Although it is possible to
construct rank-1 lattice rules whose worst case error is indepen-
dent of d (or depends at most polynomially on d), increasing the

124 S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137

variance of the integrand can spoil the convergence of the quasi-
Monte Carlo integration [50]. For integrands in a relatively low
number of dimensions (d ≲ 8) the increase in variance caused by
higher weight (r ≳ 3) periodizing transforms can be counteracted
by the improved smoothness of the integrand which leads to
an improved asymptotic scaling behaviour with the number of
lattice points n.

2.4. Variance reduction

By applying a variable transformation y = p(x) to a one-
dimensional integral

I =

∫ 1

0
dy f (y) =

∫ 1

0
dx p′(x) f (p(x)), (18)

the integration becomes trivial if p′(x) ∝ f (p(x))−1. While it
is usually not possible to find a transformation fulfilling this
condition exactly, it is possible to find approximations to it.
This leads to an integrand with reduced variance, which can
significantly improve the convergence of the integration when
using numerical integration techniques. A well known method
to apply variance reduction to multi-dimensional integrals is the
Vegas algorithm [53], where the above procedure is applied to
each integration variable separately, with the remaining variables
integrated out. In the algorithm of Ref. [53], for each integration
variable x, the transformation p(x) is constructed as a strictly
increasing, piecewise linear function, such that p′(x) resembles
the shape of |f (p(x))|−1. However, this procedure leads to dis-
continuities in p′(x), which spoil the smoothness of the integrand
and thus the scaling of the numerical integration when directly
applying this algorithm in combination with QMC integration.
Instead, we use the ansatz

p(x) = a2 ·x
a0 − 1
a0 − x

+a3 ·x
a1 − 1
a1 − x

+a4 ·x+a5 ·x2+

(
1 −

5∑
i=2

ai

)
·x3

(19)

to parametrize the variance reducing transformation. The param-
eters ai are obtained via a fit to the inverse of the cumulative
distribution function (CDF),

CDFf (x) =

∫ x

0
dy |f (y)|

/∫ 1

0
dy |f (y)|. (20)

The ansatz in Eq. (19) is chosen such that p(0) = 0 and p(1) = 1.
The parameters a2 and a3 are required to be positive, and a0 ∈

[1.001,∞), a1 ∈ (−∞,−0.001] such that no singularities are
introduced within the domain of integration by the transforms.
The parameters are optimized by sampling the integrand with a
lattice of given size to numerically obtain an estimate of the CDF
for each integration parameter and applying a non-linear least-
squares fit using the routines implemented in the GNU Scientific
Library [54].

We find that the ansatz in Eq. (19) works well for typical
functions obtained by sector decomposition. While this ansatz in
principle can be applied to other integrals as well, we expect that
for other functions it can be beneficial to modify it to improve the
fit of the CDF of the corresponding integrand.

3. Stand-alone usage of the integrator library

3.1. Installation

If you wish to use the integrator with your own code rather
than within pySecDec, then it is available as a c++11 single-
header header-only library at https://github.com/mppmu/qmc.

Download the header and include it in your project. Since the
QMC is a header only c++ template library it does not need to
be separately configured and built.

In order to build the header as part of your project you will
need:

• A c++11 compatible c++ compiler.
• The GNU Scientific Library (GSL), version 2.5 or greater.
• (Optional GPU support) A CUDA compatible compiler (typi-

cally nvcc).
• (Optional GPU support) CUDA compatible hardware with

Compute Capability 3.0 or greater.

Simply include it in your project, ensure that it can be found by
your compiler (using compiler include path specifiers if neces-
sary) and then build your project, linking against the GSL.

3.2. Minimal example

In this section we provide examples of the usage of the
integrator as a stand-alone package. The usage within the c++
interface to pySecDec is similar while the usage via the python in-
terface to pySecDec differs significantly. Both uses within
pySecDec are described in Section 4.2.

The code of a minimal program demonstrating the usage of the
integrator is shown in Fig. 2. In this example, the 3-dimensional
function f (x0, x1, x2) = x0x1x2 is integrated using the default
settings of the QMC. Assuming the code is in a file named min-
imal.cpp and the QMC header can be found by the compiler,
the program can be compiled without GPU support using the
command:

c++ - std=c++11 minimal . cpp -o minimal . out - l g s l - l g s l cb l a s

or with GPU support using the command:

nvcc - arch=<arch> - std=c++11 -x cu -Xptxas -O0 -Xptxas
- - disable - optimizer - constants minimal . cpp -o minimal . out - l g s l - l g s l cb l a s

where <arch> is the architecture of the target GPU or com-
pute_30 for just-in-time compilation (see the Nvidia nvcc man-
ual for more details). The compile flag -x cu explicitly specifies
the language of the input files as CUDA, rather than letting the
compiler choose a default based on the file name suffix. The
compile flag -Xptxas -O0 disables optimization of the code by
the PTX assembler, as of CUDA 9.2 we found rare cases where
code optimization led to wrong results. The flag -Xptxas --
disable-optimizer-constants disables the use of the opti-
mizer constant bank which can be exhausted for large integrands,
it is not strictly necessary to pass this flag for simple examples.

In Fig. 2, on lines 4–13, a functor my_functor, containing the
function to be integrated is defined and instantiated. On line 19
the QMC integrator is instantiated with a Korobov transform of
weight 3. The MAXVAR variable controls the maximum number
of integration variables over which a particular instance of the
QMC integrator can integrate, it should be set to a value equal to
or larger than the maximum number of integration parameters
present in any functor that will be passed to the instance of
the QMC integrator. On line 20 the functor instance is passed
to the integrate function of the integrator, this will trigger
the numerical integration. The integrator returns a result struct
containing the integral and its uncertainty, which are printed
on lines 21–22. The CUDA function execution space specifiers
__host__ and __device__ on line 7 are present only when
compiling with GPU support. This is controlled by the presence on
line 6 of the __CUDACC__ macro which is automatically defined
by the compiler during CUDA compilation.

https://github.com/mppmu/qmc

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 125

Fig. 2. A minimal example of the use of the QMC integrator.

Fig. 3. Case 1 usage example of the QMC integrator.

3.3. Usage

We envisage two typical use case scenarios for the QMC li-
brary:

(1) The user knows relatively little about the integrand but
wishes to know the result with a specific relative and/or
absolute accuracy.

(2) The user has a reasonable idea how the QMC performs on
their integrand and wishes to obtain a result as quickly as
possible.

We discuss these use cases in turn. A description of all public
fields and member functions is given in Appendix.

3.3.1. Case 1
In order to evaluate an integral to a specific relative and/or

absolute accuracy without significant human input, the following
QMC integrator member variables are relevant: epsrel, epsabs,
maxeval along with the member function integrate.

Firstly, the QMC must be initialized with a suitable integral
transform and the user must decide whether to use the variance
reduction methods described in Section 2.4. If nothing is known
about the periodicity and variance of the integrand, we would
typically recommend using a Korobov weight 3 transform if the
integrand lives in less than 9 dimensions (otherwise the baker
transform may be more suitable) and no variance reduction. If
the QMC does not produce even a rough estimate of the integral
(∼ 20% error) with a moderate lattice size then the variance

reduction procedure may prove useful and the fit function should
be specified as shown in Fig. 3.

The user can then set the epsrel and epsabs fields to the
desired accuracy. In addition, the parameter maxeval ensures
that the integration terminates in a reasonable time, even if the
desired accuracy cannot be reached. The integration terminates
once any of the three conditions is met. What constitutes a
suitable value of maxeval depends on the complexity of the
integrand (in terms of floating point operations), the hardware
available for computing the integral and the time the user is
willing to wait for a result.

Finally, the integrate function can be called on the input
function. In Fig. 3 we display the above steps in code (for a
5-dimensional real integrand named my_integrand).

If a fit function has been provided, the QMC library will evalu-
ate evaluateminn lattice points and use them as input to the
fitting and variance reduction procedure as described in Sec-
tion 2.4. The QMC library will then apply the selected periodizing
transform to the fitted function. If no fit function has been pro-
vided the QMC will apply the periodizing transform to the input
function and proceed to the next step directly.

In the next step, a total of minm randomly shifted copies of the
smallest possible lattice greater than minn in size will be sampled
and used to estimate the integration error. If the required error
goal has not been reached the result will be discarded and a
larger lattice will be selected and computed. This procedure will
be repeated as necessary until the desired error goal is reached
or maxeval function evaluations have been performed; at which

126 S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137

Fig. 4. Case 2 usage example of the QMC integrator.

point the integration will terminate and the last result obtained
will be returned.

If, during the iteration, the QMC requires a lattice larger than
can be produced with the available generating vectors it will
instead select the largest lattice and attempt to reduce the in-
tegration error by adding random shifts. In this case the QMC
will achieve only Monte Carlo O(n−1/2) scaling. If an acceptable
result cannot be achieved with Monte Carlo scaling then the user
is advised to compute and supply additional (larger) generating
vectors as described in Appendix A.3.

Note that, unlike some other integration algorithms, the re-
sults from all but the last iteration have no effect on the final
result. It is therefore always more efficient to directly evaluate
a lattice that gives an acceptable integration error rather than
asking the library to try to find a suitable lattice size by iterating.

3.3.2. Case 2
If the user has a reasonable idea how the QMC performs on

their integrand, for example by studying similar integrands or
evaluating their integrand with a small lattice, then a result can
most quickly be obtained by setting the parameters minn and
calling the member function integrate. In order to ignore the
default error goals epsrel and epsabs, the parameter maxeval
should be set to 1. In Fig. 4 we display the above steps in code
(for a 5-dimensional real integrand named my_integrand).

The QMC library will evaluate minm randomly shifted copies
of the smallest possible lattice with at least minn points and
return the result. If this result is not satisfactory then the user can
increase minn and retry the integration. In order to estimate what
lattice size is suitable it is sometimes useful to investigate the
scaling behaviour of the integrand by evaluating several different
lattices. Note that, as can be seen in Fig. 14, the scaling of the
QMC is quite ‘noisy’ in the sense that very similarly sized lattices
can produce estimates of the integral with errors that differ
by an order of magnitude or more. This behaviour can hinder
straightforward attempts to estimate the scaling behaviour of an
integrand.

3.3.3. Usage on GPUs
In order to use the QMC library on CUDA enabled GPUs the

user must ensure that their integrand functor can be evaluated on
the chosen device. This usually entails taking the following steps:

• Ensuring that the c++ language features used in the inte-
grand function are supported by the relevant CUDA device.

• Designing the integrand function so that it does not need to
access data that will be stored only in host memory.

• Marking the call operator of the integrand functor __host__
__device__, as shown in the examples above.

For the purpose of monitoring GPU usage and debugging we
have found the following tools provided by Nvidia, and dis-
tributed with the CUDA toolkit, to be useful:

• nvidia-smi, a top like management and monitoring utility
for Nvidia GPU devices.

• cuda-memcheck, a functional correctness checking suite.

In most cases the usage of GPUs within the QMC is straight-
forward, however, the attentive user may notice that the program
behaves in a slightly different manner than when using only CPUs.
Let us discuss some of the most prominent features of CUDA
devices which can affect the usage of the QMC library.

The Nvidia kernel mode driver must be running and connected
to the GPU device before any user interaction with that device
can take place. If the kernel mode driver is not already running
and connected to the target GPU the invocation of a program
that interacts with the GPU will cause the driver to load and
initialize the GPU. This will incur a start up cost of 1–3 s per GPU.
For short running integration jobs this cost can be a significant
fraction of the integration time. On Windows, the kernel mode
driver is loaded at start up and kept loaded until shut down,
however, by default the time-out detection and recovery (TDR)
feature will cause driver reload and should be disabled (we refer
to the latest Nvidia documentation). Similarly, under Linux, if an
X-like process is run from start up to shut down it will usually
initialize and keep alive the kernel mode driver. However, if no
long-lived X-like client is kept running (for example in many
HPC environments) the kernel mode driver will initialize and
de-initialize the target GPU each time a GPU application starts
and stops. As of CUDA 9.2 the Nvidia recommended way to
circumvent the delay due to starting and stopping the kernel
mode driver is to run the Nvidia Persistence Daemon (we refer
to the latest Nvidia documentation).

When compiling with nvcc we strongly recommend to look
up and enter the real architecture of the graphics card in use,
e.g. -arch=sm_70. If a virtual architecture is specified, the device
code is just-in-time compiled for the real architecture on a single
core, which may become the dominant fraction of the runtime.
For initial tests, the virtual architecture compute_30, which is the
oldest supported in CUDA version 9.2, should be compatible with
most GPUs that are currently in use. For more information we
refer to the nvcc manual.

3.4. Design and implementation

In order to numerically integrate a single function, the QMC in-
tegrator library can concurrently utilize multiple multi-threaded
CPUs as well as multiple CUDA hardware accelerators, provided
they all belong to a single system. To achieve reasonable per-
formance on heterogeneous systems a receiver-initiated central
work queue load balancing algorithm is utilized.

The load balancing algorithm consists of the following steps:

• A central work queue is initialized by the main thread.
• The main thread then spawns cputhreads worker threads

if −1 is listed in devices and additionally one worker
thread per GPU is listed in devices.

• Each worker requests work from the work queue and when
the work is completed continues to request work until the
queue is cleared, at which point the workers terminate.

The disadvantage of this algorithm is that the central work queue
must be atomically locked to ensure work is not repeated. This
can impact performance significantly when a quick-to-evaluate
integrand is computed using a large number of cores and/or

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 127

CUDA devices. The advantage of this design is that even if the
performance of the workers differs vastly (for example a worker
computing on a single CPU core compared to a worker distribut-
ing work to a powerful GPU) the workload is reasonably balanced
provided that the work packages are not so large as to leave a
poorly performing worker with so much work that it finishes
significantly later than all others.

In order to utilize massively parallel CUDA hardware, threads
assigned to provide work to an accelerator will request sig-
nificantly more work from the queue per access than workers
assigned to a single CPU core. The amount of work (number of
‘‘work packages’’) requested at once by a worker assigned to a
CUDA device is controlled by the product of cudablocks and
cudathreadsperblock, while workers assigned to a CPU core
always request only a single ‘‘work package’’.

At the time of release the default values of parameters affect-
ing the load balancing are usually a reasonable choice for most
feasible integrands and existing hardware. Naturally, as the state
of the art advances and computer hardware evolves we may alter
these default values in future QMC releases.

4. Usage of the integrator library within pySecDec

Here we describe briefly the installation and usage of
pySecDec, focusing on the usage of the QMC integrator. For more
details we refer to the manual https://secdec.readthedocs.io and
to the examples distributed with pySecDec.

4.1. Installation

Before installing pySecDec, make sure that recent versions
of numpy (http://www.numpy.org/) and sympy (http://www.
sympy.org/) are installed. The pySecDec program (which includes
the QMC integrator library) can be downloaded from https://
github.com/mppmu/secdec/releases. To install pySecDec, perform
the following steps
tar -xf pySecDec-<version>.tar.gz
cd pySecDec-<version>
make
<copy the highlighted output lines into your .bashrc>

The make command will automatically build further depen-
dencies in addition to pySecDec itself. Further notes on the in-
stallation procedure are summarized in the online documentation
https://secdec.readthedocs.io. To get started, we recommend to
read the section ‘‘getting started" in the online documentation.

4.2. Usage

Depending on the availability, it is possible to use the program
with CPUs, GPUs or a combination of both.

4.2.1. Using CPUs only
The basic steps can be summarized as follows:

(1) Write or edit a python script to define the integral, the re-
placement rules for the kinematic invariants, the requested
order in the regulator and some other options, see e.g. the
example examples/easy/generate_easy.py.

(2) Run the script generate_easy.py using python. This
will generate a subdirectory according to the name spec-
ified in the script.

(3) Type make -C <name>, where <name> is your chosen
name. This will create the c++ libraries.

(4) Write or edit a python script to perform the numeri-
cal integration using the python interface, see e.g. ex-
amples/easy/integrate_easy.py. Make sure that the
QMC integrator is chosen in that file.

4.2.2. Using GPUs and CPUs
When using GPUs, steps (1), (2) and (4) of the previous Sec-

tion 4.2.1 are the same. The only difference is in the compilation
of the sector files

(3) Type CXX=nvcc SECDEC_WITH_CUDA=<arch> make -C
<name>, where <name> is your chosen name and <arch>
is the argument forwarded to nvcc as -arch=<arch>. This
will create the c++ libraries.

The compute capability <arch> is specific to each graphics
card. The parameter <arch> can either be a suitable virtual
architecture or a real architecture. We strongly recommend to
look up and enter the real architecture of the graphics card in use,
e.g. sm_70. If a virtual architecture is specified, the device code
is just-in-time compiled for the real architecture on a single core,
which may become the dominant fraction of the runtime. For first
tests however, the virtual architecture compute_30, which is the
oldest supported in CUDA version 9.2, should be compatible with
most GPUs that are currently in use. For more information refer
to the nvcc manual.

4.3. Examples

All the examples described below can be found in the folder
examples of the pySecDec distribution. A comparison of the
timings for the examples can be found in Table 3. The settings for
the examples are default settings unless specified otherwise. The
setting maxeval=1 ensures the evaluation of the integrand with
a fixed number of sampling points as described in Section 3.3.2.

4.3.1. Basic usage
The basic usage of pySecDec is illustrated in the example

easy. The slightly modified easy_cuda example shows how to
compile and run the easy example on all available GPUs using
either the python or the c++ interface.

The generate file generate_easy.py shown in Fig. 5 is iden-
tical for both examples, easy and easy_cuda. The integrate file
integrate_easy.py differs by the optional lines that select the
QMC integrator. Choosing the QMC integrator as shown in Fig. 5
will make pySecDec use all CPU cores as well as all available
GPUs.

In order to use GPUs, the code should be compiled with
Nvidia’s nvcc compiler. It is also possible to use non-CUDA com-
pilers, though this will disable GPU support.

The commands to run the examples are
(a) using CPUs and GPUs:
python generate_easy.py
CXX=nvcc SECDEC_WITH_CUDA=compute_30 make -C easy
python integrate_easy.py
or (b) using CPUs only:
python generate_easy.py
make -C easy
python integrate_easy.py

How to use the QMC integrator with GPU support via the c++
interface is shown in the example easy_cuda. Note that above
we have set the compute capability to compute_30. Please read
the remarks about the compute capability in the previous section
before running more complicated examples on the GPU.

4.3.2. 3-mass banana graph
The example banana_3mass calculates a three-loop two-

point integral with three different internal masses, see Fig. 6.
If the three masses are different, the analytic result cannot be
expressed anymore by products of complete elliptic integrals [4],
and therefore is an example of a ‘‘hyperelliptic’’ integral. The
purpose of this example is to show that hyperelliptic integrals can

https://secdec.readthedocs.io
http://www.numpy.org/
http://www.sympy.org/
http://www.sympy.org/
http://www.sympy.org/
https://github.com/mppmu/secdec/releases
https://github.com/mppmu/secdec/releases
https://github.com/mppmu/secdec/releases
https://secdec.readthedocs.io

128 S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137

Fig. 5. pySecDec input for a simple integral.

Fig. 6. A 3-loop 2-point function with 3 different masses.

be evaluated as fast as other integrals which are more accessible
analytically.

The result for the non-Euclidean point s = 20.0, m2
1 = 1.0,

m2
2 = 1.3, m2

3 = 0.7, computed with the QMC and the settings
minn=1000000, maxeval=1, transform=‘korobov2’ reads

I = (1.97000000000000264 ± 9.85 · 10−15

+ i (1.84 · 10−15
± 1.16 · 10−15)) · ϵ−3

+ (−5.9281676367925620 ± 6.52 · 10−14

+ i (1.07 · 10−13
± 2.63 · 10−14)) · ϵ−2

+ (9.86757086818429 ± 1.64 · 10−12

− i (2.54 · 10−11
± 9.83 · 10−12)) · ϵ−1

− 89.066074732329 ± 8.25 · 10−10

+ i (8.10892634289 ± 2.37 · 10−9)

+ O(ϵ) . (21)

The imaginary parts of the pole coefficients are numerically zero,
the accuracy of this zero being limited by the fact that we are
operating close to machine precision.

4.3.3. Non-planar 4-point function with massive propagators and
massive legs of different mass

The example HZ2L_nonplanar calculates a non-planar four-
point two-loop integral in the physical region, where one loop is
fully massive, and two of the external legs are massive/off-shell
with two different masses, see Fig. 7. The commands to run this
example are analogous to the ones given above.

Fig. 7. A non-planar 2-loop 4-point function with a massive loop and two
massive legs with different masses.

Fig. 8. A 2-loop pentabox integral in d = 6 − 2ϵ.

The result for the point s = 200, t = −23, m2
= 9,M2

3 =

1.56,M2
4 = 0.81, obtained with the QMC integrator using the set-

tings minn=10**8, maxeval=1, transform=‘korobov3’ reads

(3.4401552304457233 · 10−6
± 1.73 · 10−20

−i (8.9 · 10−23
± 2.26 · 10−21)) · ϵ−2

+(−0.00003316795824 ± 1.16 · 10−12

−i (8.53692099 · 10−6
± 1.01 · 10−12)) · ϵ−1

+0.000159345747 ± 4.12 · 10−10

+i (0.000021017686 ± 3.89 · 10−10)

+O(ϵ) . (22)

4.3.4. Pentabox
The example pentabox_fin calculates a fully massless two-

loop five-point function in the physical region with d = 6 − 2ϵ,
see Fig. 8.

The pentabox is a master integral occurring in the calculation
of 2 → 3 scattering at two loops. In 4 − 2ϵ dimensions, sec-
tor decomposition produces poles of order ϵ−5 at intermediate

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 129

Fig. 9. A 2-loop 2-point integral appearing at NLO in Higgs plus jet production.

Fig. 10. A 2-loop integral leading to hyperelliptic functions [56].

stages. The 6 − 2ϵ dimensional version we investigate here is
finite and therefore a more suitable master integral for numerical
evaluation. This is an example where the use of a fit function
considerably improves the convergence.

The result for the non-Euclidean point s12 = 5, s23 = −4,
s34 = 2, s45 = −6 and s51 = 3, obtained with the QMC
integrator using the settings minn=10**8, maxeval=1, trans-
form=‘korobov3’, fitfunction=‘polysingular’ reads

P = −0.0198236478 ± 2.02 · 10−8

− i (0.0341514614 ± 1.59 · 10−8) + O(ϵ) . (23)

4.3.5. Elliptic 2-loop integral
The example elliptic2L_physical calculates a planar two-

loop four-point function with one off-shell leg and a massive loop
in the physical region, see Fig. 9. This diagram enters the NLO cor-
rections to Higgs+ jet production and contains elliptic structures.
The analytical result in the Euclidean region is given in Ref. [55].
While a numerical result for this integral already has been given
in Ref. [35], the purpose of this example is to demonstrate that
the number of correct digits which can be obtained using the
QMC integrator cannot be reached in a reasonable amount of time
using Monte Carlo integration.

The result for the non-Euclidean point s = 90, t = −2.5,
p24 = 1.6,m2

= 1 using Vegas reads

f A66 ·

(
−s
m2

)
= −0.044289 ± 2.5 · 10−5

+ i (0.016068 ± 2.7 · 10−5) + O(ϵ) . (24)

Using the QMC integrator with minn=2147483647, maxeval=1,
transform=‘korobov1’, fitfunction=‘polysingular’:

f A66 ·

(
−s
m2

)
= − 0.04429245890863 ± 1.82 · 10−13

+ i (0.01607147782349 ± 1.69 · 10−13) + O(ϵ) .

4.3.6. Hyperelliptic 2-loop integral
The example hyperelliptic calculates a non-planar two-

loop four-point function with three different masses and all prop-
agators massive in the physical region, see Fig. 10. This integral
is special since it is extremely hard to compute analytically, but
is easily accessible numerically.

The result for the non-Euclidean point s = 10, t = −0.75,
m2

1 = 1, m2
2 = 1.3, m2

3 = 0.7, computed with the QMC integra-
tor using minn=10**8, maxeval=1, transform=‘korobov3’,

Fig. 11. A 4-loop massless form factor integral [57].

fitfunction=‘polysingular’ reads

I = −0.009449626 ± 1.54 · 10−7

+ i (0.019368308 ± 1.60 · 10−7) + O(ϵ) . (25)

4.3.7. 4-loop form factor example
The example formfactor4L calculates a four-loop three-

point integral in d = 6−2ϵ, see Fig. 11. Its analytic result is given
in Eq. (7.1) of Ref. [57]. This example demonstrates the power of
pySecDec to perform an efficient sector decomposition, even for
integrals with many loops and internal propagators. Furthermore,
it is a prime example to show how the QMC algorithm works
for a larger number of integration dimensions (in this case 11
dimensions).

Since the integral has only one scale, the latter can be factor-
ized. For better comparison with Ref. [57], we set the scale to −1
and the prefactor to (Γ (d/2 − 1))4. Note that a factor (iπd/2)−L,
where L is the number of loops, is part of the integral measure
used in pySecDec, such that the prefactor corresponds to Eq. (2.4)
of Ref. [57].

The result using the QMC integrator with minn=35*10**5,
minm=64, maxeval=1, cudablocks=128, cudathreadsper
block=64, maxnperpackage=8, maxmperpackage=8,
verbosity=3, transform=‘baker’, fitfunction=‘poly
singular’

Fnum.
= + (3.1807379885 ± 9.19 · 10−8)

+ (46.10430477 ± 1.34 · 10−6) · ϵ

+ O(ϵ2) ,

(26)

which can be compared to the analytical result of Ref. [57]

F analyt.
= 3.1807380843134699650

+ 46.104303262308462367ϵ + O(ϵ2) . (27)

To achieve an approximate 1/n scaling behaviour, the Baker
transform had to be applied to the integrand. For this 11-dimen
sional parameter integral, the Baker transform is superior to the
Korobov transform as it does not increase the variance of the
integrand. For details we refer to Ref. [58].

4.3.8. 2-loop nbox
The Nbox example1 consists of three integrals, Nbox2L_

split_a, Nbox2L_split_b, and Nbox2L_split_c, all of which
have one massive internal line that matches the mass of one ex-
ternal leg. The integral Nbox2L_split_a is shown in Fig. 12(a),
Nbox2L_split_b is represented in Fig. 12(b) and Nbox2L_
split_c by Fig. 12(b) with the dot removed. These integrals are
of interest since they have no Euclidean region and thus the sec-
tor decomposition algorithms implemented in pySecDec are not
guaranteed to succeed. In practice, the integral Nbox2L_split_a
and Nbox2L_split_b can be computed using the split=True
option of pySecDec. The integral Nbox2L_split_c is quasi-finite
and therefore does not need split=True.

1 Inspired by a private communication with H. Frellesvig and K. Kudashkin.

130 S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137

Fig. 12. 2-loop four-point integrals with one massive propagator and one massive leg.

The result for the point s = (p1 + p2)2 = −1, t = (p1 + p3)2 =

−0.8 and m2
= 0.1 is

Ha = + (1.54320987654321673 · 10−1
± 7.04 · 10−16

+ i (3.95 · 10−18
± 1.41 · 10−16)) · ϵ−3

+ (−2.6079701365346328 ± 1.18 · 10−14

+ i (1.93925472443813307 ± 7.96 · 10−15)) · ϵ−2

+ (−3.73711324653151 ± 1.82 · 10−12

− i (9.93265048220209 ± 1.13 · 10−12)) · ϵ−1

+ 36.882907731123 ± 2.42 · 10−10

− i (27.77041218391 ± 8.59 · 10−10)

+ O(ϵ) ,

(28)

Hb = + (−8.1789971643514132 ± 4.96 · 10−14

− i (1.71 · 10−15
± 2.80 · 10−14)) · ϵ−2

+ (−3.0495945501 ± 7.22 · 10−8

− i (51.3901546473 ± 6.58 · 10−8)) · ϵ−1

+ 160.02687326 ± 2.83 · 10−6

− i (134.42897220 ± 2.82 · 10−6)

+ O(ϵ) ,

(29)

Hc = + 2.4083471021928 ± 4.33 · 10−11

− i (25.8748336621213 ± 4.59 · 10−11)

+ O(ϵ) .

(30)

To produce these results we have used the settings:

• minn=10**7, maxeval=1, transform=‘korobov4’,
fitfunction=‘polysingular’ for Ha,

• minn=10**9, maxeval=1, transform=‘korobov6’,
fitfunction=‘polysingular’ for Hb and

• minn=15173222401, maxeval=1, transform=
‘korobov6’, generatingvectors=‘cbcpt_cfftw1_6’
for Hc .

4.3.9. 6-loop bubble
The bubble6L example consists of the 6-loop 2-point integral

shown in Fig. 13. The pole coefficients are given analytically in
Eq. (A3) of Ref. [59] (at p2 = −p2E = −1, where pE is the ex-
ternal momentum in Euclidean space). The pySecDec symmetry
finder reduces the number of sectors from more than 14000 to
8774. We also note that the decomposition method ‘geomet-
ric’ needs to be used, as the method ‘iterative’ leads to an
infinite recursion. The analytic result is given by

Banalyt.
6L =

1
ϵ2

147
16

ζ7 −
1
ϵ

(
147
16

ζ7 +
27
2
ζ3ζ5 +

27
10
ζ3,5

−
2063

504000
π8
)

+ O(ϵ0)

Fig. 13. A 6-loop two-point integral from Ref. [59].

=
9.264208985946416

ϵ2
+

91.73175282208716
ϵ

+ O(ϵ0) . (31)

The pySecDec result at p2 = −1 obtained with the QMC in-
tegrator using minn=10**7, maxeval=1, transform=‘baker’,
fitfunction=‘polysingular’ reads

Bnum.
6L = + (9.2642089624 ± 1.58 · 10−8) · ϵ−2

+ (91.73175426 ± 2.15 · 10−6) · ϵ−1

+ (1118.607204 ± 1.31 · 10−4) + O(ϵ) .

(32)

5. Profiling

5.1. Scaling behaviour

Fig. 14 shows how the integration error of the QMC algorithm
scales with the lattice size n for two different integrals. The plot
on the left-hand side shows results for the O(ε4) contribution
of a 3-loop massless form-factor integral, which can be found in
examples/triangle3L of the pySecDec distribution. Using the
Korobov transformation with weight α = 1 for the periodiza-
tion (see Section 2.3), we obtain per-mille-level precision for n =

1021 and the integration error scales approximately as O(n−1),
leading to a relative precision of 10−9 for n ≈ 109. With a weight
parameter α = 3, we obtain slightly larger errors for small n, but
due to a scaling with approximately O(n−2), a relative precision of
10−14 can be reached with n ≈ 109. We note that the expected
O(n−3) asymptotic scaling is not observed for lattices with n ≈

108 and that, due to the use of double precision arithmetic, the
integration error does not decrease when choosing even larger
lattice sizes. The plot also shows that increasing the lattice size
does not always lead to a corresponding improvement of the
integration error. Instead, for individual lattices, the integration
error can be significantly larger than that obtained from a lattice
of similar size. We observe this effect for nearly all integrals, but
which lattices lead to relatively large uncertainties depends on
the integrand.

The right-hand plot of Fig. 14 shows the results of an integral
contributing to the NLO QCD corrections in Higgs + jet produc-
tion [44] and has been selected as an example showing only slow

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 131

Fig. 14. Scaling of the integration error with the number of lattice points n for two different integrals. The left plot shows the relative error of the O(ε4) contribution
of a 3-loop form-factor integral using Korobov transformations of different weight. The plot on the right-hand side shows the scaling behaviour of a single sector of
an integral, which appeared in an early stage of the calculation in Ref. [44], also demonstrating the effect of importance sampling.

convergence of the integration. The integrand is a single sector
of a loop integral evaluated at a phase-space point with large
invariant mass mHj = 8.8mt of the Higgs–jet system, using a
Korobov transform with α = 1 for the periodization. The code can
be found in examples/103_hj_double_box.cpp of the QMC
library. For lattice sizes n ≲ 106, we observe that the integration
error only scales with n−1/2 and is larger than the true result
of the integral. For larger lattice sizes, however, we find the ex-
pected O(n−1) scaling of the integration, allowing us to obtain the
result with a precision better than 0.1%. Combining the QMC with
importance sampling, the integration error for small lattice sizes
is reduced by about a factor of 3 and improvements by more than
a factor of 10 can be seen for large n. This example shows that
sampling the integrand with a lattice of sufficient size is required
to obtain the desired scaling of the QMC integration. We want to
point out that for loop integrals it is possible to change the basis
of required integrals using integration-by-part identities [60,61].
In many cases, this allows one to find a basis of integrals with
an improved convergence of the numerical integration. For the
results presented in Ref. [44], the integral discussed above was
not used and, instead, it was possible to find an integral basis,
where evaluating the corresponding integrals with n ≈ 106 was
sufficient to obtain accurate results.

5.2. Timings for test functions

For comparison of the performance of numerical integrators,
Genz [62] has introduced a test suite, consisting of six integrand
functions with different features:

1. Oscillatory f1(x) = cos(
∑n

i=1 cixi + 2πw1)
2. Product peak f2(x) =

∏n
i=1(c

−2
i + (xi − wi)2)−1

3. Corner peak f3(x) = (1 +
∑n

i=1 cixi)
−(n+1)

4. Gaussian f4(x) = exp(−
∑n

i=1 c
2
i (xi − wi)2)

5. C0 Function f5(x) = exp(−
∑n

i=1 ci |xi − wi|)

6. Discontinuous f6(x) =

⎧⎨⎩0 if x1 > w1
or x2 > w2,

exp(
∑n

i=1 cixi) otherwise .

The test functions help to identify how well an integrator
handles oscillatory functions, multiple periodic peaks, one peak
anywhere in the integration region, one peak at the end of the
integration region, C∞ functions, a continuous function whose
derivatives are not continuous and finally a discontinuous func-
tion.

The integration region for all test integrands is the unit hy-
percube. The parameters wi can be chosen randomly and should

not affect the rate of convergence as long as 0 ≤ wi ≤ 1.
On the contrary, the positive parameters ci > 0 should affect
the convergence behaviour, raising the complexity of the integral
when ∥c∥1 is increased.

We integrate each of the above functions with the parameters:

Number of dimensions: s = 5, 8, 10
Requested relative accuracy: ϵrel = 10−8

Maximum number of samples: nmax = 7 × 108

Time limit: ≲ 360 s

All tests are performed on a machine with 2 x Intel Xeon Gold
6140 CPU @ 2.30 GHz CPUs (36 cores, 72 threads) and 4 x Nvidia
Tesla V100 GPUs. In practice, the time limit only restricts the
maximum number of samples used by the Suave integrator of
Cuba to ≲ 8 × 107 samples. Without the time limit the Suave
integrator would take up to 3000 s for some examples.

The integrand difficulties are set in accordance with Ref. [37]
to:

Integrand family j 1 2 3 4 5 6
∥c∥1 6.0 18.0 2.2 15.2 16.1 16.4

For profiling we integrate each function 10 times in each dimen-
sion, setting the values of wi and ci randomly for each integration,
and average the number of correct digits obtained and time taken.
For all examples the QMC is instantiated with a weight 3 Korobov
transform and the Cuba settings are set according to the test suite
demo distributed with the latest version of Cuba (as of writing
Cuba 4.2).

In Table 1 we show for each integrator the average number of
digits obtained (calculated by comparing to the analytic result)
and the time taken. Note that the Cuba integrators and the
QMC (CPU) instance do not make use of the GPUs, whilst the
integrator denoted QMC makes use of all CPUs and GPUs. Some
of Cuba’s algorithms sample the integrand serially for at least
part of the numerical integration, which can greatly increase the
time required to reach nmax evaluations. On the contrary, the QMC
always samples in parallel and can usually make good use of all
cores and devices. Furthermore, with the settings suggested by
the test suite demo (distributed with Cuba), we find that our test
bed machine is not well loaded by the Cuba integrators. The load
produced by the Vegas algorithm of Cuba can be increased by
up to a factor of 10 by increasing the nstart and/or nincrease
settings and altering the nbatch setting.

The timings for the Divonne integrator of Cuba are omitted
from Table 1. The Divonne algorithm, as implemented in Cuba,

132 S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137

Table 1
Number of correct digits computed (time in seconds) for the evaluation of the
test integrands using the QMC and the integrators implemented in Cuba (Vegas,
Suave and Cuhre).
Family QMC (CPU) QMC Vegas Suave Cuhre

1 (d = 5) 9 (0.74) 9 (0.71) 6 (290) 5 (260) 9 (2.1)
1 (d = 8) 8 (29) 8 (1) 6 (300) 4 (270) 9 (2.1)
1 (d = 10) 6 (68) 6 (0.81) 6 (340) 4 (290) 9 (15)
2 (d = 5) 10 (3.6) 10 (0.6) 8 (320) 5 (280) 9 (26)
2 (d = 8) 6 (63) 6 (0.79) 7 (330) 5 (290) 8 (350)
2 (d = 10) 5 (53) 5 (0.84) 7 (340) 5 (290) 8 (180)
3 (d = 5) 11 (3.4) 11 (0.49) 7 (330) 5 (280) 8 (15)
3 (d = 8) 7 (56) 7 (0.75) 6 (340) 5 (290) 9 (21)
3 (d = 10) 6 (75) 6 (0.78) 6 (350) 4 (300) 8 (92)
4 (d = 5) 10 (3.8) 10 (0.63) 6 (330) 6 (280) 9 (110)
4 (d = 8) 6 (53) 6 (0.75) 6 (330) 5 (290) 9 (82)
4 (d = 10) 5 (68) 5 (0.78) 6 (340) 5 (290) 9 (140)
5 (d = 5) 8 (35) 8 (0.77) 8 (320) 5 (280) 6 (3000)
5 (d = 8) 5 (57) 5 (0.74) 7 (340) 5 (290) 4 (530)
5 (d = 10) 4 (71) 4 (0.79) 7 (340) 5 (290) 3 (190)
6 (d = 5) 5 (35) 5 (0.78) 4 (320) 3 (280) 4 (16)
6 (d = 8) 4 (63) 4 (0.72) 4 (340) 2 (290) 5 (73)
6 (d = 10) 3 (66) 3 (0.76) 5 (340) 2 (290) 6 (60)

Table 2
Number of correct digits computed for the evaluation of the test integrands in
d = 10 using the QMC with the Baker transform.
Family (d = 10) 1 2 3 4 5 6

Digits 8 8 6 8 7 5

consists of 3 phases: (1) partitioning of the integration region, (2)
sampling of the subregions and (3) refinement and resampling of
the subregions. With the setting ϵrel = 10−8 and a time limit
of ≲ 360 s the Divonne integrator usually does not complete
the first phase and so does not enter the second phase. Without
the second phase the Divonne integrator often underestimates
the integration error and for the tests described in this section it
typically returns results with only 2 correct digits. The Divonne
integrator performs much more reliably with the setting ϵrel =

10−5, returning results accurate to 4–5 digits in around 20 s in
all cases.

We reiterate the warning given in Ref. [37] that the com-
parison chart should be interpreted with care. In particular, we
emphasize that the test integrands appearing in the test suite, by
virtue of their simplicity, bear few similarities to integrands for
which numerical integration is typically applied. For this suite of
functions the Cuhre routine as implemented in Cuba performs
best, this is due to the particular functions chosen for the test
suite and is usually not the case when applying the integrators
to sector decomposed functions. The QMC performs reasonably
on the example functions, often beating the number of digits
obtained by any of the other Cuba integrators and taking less
time. The QMC performs worse, as expected, when integrating
functions which are not smooth, in particular, the C0 and discon-
tinuous functions. When utilizing GPUs the QMC typically takes
around 1 s to compute the samples (compared to 30–80 s for the
CPU) regardless of the actual number of function evaluations. This
indicates that the number of samples to be computed in these
examples is too small to fully saturate the GPUs.

Relatively few correct digits are obtained by the QMC when
integrating the examples with d = 10. One reason for this is
the use of the weight 3 Korobov transform, which increases the
variance of the integrand as described at the end of Section 2.3.
In Table 2 we show the number of correct digits obtained using
the QMC with the Baker transform (rather than the Korobov
transform) and leaving all other settings unaltered. We observe
that the number of digits obtained with the Baker transform in

Table 3
Comparison of timings using the QMC on CPUs & GPUs, the QMC CPUs only
and Vegas as implemented in the Cuba library. The obtained relative accuracy
refers to the finite real part of the integral including all prefactors mentioned
in Section 4.3.

QMC on GPUs QMC on CPUs Vegas

rel. acc. Time (s) rel. acc. Time (s) rel. acc. Time (s)

banana 3mass 3L 3.8 · 10−11 15 3.8 · 10−11 23 1.5 · 10−3 39
HZ nonplanar 2L 1.3 · 10−3 24 2.1 · 10−3 28 5.2 · 10−3 27
pentabox fin 2L 1.9 · 10−4 42 1.1 · 10−3 133 2.6 · 10−3 139
elliptic 2L 2.0 · 10−6 9 1.6 · 10−6 33 3.6 · 10−4 104
formfactor 4L 4.2 · 10−7 258 1.2 · 10−5 235 2.7 · 10−4 986
Nbox split b 2L 2.5 · 10−3 60 3.5 · 10−2 77 1.6 · 10−1 177
bubble 6L 8.5 · 10−7 279 1.1 · 10−5 200 5.7 · 10−4 199

d = 10 can exceed even the number of digits obtained in d = 8
with the weight 3 Korobov transform.

The source code of the program 1000_genz_demo, used to
perform the profiling presented in this section, is included in the
examples folder of the stand-alone QMC distribution.

5.3. Timings for loop integrals

In Table 3, the timings for several of the examples described
in Section 4 are compared using the QMC on CPUs & GPUs, the
QMC on CPUs and Vegas as implemented in the Cuba library. The
timings are performed on a machine with 2 x Intel Xeon Gold
6140 CPU @ 2.30 GHz CPUs (36 cores, 72 threads) and 4 x Nvidia
Tesla V100 GPUs. The times reported in Table 3 correspond to the
wall clock times for running the integration via the python inter-
face of pySecDec. In particular, the numerical integration of all
orders reported for the examples given in Section 4.3 is included
in the timings. The integrands are summed before integration
(together=True).

The timings given in Table 3 are obtained with the same
parameters of the QMC as stated in Section 4.3 except for the
number of samples (minn). The maxeval parameter is set to 1
such that the QMC does not iterate. Vegas is also run with a
fixed number of function evaluations (maxeval) while the error
goals epsrel and epsabs are set to 10−100 such that they do not
trigger. The real and the imaginary part are integrated separately
with Vegas (real_complex_together=False).

A special situation is encountered when integrating the
4-loop form factor with Vegas. The first output in verbose mode
(flags=2) is printed to the screen only after about fifteen min-
utes. We suspect this long startup time is due to the rather
large (879 MB) size of the dynamic pylink library in combination
with the parallelization using fork as implemented in the Cuba
integrators library.

It is generally faster to obtain many significant digits with the
QMC integrator than with the Vegas integrator, especially when
GPUs are available. For low-precision results however, Vegas can
sometimes be faster.

6. Conclusions

We have presented a quasi-Monte Carlo integrator (QMC)
which can be used both with GPUs and CPUs as a stand-alone
library or within the pySecDec program. We have described the
implementation of the QMC, based on a rank-1 shifted lattice rule,
and given various examples of its usage. The examples of the use
of the QMC within pySecDec comprise a 2-loop pentagon integral,
integrals which are known to contain elliptic or hyperelliptic
functions, a 4-loop form factor integral and a 6-loop 2-point
function. The new version of pySecDec also contains other new

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 133

features, for example an improved algorithm to detect sector
symmetries.

We have presented a novel approach to combine the QMC
integration with importance sampling. We have investigated how
the O(1/n) scaling of the error estimate depends on the di-
mension and form of the integrand, in particular on the trans-
formation used to achieve a periodic integrand. In agreement
with Refs. [40,41], we have demonstrated that rank-1 shifted
lattice rules can considerably outperform integrators based on the
Monte Carlo method. We also confirm that, in many cases, the use
of GPUs (rather than CPUs) can lead to a speed-up of an order of
magnitude or more. This implies that the number of accurate dig-
its which can be computed in a reasonable amount of time using
our implementation is often beyond that which can be reached
using Vegas-like Monte Carlo integration. It should be noted,
however, that the functions produced by sector decomposition
are typically continuous and smooth enough to achieve O(1/n)
scaling, while this is not necessarily the case for other integrands,
as they occur for example in NNLO phase space integrals based
on analytic subtraction of doubly unresolved real radiation.

We believe that the method presented here, along with the
easy-to-use, publicly available implementation, can boost the
numerical evaluation of multi-loop amplitudes with several mass
scales to an unprecedented level of automation, speed and accu-
racy.

The stand-alone version of the QMC integrator is publicly
available at https://github.com/mppmu/qmc. The new version
of pySecDec is available at https://github.com/mppmu/secdec/
releases and the online documentation can be found at https:
//secdec.readthedocs.io.

Acknowledgements

We would like to thank Tom Zirke for collaboration on pre-
vious versions of the code and Oliver Schulz for providing us
access and support concerning the GPU usage. This research was
supported in part by the COST Action CA16201 (‘Particleface’) of
the European Union, and by the Swiss National Science Foun-
dation (SNF), Switzerland under grant number 200020-175595.
SB gratefully acknowledges financial support by the ERC Starting
Grant ‘‘MathAm’’ (39568). The research of JS was supported by
the European Union through the ERC Advanced Grant MC@NNLO
(340983).

Appendix. API documentation

The QMC class has 7 template parameters:

• T the return type of the function to be integrated (assumed
to be a real or complex floating point type)

• D the argument type of the function to be integrated (as-
sumed to be a floating point type)

• M the maximum number of integration variables of any
integrand that will be passed to the integrator

• P an integral transform to be applied to the integrand before
integration

• F a function to be fitted to the inverse cumulative distri-
bution function of the integrand in each dimension, used
to reduce the variance of the integrand (default: fitfunc-
tions::None::template type)

• G a c++11 style pseudo-random number engine (default:
std::mt19937_64)

• H a c++11 style uniform real distribution
(default: std::uniform_real_distribution<D>)

Internally, unsigned integers are assumed to be of type U =
unsigned long long int.

Typically the return type T and argument type D are set to type
double (for real numbers), std::complex<double> (for com-
plex numbers on the CPU only) or thrust::complex<double>
(for complex numbers on the GPU and CPU). In principle, the
QMC library supports integrating other floating point types (e.g.
quadruple precision, arbitrary precision, etc.), though they must
be compatible with the relevant STL library functions or provide
compatible overloads.

To integrate alternative floating point types, first include the
header(s) defining the new type into your project and set the
template arguments of the class T and D to your type. The
following standard library functions must be compatible with
your type or a compatible overload must be provided:

• sqrt, abs, modf, pow
• std::max, std::min

If your type is not intended to represent a real or complex type
number then you may also need to overload functions required
for calculating the error resulting from the numerical integration,
see the files src/overloads/real.hpp and src/overload-
s/complex.hpp.

Example 9_boost_minimal_demo demonstrates how to in-
stantiate the QMC with a non-standard type

(boost::multiprecision::cpp_bin_float_quad). To
compile this example you will need the boost library available
on your system.

A.1. Public fields

Logger logger A wrapped std::ostream object to which log
output from the library is written.

To write the text output of the library to a particular
file, first #include <fstream>, create a std::ofstream
instance pointing to your file then set the logger of the
integrator to the std::ofstream. For example to output
very detailed output to the file myoutput.log:

1 std : : ofstream out_ f i l e ("myoutput.log") ;
2 integrators : :Qmc<double ,double ,MAXVAR, integrators : :

transforms : : Korobov<3 >:: type> integrator ;
3 integrator . verbosity =3;
4 integrator . logger = ou t_ f i l e ;

Default: std::cout.

G randomgenerator A c++11 style pseudo-random number en-
gine.

The seed of the pseudo-random number engine can be
changed via the seed member function of the pseudo-
random number engine. For total reproducibility you may
also want to set cputhreads = 1 and devices = {-1}
which disables multi-threading, this helps to ensure that
the floating point operations are done in the same order
each time the code is run. For example:

1 integrators : :Qmc<double ,double ,MAXVAR, integrators : :
transforms : : Korobov<3 >:: type> integrator ;

2 integrator . randomgenerator . seed (1) // seed = 1
3 integrator . cputhreads = 1; // no multi-threading
4 integrator . devices = { - 1}; // cpu only

Default: std::mt19937_64 seeded with a call to std::
random_device.

https://github.com/mppmu/qmc
https://github.com/mppmu/secdec/releases
https://github.com/mppmu/secdec/releases
https://github.com/mppmu/secdec/releases
https://secdec.readthedocs.io
https://secdec.readthedocs.io
https://secdec.readthedocs.io

134 S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137

U minn The minimum lattice size that should be used for inte-
gration. If a lattice of the requested size is not available
then n will be the size of the next available lattice with at
least minn points.

Default: 8191.

U minm The minimum number of random shifts of the lattice
m that should be used to estimate the error of the result.
Typically 10 to 50.

Default: 32.

D epsrel The relative error that the QMC should attempt to
achieve.

Default: 0.01.

D epsabs The absolute error that the QMC should attempt to
achieve. For real types the integrator tries to find an es-
timate E for the integral I which fulfils |E-I| <= max
(epsabs, epsrel*I). For complex types the goal is con-
trolled by the errormode setting.

Default: 1e-7.

U maxeval The (approximate) maximum number of function
evaluations that should be performed while integrating.
The actual number of function evaluations can be slightly
larger if there is not a suitably sized lattice available.

Default: 1000000.

U maxnperpackage Maximum number of points to compute per
thread per work package.

Default: 1.

U maxmperpackage Maximum number of shifts to compute per
thread per work package.

Default: 1024.

ErrorMode errormode Controls the error goal that the library
attempts to achieve when the integrand return type is a
complex type. For real types the errormode setting is
ignored. Possible values:

• all — try to find an estimate E for the integral I
which fulfils
|E-I| <= max(epsabs, epsrel*I) for each com-
ponent (real and imaginary) separately,

• largest — try to find an estimate E for the integral
I such that max(|Re[E] − Re[I]|, |Im[E] − Im[I]|) ≤

max(ϵabs, ϵrel · max(|Re[I]|, |Im[I]|)), i.e. to achieve ei-
ther the epsabs error goal or that the largest error
is smaller than epsrel times the value of the largest
component (either real or imaginary).

Default: all.

U cputhreads The number of CPU threads that should be used
to evaluate the integrand function. If GPUs are used 1
additional CPU thread per device will be launched for com-
municating with the device.

Default: std::thread::hardware_concurrency().

U cudablocks The number of blocks to be launched on each
CUDA device.

Default: (determined at run time).

U cudathreadsperblock The number of threads per block to be
launched on each CUDA device. CUDA kernels launched
by the QMC library have the execution configuration <<<
cudablocks, cudathreadsperblock >>>. For more in-
formation on how to optimally configure these parame-
ters for your hardware and/or integral refer to the Nvidia
guidelines.
Default: (determined at run time).

std::set<int> devices A set of devices on which the inte-
grand function should be evaluated. The device id -1 repre-
sents all CPUs present on the system, the field cputhreads
can be used to control the number of CPU threads spawned.
The indices 0,1, . . . are device ids of CUDA devices
present on the system.
Default: -1,0,1, . . . ,nd where nd is the number of
CUDA devices detected on the system.

std::map<U,std::vector<U>> generatingvectors A map
of available generating vectors which can be used to gener-
ate a lattice. The implemented QMC algorithm requires that
the generating vectors be generated with a prime lattice
size. By default the library uses generating vectors with
100 components, thus it supports integration of functions
with up to 100 dimensions. The default generating vectors
have been generated with lattice size chosen as the next
prime number above (110/100)i ·1020 for i between 0 and
152, additionally the lattice 231

− 1 (INT_MAX for int32)
is included.
Default: cbcpt_dn1_100().

U evaluateminn The minimum lattice size that should be used
by the evaluate function to evaluate the integrand, if
variance reduction is enabled these points are used for
fitting the inverse cumulative distribution function. If a
lattice of the requested size is not available then n will be
the size of the next available lattice with at least evalu-
ateminn points.
Default: 100000.

U verbosity Possible values: 0,1,2,3. Controls the verbosity of
the output to logger of the QMC library.

0 — no output,
1 — key status updates and statistics,
2 — detailed output, useful for debugging,
3 — very detailed output, useful for debugging.

Default: 0.

size_t fitstepsize Controls the number of points included in the
fit used for variance reduction. A step size of x includes
(after sorting by value) every xth point in the fit.
Default: 10.

size_t fitmaxiter See maxiter in the non-linear least-squares
fitting GSL documentation.
Default: 40.

double fitxtol See xtol in the non-linear least-squares fitting
GSL documentation.
Default: 3e-3.

double fitgtol See gtol in the non-linear least-squares fitting
GSL documentation.
Default: 1e-8.

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 135

double fitftol See ftol in the non-linear least-squares fitting
GSL documentation.
Default: 1e-8.

gsl_multifit_nlinear_parameters fitparametersgsl See
gsl_multifit_nlinear_parameters in the non-linear
least-squares fitting GSL documentation.
Default: {}.

A.2. Public member functions

U get_next_n(U preferred_n) Returns the lattice size n of the
lattice in generatingvectors that is greater than or
equal to preferred_n. This represents the size of the
lattice that would be used for integration if minn was set
to preferred_n.
template <typename I> result<T,U> integrate(I&
func) Integrates the function func in d dimensions using
the integral transform transform. The result is returned
in a result struct with the following members:

• integral — the result of the integral
• error — the estimated absolute error of the result
• n — the size of the largest lattice used during inte-

gration
• m — the number of shifts of the largest lattice used

during integration.
• U iterations — the number of iterations used

during integration
• U evaluations — the total number of function

evaluations during integration

The functor func must define its dimension as a public
member variable number_of_integration_variables.
Calls: get_next_n.
template <typename I> samples<T,D> evaluate(I&
func) Evaluates the functor func on a lattice of size
greater than or equal to evaluateminn. The samples are
returned in a samples struct with the following members:

• std::vector<U> z — the generating vector of the
lattice used to produce the samples

• std::vector<D> d — the random shift vector used
to produce the samples

• std::vector<T> r — the values of the integrand at
each randomly shifted lattice point

• U n — the size of the lattice used to produce the
samples

• D get_x(const U sample_index, const U inte-
gration_variable_index) — a function which
returns the argument (specified by integration
_variable_index) used to evaluate the integrand
for a specific sample (specified by sample_index).

The functor func must define its dimension as a public
member variable number_of_integration_variables.
Calls: get_next_n.
template <typename I> typename F<I,D,M>::
transform_t fit(I& func) Fits a function (specified
by the type F of the integrator) to the inverse cumula-
tive distribution function of the integrand dimension-by-
dimension and returns a functor representing the new
integrand after this variance reduction procedure.
The functor func must define its dimension as a public
member variable number_of_integration_variables.
Calls: get_next_n, evaluate.

Table A.1
Types of generating vectors distributed with the program.
Name Max. di-

mension
Computed via Lattice sizes

cbcpt_dn1_100 100 fastrank1pt.m
tool [63]

1021 – 2147483647

cbcpt_dn2_6 6 fastrank1pt.m
tool [63]

65521 – 2499623531

cbcpt_cfftw1_6 6 CBC tool based on
[64]

2500000001 – 15173222401

Table A.2
Types of periodizing transformations distributed with the program.
Name Description

Korobov<r_0,r_1> A polynomial integral transform with weight
∝ xr0 (1 − x)r1

Korobov<r> A polynomial integral transform with weight
∝ xr (1 − x)r

Sidi<r> A trigonometric integral transform with weight
∝ sinr (πx)

Baker The baker’s transformation, φ(x) = 1 − |2x − 1|
None The trivial transform, φ(x) = x

A.3. Generating vectors

We offer generating vectors for different lattice sizes n, and
also for different maximal dimensions s: s ≤ 6 or s ≤ 100.
The generating vectors which are distributed with the version
described in this paper are summarized in Table A.1. We used
the so-called Component-By-Component (CBC) construction [47],
computed using partly D. Nuyens’ fastrank1pt.m tool [63] and,
for very large lattice sizes, our own CBC tool based on the FFTW
algorithm [64].

The generating vectors distributed with the code are produced
for Korobov spaces with smoothness α = 2, in the notation of
Ref. [65] we use:

• Kernel ω(x) = 2π2(x2 − x + 1/6),
• Weights γi = 1/s for i = 1, . . . , s,
• Parameters βi = 1 for i = 1, . . . , s.

The generating vectors used by the QMC can be selected by
setting the integrator’s generatingvectors member variable.
Example (assuming an integrator instance named integrator):

in tegrator . generatingvectors = integrators : : generatingvectors : :
cbcpt_dn2_6 () ;

If you prefer to use custom generating vectors and/or 100
dimensions and/or 15173222401 lattice points are not enough,
you can supply your own generating vectors. Compute your gen-
erating vectors using another tool then put them into a map and
set generatingvectors. For example, to instruct the QMC to
use only two generating vectors (z = (1, 3) for n = 7 and
z = (1, 7) for n = 11) the generatingvectors map would be
set as follows:

1 std : :map<unsigned long long int , std : : vector <unsigned long long
int>> my_generating_vectors = { {7 , {1 ,3 } } , {11 , {1 ,7}} } ;

2 integrators : :Qmc<double ,double,10> integrator ;
3 integrator . generatingvectors = my_generating_vectors ;

A.4. Integral transforms

The integral transforms distributed with the QMC are listed
in Table A.2. The integral transform used by the QMC can be
selected when constructing the QMC. Example (assuming a real
type integrator instance named integrator):

136 S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137

Table A.3
Types of fit functions distributed with the program.
Name Description

PolySingular A 3rd order polynomial with two additional 1/(p − x)
terms,

f (x) =
|p2 |(x(p0−1))

(p0−x) +
|p3 |(x(p1−1))

(p1−x)

+ x(p4 + x(p5 + x(1 − |p2|−|p3|−p4 − p5)))

None The trivial transform, f (x) = x

in tegrators : :Qmc<double ,double , 10 , in tegrators : : transforms : :
Korobov <5 ,3 >:: type> integrator ;

instantiates an integrator which applies a weight (r0 = 5, r1 = 3)
Korobov transform to the integrand before integration.

A.5. Fit functions

The fit function used by the QMC can be selected when con-
structing the QMC. These functions are used to approximate
the inverse cumulative distribution function of the integrand
dimension-by-dimension. Example (assuming a real type inte-
grator instance named integrator):

in tegrators : :Qmc<double ,double , 10 , in tegrators : : transforms : :
Korobov<3 >:: type , in tegrators : : f i t f unc t i ons : : PolySingular : :
type> integrator ;

instantiates an integrator which reduces the variance of the in-
tegrand by fitting a PolySingular type function before integra-
tion. Possible fit functions are shown in Table A.3.

References

[1] S. Laporta, E. Remiddi, Nuclear Phys. B704 (2005) 349–386, http://dx.doi.
org/10.1016/j.nuclphysb.2004.10.044, arXiv:hep-ph/0406160.

[2] L. Adams, E. Chaubey, S. Weinzierl, Phys. Rev. Lett. 118 (14) (2017) 141602,
http://dx.doi.org/10.1103/PhysRevLett.118.141602, arXiv:1702.04279.

[3] S. Abreu, R. Britto, C. Duhr, E. Gardi, Phys. Rev. Lett. 119 (5) (2017) 051601,
http://dx.doi.org/10.1103/PhysRevLett.119.051601, arXiv:1703.05064.

[4] A. Primo, L. Tancredi, Nuclear Phys. B921 (2017) 316–356, http://dx.doi.
org/10.1016/j.nuclphysb.2017.05.018, arXiv:1704.05465.

[5] J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel, M. Wilhelm, Phys.
Rev. Lett. 120 (12) (2018) 121603, http://dx.doi.org/10.1103/PhysRevLett.
120.121603, arXiv:1712.02785.

[6] J. Broedel, C. Duhr, F. Dulat, L. Tancredi, J. High Energy Phys. 05 (2018)
093, http://dx.doi.org/10.1007/JHEP05(2018)093, arXiv:1712.07089.

[7] L. Adams, S. Weinzierl, Phys. Lett. B781 (2018) 270–278, http://dx.doi.org/
10.1016/j.physletb.2018.04.002, arXiv:1802.05020.

[8] J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, J. High Energy Phys. 08
(2018) 014, http://dx.doi.org/10.1007/JHEP08(2018)014, arXiv:1803.10256.

[9] R.N. Lee, A.V. Smirnov, V.A. Smirnov, J. High Energy Phys. 07 (2018) 102,
http://dx.doi.org/10.1007/JHEP07(2018)102, arXiv:1805.00227.

[10] J.L. Bourjaily, Y.-H. He, A.J. Mcleod, M. Von Hippel, M. Wilhelm, Phys.
Rev. Lett. 121 (7) (2018) 071603, http://dx.doi.org/10.1103/PhysRevLett.
121.071603, arXiv:1805.09326.

[11] J. Blümlein, C. Schneider, Internat. J. Modern Phys. A33 (17)
(2018) 1830015, http://dx.doi.org/10.1142/S0217751X18300156,
arXiv:1809.02889.

[12] J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic Feynman
Integrals and Pure Functions, 2018, arXiv:1809.10698.

[13] J.L. Bourjaily, A.J. McLeod, M. von Hippel, M. Wilhelm, A (Bounded) Bestiary
of Feynman Integral Calabi-Yau Geometries, 2018, arXiv:1810.07689.

[14] K. Hepp, Comm. Math. Phys. 2 (1966) 301–326.
[15] M. Roth, A. Denner, Nuclear Phys. B479 (1996) 495–514, arXiv:hep-ph/

9605420.
[16] T. Binoth, G. Heinrich, Nuclear Phys. B585 (2000) 741–759, arXiv:hep-

ph/0004013.
[17] G. Heinrich, Internat. J. Modern Phys. A23 (2008) 1457–1486, http://dx.doi.

org/10.1142/S0217751X08040263, arXiv:0803.4177.
[18] S. Becker, S. Weinzierl, Eur. Phys. J. C73 (2) (2013) 2321, http://dx.doi.org/

10.1140/epjc/s10052-013-2321-1, arXiv:1211.0509.
[19] G.F.R. Sborlini, F. Driencourt-Mangin, G. Rodrigo, J. High Energy Phys. 10

(2016) 162, http://dx.doi.org/10.1007/JHEP10(2016)162, arXiv:1608.01584.

[20] A. Freitas, Prog. Part. Nucl. Phys. 90 (2016) 201–240, http://dx.doi.org/10.
1016/j.ppnp.2016.06.004, arXiv:1604.00406.

[21] E. de Doncker, F. Yuasa, K. Kato, T. Ishikawa, J. Kapenga, O. Olagbemi,
Comput. Phys. Comm. 224 (2018) 164–185, http://dx.doi.org/10.1016/j.cpc.
2017.11.001, arXiv:1702.04904.

[22] J. Gluza, T. Jelinski, D.A. Kosower, Phys. Rev. D95 (7) (2017) 076016,
http://dx.doi.org/10.1103/PhysRevD.95.076016, arXiv:1609.09111.

[23] J. Usovitsch, I. Dubovyk, T. Riemann, PoS LL2018 (2018) 046, arXiv:1810.
04580.

[24] J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira, J. Streicher,
Gluon Fusion into Higgs Pairs at NLO QCD and the Top Mass Scheme,
2018, arXiv:1811.05692.

[25] J.R. Andersen, et al., Les Houches 2017: Physics at TeV Colliders Standard
Model Working Group Report, 2018. arXiv:1803.07977.

[26] A. Blondel, et al., Mini Workshop on Precision EW and QCD Calculations
for the FCC Studies: Methods and Techniques; CERN, Geneva, Switzerland,
January 12-13, 2018, 2018.

[27] C. Bogner, S. Weinzierl, Comput. Phys. Comm. 178 (2008) 596–610, http:
//dx.doi.org/10.1016/j.cpc.2007.11.012, arXiv:0709.4092.

[28] J. Gluza, K. Kajda, T. Riemann, V. Yundin, Eur. Phys. J. C71 (2011) 1516,
http://dx.doi.org/10.1140/epjc/s10052-010-1516-y, arXiv:1010.1667.

[29] T. Ueda, J. Fujimoto, PoS ACAT08 (2008) 120, arXiv:0902.2656.
[30] A. Smirnov, M. Tentyukov, Comput. Phys. Comm. 180 (2009) 735–746,

http://dx.doi.org/10.1016/j.cpc.2008.11.006, arXiv:0807.4129.
[31] A. Smirnov, V. Smirnov, M. Tentyukov, Comput. Phys. Comm. 182 (2011)

790–803, http://dx.doi.org/10.1016/j.cpc.2010.11.025, arXiv:0912.0158.
[32] A.V. Smirnov, Comput. Phys. Comm. 185 (2014) 2090–2100, http://dx.doi.

org/10.1016/j.cpc.2014.03.015, arXiv:1312.3186.
[33] A.V. Smirnov, Comput. Phys. Comm. 204 (2016) 189–199, http://dx.doi.org/

10.1016/j.cpc.2016.03.013, arXiv:1511.03614.
[34] S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke, Comput.

Phys. Comm. 196 (2015) 470–491, http://dx.doi.org/10.1016/j.cpc.2015.05.
022, arXiv:1502.06595.

[35] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke,
Comput. Phys. Comm. 222 (2018) 313–326, http://dx.doi.org/10.1016/j.cpc.
2017.09.015, arXiv:1703.09692.

[36] S. Borowka, T. Gehrmann, D. Hulme, J. High Energy Phys. 08 (2018) 111,
http://dx.doi.org/10.1007/JHEP08(2018)111, arXiv:1804.06824.

[37] T. Hahn, Comput. Phys. Comm. 168 (2005) 78–95, http://dx.doi.org/10.
1016/j.cpc.2005.01.010, arXiv:hep-ph/0404043.

[38] T. Hahn, Concurrent Cuba, 2014, arXiv:1408.6373.
[39] J. Dick, F.Y. Kuo, I.H. Sloan, Acta Numer. 22 (2013) 133–288.
[40] Z. Li, J. Wang, Q.-S. Yan, X. Zhao, Chin. Phys. C 40, No. 3 (2016) 033103,

http://dx.doi.org/10.1088/1674-1137/40/3/033103, arXiv:1508.02512.
[41] E. de Doncker, A. Almulihi, F. Yuasa, J. Phys. Conf. Ser. 1085 (5) (2018)

052005, http://dx.doi.org/10.1088/1742-6596/1085/5/052005.
[42] S. Borowka, N. Greiner, G. Heinrich, S. Jones, M. Kerner, J. Schlenk, U. Schu-

bert, T. Zirke, Phys. Rev. Lett. 117 (1) (2016) 012001; Erratum:, Phys.
Rev. Lett. 117 (7) (2016) 079901, http://dx.doi.org/10.1103/PhysRevLett.
117.079901, arXiv:1604.06447 http://dx.doi.org/10.1103/PhysRevLett.117.
012001.

[43] S. Borowka, N. Greiner, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk,
T. Zirke, J. High Energy Phys. 10 (2016) 107, http://dx.doi.org/10.1007/
JHEP10(2016)107, arXiv:1608.04798.

[44] S.P. Jones, M. Kerner, G. Luisoni, Phys. Rev. Lett. 120 (16) (2018) 162001,
http://dx.doi.org/10.1103/PhysRevLett.120.162001, arXiv:1802.00349.

[45] F.Y. Kuo, D. Nuyens, Lecture Notes: A Practical Guide to Quasi-Monte Carlo
Methods, National Chiao Tung University & National Taiwan University,
2016.

[46] I.H. Sloan, H. Woniakowski, J. Complexity 14 (1) (1998) 1–33, http:
//dx.doi.org/10.1006/jcom.1997.0463, URL http://www.sciencedirect.com/
science/article/pii/S0885064X97904635.

[47] D. Nuyens, R. Cools, Math. Comp. 75 (254) (2006) 903–920.
[48] N.M. Korobov, Number-Theoretic Methods in Approximate Analysis,

Fizmatgiz, Moscow, 1963.
[49] D.P. Laurie, J. Comput. Appl. Math. 66 (1) (1996) 337–344, http://dx.doi.

org/10.1016/0377-0427(95)00196-4, Proceedings of the Sixth International
Congress on Computational and Applied Mathematics. URL http://www.
sciencedirect.com/science/article/pii/0377042795001964.

[50] F.Y. Kuo, I.H. Sloan, H. Woźniakowski, Numer. Algorithms 46 (4) (2007)
369–391, http://dx.doi.org/10.1007/s11075-007-9145-8.

[51] A. Sidi, A New Variable Transformation for Numerical Integration,
Birkhäuser Basel, Basel, 1993, pp. 359–373, URL https://doi.org/10.1007/
978-3-0348-6338-4_27.

[52] F.J. Hickernell, in: K.T. Fang, F.J. Hickernell, H. Niederreiter (Eds.), Monte
Carlo and Quasi-Monte Carlo Methods 2000, Springer, Berlin, 2002, p.
274289.

[53] G.P. Lepage, J. Comput. Phys. 27 (1978) 192, http://dx.doi.org/10.1016/
0021-9991(78)90004-9.

http://dx.doi.org/10.1016/j.nuclphysb.2004.10.044
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.044
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.044
http://arxiv.org/abs/hep-ph/0406160
http://dx.doi.org/10.1103/PhysRevLett.118.141602
http://arxiv.org/abs/1702.04279
http://dx.doi.org/10.1103/PhysRevLett.119.051601
http://arxiv.org/abs/1703.05064
http://dx.doi.org/10.1016/j.nuclphysb.2017.05.018
http://dx.doi.org/10.1016/j.nuclphysb.2017.05.018
http://dx.doi.org/10.1016/j.nuclphysb.2017.05.018
http://arxiv.org/abs/1704.05465
http://dx.doi.org/10.1103/PhysRevLett.120.121603
http://dx.doi.org/10.1103/PhysRevLett.120.121603
http://dx.doi.org/10.1103/PhysRevLett.120.121603
http://arxiv.org/abs/1712.02785
http://dx.doi.org/10.1007/JHEP05(2018)093
http://arxiv.org/abs/1712.07089
http://dx.doi.org/10.1016/j.physletb.2018.04.002
http://dx.doi.org/10.1016/j.physletb.2018.04.002
http://dx.doi.org/10.1016/j.physletb.2018.04.002
http://arxiv.org/abs/1802.05020
http://dx.doi.org/10.1007/JHEP08(2018)014
http://arxiv.org/abs/1803.10256
http://dx.doi.org/10.1007/JHEP07(2018)102
http://arxiv.org/abs/1805.00227
http://dx.doi.org/10.1103/PhysRevLett.121.071603
http://dx.doi.org/10.1103/PhysRevLett.121.071603
http://dx.doi.org/10.1103/PhysRevLett.121.071603
http://arxiv.org/abs/1805.09326
http://dx.doi.org/10.1142/S0217751X18300156
http://arxiv.org/abs/1809.02889
http://arxiv.org/abs/1809.10698
http://arxiv.org/abs/1810.07689
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb14
http://arxiv.org/abs/hep-ph/9605420
http://arxiv.org/abs/hep-ph/9605420
http://arxiv.org/abs/hep-ph/9605420
http://arxiv.org/abs/hep-ph/0004013
http://arxiv.org/abs/hep-ph/0004013
http://arxiv.org/abs/hep-ph/0004013
http://dx.doi.org/10.1142/S0217751X08040263
http://dx.doi.org/10.1142/S0217751X08040263
http://dx.doi.org/10.1142/S0217751X08040263
http://arxiv.org/abs/0803.4177
http://dx.doi.org/10.1140/epjc/s10052-013-2321-1
http://dx.doi.org/10.1140/epjc/s10052-013-2321-1
http://dx.doi.org/10.1140/epjc/s10052-013-2321-1
http://arxiv.org/abs/1211.0509
http://dx.doi.org/10.1007/JHEP10(2016)162
http://arxiv.org/abs/1608.01584
http://dx.doi.org/10.1016/j.ppnp.2016.06.004
http://dx.doi.org/10.1016/j.ppnp.2016.06.004
http://dx.doi.org/10.1016/j.ppnp.2016.06.004
http://arxiv.org/abs/1604.00406
http://dx.doi.org/10.1016/j.cpc.2017.11.001
http://dx.doi.org/10.1016/j.cpc.2017.11.001
http://dx.doi.org/10.1016/j.cpc.2017.11.001
http://arxiv.org/abs/1702.04904
http://dx.doi.org/10.1103/PhysRevD.95.076016
http://arxiv.org/abs/1609.09111
http://arxiv.org/abs/1810.04580
http://arxiv.org/abs/1810.04580
http://arxiv.org/abs/1810.04580
http://arxiv.org/abs/1811.05692
http://arxiv.org/abs/1803.07977
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb26
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb26
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb26
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb26
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb26
http://dx.doi.org/10.1016/j.cpc.2007.11.012
http://dx.doi.org/10.1016/j.cpc.2007.11.012
http://dx.doi.org/10.1016/j.cpc.2007.11.012
http://arxiv.org/abs/0709.4092
http://dx.doi.org/10.1140/epjc/s10052-010-1516-y
http://arxiv.org/abs/1010.1667
http://arxiv.org/abs/0902.2656
http://dx.doi.org/10.1016/j.cpc.2008.11.006
http://arxiv.org/abs/0807.4129
http://dx.doi.org/10.1016/j.cpc.2010.11.025
http://arxiv.org/abs/0912.0158
http://dx.doi.org/10.1016/j.cpc.2014.03.015
http://dx.doi.org/10.1016/j.cpc.2014.03.015
http://dx.doi.org/10.1016/j.cpc.2014.03.015
http://arxiv.org/abs/1312.3186
http://dx.doi.org/10.1016/j.cpc.2016.03.013
http://dx.doi.org/10.1016/j.cpc.2016.03.013
http://dx.doi.org/10.1016/j.cpc.2016.03.013
http://arxiv.org/abs/1511.03614
http://dx.doi.org/10.1016/j.cpc.2015.05.022
http://dx.doi.org/10.1016/j.cpc.2015.05.022
http://dx.doi.org/10.1016/j.cpc.2015.05.022
http://arxiv.org/abs/1502.06595
http://dx.doi.org/10.1016/j.cpc.2017.09.015
http://dx.doi.org/10.1016/j.cpc.2017.09.015
http://dx.doi.org/10.1016/j.cpc.2017.09.015
http://arxiv.org/abs/1703.09692
http://dx.doi.org/10.1007/JHEP08(2018)111
http://arxiv.org/abs/1804.06824
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/hep-ph/0404043
http://arxiv.org/abs/1408.6373
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb39
http://dx.doi.org/10.1088/1674-1137/40/3/033103
http://arxiv.org/abs/1508.02512
http://dx.doi.org/10.1088/1742-6596/1085/5/052005
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb42
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb42
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb42
http://dx.doi.org/10.1103/PhysRevLett.117.079901
http://dx.doi.org/10.1103/PhysRevLett.117.079901
http://dx.doi.org/10.1103/PhysRevLett.117.079901
http://arxiv.org/abs/1604.06447
http://dx.doi.org/10.1103/PhysRevLett.117.012001
http://dx.doi.org/10.1103/PhysRevLett.117.012001
http://dx.doi.org/10.1103/PhysRevLett.117.012001
http://dx.doi.org/10.1007/JHEP10(2016)107
http://dx.doi.org/10.1007/JHEP10(2016)107
http://dx.doi.org/10.1007/JHEP10(2016)107
http://arxiv.org/abs/1608.04798
http://dx.doi.org/10.1103/PhysRevLett.120.162001
http://arxiv.org/abs/1802.00349
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb45
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb45
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb45
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb45
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb45
http://dx.doi.org/10.1006/jcom.1997.0463
http://dx.doi.org/10.1006/jcom.1997.0463
http://dx.doi.org/10.1006/jcom.1997.0463
http://www.sciencedirect.com/science/article/pii/S0885064X97904635
http://www.sciencedirect.com/science/article/pii/S0885064X97904635
http://www.sciencedirect.com/science/article/pii/S0885064X97904635
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb47
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb48
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb48
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb48
http://dx.doi.org/10.1016/0377-0427(95)00196-4
http://dx.doi.org/10.1016/0377-0427(95)00196-4
http://dx.doi.org/10.1016/0377-0427(95)00196-4
http://www.sciencedirect.com/science/article/pii/0377042795001964
http://www.sciencedirect.com/science/article/pii/0377042795001964
http://www.sciencedirect.com/science/article/pii/0377042795001964
http://dx.doi.org/10.1007/s11075-007-9145-8
https://doi.org/10.1007/978-3-0348-6338-4_27
https://doi.org/10.1007/978-3-0348-6338-4_27
https://doi.org/10.1007/978-3-0348-6338-4_27
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb52
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb52
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb52
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb52
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb52
http://dx.doi.org/10.1016/0021-9991(78)90004-9
http://dx.doi.org/10.1016/0021-9991(78)90004-9
http://dx.doi.org/10.1016/0021-9991(78)90004-9

S. Borowka, G. Heinrich, S. Jahn et al. / Computer Physics Communications 240 (2019) 120–137 137

[54] M. Galassi, et al., GNU Scientific Library Reference Manual - Third Edition,
third ed., Network Theory Ltd, 2009.

[55] R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello, V.A. Smirnov,
J. High Energy Phys. 12 (2016) 096, http://dx.doi.org/10.1007/JHEP12(2016)
096, arXiv:1609.06685.

[56] A. Georgoudis, Y. Zhang, J. High Energy Phys. 12 (2015) 086, http://dx.doi.
org/10.1007/JHEP12(2015)086, arXiv:1507.06310.

[57] A. von Manteuffel, E. Panzer, R.M. Schabinger, Phys. Rev. D93 (12) (2016)
125014, http://dx.doi.org/10.1103/PhysRevD.93.125014, arXiv:1510.06758.

[58] S. Jahn, PoS LL2018 (2018) 019, http://dx.doi.org/10.22323/1.303.0019.
[59] M.V. Kompaniets, E. Panzer, Phys. Rev. D96 (3) (2017) 036016, http:

//dx.doi.org/10.1103/PhysRevD.96.036016, arXiv:1705.06483.

[60] F.V. Tkachov, Phys. Lett. 100B (1981) 65–68, http://dx.doi.org/10.1016/
0370-2693(81)90288-4.

[61] K.G. Chetyrkin, F.V. Tkachov, Nuclear Phys. B192 (1981) 159–204, http:
//dx.doi.org/10.1016/0550-3213(81)90199-1.

[62] A. Genz, in: P. Keast, G. Fairweather (Eds.), A Package for Testing Mul-
tiple Integration Subroutines, Springer Netherlands, Dordrecht, 1987, pp.
337–340, http://dx.doi.org/10.1007/978-94-009-3889-2_33.

[63] D. Nuyens, https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/.
[64] M. Frigo, S. Johnson, et al., https://github.com/FFTW/fftw3.
[65] D. Nuyens, R. Cools, in: H. Niederreiter, D. Talay (Eds.), Monte Carlo

and Quasi-Monte Carlo Methods 2004, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006, pp. 373–387.

http://refhub.elsevier.com/S0010-4655(19)30067-0/sb54
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb54
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb54
http://dx.doi.org/10.1007/JHEP12(2016)096
http://dx.doi.org/10.1007/JHEP12(2016)096
http://dx.doi.org/10.1007/JHEP12(2016)096
http://arxiv.org/abs/1609.06685
http://dx.doi.org/10.1007/JHEP12(2015)086
http://dx.doi.org/10.1007/JHEP12(2015)086
http://dx.doi.org/10.1007/JHEP12(2015)086
http://arxiv.org/abs/1507.06310
http://dx.doi.org/10.1103/PhysRevD.93.125014
http://arxiv.org/abs/1510.06758
http://dx.doi.org/10.22323/1.303.0019
http://dx.doi.org/10.1103/PhysRevD.96.036016
http://dx.doi.org/10.1103/PhysRevD.96.036016
http://dx.doi.org/10.1103/PhysRevD.96.036016
http://arxiv.org/abs/1705.06483
http://dx.doi.org/10.1016/0370-2693(81)90288-4
http://dx.doi.org/10.1016/0370-2693(81)90288-4
http://dx.doi.org/10.1016/0370-2693(81)90288-4
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1007/978-94-009-3889-2_33
https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/
https://github.com/FFTW/fftw3
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb65
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb65
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb65
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb65
http://refhub.elsevier.com/S0010-4655(19)30067-0/sb65

	A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec
	Introduction
	Description of the method
	Quasi-Monte Carlo integration
	Generating vectors
	Transformations
	Variance reduction

	Stand-alone usage of the integrator library
	Installation
	Minimal example
	Usage
	Case 1
	Case 2
	Usage on GPUs

	Design and implementation

	Usage of the integrator library within
	Installation
	Usage
	Using CPUs only
	Using GPUs and CPUs

	Examples
	Basic usage
	3-mass banana graph
	Non-planar 4-point function with massive propagators and massive legs of different mass
	Pentabox
	Elliptic 2-loop integral
	Hyperelliptic 2-loop integral
	4-loop form factor example
	2-loop nbox
	6-loop bubble

	Profiling
	Scaling behaviour
	Timings for test functions
	Timings for loop integrals

	Conclusions
	Acknowledgements
	Appendix. API documentation
	Public fields
	Public member functions
	Generating vectors
	Integral transforms
	Fit functions

	References

