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Abstract
This paper introduces a new bootstrap method based on the nonparametric predic-
tive inference (NPI) approach to statistics. NPI is a frequentist statistics framework 
which explicitly focuses on prediction of future observations. The NPI framework 
enables a bootstrap method (NPI-B) to be introduced which, different to Efron’s 
classical bootstrap (Ef-B), is aimed at prediction of future observations instead of 
estimation of population characteristics. A brief initial comparison of NPI-B and 
Ef-B is presented. The main reason for introducing NPI-B here is for its application 
to NPI for reproducibility of statistical tests, which is illustrated for the two-sample 
Kolmogorov–Smirnov test.

Keywords  Bootstrap · Kolmogorov–Smirnov test · Nonparametric predictive 
inference · Reproducibility of tests

1  Introduction

Nonparametric predictive inference (NPI) [3, 8, 9] is a frequentist statisti-
cal methodology based on only few assumptions. For general inferences on one 
or more future real-valued observations, based on n data observations, it uses 
Hill’s assumption A(n) [17] in combination with imprecise probabilities to quan-
tify uncertainty [4]. Augustin and Coolen [3] showed that NPI-based lower and 
upper probabilities have strong consistency properties in imprecise probability 
theory. They always contain the corresponding empirical probability, and the 
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imprecision, defined as the difference between the upper and lower probabilities 
for an event, logically reflects the amount of data available. In this paper, we pre-
sent an alternative to the classical bootstrap method [14, 15], based on NPI. The 
method is actually quite close in nature to Banks’ smoothed bootstrap [5], but 
with the crucial difference that the values in one bootstrap sample are not derived 
conditionally independently, given the original data. While established boot-
strap methods focus on estimation of characteristics of an assumed underlying 
population from which observations are randomly drawn, the new NPI bootstrap 
method, indicated by NPI-B, is explicitly aimed at predictive inference, with vari-
ability in different bootstrap samples reflecting uncertainty in prediction in line 
with the NPI method.

The bootstrap method was introduced by Efron [14]. It is a resampling tech-
nique for estimating characteristics of an assumed population from which the 
data observations were sampled, and for quantifying the quality of the estimates 
by providing an indication of the variability involved. The bootstrap method has 
become one of the most used statistical methods. It uses Monte Carlo sampling 
to generate an empirical estimate of the sampling distribution of the statistic of 
interest, the bootstrap distribution. It uses a plug-in principle to approximate the 
sampling distribution by the bootstrap distribution. Efron [14] defined a bootstrap 
sample x∗ = (x∗

1
, x∗

2
,… , x∗

n
) , obtained by randomly sampling n times, with replace-

ment, from the original data points x1, x2,… , xn.
There are many references that show the principles and validity of bootstrap 

and how it works. Efron and Tibshirani [15] and Davison and Hinkley [12] have 
described bootstrap methods with example applications to statistical tests, confi-
dence intervals and regression. Chernick [7] discussed the key ideas and applica-
tions of the bootstrap to the above named inferences as well as time series. Young 
[24] provided an introductory overview to bootstrap and related methods, and dis-
cussed bootstrapping for both independent and dependent data.

Banks [5] presented smoothed versions of Efron’s bootstrap and Bayesian 
bootstrap. We provide details of Banks’ smoothed version of Efron’s bootstrap as 
this has similarities to NPI-B as introduced in this paper. We call it Banks’ boot-
strap to clearly distinguish it from Efron’s bootstrap. Banks’ bootstrap smooths 
Efron’s bootstrap by linear interpolation (‘histospline smoothing’) between the 
jump points of the empirical distribution [5]. This procedure for one-dimensional 
real-valued observations restricted to a finite interval, is as follows. Suppose 
one has a sample of n observations, for ease of notation and introduction of the 
methods we assume that there are no tied observations, but any ties are easily 
dealt with by breaking ties by assuming very small differences or allowing point 
masses. 

1.	 The n observations create a partition of the finite interval of possible values con-
sisting of n + 1 intervals.

2.	 Select one of these intervals, each with probability 1∕(n + 1).
3.	 Sample an observation uniformly from this interval.
4.	 Repeat steps 2 and 3 m − 1 times to create a bootstrap sample of size m.
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5.	 Compute the statistic of interest from this bootstrap sample.
6.	 Repeat steps 2–5 to get multiple bootstrapped values for the statistics of interest; 

these can be used to derive the bootstrap estimate for the statistic of interest and 
to quantify variability of this estimate.

Banks [5] provides a detailed study of the performance of his smoothed bootstrap 
method compared to Efron’s bootstrap, and concludes that it tends to perform better, 
in particular for small data sets.

In this paper, we present an alternative bootstrap method, based on nonparametric 
predictive inference (NPI). Whilst it shares the smoothing idea with Banks’ boot-
strap, the procedure differs fundamentally as described later. However, we do not 
want to restrict its use to a finite interval, and we will discuss in Sect. 2 how to ena-
ble the use of NPI-B on the real (half-)line. It should be noted that Banks’ bootstrap 
can similarly be generalized to non-finite support, and this is not considered further 
in this paper.

It should be emphasized that this paper has two main aims: introducing NPI-B 
and illustrating its use for NPI for reproducibility of statistical tests. Due to the pre-
dictive nature of NPI, and hence of NPI-B, comparison with classic bootstrap meth-
ods, which are explicitly aimed at estimation, are complicated; hence we give a brief 
initial comparison but leave detailed comparison as an important topic for future 
research. The motivation for NPI-B from our research into test reproducibility is 
due to the fact that NPI for reproducibility [11] leads to major computational prob-
lems for all but small data sets, while explicit expressions for NPI lower and upper 
reproducibility probabilities can only be derived for a few basic tests. The NPI-B 
approach provides an attractive solution to these problems, as is explained later in 
this paper.

Nonparametric predictive inference (NPI) [3, 8, 9] is a frequentist statistical 
method based on Hill’s assumption A(n) . Hill [17] introduced the assumption A(n) for 
prediction if there is no prior information about an underlying population distribu-
tion, or, perhaps more realistically, if one prefers not to use any such possible infor-
mation in order to provide inferences that are strongly based on the data. Assum-
ing that available data consist of n real-valued observations, the assumption A(n) 
provides direct conditional probabilities for one future real-valued observation, or, 
when A(n),… ,A(n+m−1) are applied sequentially [1, 9], for m future observations. To 
introduce A(n) [17], we denote the n ordered observations by y(1) < y(2) < ⋯ < y(n) , 
for ease of notation we define y(0) = −∞ and y(n+1) = ∞ , which we will replaced by 
known finite bounds for the possible values of the future observation in case these 
are known or assumed. These observations partition the real-line into n + 1 inter-
vals Il = (y(l−1), y(l)) , for l = 1, 2,… , n + 1 . The assumption A(n) provides a partially 
specified probability distribution for the next observation Yn+1 by defining

for l = 1, 2,… , n + 1.

(1)P(Yn+1 ∈ Il) =
1

n + 1
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It is clear that A(n) is a post data assumption related to exchangeability [13], that 
statistical inferences based on it are predictive and nonparametric, and that it may 
be suitable if there is no knowledge about the random quantity of interest beyond 
the data or one explicitly does not wish to use or assume such knowledge. A(n) is not 
sufficient to get precise probabilities for general events of interest, but it provides 
lower and upper bounds for a probability for any event and these are lower and upper 
probabilities in imprecise probability theory [4]. The use of these lower and upper 
probabilities based on A(n) , for a variety of statistical inferences, has been called 
nonparametric predictive inference (NPI) [3, 8, 9]. Augustin and Coolen [3] pre-
sented the NPI lower and upper probabilities for real-valued random quantities, and 
their strong consistency properties in the theory of imprecise probability. The NPI 
lower probability for an event A is denoted by P(A) , the corresponding NPI upper 
probability is denoted by P(A) . Generally, 0 ≤ P(A) ≤ P(A) ≤ 1 . The NPI lower and 
upper probabilities for the event Yn+1 ∈ B , where B ⊂ ℝ are

The lower probability (2) consists of all probability mass, according to A(n) , that 
must be in B, while the upper probability (3) consists of all the probability mass that 
can be in B.

Section 2 of this paper presents the NPI bootstrap method together with an initial 
comparison, via simulation studies, with Efron’s bootstrap [14]. The main reason for 
introducing NPI-B is its application to NPI reproducibility of statistical tests, which 
is presented in Sect. 3. Test reproducibility is a topic which has received increas-
ing attention in recent years, partly due to some users of statistical methods appar-
ently having difficulties with the interpretation of p-values. We have presented infer-
ence on test reproducibility from NPI perspective [11], claiming that the predictive 
nature of NPI fits well with the practical question of interest, namely whether or not 
a repeat of an experiment would lead to the same overall test result. The exact NPI 
methods presented in [11] are computationally very demanding for realistic data sets 
and only applicable for the most basic tests. The NPI bootstrap method presented in 
this paper provides a suitable tool to implement the NPI approach to test reproduc-
ibility to a wider range of tests and larger sample sizes. Sect. 4 contains some con-
cluding remarks.

2 � NPI Bootstrap

In this section, we present the main idea of NPI bootstrap (NPI-B) for real-
valued data, and we provide a brief initial comparison with Efron’s bootstrap, 
mainly to illustrate the differences between the approaches. Detailed compari-
son for NPI-B with other bootstrap methods is complicated, due to the explicitly 

(2)P(Yn+1 ∈ B) =
1

n + 1
|{l ∶ Il ⊆ B}|

(3)P(Yn+1 ∈ B) =
1

n + 1
|{l ∶ Il ∩ B ≠ �}|
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different natures of the approaches: NPI-B is developed for predictive inference 
while established bootstrap methods are aimed at estimation of population char-
acteristics. Such detailed comparisons to get a complete picture of the advantages 
and disadvantages of different methods is of course important, e.g., to see if the 
increased variability in NPI-B compared to other bootstrap methods may also 
have benefits for quantification of variability of estimates of population character-
istics; this is left as an important topic for future research.

In the NPI-B method, the observations are drawn from the intervals between 
the original data observations, similar to Banks’ bootstrap as outlined in Sect. 1. 
In NPI-B the first bootstrap value is drawn in exactly the same manner as the first 
value in Banks’ bootstrap procedure. However, subsequent values are drawn dif-
ferently, the key difference being that any already sampled bootstrap observation, 
for the same bootstrap sample, is added to the data and hence the observations 
in a single NPI-B bootstrap sample are not conditionally independent, given the 
original sample of size n, as is the case in Banks’ bootstrap. So, the first sampled 
observation is added to the data set, leading to n + 1 observations which create 
a partition consisting of n + 2 intervals. The second observation is then drawn 
from these n + 2 intervals, otherwise following the same procedure as in Banks’ 
bootstrap. This is continued, with each observation drawn from the intervals in 
the partition created by the n original observations together with all previously 
drawn observations belonging to the same bootstrap sample. This continues until 
m observations have been drawn, where m is chosen beforehand, and these m 
observations form one NPI-B sample (which of course does not include the n 
original data observations).

The NPI-B algorithm for one-dimensional real-valued data on a finite interval 
is as follows: 

1.	 The n observations create a partition of the finite interval of possible values con-
sisting of n + 1 intervals.

2.	 Select one of these intervals, each with probability 1∕(n + 1).
3.	 Sample an observation uniformly from this interval.
4.	 Add this observation to the data; increase n to n + 1.
5.	 Repeat steps 2–4 (so now with one more data observation then used to sample the 

previous value), to get a further future value. Stop this once the bootstrap sample 
consists of m observations.

6.	 Compute the statistic of interest from this bootstrap sample.
7.	 Repeat steps 2–6 to get multiple bootstrapped values for the statistics of interest; 

these can be used to derive the bootstrap estimate for the statistic of interest and 
to quantify variability of this estimate.

In this algorithm, we use the uniform distribution to sample an observation from 
a given interval. This distribution can of course be changed, consideration of this 
option for specific applications where the uniform distribution may not be the 
most natural assumption is beyond the scope of this introductory presentation of 
the NPI-B method and is left as an interesting topic for future research.
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For our application of NPI-B to test reproducibility, it is important that we 
can apply the method to real-valued observations without the restriction to a 
finite interval of possible values for the future observations. The problem is that 
one cannot sample an observation uniformly from an open-ended interval, so in 
step 3 of the above algorithm we must assume a different probability distribution 
over such an interval in order to sample the future observation. Of course, there 
are many opportunities to do so, and it may be possible to use some background 
information or additional aspects of the data to choose specific distributions, but 
to introduce this method we propose to use the tail of a Normal distribution for 
general real-valued data, and the tail of an Exponential distribution for non-nega-
tive real-valued data, e.g., failure time data.

For the first case, so considering data on the whole real-line, we fit a single 
Normal distribution to be used for both the intervals 

(
−∞, x1

)
 and 

(
xn,∞

)
 , and 

this is done such that, according to this Normal distribution, both these intervals 
have probability mass 1∕(n + 1) , which corresponds to the A(n) assumption. This 
is achieved by setting the mean � and the standard deviation � of the Normal dis-
tribution equal to

and

For the second case, with data on [0,∞) , we fit an Exponential distribution, speci-
fied by the cumulative distribution function P(Y ≤ y) = 1 − e−�y for y ≥ 0 , to the 
final interval (xn,∞) by setting the rate parameter equal to

For both these cases, we keep sampling from the Uniform distribution to derive val-
ues in any of the other intervals created by the data, which are of finite length.

To get an initial idea of how NPI-B compares to Efron’s bootstrap, which we 
indicate by Ef-B, we report on some results from a simulation study. More details, 
including some comparison with Banks’ bootstrap, can be found in the PhD the-
sis of the second-named author [6]. It must be emphasized that NPI-B is funda-
mentally different to the other bootstrap methods due to its explicit aim at predic-
tive inference, while the other methods have all been developed for estimation of 
population characteristics and related inferences for the quality of the estimates. 
Hence, detailed comparison of the methods, in particular to see if NPI-B could 
also be used for the latter objectives, is an important topic for future research.

The different nature of NPI-B compared to Ef-B is clearly seen when consider-
ing confidence intervals, related to estimation of particular population character-
istics, and prediction intervals, related to predicting a future observation. First, 

(4)� =
x1 + xn

2

(5)� =
xn − �

Φ−1(
n

n+1
)

(6)� =
ln(n + 1)

xn
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we compare bootstrap confidence intervals of Ef-B and NPI-B. There are several 
methods to define bootstrap confidence intervals [20], to illustrate the substan-
tial difference between bootstrap methods for estimation and for prediction they 
do not make much difference, we will use the BCa interval [15]. Table 1 shows 
the coverage proportions of 100(1 − 2�) percent BCa intervals for both Ef-B and 
NPI-B, with data simulated from a Normal distribution with mean 28 and vari-
ance 4 (note that for this comparison the values of these two parameters are irrel-
evant). We have used different values n for the original sample size, with boot-
strap samples of the same size, and different values for � . We consider estimation 
of the mean, variance and third quartile ( q75 ). We constructed 1000 bootstrap 
confidence intervals for each case, and for each of these we used 1000 bootstrap 
samples per run (so for each simulated data set). In the PhD thesis of the second-
named author, more distributions are considered, the results lead to the same con-
clusions as those presented in Table 1, namely that NPI-B performs substantially 
worse than Ef-B in terms of coverage of confidence intervals for these population 
characteristics.

It is not unexpected that NPI-B does not provide confidence intervals with the 
right coverage, and hence performs worse than EF-B, as it is not developed for 
estimation of population characteristics, but for prediction of future observations, 
or summary statistics of these. To illustrate this difference, we briefly consider 
the predictive performance of both these bootstrap methods. We create similar 
intervals based on the bootstrap methods as the confidence intervals above, but 
we now compare these with related statistics of a further sample drawn from the 
assumed distribution, which serves as a future observation of a sample statistic 
and hence is used to see if it is in the NPI-B or Ef-B prediction intervals.

Again we sample from the Normal distribution as described above, results for 
other distributions were quite similar [6]. Mojirsheibani [21] and Mojirsheibani 
and Tibshirani [22] presented different types of bootstrap prediction intervals, 
including the bootstrap percentile method which we use and which is as follows: 

Table 1   Coverage of (1 − 2�) confidence intervals for NPI-B and Ef-B

n = � = 0.01 � = 0.05

20 50 100 200 500 20 50 100 200 500

Mean
 NPI-B 0.97 0.98 0.97 0.95 0.95 0.69 0.70 0.70 0.68 0.70
 Ef-B 0.97 0.98 0.98 0.97 0.99 0.87 0.90 0.90 0.89 0.91

Variance
 NPI-B 0.92 0.90 0.93 0.92 0.95 0.59 0.55 0.56 0.58 0.62
 Ef-B 0.91 0.96 0.97 0.98 0.98 0.83 0.87 0.88 0.90 0.91
q
75

 NPI-B 0.97 0.97 0.97 0.96 0.96 0.73 0.71 0.71 0.69 0.71
 Ef-B 0.97 0.98 0.98 0.98 0.98 0.89 0.87 0.90 0.90 0.92
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1.	 Draw a sample of size n from a specific distribution, denoted by x1,… , xn . Then 
draw a second sample, also of size n, from the same distribution, denoted by 
y1,… , ym . Let ty denote the y-sample based summary statistic of interest.

2.	 Use the x-sample to draw B bootstrap samples of size n as described above. Cal-
culate the same summary statistic tj for each of these bootstrap samples, so for 
j = 1,… ,B.

3.	 Construct an 100(1 − 2�)% prediction interval for ty by defining the lower bound 
to be the � × B-th value in the ordered list of the values tj and the upper bound to 
be the (1 − �) × B-th value in this list (using the nearest integer if these values or 
not integer).

4.	 Check if the prediction interval from step 3 contains the value ty from step 1.

Results for some different cases are given in Tables 2 and 3. These show that the 
prediction intervals have far better coverage for NPI-B than for Ef-B. It should 
be emphasized that this comparison does not provide more insight into the per-
formances of these methods beyond this brief initial comparison, which however 
was supported by more similarly performed comparisons [6]. The difference in 
performance of NPI-B and Ef-B for estimation and prediction is expected to be 

Table 2   Coverage of 90% 
prediction intervals for NPI-B 
and Ef-B

n = 20 50 100 200 500

Mean
 NPI-B 0.93 0.87 0.82 0.91 0.92
 Ef-B 0.77 0.70 0.68 0.75 0.80

Variance
 NPI-B 0.92 0.90 0.90 0.90 0.87
 Ef-B 0.75 0.66 0.68 0.71 0.69
q
75

 NPI-B 0.94 0.89 0.86 0.90 0.85
 Ef-B 0.80 0.71 0.70 0.77 0.74

Table 3   Coverage of 98% 
prediction intervals for NPI-B 
and Ef-B

n = 20 50 100 200 500

Mean
 NPI-B 1.00 0.95 0.97 0.99 0.99
 Ef-B 0.92 0.88 0.89 0.93 0.93

Variance
 NPI-B 0.98 1.00 0.99 0.99 1.00
 Ef-B 0.78 0.89 0.91 0.90 0.88
q
75

 NPI-B 1.00 0.95 0.99 0.98 0.99
 Ef-B 0.94 0.83 0.87 0.90 0.92
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such that NPI-B is better for prediction while Ef-B is better for most estimation 
scenarios. This is due to the fact that the NPI-B bootstrap samples have far more 
variability than the Ef-B bootstrap samples, with the former going outside the 
original data set and positive dependence of values within a single bootstrap sam-
ple. Compared to Ef-B, this tends to lead to wider intervals with more variation 
in the centers of the intervals. Ef-B is well known to work well for estimation 
of most population characteristics, but it can go wrong if interest is in a very 
large (or small) percentile of the population distribution, which will typically not 
be covered well unless the bootstrap samples are large. Ef-B does not cater for 
the additional variation when considering prediction, for which NPI-B is explic-
itly developed. NPI-B is expected to perform better when interest is in very large 
(or small) percentiles, as a reasonable proportion of the bootstrap samples will 
frequently cover these due to the out-of-data sampling. An important topic for 
further research into performance of NPI-B, in comparison to Ef-B, is how this 
depends on the underlying population distribution, in particular skewness might 
affect both these methods. It is expected that, unless there is extreme skewness, 
NPI-B keeps performing best for prediction and Ef-B for estimation. A substan-
tially more detailed study into NPI-B, in particular with the possibility to use it, 
or adapt it, for estimation, is left as an important topic for future research. In this 
section, we have introduced NPI-B and briefly illustrated its predictive nature, as 
opposed to Ef-B which is developed for estimation. This was done for the use of 
NPI-B as a means of advancing the NPI approach for test reproducibility, which 
is presented in the next section.

3 � Test Reproducibility Using NPI‑Bootstrap

We introduced the NPI method for reproducibility of statistical hypothesis tests in 
[11]. This has been followed by further investigations, in particular considering 
tests based on order statistics [10] and likelihood ratio tests [19]. This application 
of NPI considers the question if a repeat of a statistical hypothesis test, performed 
in exactly the same way as the actual test, would lead to the same conclusion, that 
is rejection of the null hypothesis or not. There has been much confusion about 
test reproducibility, following a paper by Goodman [16] in which the issue was 
raised and a subsequent discussion to Goodman’s paper by Senn [23] in which 
clarifications from statistical perspectives were provided. For a more detailed 
introduction to the topic and related literature see [2, 6, 11]. We consider the test 
reproducibility problem as fundamentally predictive, and hence we have proposed 
the NPI approach as providing a natural solution to it. The tests considered in our 
introductory paper [6] were basic nonparametric one-sample tests, while we also 
considered the two-sample rank sum test (also known as Wilcoxon Mann Whit-
ney test or variations to this name). For the latter, we could only compute NPI 
lower and upper reproducibility probabilities for small sample sizes, due to the 
combinatorics involved. Beyond basic tests, which typically have a simple suf-
ficient statistic, it is difficult to derive closed form expressions for the NPI lower 
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and upper reproducibility probabilities, this is e.g., the case for the two-sample 
Kolmogorov–Smirnov (KS) test. The NPI Bootstrap method, presented in this 
paper, is useful for such cases, as we present in this section with specific attention 
to the KS test. We should note that the PhD thesis of the second-named author 
[6] also presents the application of NPI-B to the two-sample rank sum test, and 
compares it for small samples to the analytically derived NPI lower and upper 
reproducibility probabilities. The NPI-B results are always within the interval 
created by the NPI lower and upper probabilities, due to the construction of the 
latter, with no assumptions of probability masses assigned to intervals between 
consecutive observations, this is a logical result that one would always expect but 
which in extremely rare cases may not hold, due to the randomness of the boot-
strap inferences.

The two-sample Kolmogorov–Smirnov test (KS test) [18] is a well-known 
nonparametric test for equality of the underlying population distributions of two 
samples. Suppose that an iid sample X1,X2,… ,Xnx

 of size nx is randomly selected 
from a population with cumulative distribution function Fx , and an iid sample 
Y1, Y2,… , Yny of size ny is randomly selected from a population with cumulative 
distribution function Fy . Consider the null hypothesis H0 ∶ Fx(t) = Fy(t) for every 
t, versus the alternative hypothesis H1 ∶ Fx(t) ≠ Fy(t) for at least one t. Let F̂x(t) 
and F̂y(t) be the empirical cumulative distribution functions based on the X and Y 
samples, respectively. Let d be the greatest common divisor of nx and ny and set 
J =

nxny

d
max |F̂x(t) − F̂y(t)| , then J is the two-sided two-sample Kolmogo-

rov–Smirnov statistic. To compute it let H(1),H(2),… ,H(N) be the N = nx + ny 
ordered values of the combined samples X1,X2,… ,Xnx

 and Y1, Y2,… , Yny . Then 
J =

nxny

d
max |F̂x(H(i)) − F̂y(H(i))| . At significance level � , H0 is rejected if and only 

if J ≥ j� where j� can be found in tables [18].
We briefly illustrate the application of NPI-B to the two-sided KS test. Table 4 

presents some results for two samples, with nx = ny = 10 , both sampled from the 
standard Normal distribution, and presenting the NPI-B estimates of the NPI 
reproducibility probability for 30 simulated cases. For this illustration we use 
� = 0.1678 , which leads to test rule that H0 is rejected if and only if J ≥ 5 . This 
value for the significance level was chosen as it leads to quite similar numbers 
of cases where the null hypothesis is rejected or not, and hence it provides some 
meaningful output for the application of our method. As expected, and also seen 
in earlier NPI studies of test reproducibility [10, 11, 19], the estimates of the NPI 

Table 4   KS test, H
0
 holds J Frequency Values of NPI-B-RP

2 5 0.732, 0.734, 0.763, 0.773, 0.781
3 4 0.687, 0.689, 0.720, 0.741
4 6 0.600, 0.620, 0.624, 0.630, 0.671, 0.693
5 6 0.463, 0.463, 0.472, 0.515, 0.519, 0.553
6 5 0.518, 0.530, 0.541, 0.589, 0.657
7 4 0.674, 0.735, 0.770, 0.774
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reproducibility probabilities tend to smallest if the original test leads to a test sta-
tistic close to the test threshold, so here to a value 4 or 5 for J.

Table 5 shows the results of a similar study and the same sample sizes, but now 
with the X sample drawn from the Uniform distribution on (0, 1) and the Y sample 
drawn from the Uniform distribution on (0.25, 0.5). Now, as expected, H0 is more 
often rejected on the basis of the original samples, and we see again that the NPI 
reproducibility estimates probabilities tend to be larger the further away the origi-
nal value J is from the test threshold. We also note that, for each value of J in these 
cases, the entries per table are quite similar; variation is due to the original data 
samples varying in each case, and of course there is some variation due to the use of 
the NPI-B procedure. Some further investigations have been reported in the second 
author’s PhD thesis [6], but more detailed investigations are left as important top-
ics for future research. It should be emphasized that the application of NPI-B for 
reproducibility inference for the KS test was necessary as no closed-form expres-
sions could be derived

4 � Concluding Remarks

This paper has introduced a new version of bootstrap, nonparametric predictive 
inference bootstrap (NPI-B), which is explicitly aimed at predictive inference. A 
brief initial comparison with Efron’s bootstrap shows that the latter performs better 
for estimation but NPI-B performs better for prediction. These initial results moti-
vate much further research, in particular to investigate further properties and per-
formance of NPI-B for other inferences, and also to see if NPI-B can be adapted for 
use in estimation inferences. A main reason for introducing NPI-B is to enable esti-
mation of test reproducibility probabilities in the NPI framework. While this paper 
sets out the idea and briefly illustrated it, further investigations on the properties of 
the method and applications to other scenarios are left as important topics for future 
research.
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Table 5   KS test, H
0
 does not 

hold
J Frequency Values of NPI-B-RP

3 3 0.611, 0.666, 0.712
4 5 0.409, 0.409, 0.451, 0.507, 0.555
5 5 0.494, 0.528, 0.607, 0.624, 0.648
6 5 0.637, 0.670, 0.718, 0.761, 0.763
7 4 0.766, 0.794, 0.803, 0.815
8 6 0.897, 0.899, 0.903, 0.906, 0.924, 0.945
9 1 0.965
10 1 0.980
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