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Abstract: Homogenisation of global A¢ and exponential M attractors for the damped semi-linear anisotropic
wave equation o7u® + you® — div (a (X) Vu®) + f(u®) = g, on a bounded domain Q C R, is performed.
Order-sharp estimates between trajectories u®(t) and their homogenised trajectories u°(t) are established.
These estimates are given in terms of the operator-norm difference between resolvents of the elliptic operator
div (a (¥) V) and its homogenised limit div (ahv>. Consequently, norm-resolvent estimates on the Haus-

dorff distance between the anisotropic attractors and their homogenised counter-parts A° and M° are estab-
lished. These results imply error estimates of the form disty(A¢, A°) < Ce* and disty(M#, M°) < Ce* in the
spaces X = L2(Q) x H"'(Q) and X = (CP(Q))?. In the natural energy space & := H3(2) x L?(Q2), error estimates
distg (A%, ToA%) < Cv/e™ and dists: (M?, T:MP) < C/e” are established where T, is first-order correction for
the homogenised attractors suggested by asymptotic expansions. Our results are applied to Dirchlet, Neu-
mann and periodic boundary conditions.

Keywords: damped wave equation, global attractor, exponential attractor, homogenisation, homogenization,
error estimates
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Introduction

In this article we consider the following damped semi-linear wave equation in a bounded smooth domain
Q c R3 with rapidly oscillating coefficients:

{afu‘E +you® —div (a (%) vu®) + f(u®) = glx), xeQ,t=0, 01)

(u®, 0¢u®)|t=0 = &, u®lyo = 0.

Such equations appear, for example, in the context of non-linear ascoustic oscillations in periodic composite
media (see for example [1]).

For fixed € > 0, the long-time behaviour of u* has been intensively studied in many works under various
assumptions on the non-linearity f and force g. In the context of dissipative PDEs the long-time dynamics
can be studied in terms of global attractors. Intuitively speaking, the global attractor is a compact subset of
the infinite-dimensional phase space which attracts all trajectories that originate from bounded regions of
phase space. Therefore, the global attractor is in some sense a ‘much smaller’ subset of phase space that
characterises the long-time dynamics of the system (see for example [2-7]).
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It is well-known that for suitable assumptions on the non-linearity (cf. [2, 7]) that problem (0.1) possesses
a global attractor A¢ and an important question to ask, from the point of view of applications, is about the
asymptotic structure, with respect to g, of the global attractor A€ in the limit of small €. Asymptotics for global
attractors have been studied, in the context of reaction diffusion equations and the damped wave equation,
with respect to ‘lower-order’ rapid spatial oscillations in the dampening, non-linearity and/or forces g (see
[8-11]). Yet surprisingly, to the best knowledge of the authors, little or no work has been performed on the
asymptotics of attractors for hyperbolic dissipative systems with ‘higher-order’ rapid spatial oscillations such
as in (0.1). We mention here the works [12] that perform a quantitative analysis of the asymptotics of global
attractors in the context of reaction diffusion equations. We also mention the works [13, 14] that determine
the limit-behaviour of global attractors, in the context of reaction-diffusion and hyperbolic equations, for a
particular choice of rapidly oscillating coefficients that degenerate in the limit of small period. Aside from
the very limited amount of work done on the asymptotics of global attractors for dissipative PDEs with rapid
oscillations, no work has been done on the asymptotics of exponential attractors. This article is dedicated to
performing these studies for problems of the form (0.1).

In this article we aim to study the long-time behaviour of trajectories u¢ to (0.1), for small parameter €,
from the point of view of homogenisation theory. In homogenisation theory, the mapping

Aeu := —div (a(;)Vu),

for periodic uniformly elliptic and bounded coefficients a(-), is well-known to converge (in an appropriate
sense) in the limit of small € to
Aou := —div (ahVu),

where a” is the ‘effective’ or ‘homogenised’ constant-coefficient matrix associated to a(-) (see for example
[15] and references therein). As such, it is natural to compare the long-time dynamics of u® to the long-time
dynamics of u° the solution to homogenised problem

02u® + yo.,u® - div (ahVuO) +fw®) =gx), xeQ, t=0,

(0.2)
(u07 atu0)|f=0 = {a u0|a.Q =0.

Homogenisation theory has been studied intensively since the 1970’s and amongst the extensive works
we focus on works related to quantitative estimates of the form

IAs" - Aot Il 2y < Ce, (0.3)

where the mappings have been equipped with appropriate boundary conditions. Such (sharp) order-¢ results,
that are now standard, has been proved by various authors using various techniques (see the monograph [16]
for a review of some of these techniques). We mention here the results of particular interest to our article; in
the case of bounded domain with Dirichlet or Neumann boundary conditions the order-sharp estimates were
proved for the first time in [17, 18] and utilised the (order-sharp) estimate proved in [19, 20] for the whole
space (and periodic torus).

While some work has been done to provide order-sharp operator estimates for individual trajectories in
the parabolic (cf. [15, 16]) or hyperbolic settings (for smooth enough initial data) (cf. [21-24]), no work is done
on providing order-sharp operator estimates for attractors in dissipative PDEs.

Our first main result is the following estimate! between the global attractors A¢ and A°, associated to
problem (0.1) and (0.2) respectively, in the energy spaces €' := L2(Q) x H"(Q) and (C#(Q))? (see Theorem
4.3 and Corollary 4.1):

diStgA (.Ag, .AO) < CHA;I - A61HZ(L2(_Q)),

(0.4)
. - -1163
dist s g (A%, A°) < ClIAL" = A" | Zz oy

1 Here distx(A, B) denotes the one-sided Hausdorff metric between sets A and B in the strong topology of X.
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for some s, 6 € (0, 1). Upon combining this result with the operator estimate (0.3) gives the desired error
estimates between global attractors.

The above inequality is new in the homogenisation theory of attractors. Moreover, this result is important
from the general perspective as it establishes the upper semi-continuity of global attractors of the damped
wave equation in terms of the elliptic part of the PDE. Indeed, in the proof of this result we do not use the
asymptotic structure in € of S¢(t) in terms of S (t). The arguments are purely operator-theoretic in nature and
only require that the elliptic operator is self-adjoint and boundedly invertible (see Section 4). In particular,
if A; and A were positive elliptic operators A = div(aV) and B = div(bV) for two different matrices a and
b, the above continuity result still holds. Additionally, the same can be said for different boundary condi-
tions: one can replace Dirichlet boundary conditions with other types of boundary conditions under the sole
requirement that A = div(aV) defines a self-adjoint operator in L%(Q) (see Section 7 for details).

Let us say a few words on the method of proof of (0.4). This result is essentially proved by establishing
the following (sharp) estimate between trajectories u®(t) and u®(t) for initial data in A¢ (Theorem 4.2):

||u8(t) - Llo(t)”Lz(Q) + ||a[u€(t) - atuo(t)||H,1(Q) < MeKt||Agl - A61 HL(LZ(.Q))’ t=0. (05)

Then, to prove (0.4), we combine this novel estimate with the exponential attraction property of A° which is
known to hold ‘generically’ on an open dense subset of forces g:

30 > 0 such that for every bounded set B C & the following estimate holds:
diste (So(t)B, A°) < M(||B|l¢)e™ ", t=0.

Notice that estimate (0.5) is optimal; indeed, upon substituting the right-hand side with & we arrive at the
expected order-sharp estimates in € (just as in the elliptic case (0.3)).

Aside from (0.4), a natural question to ask is if we can compare the global attractors in the energy space
& := H}(Q) x L*(Q). In general estimates of the form (0.4) are not to be expected in € and this is due to the
fact that, on the level of asymptotic expansions, the trajectories Vu¢(t) are not close to Vu°(t) but instead are
close to

3
Teul(t, x) == u(t, x) + € Z N,-(g)axiuo(t, X).
i=1
Here N; are the solutions to the so-called auxiliary cell problem (see Section 1). Indeed, in Homogenisation
theory it is known that (0.3) does not generally hold in H'(Q) but rather the following ‘corrector’ estimate

IAs" g - TeAo 8l < CVElSIra 0y

holds (cf. the above citations on error estimates in homogenisation of elliptic systems). For this reason, we
introduce the notion of correction to attractors:

Te = (T8, &%), &=, &) e A%,

and our next main result is the following corrector estimate (Theorem 5.3):

diste (A%, TeA®) < CVE™. (0.6)

To the best of our knowledge, in all previous works, no corrector estimates were provided in the homogeni-
sation of attractors. To prove this result we naturally aim to establish an inequality of the form:

1 (®) = Teu’ (O ) < MM Ve, =0, (0.7)

for initial data ¢ e .A°®. It turns out that for such initial data the trajectory u°(t) does not contain enough
regularity for such a result to hold. This issue is due to the hyperbolic nature of the problem and does not
appear, for example, in the context of parabolic equations. To overcome this issue we introduce specially
prepared initial data &, for the trajectory u® as follows: {(} € H(l)(Q) is the solution to

div(a"vé) = divia(z)veEl)  inQ.
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Then, for such a choice of initial data, we readily establish inequality (0.7) (Theorem 5.2 and Corollary 5.1) and
consequently prove (0.6). Such initial data was originally introduced in [25] in the homogenisation (without
error estimates) of the linear wave equation.

An important question from the point of view of applications is whether or not the estimates (0.4), (0.6)
hold in the symmetric Hausdorff distance

dist® (A%, A°%) = max { dist(4°, A°), dist(A°, A%)}.

To prove this one would need to show that for sufficiently small  the global attractor A is in fact (generically)
an exponential attractor with exponent, and set of generic forces, independent of €. Such a result seems
reasonable from the perspective of considering A® to be an ‘appropriate’ perturbation of the global attractor
A% and applying the theory of regular attractors, see for example [2, 26]. Such a result has yet to be established
and we intend to carry out this study in future work.

That being said, it is known that, in general, global attractors are not continuous (in the symmetric Haus-
dorff distance) under perturbations and that the rate of attraction can be arbitrarily slow. For this reason the
theory of exponential attractors was developed; such exponential attractors are known to be stable under
perturbations and attract bounded sets exponentially fast in time. Importantly, exponential attractors also
occupy ‘small’ subsets of phase space in the sense that they have finite fractal dimension, cf. [27-30].

Motivated by the above discussion, and the desire for estimates in the symmetric Hausdorff distance,
we also study the relationship between exponential attractors associated to problems (0.1) and (0.2). In fact
we construct exponential attractors M¢ and M° whose (finite) fractal dimension and exponents of attraction
are independent of &, and we determine the following analogues of (0.4) and (0.6) in the symmetric distance
(Theorem 6.1, Corollary 6.1 and Theorem 6.3):

dist} 1 (M®, M°) = ClAs" - Ao I 12y

dist? 0 (M, MO) < ClAZ" - AdM 1 P20 (0.8)

disty (M°, TeMO) < CVE™.

To establish the last inequality above we developed further (in Theorem 6.4) the known abstract construction
of exponential attractors of semi-groups to include the case of semi-groups that admit asymptotic expansions
(i.e. ‘corrections’ such as T¢).

We end the introduction with some words on the structure of this article. In Section 1, we formulate pre-
cise assumptions on the non-linearity f and the elliptic part of (0.1), (0.2). Also, we recall relevant known
well-posedness results as well as results on the existence of global attractors associated with (0.1), (0.2). For
the reader’s convenience, details on the corresponding attractor theory is provided in Appendix A. In Sec-
tion 2, for the dynamical systems generated by problems (0.1), (0.2), we establish existence and smoothness
results for an attracting set (which contains the global attractors). These results will be crucial in justifying
error estimates between anisotropic and homogenised attractors. In Section 3, we establish the convergence,
in the limit of ¢ — 0, of the anisotropic global attractor A€ to the homogenised attractor A° in the spaces
¢! and (CP(Q))2. In Section 4, we derive the central (order-sharp) estimate (0.5) on the difference between
trajectories u®(t) and u®(¢) of the corresponding anisotropic and homogenised problems. Then, based on this,
we demonstrate the quantitative estimates (0.4) on the distance between global attractors .A¢ and A°. Esti-
mate (0.6) between the global attractor .A? and first-order correction T¢.A° in the energy space & is proved
in Section 5. Section 6 is devoted to exponential attractors M¢, MP associated with problems (0.1), (0.2) and
consists of two parts. In Subsection 6.1, existence of the exponential attractors is proved and estimates (0.8)
in &€ and (CP(Q))? are obtained. The results in this section rely on a variant of a standard abstract result
on the construction of exponential attractors; this construction is included in Appendix B. In Subsection 6.2,
we compare the distance between the exponential attractor M¢ and the first-order correction TeMP in the en-
ergy space &. Subsection 6.2 rests on a new abstract theorem, presented in Appendix C, which compares the
distance between exponential attractors which admit correction. We discuss, and prove the corresponding
results for the cases of Neumann and periodic boundary conditions in Section 7. Some refinements of the
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results obtained in Sections 2-4 related to boundary corrections in homogenisation theory are the subject of
Appendix D.

Notations

We document here notations frequently used throughout the article. The L%(Q) inner product is given by
(u,v) = [,u(x)v(x)dx, with norm denoted by |[u| := (u, w2 for u,v € L%*(Q). We frequently con-
sider initial data in the energy spaces €1 := L?(Q) x H"}(Q), and & := H}(Q) x L?(Q). These spaces are
equipped with norms whose squares are given as ||&]|3 1 := [|€*[|* + ||€%[|7-1() and [|€]|3 := [|[VEY|1* + (|72
for admissible pairs? & = (¢ 1 & 2). For any function z(t) we set &,(t) to be the pair (z(t), 9:z(t)) where 9,z
denotes the distributional (time) derivative. For a Banach space E, Bg(0, r) denotes the ball centered at O
of radius r in E; the symbol [ - |z denotes the closure in E; the one-sided and symmetric Hausdorff dis-
tances between two sets A, B C E are respectively defined as distg(A, B) := sup,c, infyep|la - b||g and
dist%(4, B) := max { distg(4, B), distg(B, A)}. The standard Euclidean basis is denoted by {ek}zzl.

1 Preliminaries

Throughout the article, unless stated otherwise, we adopt the convention that M and K denote generic con-
stants whose precise value may vary from line to line.

For a given matrix a(-) = {a,-]-(-)};?',i:1 we denote by a” = {ag-}
to a(-) whose constant coefficients are given by the formula

3

i j-1 the homogenised matrix corresponding

3
aj = / (a,-j(y) + Zaik(Y)aykN}'()’)) dy.

) k=1
Here N;, i € {1, 2, 3}, is the solution to the so-called cell problem:

—divy (a(y)VyN;(y)) = divy (a(y)e;), ye€Q=1[0,1),
JoNiy)dy =0, Ni(-+e) =N;i(-)  je{1,2,3}.

(1.1)

It is well-known that if a(-) is symmetric, bounded and uniformly elliptic, then so is a” with the exact same
bounds (see for example [15, Section 1]). Furthermore, as a” is constant it is clearly periodic. Consequently,
both problem (0.1) and (0.2) are problems of the form

{afu +you —div(avu) + f(u) = gx), xeQ, t=0, 12

(u, 0tu)|¢=0 = ¢, ulo =0,

with the same generic assumptions on coefficients, forces and non-linearity; we collect these assumptions
together here:

Let Q C R? be a bounded smooth domain, g € L*(Q), a(-) = {al-j(-)}?,]-=1 satisfying

aj € L=(R?), ai = ajj, aii(- +ep) = a;(1), 1i,j,ke{1,2,3},

& vin??<a@mnsvin? v>0,  vyeR’, vneR’ (H1)
and f € C*(R) satisfying

f(s)s = —Ki, f'(s) 2 -Ky, IF"(s)] = K3(1 +|s), f0)=0, seR,

2 Here we adopt the common clash of notation for (-, ) to mean both an inner product and represent a pair in a product space. It
will be clear from the context which meaning is appropriate.
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for some positive constants v, K;.

Remark 1.1. We note that above assumptions on f imply the following bounds which are important in ob-
taining dissipative estimates.
a. There exists K > 0 and K5 > O such that  |f'(s)| < K4(1 +|s]?), |f(s)] < K5(1 +]s]?), seR.
b. The anti-derivative’ F(s) = [; f(1) dt satisfies %2 s> < F(s) < f(s)s + s>, seR.
c. Forall u > O there exists Ky > O such that ~ F(s) = Ky - us?, seR.
Also note that the assumption f(0) = 0 is, in fact, not a restriction since f(0) always can be included into
the forcing term g.

We begin with some basic existence, continuity and dissipative estimate results. Particular attention is paid
to the dependence of these results on the matrix a, assuming that the other variables (Q and f) are fixed.
As these results are standard we shall omit the proofs, commenting here that they are easily argued by the
techniques employed in Appendix A.

Theorem 1.1. Assume (H1). Then, for any initial data & € &, problem (1.2) possesses a unique energy solution
u with &, € C(R+; &). Moreover, the following dissipative estimate is valid:

&% + / loau(D)]? dr < M| )e P + M(lgl), t20, 13)
t

for some non-decreasing function M and constant § > O that depend only on v.

A consequence of the dissipative estimate (1.3), growth restrictions on f, and uniform ellipticity of a(-) we
have the following continuous dependence on initial data.

Corollary 1.1. Let u; and u, be two energy solutions to problem (1.2) with initial data &1, &, € & respectively.
Then the following estimate

160, (8) = &0, (O)| e < MeX|I&1 - &2]le, =20,
holds for some constant M > 0 and K = K(||&1]|¢, ||&21e5 ||gll5 V)-

Additionally, we have the following continuous dependence in &71.

Corollary 1.2. Let u; and u; be two energy solutions to problem (1.2) with initial data &1, &, € & respectively.
Then the following estimate

161 () = &0, (O)| -1 < Me[[&1 = &1, 20,
holds for some constant M > 0 and K = K(||&1]|¢, ||€21le5 |Igll5 V)-

We now proceed to study the long-time behaviour of solutions u from the point of view of infinite-dimensional
dynamical systems. In particular the problem (1.2) defines a dynamical system (€, S(t)) by

S():& =&, S)¢=é&ub), (14)

where u is a solution to the problem (1.2) with initial data &. The limit behaviour of a dissipative dynamical
system as time goes to +oo can be described in terms of a so-called global attractor. Let us briefly recall its
definition (see [2, 3, 5, 7]).

Definition 1.1. Let S(t) : &€ — & be a semi-group acting on a Banach space €. Then a set A is called a global
attractor for the dynamical system (€, S(t)) if it possesses the following properties:

3 The upper-bound follows from noting that g(s) = fos f(r)dr-f(s)s - KZ—ZS2 attains its maximum at s = 0.
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1. The set A is compactin &;
2. The set A is strictly invariant:
S(HA =A, Vt=0;

3. The set A uniformly attracts every bounded set B of &, that is

lim distg (S(t)B, A) = 0.
t—+oo

One can show that if a global attractor exists then it is unique. Also, the following description of the global
attractor in terms of bounded trajectories is known (see e. g. [2, 3]):

A={8 € €:341) € L(R; &), §(0) = 4o, S(O)§(s) =&(t+5), seR, t=0}. (1.5)
Now, the dissipative estimate (1.3) implies the existence of a bounded positively invariant absorbing set

B C & (which depends only on v):
S()yBc B, Vvt=0. (1.6)

To prove that a global attractor exists for problem (1.2) we utilise the following classical result ([2, 3, 5, 7]).

Theorem 1.2. A dynamical system (&, S(t)) possesses a global attractor A in & if the following conditions hold:
1. The dynamical system (&, S(t)) is asymptotically compact: there exists a compact set % C & such that

t1_i>m diste (S(6)B, ¢) =0, for all bounded sets B C &;

2. For each t > O the operators S(t) : € — & are continuous.
Under such conditions, it follows that A not only exists but also A C ¥ .

Note that Corollary 1.1 implies that the evolution operator S(t), given by (1.4), has continuous dependence on
the initial data. Let us focus on the existence of a compact attracting set.
Introducing the space

{ eli={¢&= (1 &) e e divave?) e LA(Q), &2 € HY(Q)}, 17)

2 ; 2 2,2
I1€]I3: == || div(aVED)||* +[|VE* )%,
we have the following known result that states there exists an attracting ball in &*.

Theorem 1.3. Assume (H1), and let S(t) be the semi-group defined by (1.4). Then, there exists a ball in &' that
attracts the set B, from (1.6), in &. More precisely, the inequality

diste (S()B, B¢1(0,R)) < Me ™, t=0,
holds for some positive constants R, M and f3 that depend only on v.

The proof of Theorem 1.3 is presented for the reader’s convenience in Appendix A and is based on a splitting
of trajectory u, into the smooth and contractive parts, that was developed in [31].

Consequently, as ! is compact in & we see from Theorem 1.3 that .# = B:1(0, R) is a compact attracting
set and, by Theorem 1.2, there exists a global attractor. That is, the following result holds.

Theorem 1.4. Assume (H1). Then, the dynamical system (€, S(t)) given by (1.4) possesses a global attractor
A C &' such that:
Aller < M(|glD)s, A =X]t=o, (1.8)

where X is the set of bounded energy solutions to problem (1.2) defined for all t € R, cf. (1.5).
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2 Smoothness of the global attractor

Above we demonstrated that the global attractor A is a bounded subset of &1, We shall now establish some
additional regularity of A. These results will be used later on to derive homogenisation error estimates.
We are going to show that A is contained in the more regular set

&2 .= {¢e el (div(av.fl) +g) € H}(Q) and div(aVé?) e LZ(Q)},
€132 == || div(aVED) + gl o) + || div(aVED|? + || div(avE?)||?,

and that A is bounded in the following sense: || A||¢2 < M.
To this end, we shall show that B¢1(0, R) is exponentially attracted, in &, to some ‘ball’ 4

Bg2(0,Ry) == {& € €| ||€]l¢2 < Ry}

Then by utilising the so-called transitivity property of exponential attraction we establish that B (from (1.6))
is attracted to B¢»(0, R1) exponentially in € and, therefore, we will show that A is bounded in 2.

Let us begin with the following theorem which provides a useful dissipative estimate for problem (0.2)
with initial data in & (see (1.7)).

Theorem 2.1. Assume (H1). Then for any initial data & € &' the energy solution u to problem (1.2) is such that
& € L=(Ry; &Y), and the following dissipative estimate is valid:

1O7u®)| + 1Eu(Olex < MIE]e1)e™ + M(g]), €20,

for some non-decreasing function M and constant 8 > O that depend only on v.

Since this result is standard we omit the proof. We only remark here that, by differentiating the first equation
of (1.2) in time, one first obtains a dissipative estimate for ||¢,,,(¢)||¢ which readily implies the uniform bound
on || div(aVu)(®)||.

Remark 2.1. Note that by elliptic regularity we have the inequality
[ul| ¢aggy < Cl div(avu)||, C=C()>0, 2.0)

for sufficiently small a = a(v) and admissible u. Here C*(Q) is the Holder space of order a:

Cc(Q) = {u € CQ): sup 7‘“5’)‘()__}/“‘9)‘ < oo}, [l gy = max [u()| + sup 7‘“%)_}”‘9')‘.
xX,y€Q, xeQ xX,y€Q,
x#y Xy

Thus, we have a dissipative estimate for u, given by Theorem 2.1, in the C*(Q) norm.

Consider G € H}(Q) such that - div(aVG) = g € L*(Q), and, for initial data ¢ € B¢1(0, R), the decomposition
of the solution u to (1.2) as follows: u = v + w where

{afv +yov —div(avv) =0, xeQ, t=0, 2.2)
{V|t=0 = ({1 - Gy {2)9 V|a.Q = Os
and
{afw +yow —diviavw) = -f(w)+g, xe€Q, t=0, 2.3)
{W‘tZO = (Gy 0)1 W‘aQ =0. .

4 Note that the convex functional || - || 2 is not a norm and the set £2 is an affine subset of £1.
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It is clear from standard linear estimates (e.g. Theorem 1.1 for f = g = 0) that

16Ol <ePM(gl), t=o0, 2.4)

for some constant 8 > 0 and non-decreasing function M that depend only on v. Additionally, we have the
following lemma on the regularity of w.

Lemma 2.1. Assume (H1), ¢ € B¢1(0, R) and w solves (2.3). Then
|| div(avw)(t) +g||H(1)(Q) + || div(avow)(t)|| < M()|glD, t=0,
for some non-decreasing function M that depends only on v.

Proof. By differentiating the first equation of (2.3) in time and by our choice of initial data (G, 0) we find that
p := 0¢w solves

{afp +yoep —div(aVp) = —-f'(W)ou=: G, x€Q, t=0, 2.5)
&l-o = (0,-f(Y)),  Pplag =0.
Moreover, q := 0¢p solves
{a%q +y0q - div(avq) = —f"(W)|ou|? - f/ W)otu=: G,, xe€Q, t=0,
&qli=o = (- fED, ¥f(EN - f1(EME?), qloq = 0.
By the dissipative estimate in &' (cf. Theorem 2.1 and Remark 2.1) we find that
90O+ 1u(t) oy < MlgID, ¢ >0.
This inequality and the conditions on the non-linearity f (see (H1)) imply that
1600l + G 1llL=(m, 20y < MI81Ds
1840l & + [1G2ll LR, L2(0)) < M(lIgID).
Therefore, using the dissipative estimate in € ((1.3)) we conclude
[VP@I| + [lo:p(D] < M(|g])s &  [Vq@ + [lo:q(0)]l < M(||gl)), t=0.
Returning back to p = d;w, we rewrite (2.5) to find
1 div(aVaw)(®)] = | - G1(t) + yop(t) + deg(®)]| < M(lg]), = 0.
Rewriting the first equation in (2.3), and using cubic growth of f (see Remark 1.1.a) gives
I div(aVw)(#) + gllg1(q) = 119() + yp(&) + Fu()llg1q) < M(Ig]), t=0.
Hence, the desired result holds and the proof is complete. O

Combining (2.4) and Lemma 2.1 produces the following result.

Corollary 2.1. Assume (H1) and let S(t) be the semi-group defined by (1.4). Then, there exists a ‘ball’ in &2 that
attracts B¢1(0, R) in &. More precisely, the inequality

diste (S()Bg1(0, R), B¢2(0, Ry)) < Me™P', =0,
holds for some positive constants Ry, M and f that depend only on v.

Let us now recall the so-called transitivity property of exponential attraction (cf. [30, Theorem 5.1] for a proof):
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Theorem 2.2. Let E be a Banach space, S(t) a semi-group acting on E, and E, be a positively invariant subset
of E,i.e. S(t)E1 C Eq forall t > 0, such that
IS¢ - SO8? | < Moe"®" |1 - &5, §',&% € En,
for some constants My, Ko > 0. Furthermore, assume that there exist subsets E, C E; and E3 C E such that
distg (S(OE1, E;) < Mie™ P, distg (S(OE,, E3) < Mae P!, t=0,
for some My, My, B1 > 0 and B, > 0. Then
distg (S(DE1, E3) s Me ™, t=0,

for M = MoMy + M, and B = ¢Eif2.

Note that Theorem 1.1 (in particular (1.6)), Theorem 1.3 and Corollary 2.1 imply that the assumptions of the
above theorem hold for E = &, E; = B, E; = B¢1(0, R) and E3 = B¢2(0, R;). Therefore, we see that B¢ (0, R;)
attracts the positively invariant absorbing set B and, therefore, bounded sets in €. That is the following result
holds.

Theorem 2.3. Assume (H1), S(t) given by (1.4) and B¢ (0, R;) given by Corollary 2.1. Then, for every bounded
B in & the following assertion

diste (S(HB, B¢2(0,R1)) < M(|B||e)e ™, t=0,
holds for some non-decreasing M and 8 > O that depend only on v.
We are now ready to prove that the global attractor is bounded in &2,

Theorem 2.4. Assume (H1) and let A be the global attractor of the dynamical system (&, S(t)) given by (1.4).
Then
[Alle2 < M(|1g1D, (2.6)

for some non-decreasing M that depends only on v.

Remark 2.2. Note that (2.6) implies the following estimate

H‘AH(Ca(ﬁ))z < M(||gID, 2.7)

for a non-decreasing function M that depends only on v and the exponent a from Remark 2.1.

Proof of Thoerem 2.4. The proof follows from the strict invariance of the global attractor (property 2. of Defi-
nition 1.1) and Theorem 2.3. Indeed, for an arbitrary §-neighbourhood Os(B¢2(0, R1)) of B¢2(0, R1) in €, one
has

A =SA C 05(B¢2(0, R1)),

for some t = t(8). Therefore A C [B¢:(0, R1)]¢ and it remains to note that, since B¢2(0, R) is closed in &, the
identity [Bgz(O,Rl)]g = Bgz(O,R1) holds. O

We end this section with one more result which will be useful later.

Theorem 2.5. Assume (H1). Then, for any initial data ¢ € &2, the energy solution u to problem (1.2) is such that
&y € L=(Ry; &2) and the following dissipative estimate is valid:

1u(O + [VOFu(®ll + 1§u(®) |2 < M(IE]le2)e ™ + Mgl), t=0, 238)
for some non-decreasing function M and constant 3 > O that depend only on v > 0.
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The proof is very close to the proof of Lemma 2.1 and for this reason is omitted. We only remark that, since
&2 ¢ &' and the dissipative estimate in £! is already known, we see that the quantity [|u(t)|| L~(0) is bounded.
Thus, basically, one applies linear dissipative estimates to the equations for p and q in the proof of Lemma
2.1 with the appropriately changed initial data.

3 Homogenisation and convergence of global attractors

Let us now consider the dynamical systems S¢(t) and So(t) generated by problems (0.1) and (0.2) respectively.
In Theorem 2.4 we established that S (respect. So) has a global attractor A€ (respect. A°). Moreover, Theorem
2.4 informs us that A¢ is a, uniformly in &, bounded subset of &2 and A° is a bounded subset of 86, where

€2 := {& € (Ho(@)*| (div(a(;)VEh) + g) € Hy(Q), div(a(;)VE?) € LX(Q)}, 6
I1€11E2 == || div(a(z)VED) + gl o) + 1 div(a(z)VEN||? + || div(a(;)VED)| %, '
and
&d = {& € (H)(Q)?| (div(a"VveY) + g) € HH(Q), div(a"veE?) e L2(Q)}, 6

16135 = 1l div(@"V€") + gll7n(q) + | div(a" VN + || divia" V).

Remark 3.1. We note that, by elliptic regularity (see Remark 2.1), the global attractors A? are uniformly in €
bounded subsets of &% N (C*(Q))?. Additionally for A°, as a” is constant, we can readily deduce that A° is a
bounded subset of £3 N (H*(Q))?. That is, the inequalities

1A% ez + 4% | oy < MUEID, & A%z + A% laqape < MUlgIDs

hold for some non-decreasing function M independent of &.

The main result of this section is the following theorem which establishes convergence of the global attractors
AZE to the global attractor A° in the one-sided Hausdorff distance.

Theorem 3.1. The global attractor A% of the problem (0.1) converges to the global attractor A° of the ho-
mogenised problem (0.2) in the following sense
. . e 0y _
;,!E)I(l) dlSt(Cﬁ(E))z (.A s A ) = 09
forany O < B < a where a is given in Remark 3.1.

To prove Theorem 3.1 we shall use the following classical homogenisation theorem for elliptic PDEs (see for
example [15, Section 1]).

Theorem 3.2. (Homogenisation theorem) Let Q  R> be a bounded smooth domain, a(-) a positive bounded
periodic matrix and €, — 0 as n — oo. Then for any sequence gn € H™'(Q) that strongly converges to g in
H™(Q) we have that un € H}(Q) the weak solution of

div(a(%)Vun) = gn,
weakly converges in Hé(Q) to ug the weak solution of

div(a"vug) = g.

Remark 3.2. In general, one cannot expect strong convergence of un to ug in H},(Q) since this would imply that
the homogenised matrix a" is simply the average J 0 a(y) dy. Clearly this formula for the homogenised matrix
is, in general, not true and it is known that the equality a" = /, 0 a(y) dy holds if, and only if, divy a = 0 in weak
sense.
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A consequence of the above observation is that, in general, we can not expect convergence of the attractors
AE to A° in the strong topology of €. To obtain such convergence results a correction to A° needs to be made,
see Section 5 for further information.

Proof of Theorem 3.1. Fix an arbitrary sequence €, — 0 and &, € A®". To prove the result it is sufficient to
show that there exists &, € A° such that &, converges, up to some subsequence, to &, in (CP(Q))2 asn — oo.

For each n € N, we denote by u, € X% the bounded (for all time) in & solution of (0.1) that satisfies
&, (0) = &,. Now, Af is a (uniformly in €) bounded subset of (Hé @@n C“(ﬁ)) 2 (see Remark 3.1). Moreover, it
is well-known that C*(Q) is compactly embedded in C#(Q), for any O < 8 < a. Therefore, up to some discarded
subsequence,

&n converges strongly in (CP(Q))? to some &, € (Ho(@)n cP (ﬁ))z. (3.3)
It remains to prove that & e .A°, and this is established if we demonstrate that & = &,,(0) for some
bounded (for all time) in & solution ug to (0.2). The remainder of the proofis to establish the existence of such

a Up. In what follows convergence is meant up to an appropriately discarded subsequence.
By Remark 3.1 and the strict invariance of A? (property 2 of Definition (1.1)) there exists M > 0 such that

IVun(®] + || div(a()Vun) O + [un(®) | cog)

(3.4)
+[[Vorun(O)]| + || div(a(Z)VOorun)(O)]| + |0cun(8)] cogm) < M,
foralln € Nandall ¢t € R.
Let us fix z € Z. Using (3.4) we find
un is bounded in Wy := {w € L™ ([z,z + 2];H(1)(.Q)) 0w € L= ([z,z + 2];L2(Q))}.
Similarly, since (cf. (0.1))
dtun = —y0¢un + div(a(ﬁ)Vun) —f(un) + g, (3.5)

assertion (3.4) and the cubic growth condition of f (Remark 1.1(a)) imply that
O¢Up is bounded in W;.
Furthermore, differentiating (3.5) in t gives
dtun = -yd7un + div(a(EX)Vorun) - f'(un)dsun.
This equation, along with (3.4), the boundedness of d;un in W; and growth assumption on f imply that
O un is bounded in {w € L™ (lz, z + 21; Ly(Q)) | 0w € L= ([z, z + 2]; H’l(Q))}.

Therefore, since the embeddings H}(Q) ¢ L?(Q) and L?(Q) ¢ H 1(Q) are compact, by Aubin-Lions lemma
we deduce that

Un — U strongly in C([z, z + 2];L2(Q)) asn —» oo;
deun — d;u strongly in C([z, z + 2]; L*(Q)) as n — oo (3.6)
d%un — 0?u  strongly in C(lz,z+ 2];H"1(Q)) asn — oo,
Let us demonstrate that u solves (0.2) on the time interval [z, z + 2]. To this end we are going to pass to
the limit in
~div (a(X)Vun) = —0%Un — yOsun — f(un) + g =: hn. (3.7)

Due to (3.6) we know that

ha(t) — —02u(t) - yoru(t) — f(u(t)) + g strongly in HY(Q)forallt € [z, z +2].
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Therefore, by an application of the homogenisation theorem (Theorem 3.2), we conclude, that for every t
[z, z + 2], un(t) weakly converges in H3(Q) to the solution ug(t) of the homogenised problem

—div(a"Vuo(t)) = ~ofu(t) - yoeu(t) - f(u(®) + g.

It follows from (3.6) and the weak convergence un(t) — uo(t) in H}(Q) that u(t) = uo(t) forall t € [z, z + 2].
Consequently, from this identity and the above equation, we see that 1o (weakly) solves

d7ug + ydeug — div (ahVuo) +fug) =g, telz,z+2].

Let us argue that the above equation holds for all time. Indeed, by a Cantor diagonalisation argument we see
that the convergences (3.6) can be taken to hold for all z € Z. Then, by noting that any ¢ € C5’(R; C5’(Q))
can be represented as a finite sum of smooth functions whose individual supports (w.r.t to time) are in some
[z, z + 2], we deduce that ug weakly solves the homogenised equation (0.2). Hence, ug is a bounded in &
solution to (0.2) for all time.

It remains to show that &,,(0) = (uo(0), 0¢uo(0)) equals &,. On the one hand, from (3.3) we see that &,
converges strongly to & in (L?(2))?. On the other hand, by (3.6) (for z = 0) & = (un(0), 0¢un(0)) converges
strongly to (u0(0), 0;u(0)) in (L2(2))2. Hence, (uo(0), d¢uo(0)) = & and the proof is complete. O

4 Rate of convergence to the homogenised global attractor

We shall begin with recalling an important result on error estimates in homogenisation theory of elliptic PDEs.
Recall, for fixed € > 0, the mappings

Acu = -div(a(;)Vu), & Aou:= —div(a"vu). (4.)

Theorem 4.1 (Theorem 3.1, [16]). Let Q c R3 be a bounded smooth domain, symmetric periodic matrix a(-)
satisfying uniform ellipticity and boundedness assumptions, Ae and Ao given by (4.1) and g € L?(Q). Let also
uf, u® e H}(Q) solve the problems

Asut =g, inQ, N Ao’ =g, inQ,
ufloq =0, u’|yq = 0.
Then, the following estimate
[u® - u°| < Cellg]|, “.2)

holds for some constant C = C(v, Q).
Remark 4.1. Note that inequality (4.2) is equivalent to the following operator estimate on resolvents:
142" - Ag" | ¢z = Ce.

In what follows we wish to compare properties of the semi-groups associated to (0.1) and (0.2) via estimates
in terms of . In fact, we shall provide stronger estimates in terms of the difference ||Az! - Ag}|| £@2(q)- The
mentioned ¢ estimates then immediately follow by Remark 4.1.

Our first important result is the following continuity estimate.

Theorem 4.2. Let &2 be the set (3.1), R > 0. Then, for all ¢ € Bg:(0,R)={§ € &2, §lle2 < R}, the inequality

1Se(D€ = So(®)¢||e+ < Me"||AZ" - Ao |l oy, E20, (4.3)

holds for some non-decreasing functions M = M(R, ||g||) and K = K(R, ||g||) which are independent of € > O.
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Proof of Theorem 4.2. Letus fix &, set & (t) := Se(£)&, &,0(t) := So(t)¢, and define ¥ := uf —u°. Then, r* solves

{c)%r‘g + Y0 + Aor® = Aguf — Acu + f(u°) - f(uf), xeQ, t=0, 4)

&relt-0 =0, rlaq = 0.
By testing the first equation in (4.4) with Ag'9,r* we deduce that

(500, 451 007) + 207I1) + y (207, A5 00r”) =

dt
(Aou® —AguE,Aalatrg) + (f(uo) —f(ug),Aalatr‘E). (4.5)
We compute
(Aou® — Acu®, Ag'0¢r%) = (Aou®, Ap'0°) — (Acu®, Ag 0er%) = (U°, 0,7°) — (Aeu®, Ag'oer®)
(Acu®, Az 0er%) - (Acu®, Ag' o)
(Acu®, (A7" - Aghoer).

Furthermore,
(Acu®, (A5" - Agh)oer®) = %(Agus, (A5 - AgHr®) - (Aeouu®, (A7' - AgHr).
Therefore, we can rewrite (4.5) as
;tA +y(0¢r°, Aala[rf) = —(Ae0eu, (At —Aal)rg) + (f(uo) —f(us),AE)latrg), (4.6)

for
A®D) = 5 (3er°(8), Ao e (8) + S (DI - (Aeu’(0), (A" - Ag)rf(1),  t=0.

We now aim to bound the right-hand-side of (4.6) in terms of ||A;! - Aj! ||ZL(L2(Q)) and A, then subsequently
apply Gronwall’s inequality and the following standard estimate

VIlZa < (6, A5" @) < v Bliq), ¢<€H Q) (4.7)

to deduce the desired result.
To this end, let us first estimate the non-linear term. Using the growth restriction on f’ (see Remark 1.1a)
and Holder’s inequality (for exponents (p1, p», p3) = (3, 2, 6)) we compute

)(f(uf) ~ ), A5 0:r€)| < M((1 + [uE P + WO P)|rE), |4 o))

2 0,2 1 (48)
< M1+ [u®|” + [u” 7| oI 1 Ao~ 0e7| Lo (q)-

Then, by the Sobolev embedding L°(Q2) c H'(Q), the fact that u® and u® are bounded in & (see dissipative
estimate (1.3)) and (4.7) we compute

‘ (F) = f®), Ag'0er®) | < MIIr*[[A5" 0cr® 1y < MITI110e7° | 2o

< Mr°| (0%, Ag'9ur*)
<My (3117 + 3 (007, 410r)),
for some positive M;. By utilising the above inequality in (4.6) we infer that

%A < (2M1Acu® - Acont®, (AF" - Agh)r®) - 2My (Aeu®, (A7 - AgHrf)+

+ My (511 + 3 (0%, AGT 0ur%)).
Now, by the dissipative estimate in €2 (Theorem 2.5) we have the following uniform bounds in ¢ and :

|Acul ()| + |Acou®(t)|| < M, t=0, >0, (4.9)
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which we use along with the Cauchy-Schwarz inequality to compute

|(2M1Acu® - Ao, (A" - AGIF) | < MIAZ - A5 Iy + 5171

By collecting the above inequalities together we deduce that

d 1 -
A < MIAE" - Ao I 12y + 2M1A.

Consequently, by applying Gronwall’s inequality and the initial data |~ = O we have
3(0er(6), AGHaer*(8) + S7°(O” - (Aeu(D), (42" - AGHr*(0) < M Il AT - AGH 2 12(as  £20,
Now, we compute

|(Acu, (21 = A3YP°) | < AU 114" - A6 ciaan I

< |47 1A2" = A | rqay + £1IF°IIP
Hence, the above two inequalities along with (4.7) and (4.9) demonstrate (4.3) and the proof is complete. [

Along with Theorem 4.2, to prove error estimates on the distance between global attractors we need the fol-
lowing exponential attraction property of A°:

there exists a constant o > 0 such that for every bounded set B C & the estimate
diste (So(8)B, A°) < M(||B|le)e™ ', t=0, (H2)
holds for some non-decreasing function M.

It is known that, for problem (0.2), the property (H2) is a generic assumption in the sense that it holds for an
open dense subset of forces g € L?(Q) (cf. [2]).
We are now ready to formulate and prove our main result of this section.

Theorem 4.3. Assume (H1) and (H2). Let A¢ and A° be the global attractors of the dynamical systems (€, Se(t))
and (€, So(t)) corresponding to the problems (0.1) and (0.2). Then the following estimate

w9
(K +0)’

holds. Here, K is as in Theorem 4.2, ¢ as in (H2), and M = M(||g||) is a non-decreasing function independent of
E.

diste-1 (A%, A°) < M|IAZ" - AN (1200 (4.10)

Proof. The assertion follows from the already obtained estimate (4.3) and the exponential attraction prop-
erty (H2). Indeed, let & ¢ A* C B 55(0, R;) be arbitrary. Then due to (2.6) there exists a complete bounded
trajectory &,:(t) € X, such that £,:(0) = &. Let us fix an arbitrary T = 0 and consider &_7 . = &,:(-T) € A®.
By Theorem 4.2 we deduce

||fg - SO(T){—T,SHE’l < MKGKT, for x = HA;l - A61 HL(LZ(.Q))'

for some M and K which are independent of € and &; € A%. On the other hand, due to exponential attraction
(H2) we have
diste-1(So(T)E 1., A%) < Me™T,

Therefore, using the triangle inequality, we derive

diste -1 (&, A%) <« M(xeXT + e7°7). (4.11)
We recall that T > O is arbitrary and therefore we choose T that minimizes the right hand side of (4.11). For
example, taking T = T(e) such that xeXT = =T yields
. 0 -1 —13¢ o
dlStg—l(&g,A ) < 2M||Ag _AO HL(LZ(Q))’ = m,
and since ¢ € A? is arbitrary we obtain the desired inequality (4.10). O
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To complement the convergence result in Theorem 3.1, we have the following error estimates.

Corollary 4.1. Assume (H1) and (H2). Let a > O be given by Remark 2.1, » as in Theorem 4.3 and 0 < B < a.
Then the inequality
. - -102 -
dist g gy (A% A%) < MIIAZ" - AGY | Fiizay, 0= 52

2+a’

for some non-decreasing function M = M(||g||) which is independent of €.

Proof. The corollary follows directly from the uniform boundedness of A€ and A° in (C"‘ (ﬁ))2 (Remark 3.1),
the estimate on the distance between attractors in &1 (cf. (4.10)) and the interpolation inequalities

lulli=@) = Cllul o lullgeggy Y € HH@) N (@), where § = g,

< h
1ullcsqy = 2lullinig Iullpfoys v e C*(@).

5 Approximation of global attractors with error estimates in the
energy space £

In addition to the obtained estimates in Section 4 on the distance in &~ we would like to obtain estimates
in the energy space €. Note that we can not expect, in general, convergence of the global attractors in the
strong topology of &, cf. Remark 3.2. As in the elliptic case, estimates in H'(Q)-norm require involving the
correction € 3, N;(3)0x, u® of homogenised trajectories u®. To this end, we introduce the ‘correction’ operator
Te : H2(Q) — H(Q) given by

3
Tew(x) := wx) + eZN,- (%) oxw(x), xe€Q. (5.1)
i=1
Here, N;, i € {1, 2, 3}, are the solutions to the cell problem (1.1).

Now, it is known that N;, i = 1, 2, 3, are multipliers in H*(Q) (see [32, Section 13] and [33, Proposition
9.3]); in particular the following non-trivial estimate holds (see [16, Section 3]): there exists C = C(v, Q) such
that

/|VyN,-(§)u(x)\2 dx < C/ (|u(x)\2 + sz\Vu(x)|2) dx, vue H(Q).
Q Q
Consequently, the following inequality

IVTew| < C(I[VW] +&l|Wllga),  Yw € HA(Q), (5.2)

holds for some C > 0 independent of € and w. Indeed, this follows from the above multiplier estimate and
the fact N; € L*°(Q) (by elliptic regularity).

Now, we are ready to present the well-known corrector estimate result in elliptic homogenisation theory
which improves the L2-estimate given in Theorem 4.1 to H'-norm.

Theorem 5.1 (Theorem 3.1, [16]). Let Q c R>? be a bounded smooth domain, periodic matrix a(-) satisfying
uniform elliptic and boundedness assumptions, A¢ and Ao given by (4.1) and g € L*(Q). Let also u®, u® € H}(Q)
solve the problems
Acuf =g, inQ, N Au =g, inQ,
uflpo =0, u’|yq = 0.
Then, the following estimate
4 = Teu|l gy < Vel (5.3)

holds for some constant C = C(v, Q).
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Remark 5.1. Note that inequality (5.3) is equivalent to the following operator estimate:

14:"g - TeAo' gl < CVEllgl, 8 € L*(2).

As in Theorem 4.3, we would like to compare the distance between S ()¢, for & € 8%, to some trajectory for Sy
but this time in the energy space £. However, here the trajectory So(t)¢ is not a suitable candidate as it does
not have the sufficient regularity needed to apply the above corrector estimates. To overcome this difficulty
we carefully choose our initial data for the homogenised problem (0.2).

More precisely, let us recall the spaces £2, £3 given in (3.1), (3.2), and introduce the bounded linear oper-
ator IT, : €2 — &3 given by

the term &, € H2(Q) N H(Q), i = 1, 2, satisfies
(&', &%) := (&5, &), where N %0 . o (5.4)
div(a"vé&p) = div(a (;) V&Y.
The operator I1; has the following nice properties.
Lemma 5.1. The operator Il : £ — £} is a bijection that satisfies:
[Melle2 = [[§]le2s §etd (5.5)
e - Ell 2oy < 142" - Ad* ey l€llezs §eél. (5.6)

Proof. The bijective property and equality (5.5) directly follow from the definitions of £2, £3 and the identity
(&1, £2) = (At AcéY, At AL E?). Inequality (5.6) follows from the identity

At AcE - & = (A5 - AZDALL
O

We now compare S¢ ()¢ with So(t)IT:¢ in & for & € 2. The following result is the direct analogue of Theorem
4.2 when one replaces the initial data ¢ by II:¢ in problem (0.2).

Theorem 5.2. Let &2 be the set (3.1). Then, for every & € B €2 (0, R), the following inequalities

1Se(®)& = So(OMe& g1 < Me™ || A" - AG | cr2)s  £20, (5.7)
19¢Se(0)§ = cSo(OMeE e+ < MeM||AZ! = A | {Gaeyy €20, (5.8)

hold for some non-decreasing functions M = M(R, ||g|) and K = K(R, ||g||) which are independent of € > 0.

Proof. First note that inequality (5.7) is a consequence of the Lipschitz continuity of Sg in €! (Corollary 1.2),
Lemma 5.1 and (4.3). Indeed,
[Se(®)§ = So(DIIed |1 < [|Se(®)§ = So (D& |1 + [[So(D)E — So(O)ITe4] g1
< [ISe(6)€ ~ So(OE |-+ + Me || ~ Mol e+ < Me™ || Az = Ag" | zaqay)-

It remains to prove (5.8).
Set &e(t) 1= Se(t)é, &,0(t) := So(t)I1:€. We begin by noting the following uniform bounds in ¢ and &:

07U + VU + [[Aedeus® | + [|07uC|| + | Vu°| < M. (59)

Indeed, these bounds are a consequence of identity Hngg(O, R)=B 8(2)(0, R) and the dissipative estimates

for u® and u® in &7 and €3 respectively (Theorem 2.5 for a = a(;) and a = a" respectively).
Now, the difference rf := u¢ — u® solves

{a% € = —yoer + Agu® — Acuf + f(u®) - f(uf), xeQ, t=0, (510)

&relezo = &~ 1€,  1¥[y0 = 0.
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Note that by the definition of II¢, (5.4), we have

Soueli-o = (2 = &6, (& — %) +£(&) - F(ED).

Upon handling the non-linearity as in (4.8), and utilising Lemma 5.1 we conclude that

€5, 0)[e1 < ClIAZ" - A5 |l ooy (5.11)

Now, by differentiating the first equation in (5.10) in time (and then adding A 9d,r? to both sides) we find
that g := 0,r¢ solves

{a%ff +Y0q° + Aoqf = Apou® — Aeoeu + f'(u®)ou® - f/(uf)owt, xecQ, t=0,
&qelt=0 = §5,<(0), gl = 0.
Testing the first equation in the above problem with A51 0¢q° gives

d 1 - 1 -
21 (5(000°. 45" 0q%) + S14°117) + ¥ (0ea°, Ag"0rg") =

(Aodeu® - Acdeu®, Ag 0¢q°%) + (f/ (W®)oeu® - f'(u)oeu®, Ao 0¢q°).

We aim to prove the inequality

d a4, 1 _ 1
A M| AZ - A | cagay + MA, A= CE Ao oeqt) + E||q’f|\2 (5.12)

for some M and K independent of € and &j, which subsequently implies the desired result via an application
of Gronwall’s inequality and (5.11). As usual, we shall utilise the H~!-norm equivalence given by (4.7).

So it remains to prove (5.12). By arguing as in Theorem 4.2, we utilise the identity 0,q° = 07u® - 07u® and
uniform bounds (5.9) to compute

|(Aooeu® — Acoru®, Ag'0,q°)| = | (Aedru®, (Ag" - Ag')org")]
< |Acoeu®[|[|Az" - Ag' | ¢zl 0ed”l 61
< M|AZ" - Ao' | ey

Let us now handle the non-linear term. We compute
(' W®)ouu® - f'(u®)ou®, A 0:q®) = —(f' (g, Ag'0:q°) + ((F'(u®) - f (u®)osu®, A 0¢q%) =: I1 + I.

The arguments to bound I; and I, will use the uniform bounds on u¢ and u° given by (5.9).
By the growth condition on f and the H™!-norm equivalence (4.7), we compute

I = |(f' W®)g, A eq®) | < M((1 +u°*)|g°|, |A5" 9cq®l) < M1+ U [|1> ()l 4° 114G 0¢q° I 1oy
< M|1g°)110:4° i1y < M(311G°11° + 3(0¢q®, Ao 0¢q")).
Additionally, by Holder’s inequality (for exponents (p1, p», p3, ps) = (6, 2, 6, 6)) we compute
L] = ((F'@°) - f/(u))ous, A 0:q%) | < M((1 + [u°] + [u®))|r¥]|0eu’], |Ao" Oeq”))
< M||1+[u°| + |u€|||L6(Q)Hr£H||atu£||L6(Q)||A61atq€|\L6(Q)
< M(L)17°)1% + 1(0eq®, A" 0eq)).
The above assertion and (5.7) imply
L] < C(e*|Az" - A 2120 + 3(96d°, Ag" 9eq?)).
Combining the above calculations leads to the inequality (5.12). The proof is complete. O

The following estimate is an immediate consequence of Theorem 5.2 and standard elliptic theory.
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Corollary 5.1. Let £2 be the set (3.1), & € ng(O, R) and set &,:(t) := Se(t)€, &,0(t) := So(t)Ié. Let T¢ be given
by (5.1). Then, the following inequality

[uf(6) - Teu® ()| gaq) < MeM Ve, t20, (5.14)

holds for some non-decreasing M = M(R, ||g||) and K = K(R, ||g||) which are independent of € > 0.

Proof. Note that u® ¢ H}(Q) satisfies the equation

At = —07uf - youf — f(uf) + g =: Fe(t), t=0,
and u° € H}(Q) satisfies

Aou® = -oHu° —yatuo - f@® + g=:Fyo(t), t=0.

Since § € B 53(0, R) then by (5.5) we have II:¢ € B 85(0, R) and the dissipative estimate in 3 (Theorem 2.5
for a = a") gives Fo € L™ (R+;L?(Q)). Let us introduce the intermediate function uie = uf(t) € Hj(Q) the
solution to

At = Fo(t), t=0.

Then, by Theorem 5.1 we have
1550 = Teu®O)ll gy gy < CVEFo(®], 20,
and, since A;! is uniformly bounded in £(H(Q), H}(Q)), we have
luf(t) - &s(t)||Hé(Q) < C||Fe(t) = Fo(t)||lg-1()» t=0.

Therefore, by the triangle inequality, we have

Hus(t) - ‘J’guo(t)HHé(Q) < C(\/EHFOHL“(R+;LZ(Q)) + HFg(t) - FO(t)HH—l(Q)), t>0. (5.15)

Now, upon estimating the non-linear term as in the proof of Theorem 5.2, along with utilising Remark 4.1
and Theorem 5.2, we readily deduce that

IFe(t) = Fo(O)l (g < Me"'Ve, t=0.

The above inequality along with (5.15) imply the desired result and the proof is complete. O

Let us now provide estimates on the distance in the energy space. As in Corollary 5.1 this re-
quires adding an appropriate correction to the attractor A°. To this end, we introduce the corrector
Te: &3 — (LZ(_Q))2 which maps the pair & = (¢, &2) to the pair

Ted = (Te&, &), (5.16)

By (5.2), we readily deduce the following inequality: there exists a constant C > 0, independent of &, such
that the inequality

dist; (TeA, TeB) < C(distz (4, B) + edist;2(4, B)), A, BC &, (5.17)

holds.
By inequality (5.8) and Corollary 5.1 we have shown the following result.

Corollary 5.2. Let &7 be the set (3.1), & € Be2(0,R) and set &,:(t) := Se(t)é, &,(t) = So(O)ITcE. Then, the
inequality
ISe(£)é = TeSo(OIE || ¢ < MeXt /¢,

holds for some non-decreasing M = M(R, ||g||) and K = K(R, ||g||) independent of €.
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The following estimate on the global attractors in € holds.

Theorem 5.3. Assume (H1) and (H2). Let A and A° the global attractors of problems (0.1) and (0.2) respec-
tively, and let T¢ be given by (5.16). Then, the following estimate

diste (A%, TeA®) < MyVE™,

holds for some M = M(||g||) which is independent of . Here s is as in Theorem 4.3.

Proof. The method of proof follows along the same lines as the argument for Theorem 4.3 and so we shall
only sketch it here.
For & € A*and T > 0, consider &_r . € A® that satisfies Se(T)é_1 ¢ = &. Then, by Corollary 5.2 we have

€6 = TeSo(THeé_1,c|le < M Ve,
Furthermore, by (5.17) we have
diste (TeSo(Ted_7,¢, TeA®) < C(diste (So(T)Heé 1., A°) + £ dist e2(So(Ded 1., A%)).

Now, to control the second term on the above right we use the fact that IT. A and A° are bounded subsets of
&2 (see Remark 3.1 and inequality (5.5)) and that we have a dissipative estimate for So(t) on £3 (see Theorem
2.5). Consequently, we compute

distg (&, TeA%) < diste (&6, TeSo(T)eé 1) + diste (TeSo(T) e 7 ¢, TeA”)
< My X/ + M, diste (So(T)Teé 1.¢, A°),

and the remainder of the proof utilises the exponential attraction property of A°, as in Theorem 4.3. O
Remark 5.2.

1. The appearance of v/€ in (5.3) is a well-known consequence of the fact that the correction Teu® does not
approximate well the function u® in a e-neighbourhood of the boundary. In particular, the reduced power of
€ appears in the estimate due to the fact that T:u® does not satisfy the Dirichlet boundary conditions and
a ‘boundary correction’ is needed. In general, the explicit e-dependence (i.e. leading-order asymptotics) of
this boundary correction is not known.

2. In certain situations, such as when Q is the whole space or a torus (see Remark 7.2), there is no need for
the boundary correction and, consequently, the error estimate (5.3) is order €. In such situations we expect
order £* in our estimate on the distance between global attractors in & (Theorem 5.3). As it stands, our
argument does not provide such an estimate and this is because the power in the right-hand side of (5.8) is
not optimal. This is consciously done to avoid unnecessary complications and we provide an argument in
Appendix D that gives the expected power.

3. Let us return to Remark 3.2. In this case it is interesting to note that estimate (5.3) is order . This is simply
because the cell solutions N; are trivial (N; = 0) and there is no need for boundary corrections; indeed, this
can be readily seen by noting that the right-hand-side in problem (1.1) is zero in this situation. Consequently
Te = I and (under the refinement in Appendix D) we have the following improvement of Theorem 5.3:

diste (A%, A%) < Me™.

6 Exponential attractors: existence, homogenisation and
convergence rates

Let us recall the definition of an exponential attractor for a dynamical system.
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Definition 6.1. Let S(t) : & — &, t > 0, be a semi-group acting on a Banach space &. Then a set M is called an
exponential attractor for the dynamical system (€, S(t)) if it possesses the following properties:
1. The set M is compact in € with finite fractal (box-counting) dimension dim¢(M, €);
2. The set M is positively invariant:
SOMcM, Vt=0;

3. The set M exponentially attracts every bounded set B of &, that is

diste (S()B, M) < M(||B||¢)e™®, t=0,

for some non-decreasing M and constant ¢ > O.

6.1 Existence of exponential attractors and continuity in &1

Let us present our main result for this subsection.

Theorem 6.1. Assume (H1). Then, the dynamical systems (&, S¢(t)), € > 0 and (&, So(t)) generated by prob-
lems (0.1) and (0.2) respectively possess exponential attractors M¢, M° c (H}(Q))? such that the following
properties hold:

L || div(a(x)VEY) + 8l gy + | div(@a()VED + 1€llcxaye < MU, forall§ = (&, &%) € M

2. || div(@"VgY) + gl o) + 1| div@"VER) | + 1€ secape < MUlgI), for all § = (€1, 82) € MO
3. For every bounded set B C € one has

distg (Se(£)B, MF) + diste (So(t)B, M®) < M(||B||¢)e™ ", t=0;

4. dimg(M?, €) + dim;(M°, &) < D;
5, dist} (M2, M©) < M43 - A5 1% 120

Here a is the same as in Remark 2.1 and the constants M > 0, 0 > 0,0 < » < 1 and D = 0 are independent of €.

Corollary 6.1. Assume (H1). Let a > O be given by Remark 2.1, » as in Theorem 6.1 and O < B < a. Then the
inequality
dist? 5 gy OV, MO) < MIAZ - A" Ty 0= 522,

for some non-decreasing function M = M(||g||) which is independent of .

The remainder of the section is dedicated to the proof of Theorem 6.1. First, we recall a variation of an abstract
result which establishes the existence of an exponential attractor M?, for a parameter-dependent family of
semi-groups S¢, whose characteristics are independent of ¢ (see Appendix B, [29, Theorem 2.10] and [30,
Section 3, Theorem 3.1]).

Theorem 6.2. Let & be a Banach space and &}, € = 0, be a family of Banach spaces compactly embedded into
& uniformly in the following sense:

(1) There exists co independent of € > 0 such that ||§| ¢ < co||§||¢1 forall § € &
(ii) Forallu > 0, r > O there exists a finite cover of B 8%(0, r) consisting of balls radius of u in & with centers
Ue(u, 1) C Beé(o, 6r), for some 6, > r, satisfying

card Ug(u, r) < N(u, r),

for some finite N(u, r) independent of €.
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Let us consider, for each € > 0, a map defined on € such that

Se:0(Be) = Be,  O(Be):= B+ |J rle(zh, 1) | [JUel B,
refo,1]

where the set B C B &1 (0, R) is closed in €. Furthermore, we assume S satisfies the following properties:

1. for every &1 and &, from O(Bg), the difference S¢&1 — S¢&> can be represented in the form:

Seé1—Se&y =ve +we, with |vele < 51161 -&lles  Weller < KlIé1 - &lles (6.1)

for K > 0 independent of €.
2. Furthermore, there exists a Banach space &1 > & such that

g1 < c-allélle, V&€& 1S081 = So42lle1 < LlI§1 = &2lle1s V&1 € O(Be), V&, € O(Bo),

for constants c_; and L > 0.

Then, for every € = 0, the discrete dynamical system (Bg, S¢) possesses an exponential attractor M® C O(Bg).
The exponent of attraction o > 0 is independent of € > 0 and dim(M?, €) < D for some positive D independent
of € (see Definition 6.1). Moreover

dist}. (M¢, M°) sC( sup |[|Se€ - Soél|g1 + distt1(Be, Bo)
£€O(By) (6.2)

diSt;1 (ug(l‘il(, 1), uo(%K, 1)) + diStfgrl (ug(%, R), Uo(%, R))) ’
where the constants C > 0 and s = »(cg, L, K, 61) are independent of «.

The proof of Theorem 6.2 is postponed to Appendix B.

We now move on to the proof of Theorem 6.1. As in the usual way, we first construct exponential attrac-
tors for the discrete dynamical systems with maps S¢ := S¢(T), So := So(T), for large enough T > 0. Then
by a standard procedure, clarified below, one arrives at exponential attractors for the continuous dynamical
systems (&, S¢(t)), t = 0.

Proof of Theorem 6.1.

Step 1: Construction of discrete exponential attractors. Recall the maps A. and Aq given by (4.1). Let & =
H(Q) x L*(Q), &1 = L*(Q) x H (Q), and let £} and &£} be given by (1.7) for a(-) = a(;) and a(*) = a"
respectively). Then property (i) is an immediate consequence of the uniform ellipticity of a(-) and Poincaré’s
inequality.

Proof of (ii). We shall provide an explicit construction for the covers. Moreover, it will be important later
that we produce a cover such that

U,g(y, r) C Sg N ng(O, 57), & diSts£71 (Ug(]J, T), uO(].l, I')) < Cr”AEl - A61||L(L2(Q))’ (63)

for some C; > 0 independent of € > 0.
For this reason we seek a cover of B €1 (0, r) in the form

N(u,n

U Be (&, 1), for & = (A" (pi + 8), qie) € 2.
i-1
To ensure &, are in £2 we see that (p;, q;) should belong to (H3(Q))? with A.q;. € L*(Q).
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We now proceed with the construction of such a cover. As L?(Q) x H}(Q) is compactly embedded in
H1(Q) x L*(Q) then, for each ji > 0, there exist finitely many (p;, gio),i = 1, ..., N(f, r), such that

N(r)

BLZ(Q)XH})(Q) ((—g, 0), ”) - U By (a)x12(0) ((Pi, Qio),ﬂ), i, gi0) € BLZ(Q)xHé(Q) ((—g, 0), r).
i=1

Additionally, due to density arguments, we can suppose
(vi, gio) € Ho(Q) x H(Q).
Moreover, as the eigenfunctions of A form an orthonormal basis for L?(Q2) we can find g;, such that A¢q;, €
L%(Q) and
19ic = qioll < min{, [Az" = 45" | ceap}s  i=1,-. o, N, 7). (6.4)
Therefore, we have the covering

N(i,r)
Braoymy) ((-8,0),r) C U By-1qyr2q) ((0is Gie)s 21),  €20.
i=1

Now, for fixed ¢ € B el (0, r) we readily deduce from the ellipticity of a that

V(& - A i+ 8)) [ < v | Aed" - i - 8llg )
Furthermore, it is clear that (A:¢* - g, £2) € Bp» (), Hi@) (g, 0), r). Consequently, one can readily check that

N(@,n
Bei(0,1) C | J Be((A2'(pi +8), die), 2(1 vV D).

i=1

Additionally, since g;, are obtained by truncating g;o with respect to the eigenfunctions of A¢, we compute

IV@icl? < v (Aeie, i) < V' (Aeio, gio) < V2V aiol?,

and so we deduce that
(A (pi+8), qic) € Bgi(0,(1v v hn).

Hence, upon setting ji = we see that the centers

z(1v1v—1)V’
Ue(u, 1) = { (Ae' 0i + ), i) [ =1, .., N5y )}, €20, (6.5)
satisfy (ii) for 6, = (1 v v-1)r. Also the additional desired properties (6.3) hold.

Construction of B and S¢. We set B¢ := B &2 (0, R») to be the absorbing ball provided by Theorem 2.5 for
g2=¢2anda(’) = a (E) in the case € > 0 and a(-) = a" for € = 0. The radius R, is independent of £ and
clearly Be is closed in €.

Since B is an absorbing set in &2 and, by (6.3), O(B;) is a subset of €2, we can choose T; large enough
(and independent of €) such that S¢ := S¢(T), € = 0, satisfies

Se:0(Be) > Be,  O(Be)=|Be+ |J rUe(zg, V| [ JUelk, B

relo,1

Let us verify properties (1) and (2) of S;.

Proof of (1). For & € O(Be) C €2,1 =1, 2, let &,,(t) = Se(t)¢;. Consider the splitting u; = v; + w; given by
(2.2)-(2.3),and setv =v, — v, and w = wy — w».

As the equation for v is linear then obviously the inequality

IV(Tlle < 311€1 - &lle,
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holds for large enough time T, (independent of €).
From (2.3) we find that w solves

{a?w +yow —div(aVw) = f(uy) - f(u1), xeQ, t=0, 66)
éwlt=0 =(0,0), Wy =0,
fora=a(;)ora= a". Moreover, p = 9;w solves
{6?17 +yowp — div(aVp) = f'(u2)oeus ~ f'(u1)oeur, x€Q, t=0, (6.7)
&ple=0 = (0,f(63) - f(¢1)),  Pplog = 0.

Using the fact that our initial data is from &2 we conclude that u;, d;u; are bounded in L*(Q) uniformly in €.
Then upon testing the first equation in (6.7) with d;p, rewriting the subsequent right-hand-side in the form

(f/(uz)(atuz - O¢lty), atp) + ((f/(uz) — f'(u1))ocu, atp),

we obtain via standard arguments, and the Lipschitz continuity of S¢(¢) in & (Corollary 1.1), the uniform esti-
mate

100D + [IVP(O)]| < MeX||& - &le,  t=0.

Consequently, we use p = d;w and (6.6) to conclude

IEw(Olley < Me &1 -~ &g, €20,

for some positive constants M and K independent of € and &;. Therefore, for T = max{T;, T,}, property (1)
holds.

Proof of (2). This property is given by Corollary 1.2 for a = a”.

Hence, the assumptions of Theorem 6.2 hold and therefore Theorem 6.1 holds for the discrete dynamical
systems (Be, Se(T)) with discrete exponential attractors M. Indeed, Theorem 6.1 (1)-(4) hold due to the choice
of B¢ and U, and (5) follows from (6.2), (6.3), Theorem 4.2, Lemma 5.1 and the fact that the map II¢ : Be — By
is a bijection.

Step 2: Discrete to continuous dynamics. From the discrete exponential attractors M5 we can build ex-
ponential attractors MF for the original dynamical systems (€, S¢(t)) by the following standard construction

([5D:

ME = U Se(T)ME, £20. (6.8)
7€[0,T]
Indeed, the properties (1)-(4) can be easily verified due to dissipative estimate in £2, Lipschitz continuity with
respect to initial data in & (Corollary 1.1) on the bounded set Be:

1Se(0)é1 = Se(O)&alle < M[|§1 - &olle,  §1,82 € Be, €20,
and Lipschitz continuity with respect to time:
[1Se(t1)€ — Se(T2)é|le < M|T1-T2|, T1,72€[0,T], & € Be, €20,

for some constant M > 0 (independent of €). Indeed, the continuity in time follows from the uniform bound-
edness of B in the space &_. It remains to check the continuity property (5) for the exponential attractors M.
This readily follows from the fact that (5) holds for the discrete exponential attractors M4, Theorem 4.2 and
the following computation:

distz (M5, M%) =distz+ (| Se(MG, [ So(nMy)

7€[0,T] 7€[0,T]
< sup dist} (Sg(T)MZ,SO(T)Mg)
7€[0,T]
< sup disty (Se(t)MG, So(r)MG) + sup disti 1 (So(T)MG, So(T)MY)
7€(0,T] 7€[0,T]
s sup Me""||A;" - Aot |l caaqy + sup Ldistd o (MG, MG).
7€l0,T] 7€l0,T]
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6.2 Continuity of exponential attractors in E.

Theorem 6.1(5) demonstrates Holder continuity between the exponential attractors M¢ and MP in the
space &1, In this section we provide continuity results in the energy space €. Unlike in €71, in the stronger
topology of & this requires a correction (such as in Definition 5.16) of the exponential attractor M°. More
precisely, the main result of this section is the following theorem.

Theorem 6.3. Assume (H1) and let MZ, M° be the exponential attractors constructed in Theorem 6.1. Then,
the following estimate is valid:

dists: (OVMF, TeM°) < Mye™, &> 0, (6.9)

where the ‘correction’ operator T is given by (5.16), 0 < s < 1 as in Theorem 6.1 and the constant M > 0 is
independent of €.

To prove this result, we make an important development of Theorem 6.2 to provide estimates between expo-
nential attractors which admit correction. That is we establish the following new result.

Theorem 6.4. Let assumptions of Theorem 6.2 be satisfied and M, M° be the exponential attractors con-
structed therein. Additionally, assume that:

3. forevery € > O there exists a bijection II, : £L — &} that satisfies
II:B: = By;
4. for every € > O there exists a ‘correction’ operator T : 8(1) — & which possesses the property

ITed1 - Tedalle < Leorll§1 — &2lle + m(e)  forall &1, & € O(Bo);

for some constant Lcor > O independent of € and positive function m(-) with m(0*) = 0.
5. the maps S¢ are uniformly Lipschitz continuous in & with respect to € > 0, that is

[Seé1 — Sedalle < LI|&1 - &2lles vy, & € O(Be),

with some constant L > 1 independent of € > O.

Then the following estimate

dist} (ME, TeMO) sC( sup [|Sellz ¢ - TeSoélle + sup || Te& - I:1& || + m(e)
) £€0O(Bo)

£€0(Bo (6.10)

dlSt% (US(ﬁs 1)’ TE uo(&y 1)) + dIStE (ué‘(%i R); TS uo(%! R))) ’
holds for constant C > 0 independent of € and s as in Theorem 6.2.

The proof of this result is presented in Appendix C.

Proof of Theorem 6.3. Let the sets Be, O(B:), € > 0, and the operator S¢ = S¢(T) be as in Theorem 6.1.
We first establish, based on the abstract result Theorem 6.4, the estimate (6.9) for the discrete exponential
attractors M (defined in the proof of Theorem 6.1). That is we prove the following inequality:

dist} (M5, TeMY) < Mye™, £>0, (6.11)

for some constant M > 0.
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Let us check that the assumptions of Theorem 6.4 hold. Indeed, assumption (3) follows from the fact that
B: = B 85(0, R>) (see the proof of Theorem 6.1) and Definition 5.4 of the projector IT. (where we note that
II; can be trivially extended to the map from £} onto &}, preserving the bijection property). Assumption (4)
holds with m(g) = Ce (for some constant C > 0, independent of £) due to the multiplier estimate (5.17) and
the fact that O(By) is a bounded subset of £3 by construction. Assumption (5) is a consequence of Corollary
1.1. Hence the assumptions of Theorem 6.4 hold and (6.10) holds for the discrete exponential attractors M5
and M.

Let us now estimate the terms on the right-hand side of (6.10) in terms of . Since Il : &2 — &3 is
bijective and preserves the norm (Lemma 5.1), and since O(By) C &3 is bounded, we see that || IT;* O(Bo)|| g2 =
10(Bo)|| £2s that is the set IT; 1 O(By) is bounded in &2. Therefore, this observation and Corollary 5.2 imply that

sup \|SJ[;1.£— TeSoélle = sup  ||Seé - TeSolleé||e < Mg, (6.12)
£€0O(Bo) &€ O(Bo)

for some M > 0 independent of € > 0. Also from the identity

TeAp'Aew - w = (TeAp' - A7 )Aew, (6.13)
and Remark 5.1 we deduce that
sup ||Te&-II'E|le =  sup |Telle& - &l < MVE, (6.14)
£€0O(By) E€I;1O(Bo)

for some constant M > 0 independent of € > 0. It remains to compare the distance between the covers present
in the right-hand side of (6.10). To this end, we notice that if & := (4:(p; + ), gic) € Ue(y, 1), then

&ie — Tedio = (A" - TeAH) (i + 8), Gie — dio) £>0. (6.15)

Consequently, due to Remark 5.1 and the properties of g;. (see (6.4)) one can see that

dlSth (ua(}l, r)) TE uO(l‘b r)) < Cr\/g, (6'16)

for some constant C, > 0 independent of &, u. Upon collecting the above estimates we derive (6.11).
It remains to establish (6.9) for the exponential attractors MF. It is sufficient to show that

dist} (M?, TeM®) < Ldisti (M5, TEMY) + L sup || Telle - &g+
&elI;1 O(By)

(6.17)
+ sup sup  ||Se(1)é = TeSo(T)Ieé|| e -
7€[0,T] £€M;1 O(Bo)
Indeed, since s < 1, the above inequality, (6.11), (6.14) and Corollary 5.2 implies (6.9).
Let us demonstrate (6.17):
distg (M, T:M®) = distg (| ] Se(mMMG, |J TeSo(r)MG)
7€[0,T] 7€(0,T]
< sup disty (Se(r)MG, T gso(r)mg)
7€[0,T]
< sup disty (Se(T)M, Sg(T)Hglj\/[g) + sup dist} (Sg(r)HglMg, TESO(T)Mg)
7€[0,T] 7€[0,T]
< Ldisty (Mg, IT;"MQ) + sup dist} (Se(t)IT;" MY, TeSo(T)MG)
7€l0,T]
< Ldist} (M5, TeMY) + L dists (TeMG, 1) + stT] dist? (Se(T)Ie "M, TeSo(T)MY)
7€l0,
< Ldisti M5, TEMD + L sup ||Teé —II:1¢||e + sup  sup ||Se(T)II;'¢ - TeSo(1)é || e
£€0(Bo) 7€[0,T] E€O(Bo)
< Ldisti M5, TEMG) + L sup  ||[Telle€ —&|lg + sup  sup  [|Se(1)é - TeSo(T):E ¢ .
£eII;1O(Bo) 7€[0,T] §€II;1 O(Bo)
Hence the theorem is proved. O
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7 The case of different boundary conditions

In this section we are going to show that the analogues of the obtained homogenisation error estimates for
the global and exponential attractors still hold if we change the Dirichlet boundary conditions to be either
Neumann or periodic.
Let Q c R3 be a smooth bounded domain and K := H(Q) or Q be a three-dimensional torus T3 :=
[0, £)3, ¢ > 0, with
HL = {ue HYQ)| u(x + tey) = u(x), k e {1, 2, 3}

In both cases we endow H! with the norm
lullfer = [Vul® +[lull®, ued.

For the maps A; be given by (4.1), € > 0, we consider the problem

OPUE + YO + (Ae + DU + f(u?) = g(x), x€Q, t=0, o
(ué" atu£)|t=0 = 59
endowed with either Neumann
aiVug-n|aQ=0, >0,
&)y )
a'vVu’ -nlygo=0, €=0,
or periodic
ué(x + tep) = ut(x),
Lk : ke{1,2,3}, e20, )
Vut(x + Ley) = Vu®(x),

boundary conditions.
It is well-known that problem (7.1) with either boundary conditions (N) or (P) is well-posed in the energy
space & := H! x L?(Q) and, therefore, defines a dynamical system (€, Se(t)) where

SE(t)g = €u£(t)! t>0,

for u®(t) the unique solution of the corresponding problem with initial data &.
Moreover, is well-known that As + 1 : D(A¢ + 1) C L?(Q) — L%(Q) is self-adjoint, where

DA, + 1) - { {ueH'|Aeu € L*(Q), a(;)Vu-nlyg =0}, €>0,
{u e H Agu € L*(Q), a"Vu-n|yo =0}, e=0,
for condition (N) or
D(Ae +1) = {u € H'| Aeu € L*(Q), Vu(x + te;) = Vu(x), k € {1, 2, 3}}, €20,
for condition (P). Setting
2= {£ e (DA +1)* | (Acét - g) € K},
{ 11132 o= [1Ac&" ~ g3 + [I(Ae + DEY? + [|(Ae + 1DE2|2,

it is straightforward to see from Appendix A and Sections 2-6 that the following theorem holds.

£=0, (7.2)

Theorem 7.1. Assume (H1). Then, for every € > 0, the dynamical systems (&, S¢(t)) generated by problem (7.1)
with boundary conditions (N) or (P) possesses a global attractor A, and exponential attractor M¢, of finite
fractal dimension such that:

AP C ME C &, [A%le2 < [ME(le2 < M(|IglD, A" = XF|e0,
diste (Se(t)B, M?) < e ®*M(||B||¢), t=0,  forall boundedB C &,
dims(A*, &) < dim(M*?, &) < D,

where the constants ¢, D > 0 and non-decreasing function M are independent of €. Here K¢ is the set of all
bounded energy solutions to problem (7.1), with (N) or (P), defined for all t € R.
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Let us now discuss error estimates between the anisotropic and homogenised attractors. It is known that
the main homogenisation results, Theorems 4.1 and 5.1, remain valid for the case of Neumann and periodic
boundary conditions.

Theorem 7.2 ([16]). Let Q c R3 be a bounded smooth domain or three-dimensional torus T>, € > 0, periodic
matrix a(-) satisfying uniform ellipticity and boundedness assumptions, A and Aq given by (4.1) and g € L*(Q).
Let also u® € D(A¢ + 1), u® € D(Ag + 1), solve the equations

(Ae+Duf=ginQ, Ao+ D’ =ginQ.
Then, the following estimates
lu® - u°| < Cellg]|, (73)
[u® = Teu® |30 < CVe gl (74)

hold for some constant C = C(v, Q). Here the operator T¢ is given in (5.1).

Remark 7.1. Note that inequalities (7.3) and (7.4) are equivalent to the following operator estimates:

I(Ae + 1)7" = (Ao + D7 g z2(ay < Ces
[(Ae + 1) g - Te(Ao + 1) 7'gll501 < CVElIgll, Vg € L*(Q).

Remark 7.2. In the case of periodic boundary conditions (P), where Q = [0, 1)> and Q = [0, ¢)3, if é € N then
for w € D(Aq + 1) the corrector Tew belongs to H'. In this setting it is well-known that one can improve the
bound in (7.4) from /€ to €. Consequently, as discussed in Remark 5.2, for this case we can replace /€ with € in
the relevant results below.

Let us also define the energy space of order —1:
el = L2(Q) x (1),

where (K1)" stands for the dual space of H'.

We now draw the reader’s attention to the fact that the key theorems (Theorems 4.2 and 5.2) on the dis-
tance between trajectories in &1 are in terms of resolvents of the operator A¢, £ > 0. The key point to note
is that the proofs of these results essentially rely on the fact A; is self-adjoint and (uniformly in €) bounded
and positive. Since the operator A¢ + 1, for Neumann (N) or periodic (P) boundary conditions, also possesses
these properties one can see that analogues of Theorems 4.2-5.2 readily hold (after appropriately changing
the projector IT). Namely, upon defining IT, : £2 — &3, for £2 given by (7.2), as follows

the term &) € D(Ag + 1), = 1, 2, satisfies

’ . (7.5)
(Ao + 1)§5 = (Ae + 1)&7,

(¢, &%) := (&5, &),  where {

we have the following result.

Theorem 7.3. Let &2 be given by (7.2) and Se(t) be the solution operator to the problem (7.1) with Neumann (N)
or periodic (P) boundary conditions. Then, for all ¢ € €2, ||& ez <R, R > 0, the inequalities

1Se(E = So(DE[e-1 + [ISe()E = So(OMe e+ < Me!||(Az + 1) = (Ao + 1)V 20>
106Se(0§ = 0(So(OTe§ | -1 = MeX (e + 1) = (Ao + D7V {a gy £50,
“Sa(t)f— Tgso(t)Hg,f”g < MeKt\/E’

hold for some non-decreasing functions M = M(R, ||g||) and K = K(R, ||g||) which are independent of € > 0.

Based on Theorem 7.3 and arguing along the same lines as in Sections 4 - 6 we obtain the following theorem
on the comparison of distances between anisotropic and homogenised attractors in terms of €.
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Theorem 7.4. Assume (H1) and (H2). Let A%, M?, € > 0 be attractors corresponding to problem (7.1), with
Neuman (N) or periodic (P) boundary conditions, provided by Theorem 7.1. Let also a > 0 be such an exponent
that (A + 1)1 e £ (LZ(Q), C*(Q)) and 0 < B < . Then, the following estimates

distg-1 (A%, A%) < Me™, diste (A%, ToA®) < MVE™, dist g ) (A%, A°) < Me?,

dist}_, (M¢, M°) < Me™, distd (M, TeM®) < My/e™, dist{ s gy (M, M0) < M,

hold for some non-decreasing M = M(||g||) and constants » € (0, 1), 6 = % independent of €. Here Tk is the
‘correction’ operator defined by (5.16).

A Proof of Theorem 1.3

To prove Theorem 1.3 we perform a splitting of the solution u = v + w to the problem (1.2) into asymptotically
contractive and compact parts. This form of splitting was intoduced in [31].
Let us consider

{a%v +yov —div(avv) + Lv+ f(u) - fw) =0, x € Q, t 20, A1)
&vle=o0 = &u(0), v]yq =0,
and
{a?w +yow —diviavw) + Lw + fw) = Lu+g, x€ Q, t =0, (42)
§wle-0 =0, W[p0 =0,

where the fixed constant L > 0 is specified below.
Recall that B denotes a positive invariant absorbing set of the semigroup (€, S(t)) (see (1.6)). Similar to
Theorem 1.1 we have the following result.

Lemma A.1. Assume (H1), é,(0) € B, L > 0 be an arbitrary constant and w solve the equation (A.2). Then the
estimate

1Ew(®lle < ML(||Blle), t=0,

holds for some non-decreasing function M; that depends only onv and L.

The proof of Lemma A.1 follows from the multiplication of the first equation in (A.2) by 0w + xw with suf-
ficiently small ¥ > O and the fact that we already know that ||&,(t)||e < M(||B||¢) for all t > 0 (due to the
dissipative estimate (1.3)).

Lemma A.2. Assume (H1), {,(0) € B, L > 0 be an arbitrary constant and w solve (A.2). Then, for every u > 0
the estimate

M. (||B]le)

t
/ l0:w(T)||? dT < p(t - s) + t>s520, (A.3)
S

holds for some non-decreasing function My that depends only onv and L.

Proof. Multiplying the equation (A.2) by d;w, integrating in Q and using Lemma A.1 we obtain

d LM (B
EA +y||oewl|* = ~L(dsu, w) < yu + V#L(“”E)natuuz, (A4)
where 1
A= 5<\|atw|\2 +(avw, Vw) +L\|w||2) +(F(w), 1) - L(u, w) - (g, w).
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From the dissipative estimate (1.3) and positive invariance (1.6) we see that
t
2
/||atu(‘r)|| dr < M(|B|le), t>s>0. (A5)
S

Integrating (A.4) in time from s to ¢, using Lemma A.1 and (A.5) we derive the desired inequality (A.3) for some
new function M. O

Before continuing, let us recall the following modified Gronwall’s lemma.

Lemma A.3 (Modified Gronwall’s Lemma [31]). Let A : R* — R* be an absolutely continuous function satis-
fying

%A(t) + 20A(0 < hOA®) + K,
where u > 0, k 2 0 and /st h(t)dt < u(t—s)+m, forall t = s > 0 and some m = 0. Then

ke™
T

A(t) < A(0)e™e ™t + t>0.

We are now ready to show that v exponentially goes to O in the energy space €.

Proposition A.1. Assume (H1) and &,(0) € B. Then, for sufficiently large constant L = L(y, v, f), the estimate

16 @le < ML(IBe)e™, t=0,
holds for some non-decreasing function My and constant 8 > O that depend only onv and L.
Proof. Fix k > 0 to be specified below. Multiplying equation (A.1) by d¢v + kv in L%(Q) we find (after some
algebraic manipulation) that
d

EA +(y-K)| o] + k((avv, vv) + LIv||> + (F(w) - f(w), V) =
(A.6)

(/) = £'(w), 00wv) = 2 (" @, [v1),
for

A= %(uatvuz +(avv, vv) + LHVHZ) +K(0¢v, V) + %Hvuh

1 (A7)
() = fw), v) = S (F' @), [v]?).
Now by the lower bound on f’ (see (H1)) we compute
1
L{V[* + (@) = fw), v) = L{v]|* + ( / f'(u+ (1= Dwda, |v[?) = (L - K)|v]]*.
0
Thus, for L > K5, (A.6) implies
%A +(y - 1)||0ev||> + k(aVv, Vv) < (f () - f'(w), dewv) — %(f”(u)atu, [v|?). (A.8)
We shall establish below, for sufficiently large L, the equivalence
CvA < 3)0ev|)? + 2(avv, Vv) < 2A. (A.9)
as well as the inequalities
(F (W) - f'(w), dewv) < X(aVv, Vv) + M(||B|)||0ew|A, (A.10)
1
- i(f”(u), oulv|?) < X(avv, Vv) + M(|B||¢)||dcul|?A, (A1)
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Consequently, for O < x < y/2, inequalities (A.8)-(A.11) imply

d
g+ A < hA, for h(t) = ML(|B|le)(|0:w(®)|| + [[o:u®)|?).

This inequality, Lemma A.2 (with small enough p) and (A.5) show that the assumptions of the Modified Gron-
wall’s Lemma (Lemma A.3) hold. Whence

1
A(t) < M(|BIDAO)e 25K = 0.

From (A.9), and the fact &,(0) = &,(0), we prove the desired result. Therefore, to complete the proof it remains
to establish (A.9)-(A.11).

Let us prove (A.9). We shall prove the upper bound, as the argument for the lower bound is similar. For
x € (0, y/2), utilising the dissipative estimate for u (1.3) and the bounds on f’ (see (H1) and Remark 1.1.a) we
compute

1
Az o) + 3 ((@vv, vv) + L||v\|2) +xk(% - 0)|v|? + (/f’(}lu +(1-AwydA, [v[?) - 3(F' @), [v|?)
0

v

Lloev)? + 3 ((avv, vv) + LIv||*) = Ka||v]|® - Be(1 + [ul?, [v])
2 2 2 2 2 3/2
Loev) + 4 ((@vv, V) + LIv]?) = (Ko + %) vII? = e jju) fa o) VI IVI3

L5(2)
Hoev)? + avv, vv) + (5 - Ky - & - M(|B| ) [Iv]|*.

v

v

Then for large enough L, we deduce A > }|0;v||* + +(aVv, Vv) and the upper bound in (A.9) holds.
To prove (A.10) and (A.11), we use dissipative bounds on u and w (Lemma A.1) plus the growth assumption
on f” to establish

(F'() = f' (W), 0wv) < K5 (1+ [u| + [wl, [0ew||V[*) < Ks[| 1+ [u] + W[l oy | 0w 1V 130)
KV
< ML(IBlOawlll[VVI* < - IVVI® + Me(Ble) 0wl [V vIP,
and

1 KV
=5 (@, 0eufvI?®) < MBI )IdcullllVIFecoy < 7 IVVI* + MUIBlle el Vv

Then the desired inequalities follow by invoking the ellipticity of a and the now established (A.9). The proof
is complete. O

To complete the proof of Theorem 1.3 it remains to prove that &, is a bounded trajectory in &1, this is the

subject of the next result.

Proposition A.2. Assume (H1) and &,(0) € B. Then, for sufficiently large constant L = L(y, v, f), the inequality
| div(avw)(@)] + [ Vorw(t)|| +[|of w(t)]| < ML(|Ble), t=0,

holds for some non-decreasing function My that depends only onv and L.
Proof. Let us set q := 0w, then g solves

{afq +yorq —div(avVq) + Lg+ f'(w)g=Lou, xe€Q, t=0,
&ql=0 = (0, Lu(0) + g), qloq =0.

Multiplying the first equation above by 0g + kg and integrating in Q we find

d
S+ 0=2010eq) + x(l10cql® + (@Vq, V) + Llgl* + ('), g”)) =
(A12)

1
L(0¢u, 0¢q) + KL(O¢u, 0;w) + E(f”(w)atw, lq1%),
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for
1 X
Ai= 5 (10l + @Va, V) + Lal + (7' (W), 1a1”)) + ke, @)+ lla

The identity (A.12) can be rewritten in the form

diA +(y = 2K)(|0¢q||* + 2kA = 2K*(d¢w, 9¢q) + K7Y||Ow| >+
t (A.13)

+ L(Oeu, 3¢q) + KL(deu, dew) + %(f”(w), dewlgl?) =: H.
Arguing in a similar manner as in the proof of (A.9) we have

Cvlléqllz <A (A.14)

for some Cy, aslong as L = L(y, v, f) is large enough. Using the growth condition of f”’ (see (H1)), the dissipa-
tive estimate for u (1.3), energy estimate for w (Lemma A.1) and arguing as in the proof of (A.10), the right-hand
side H(t) can be estimated as follows:

_ My(Blle)
N 6

My(|Blle)
" )

+ 618112 + [oewl®[1€ql1E, (A.15)

for any 6 > 0. Choosing O < x < %, 6 small, and collecting (A.13), (A.14), (A.15) we derive

d
FpA KA < Mi(|B]e) + ML (B[ )l|ocw|® A.

Consequently, using Lemma A.2 (with small enough u) and applying the modified Gronwall’s lemma we de-
termine that
IVaw(®)]| + (|97 w(B)]| < ML(|Ble), ¢=0. (A.16)

It now readily follows that
|div(avw)| < My (]|B|le), t=0.

Indeed, by rewriting equation (A.2) in the form
—div(avw) = -o?w —yow—-Lw-fw)+Lu+g=H, xeQ,t=0,

then due to Theorem 1.1, Lemma A.1 and (A.16) we see that | H(t)|| < M7(]|B||¢). Hence, the proof is complete.
O

B Proof of Theorem 6.2

The proof of Theorem 6.2 is an adaptation of a construction for exponential attractors presented in [29, Theo-
rem 2.10]. The difference here is one needs to keep track on the parameter dependence of all the sets used in
the construction and incorporate the fact we compare the symmetric distance in a topology different to that
in which the exponential attractors are constructed. For the reader’s convenience we shall provide the details
here.

B.1 Construction of the exponential attractors.

Let us introduce notations for the ‘starting’ cover u‘g(%, R) and the ‘model’ cover ug(ﬁ ,1):
VO(E) = ué‘(%’ R)’ u(e) = ué‘(ﬁ’ 1) = {{ie}f\ily €2 0’
where Ny := cardVy(e) = N(%, R)and N := N(%K, 1) are, by assumption, independent of € > 0.
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We shall begin with constructing a family of sets V;(¢), k € N, that satisfy”

Vi(e) C O(Be), Se(WB: ¢ | ) Be(6,%(3) ), keN, ezo0. (B.1)
£eVi(e)

Note that, by the assumptions of Theorem 6.2, the above property holds for k = 0. We now assume that the
set V() exists, for some fixed k, and are going to construct from it the set V;,(¢). From (B.1) it follows that

k
Se(k+1)Be ¢ | ) SeBe(é, % (3)), €=20.
£€Vi(e)

Let us consider an element Se{ € SeBe (¢, % (%)k) for some & € V;(€). Due to the splitting (6.1) we have
k X
Se{=Sel =ve+we, |velle < 5% (3)°, lweller < (3)", €20,
Therefore, by using the model cover U(e) of B €1 (0, 1), we see that

we e Bey (0,(3)) < UBe ((3) e e (3)")

i=1

Since S¢( = Seé + ve + we we deduce that

N
Sg(k+ 1)Bg C U UBg (Sg§'+ (%)k e % (%)k+1) , £50.

£eVi(e) i=1

As |8 eller < 61 we conclude that (B.1) holds for

Vi1 (€) := SeVi(e) + ( ) U(e) c O(Be), ke Z., €20. (B.2)

Now, it is straightforward to verify the following properties of V;(¢):

cardV;(g) = NoN¥,

diste (Se(k)Be, Vie)) < & (3)", keN, £20. (B.3)
k
distz (Vi1 (€), SeVi(€)) < co 61 (3)
Based on the sets V; () we construct the sets Ei(g) C O(Be):
E1(e) :=V1(g), Epi1(€) :=Vy1(e)USeEx(e), keN, €20, (B.4)

that clearly satisfy
cardEy(€) < kNoN¥,
ScEi(€) C Egiq1(e), keN, €=0. (B.5)
diste (Se(k)Be, Ex(e)) < + (3),

We shall now demonstrate that the sets
e ._ e NTE o
ME 2= [M L . ME = | | Ee), 20, (B.6)

are exponential attractors for the discrete dynamical systems (Bg, S¢). To this end we use the following result.

5 Here S¢(k) denotes the k" iteration of Se.
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Lemma B.1. Let the assumptions of Theorem 6.2 hold and the sets E;(€), k € N, € > 0, be given by (B.4). Then,
there exist constants M1 = M1(co, K, 61) > 0 and w = w(cq, K, 61) € (0, 1) (both independent of ) such that
for all € > 0 we have

)a}k

diste (Ex(g), Se(n)Be) < My (% , forallneN, keN: k>

n
o
The proof of this lemma, basically, repeats the proof of Lemma 2.3 from [29], so we omit the proof.
Now, we are ready to verify that the constructed sets M? satisfy Definition 6.1. The positive invariance and
the uniform exponential attraction property (with ¢ = In (%))

k

diste (Se(k)Be, ME) < % (%) , keN, e20, (B.7)
follow directly from (B.5),, (B.5); and (B.6). From the construction it also follows that M? c O(B¢) and thus
M¢ is compact in € for every € > 0. Let us check that dim¢(M?, €) < D uniformly with respect to € > 0. To this
end we need to estimate the minimal number N,(M¢, &) of open balls with radius r > 0 in & needed to cover
ME. Note that, since the cover is open, N;(MZ, &) = N,(WMZ, €). We argue that for any r > 0 there exist k, € N
and n, € N (independent of €) such that

diste ( U Ek(s),\?n,(e)) <r, €=20. (B.8)
k=k,+1

Indeed, let k; and n, be parameters, then by the triangle inequality we have

S S}

distg ( U Ek(e),\?n,(e)) < distg ( U Ek(s),Sg(n,)Bg> +distg (Se(nr)Be, Vn,(€)), €2 0.
k=k,+1 k=k,+1

Using (B.3); and taking n, > ¢ {m In (%)J v 0 + 1 we obtain
distg (Se(nr)Be, Vn,(€)) < 5, €=0.

Also applying Lemma B.1 for any k; € N such that k, > %, we find that

oo

dist ( U Ek(s),Ss(nr)Bs) <My (3) <My ()" <
k=k,+1

, €20,

N~

r

ifn, > {m In (%)J v 0 + 1. Therefore (B.8) is valid for n, and k of the form

M= |y 0 (1) VO +Caleo, K, 6, ko = | grataryy In (3)| VO + Caleo, K, @, 81).

Using the control on the number of elements for V; (¢) and E(¢), (B.6) and (B.8) we can estimate Ny (VEE, &)
as follows

k, kr
N,(VE, &) < Z cardE(g) + cardVy, (€) < Z KNoN* + NoN™ < (k2 + 1)NoN.
k=1 k=1

This estimate readily yields

InN,M€) . _InN __.p o0, (B.9)

dimf(Mfyg):limsup 1n(%) o = D

r—+0

6 Here | c| denotes the largest integer which does not exceed ¢ € R.
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B.2 Estimate on the symmetric distance
Derivation of the estimate on the symmetric distance distfgfl (M, M°) relies on the following result.

Lemma B.2. Let the assumptions of Theorem 6.2 hold and the sets E;(g), k € N, € > 0, be given by (B.4). Then
forall k € N and € = 0O the following estimate

dist}-1 (Ex(€), Ex(0)) < MLk( su(p ) 1Se& = So&|le-1 +distg 1 (Ue(%> 1), Uo7, 1))
£€O(Be

+ distS (Ug(%,R),uo(%,R)),

(B.10)

holds for some constant M = M(L) independent of € and k.

Proof. Fixe=0.
Step 1. We first establish (B.10) for the sets V;(g), V;(0). To this end it is convenient to introduce the

notations R
dy = disty 1 (Vi(e), Vi(0), k € Zv,  do := dist}: (U(e), U0));

So:= sup [|Se& —Soé]le-1.
£€0(By)

It is sufficient to establish that the following recurrent chain of inequalities

dk+1 <Sp+ a() + Ldk, keZs. (B-ll)

Indeed, upon iterating these inequalities one finds

di < L0 (so + do+do), k€ Za. (B.12)

Let us prove (B.11). Note that, from the construction of V;(¢) (B.2), we readily have the following inequal-
ities
diStfg_l (Vk+1(£)r Vk+1(0)) < diStfg-l (ngk(E), Sovk(O)) + ao, keZs. (B13)
Let us now verify the inequality
dist3-1(SeA, SoC) < so + Ldist:-1(4,C), forall A c O(Be), C C O(Bo). (B.14)
Fixing arbitrary a € 4, ¢ € C and using Lipschitz continuity of So in €~! we obtain
ISea = Soc|le-1 < ||Sea—Sod| g1 + ||Soa - Soc||g-1
< ||Sea - Soal|g-1 + LjjJa —cl||g-1 < So + L|ja—c||g-1.

Consequently (B.14) holds. Hence, upon combining (B.13) with (B.14), we deduce (B.11) and step 1 is complete.
Step 2. We claim that the sets E; (), E;(0) satisfy the same inequality as in (B.12), namely

dist$-1 (Ex(e), E(0)) < L2 (so + do + do), k € N. (B.15)

Since E{(g) = V1(¢g) for all € > 0, the above inequality is true for k = 1. Assume (B.15) holds for k = m and
let us verify it for k = m + 1. It is straightforward to check that for any A, A, C O(B¢), C1, C; C O(Bg) the
following inequality

diSt%q (Al UA,,Cil U Cz) < distfg—l (Al, Cl) \Y distfg—l (Az, Cz) (B16)

holds. Therefore, due to (B.4), it is enough to show that

s " Lm+2 -1
diste 1(SeEm(g), SoEm(0)) < (5o + do + do)ﬁ-
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This inequality is a direct consequence of (B.14) and the induction assumption. Indeed, we compute
disti—l (SgEm(g), SOEm(O)) < SO + L distfg—l (Em (8), Em(o))

< (o + do + do) (1 +LL';11‘1) =(sp+do+ EIO)LTfl‘l,

as required. Hence, inequality (B.15) yields the desired result with M(L) = LLj O

We proceed to the proof of the estimate (6.2) on the distance dist3 -1 (M, M?). We fix € = 0 and set
di= sup ||Se& - So&llg +disti(Be, Bo) + disti (Ue(k, 1), Uo(k, 1)) +distir (Ue(X, R), Uo(%, R)).
£cO(B,)
(B.17)

In fact, we will only demonstrate how to obtain the estimate (6.2) for diste-1(M¢, M°) as the other side
(distg-1(MP°, M?)) can be done similarly. Let k € N be arbitrary and fix & € Ej(e). Due to the just proved
Lemma B.2 we have

distg-1 (&, M?) < diste-1 (&, E(0)) < ML*d, k€N, £>0. (B.18)

On the other hand, we will show below that

distg1(£, M) < M(dLw + (3)"), forallneN, keN: k> 1. (B19)
Using (B.18) for k < 2 and (B.19) we deduce that
. 0 ~ 3\N
diste (&, M%) < M (dLw + (3)"), (B.20)

for some M = M(co, c_1, K, L, §;) which is independent of €. Optimizing n in the above inequality, for exam-

ple taking n = L‘] ln(z‘f/3)+ 1 (“’g‘l(:f) )J Vv 0, we conclude the desired estimate (6.2) with s = %

It remains to prove (B.19). By the triangle inequality we have

diste 1 (&, MP) < distg1(&e, Se(n)Be) + diste1 (Se(n)Be, So(n)By) + dist ¢ 1 (So(n)Bo, M?). (B.21)

Let us estimate each of the terms on the right hand side of (B.21) separately. Using Lemma B.1 and considering
k = 7 we obtain

distg-1(&, Se(n)Be) < M (%)n , forallneN, keN: k=12, (B.22)
Iterating (B.14) we find
distg1(Se(n)Be, So(m)Bo) < (s + dists 1 (Be, Bo)) iy < AL (B.23)

Finally, due to the continuous embedding & c &! (assumption (2)) and the exponential attraction prop-
erty of M (B.7) we see that

diSt£71(So(T’l)B0, MO) <C-1 diStg(So(n)Bo, MO) < C_1% (%)n , N e N. (B.24)

Hence (B.19) holds and the proof is complete.

C Proof of Theorem 6.4

Derivation of the estimate on the symmetric distance with correction relies on the following
interesting modification of Lemma B.2.

Brought to you by | University of Durham
Authenticated
Download Date | 9/18/19 12:35 PM



DE GRUYTER S. Cooper and A. Savostianov, Homogenisation with error estimates of attractors = 781

Lemma C.1. Let the assumptions of Theorem 6.4 hold and the sets E;(€), k € N, € = 0, be given by (B.4). Then
forall k € N and € = 0 the following estimate

dist? (Ek(e),TsEk(O))sMLk( sup ||SeIT; ¢ - TeSoélle + sup [|Teé - IT: €| e
&€ O(By) £€0(Bo)

+disty (Uelg, 1), Te ol 1) +distd (Ue(, R), TeUo(F, R)) ), (CD)

holds with some constant M = M(L) which is independent of € and k.

Proof. We follow the strategy of Lemma B.2 and fix € = 0.
We first derive an estimate on the distance between V; (&) and T¢V(0). Let us introduce the notations

dy = dist}: (Vi(e), TeVi(0)), k€ Zs,  do :=dist}: (U(e), Te U(0));

So:= SUp ||Sells'¢ ~TeSoé|e +L sup |II:'¢ - Ted|e.
£€0(Bo) &€ O(Bo)

We are going to verify the recurrent chain of inequalities

dk+1 SSo+ao+Ldk, keZs. (CZ)

From the construction of V;(¢) (B.2) we see

dist} (Vi1 (€), TeViy1(0)) < dist (SeVi(e), TeSoVi(0)) + do, k € Zs. (C.3)

We now argue that

dist? (Sed, TeSoC) < so + Ldist: (A, T:C), forall A ¢ O(Be), C c O(By). (C.)

Indeed, fixing a € A, ¢ € C and using the uniform (with respect to € > 0) Lipschitz continuity of S¢ in &
(assumption (5) of Theorem 6.4) we compute

|Sea — TeSoclle < ||Sea — Sell; c||¢ + ||SeIlz ¢ — TeSoc||e
<Lla-I; c|e + ||Sell; ¢ - TeSoc| e
< Ll|la-Tec|le + L||Tec - Iz c||¢ + ||Sellztc - TeSoc|e -
The above inequality, obviously, implies (C.4). Combining (C.3) and (C.4) we establish the recurrent inequal-

ities (C.2) which yield
dkS(So+d0+ao)%, keZ..

To derive the estimate (C.1) on the distance dist} (E (€), TgEk(O)) we simply argue as in Step 2 of Lemma
B.2. O

We are ready to prove the theorem. We fix € > 0 and set

di= sup ||SeIl;'& - TeSolle + sup |Te& - M€
£€0(By) £€0(Bo)

+ dlst% (u;_‘(%, 1), Tg uo(%, 1)) + dlstfg (u‘g(%, R), Tg uo(%, R)).

As in the proof of Theorem 6.2 we will only consider dists (M¢, T:M?) as the other side can argued in a similar
manner. Let k € Nand & € E(¢) be fixed. Then according to Lemma C.1 we have

diste (&, TeMO) < diste (&, TeEx(0)) < ML¥d, keN, e=0. (C.5)

On the other hand we deduce below that

dist (&, TeMO) < M(&L£ + (%)") +m(e), k=2 neN, (C.6)
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for w given in Lemma B.1. The estimate (C.5) for k < 2 together with (C.6) implies

diste (&, T-MO) < M((d + m(e)Lw + (3)"), €7)

for some M = M(cq, K, L, Leor, 61) which is independent of . Optimizing n in the above inequality provides
the desired result.
It remains to prove (C.6). By the triangle inequality we deduce that

diste (&, TeMO) <

(C.8)
diste (£e, Se(n)Be) + diste (Se(n)Be, TeSo(n)IeBe) + diste (TeSo(n)ITeBe, TeMP).
The first term on the right hand side of (C.8) can be controlled by Lemma B.1 for k > 7:
diste (&6, Se(m)Be) < My (3)". (C9)

By the identity IT¢ Bs = By (assumption (3) of Theorem 6.4) and iterations of (C.4) we estimate the second term
on the right hand side of (C.8):

diste (Se(n)Be, TeSo(M)IIcBe) = diste (Se(n)Be, TeSo(n)Bo) < so b=t < d L L™, (C.10)

The last term on the right hand side of (C.8) can be estimated using II:B: = By and the property of T
(assumption (4) of Theorem 6.4) and the exponential attraction property of M°:

diste (TeSo(n)ITeBe, TeM®) = diste (TeSo(n)Bo, TeMP) )
< Leordiste (So(n)Bo, M%) + m(e) < Leor & (%)n +m(e). .

Hence (C.6) follows from (C.8)-(C.11) and the theorem is proved.

D On the refinement of inequality (5.8)

Let us begin by noting that in Section 5 we were actually in the position to prove the following improvement
of inequality (5.8) (in Theorem 5.2).

Proposition D.1. Forevery ¢ ¢ Beg(o’ R) the inequality

19eSe(0)§ = 9eSo(OMeE e+ < MeM||Az! = Aoy €20, (D.1)

holds for some non-decreasing functions M = M(R, ||g||) and K = K(R, ||g||) which are independent of € > 0.
Proof. The proof of this result follows along the same lines as in the proof of Theorem 5.2 except for the
following minor alterations:

. In the uniform bounds (5.9) (due to Theorem 2.5) we actually have
107 I3y + 107 30y < M-
. From (1) we can see that g° = 9:u® - 9:u® satisfies the bound

10e°1l < 110e° 112 ) 1960 1 ity < MIOe® 112

and so we can improve (5.13) as follows:
|(A00eu® — Aedeu®, A 0¢q%)| = |(Aedeu, (Az" ~ A51)9eq®)| < | Aedeu® [ Az" — AG' | o r2(ayll9ed”l
< MIAZ" - A5l e l0ea° 113 )
< M(FIAZ" = AGM I Gaqay + $1964° 7)) -

)t
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. From (2) we can replace (5.12) with

d Ktya-1  a-114/3 1 -1 1 2
A MM AT - AG A o) MoA, A= 3 (0%, A510ig) + 5 a° P,

which then leads to the desired result.
O

In order to further improve (5.8) (or rather (D.1)), and achieve the optimal bound with power one, we intend
to argue as in the proof of Theorem 4.2. For this reason, we require additional regularity on the initial data &.
In particular, we shall show that it is sufficient for & € €2 to be such that the solution uf to (0.1) (with initial
data &) satisfies

|Aed?uf|| <M, t=0.

Then, we shall demonstrate that this additional regularity is ‘natural’ in the sense that the global attractor
AF possesses such smoothness under the additional mild assumption on the non-linearity f:

feCM®), If"(s)<Kg, secR. (H3)

Let us introduce the mapping
Au := —div(aVu),

recall
{82 ={& e (H5(Q)* | (AE" - g) € Hy(Q) and AE” € L*(Q)},

11122 = 148" - glza) + 147117 + 148217,

and introduce

18]35 = |A(AE" + F(E1) - g) |7 + [ VAEZ|? + 1€ 32

Our first result is that a dissipative estimate holds in &3.

{ &= {Ec & |A(AE +f(¢M) - g) € L*(Q) and AE” € Hp(Q)},

Theorem D.1. Assume (H1) and (H3). Then for any initial data ¢ € &> the energy solution u to problem (1.2) is
such that &, € L=(R.; £) and the following dissipative estimate is valid:

10f u(®)]| + 107 u(®) | g3y + 14T U] + [Eu(®] &5 < M(|&]lex)e™ + Mg, t=0,
for some non-decreasing function M and constant 8 > O that depend only onv > 0.

Proof. We begin by noting that since ¢ € &2 then, by the dissipative estimate in &2 (Theorem 2.5), &,(t) :=
S(t)¢ satisfies

107u(®)]| + [VOFu®| + | &u(®lle> < M(|€]|g2)e P + M(|gll), ¢ =0. (D.2)

In particular, we have

1Ol e + 196Dl o) = MUE )™ + Mg, ¢ 0, (D3)

where a is given in Remark 2.1.
Now upon differentiating (1.2), in time, three times we deduce that r(t) := a?u(t) solves the equation

OFr + yoer + Ar = —f"" (W) (du)® - 3" (Wou 0 u - f' (u)dju =: F(t), t=0,
with initial data
r(0) = y*& + y(A&" + f(§1) - g) - A& - f'(€HE?,

and

0¢r(0) = —yr(0) + yAE® + A(AE" +f(E) - 8) - f'(EN(§)" +F (& + AE +fEN - g).
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Now by (D.2) and (D.3) we readily deduce that F € L>(R.; L?(Q2)). Additionally, since ¢ € &3 we see that r(0) €
H}(Q) and 0,1(0) € L?(Q), i.e. (r(O), atr(O)) € &. Consequently, by standard linear dissipative estimates for
r, we find

10| + 107 u(®) | 30y < MUIE )™ + M(g]), =0, (D.4)

for some M that depends only on v.
Now, the remaining claims are proven by differentiating (1.2) once to get

1Adu(®)llz3(0) < M(€]le2)e ™ + M(ligl), > 0.
Then differentiating (1.2) one more time to get
1407 u(O)] = M(|&lle>)e P + M(Ig]), ¢ =0,
and finally re-arranging (1.2) to get

1A (Au() + Fu(6) - g)I| < M(|€][e)e™ + M(lg]), = 0.
O

Equipped with Theorem 2.1 we are ready to prove the desired improvement of (D.1). Namely, upon setting &2
to be & for the case a = a(;) and Bg:(0,R) =={§ € &2 | [§1lez < R}, the following result holds.

Theorem D.2. Assume (H1) and (H3). Then, for every ¢ € B €3 (0, R), the following inequality
[10¢Se()€ = 0¢So(OITeE ||+ < MM || AZ" - Ao |l coqay, €20,

holds for some non-decreasing functions M = M(R, ||g||) and K = K(R, ||g||) which are independent of € > 0.

Proof. The argument is similar to that in Theorem 4.2 so we shall just outline the main ideas.
Set & (1) := Se(t)&, &,0(t) := So(t)II¢ and recall &, = II.£. Then by the dissipative estimates for &,- in &2
(Theorem D.1) and £,0 in £3 (Theorem 2.5) we have the following uniform bounds in ¢ and «:

2 0
W€l g0y + 1Ae0eu®|| + [[Ae0tu®|| + [[u”[| g gy < M.
The difference ¢¢ := o;u® — 0;u° solves

{aqu +Y0¢q° + Aoqf = Apdut — Acou + f/(u®)ou® - f/(u)ows, xeQ, t=0,
Sgcle=o = (8% = &5, ¥(& — €D+ f(&) - fEN),  d°lan =0,
and we have
1€g¢le=olle-+ < ClIAZ" - AG |l sz
After testing the first equation in the above problem with A;'0;g° and some algebra (similar to that in

Theorem 4.2) we deduce that

d G _
JpA < ~(Ac0tu’, (A" - AgN)a®) + (F(u)ou® - f'(uf)onu, Ay 0.q"),

1 1 _ 4.
where A := 5|\q£|\2 + 5(atq£,Aolatq£) - (Aeouu®, (A:" - ANT°).
Now in the proof of Theorem 5.2 we showed that
|(F W®)oeu® - F'®)ou®, Ao 0:q%) | < M1 (™| A" = Ao |12 1oy + S1G°117 + 3(0¢q°, Ag"0eq)).

Therefore

%A < (2M1Asdu® ~ AedPus, (A" - AgN)g®) - 2M: (Acoeut®, (A;! - AgY)g)

+ My (") AZ" - A 12 ooy + 3IG°I1° + 3(9¢q%, Ao 0eq")),
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and since
|(2M1Acdiu® - Acdfu®, (A7 - Ag")q°)| < ClAZ" - A 12 o) + Ma 3 11G°I1°,
we find d
A <2MiA+ ce™|1Az" - AoM 1% 2oy
from which the desired result follows. O

We finish this section with the following result on the smoothness of the global attractor.

Theorem D.3. Assume (H1) and (H3), and let A be the global attractor of the dynamical system (&, S(t)) given
by (1.4). Then
Alles < M(]|gl))s

for some non-decreasing M that depends only on v.

Indeed this result can be proved by arguing as in Section 2 for the following splitting: for initial data ¢ €
B¢2(0, Ry) we consider H € H}(Q) that satisfies

—div(aVH) = -f'(£V)&? € L*(Q),

and G € H}(Q) that satisfies
~div(avG) = g - f(¢1) - yH € L*(Q).

Then, we decompose the solution u to (1.2) as u = v + w where

{afv +yov —div(avyv) =0, xeQ, t=0,
€V‘t:0 = (51 - G) {2 _H)’ V|a.Q = O;

and

Ewlt=0 = (G, H), wl|y0=0.

The main points to highlight are that we can argue as in the proof of Theorem 2.1 (to produce an analogue
of Lemma 2.1) and establish that

{afw +yow —div(avw) = -f(u)+g, xe€Q, t=0,

diste (S()Bg2(0,R1), Bg3(0,Ry)) < Me ™, t=o0,

holds for some positive constants R,, M and 8 that depend only on v. Then, we use the transitivity of expo-
nential attraction (Theorem 2.2) and Corollary 2.1 to deduce that B¢3(0, R;) attracts bounded sets in &:

diste (S(t)B, Be3(0, Ry)) < M(|Blle)e™, ¢=o0.

This finally allows us to argue as in the proof of Theorem 2.4 to prove Theorem D.3.

Consequently, the improved regularity of the attractor (Theorem D.3) allows us to apply, when appro-
priate, the improved inequality (Theorem D.2) in obtaining error estimates in homogenisation (cf. Remark
5.2).
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