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Abstract Advances in display technologies are trans-
forming the capabilities—and potential applications—
of system interfaces. Previously, the overwhelming
majority of systems have utilised rectangular displays;
this may soon change with digital devices increasingly
designed to be ubiquitous and pervasive, to facilitate
frictionless human interaction. At present, software
is invariably designed assuming it will be used with
a display of a specific shape; however, there is an
emerging demand for systems built around interacting
with tabletop interfaces to be capable of handling a
wide range of potential display shapes. In this paper,
the design of software for use on a range of differently
shaped tabletop displays is considered, proposing a
novel but extensible technique that can be used to
minimise the influence of the issues of using different
display shapes. Furthermore, we present a study
that applies the technique to adapt several software
applications to several different display shapes.

Keywords visual content management; irregular
displays; screen design; multi-touch
surfaces; tabletop displays; ubiquitous
computing

1 Introduction
The majority of tabletop software systems that
provide visual feedback to a user are designed to do so
with a specific display shape, with the most common
of these shapes being rectangular. However, adapting
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displays to different shapes has always been possible
by covering regions of a display [1]. This, in addition
to new technologies such as circular liquid crystal
displays [2, 3], allows the potential for different display
shapes to be used in tabletop systems. With the wide
application and deployment of digital technologies,
developers increasingly need to consider how to make
their software and systems agile enough to adapt to
not only displays of varying sizes and aspect ratios,
but also to displays of varying shape. In support
of this aim, this paper presents a novel technique
that allows developers to adapt tabletop software to
different display shapes, as well as a study evaluating
its potential.

2 Background
Traditional displays used in digital systems are
overwhelmingly rectangular. However, an increasing
number of non-rectangular displays is becoming
available for a variety of real-world applications,
with patents appearing from the early 2000s [4].
One such instance of a non-rectangular display is
Toshiba’s circular thin film transistor liquid crystal
display (LCD) [2]; this display is typically employed in
vehicles to show dashboard and operating information.
The display is designed to look similar to a typical
dial on a car dashboard, thus requiring the display to
be circular. The Motorola Aura [3] is a mobile phone
that showcases another example of a non-rectangular
(circular) display.

A non-rectangular display is utilised in the PyMT—
a multi-touch framework for Python [5]—project. A
circular display is made by projecting the system’s
output onto a circular surface. The Puddle of Life
application is designed to tailor its visual output to
this circular display shape; the software is constrained
by the specifications of the hardware. This is also

349



350 J. McNaughton, T. Crick, S. Smith

true for software built for circular dashboards [2]
and phone [3] displays. As a result, such software
cannot be used easily with other non-traditional
display shapes, and so applications used with these
circular displays are not suitable for use with typical
rectangular displays.

The DiamondSpin framework [6] offers support for
circular tabletop multi-touch displays. Instances of a
circular display used by the framework are achieved
by either projecting the system’s visual output onto
a circular surface or occluding sections of the output.
DiamondSpin supports these displays through several
applications which are designed specifically for use on
a circular tabletop interface; the framework provides
several features to support applications intended for
circular interfaces, such as the ability to orientate
items towards the nearest point on the edge of the
display. Some of the example applications for this
framework can be used with both rectangular and
circular interfaces; using the framework’s features,
the applications are able to appropriately arrange the
layout of content to the display shape used. However,
this adaptive ability is limited to two regular display
shapes: rectangular and circular.

The circular dashboard LCD [2] is a typical
example of a technology designed with the intention
of supporting ubiquitous computing [7]. We have
entered an era of ubiquitous and pervasive digital
systems designed to fit naturally into their
surroundings [8], recognising the potential impact
on a user’s emotion and behaviour [9]. However, for
this to be natural and intuitive, systems must be
designed around emerging user environments, not the
status quo. The implication is that many previous
standard elements of typical computing systems need
to be reconsidered, such as the shape of a system’s
interface. One of the strengths of tabletop systems is
their ubiquitous nature [10]; the ability for a tabletop
system to manage different display shapes enhances
this strength, allowing interfaces to better fit their
environment.

Previous work that discusses the possible effects
of displays with non-rectangular display shapes [11]
highlights the benefits it may offer; these benefits
include potential improvements to collaboration
around the display between users. Vernier et al. [11]
proposed a circular tabletop interface which would

allow each user to have an equal share of the display.
Though focused on circular tabletop displays, they
highlight the effect that a different display shape
could have on the use of an interface; benefits noted
in the work include the improved management of each
user’s personal space.

It is thus evident that the visual content of systems
will need to accommodate the use of different display
shapes. A natural way to achieve this is to define
specific layouts for the software’s visual content for
each display shape it may potentially be used with.
This is the approach used in the software systems
discussed thus far [5, 6]; however, for software which
may have a wide range of potential interface shapes,
this would require significant extra development work.

The structured literature review [12] that informed
this research project highlighted the past lack of
innovation in utilising different display shapes. This
is likely due to the cyclical nature of dependency
between display technology and its supporting
software. However, research activity in this
area is increasing, with recent research detailing
investigations on adapting text to non-rectangular
displays [13] and how visual content is best presented
on legacy interfaces [14]. The outcomes from these
two projects are a set of guidelines to be followed
to ensure content can fit different display shapes;
however, these guidelines can be restrictive and place
additional responsibilities on software developers and
content designers. This, much like designing for
unique content configurations for specific display
shapes, will result in potentially significant additional
development and design work.

A potential method to reduce this would be to use
a tool which can adapt the layout of visual contents to
different platforms, such as GUMMY [15]. This tool
can take an existing layout as defined by a developer
and quickly adapt it to the parameters of a specific
platform, including the restrictions of the display.
For example, the spacing of a predefined layout may
be reduced by the tool when the target platform is
known to use a small display. By implementing a
method which allows the tool to dynamically adapt
a layout of content items to different display shapes,
software developers could produce multiple layouts
for a piece of software to use with different display
shapes relatively easily.
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Instead of using predefined layouts for each
potential display shape, software could be designed
to use a single layout which is adapted to fit
different display shapes automatically. For example,
SUPPLE [16] is a system which adapts the layout of
contents to fit the parameters of a display, with the
content automatically arranged by the system to fit
various display sizes and resolutions. Furthermore,
SUPPLE has the ability to adapt its visual contents
based on input type. However, the system assumes
that despite the changes in an interface’s size,
resolution, input type, and colour support, it will
always be rectangular. Significant changes to layout
adapting systems, such as SUPPLE, will be needed
to allow them to work with non-rectangular displays.

Preliminary research into software capable of
adapting its visual contents to different display shapes
also exists. Waldner et al. [17] discuss work carried
out on the development of a system which allows
windows to be adapted to make use of unusual display
shapes. The unusual display shapes presented by
Waldner et al. consist of a series of overlapping
projections which form the system’s output, with
these overlapping projections not always forming a
rectangular shape. Therefore, it is important for the
software used not to be dependent on a rectangular
visual output. The technique presented works by
automatically identifying the best location for new
windows. An “importance” value is used for each pixel
of the output and the magnitude of this value is used
to assess its suitability to displaying a new window.
The higher the value is, the less suitable the pixel is;
pixels outside the output’s shape are given a maximal
importance value. This means that no window can
be placed anywhere which will result in it occupying
these pixels. This prevents content windows being
placed where they may be partially occluded due to
some of their regions existing outside the display area,
ensuring that no visual content is obscured.

Waldner et al.’s technique appears to be beneficial
for use with windows which have no relative
placement defined with respect to each other. The
technique could thus be employed in other systems
to manage the placement of visual content items
when used with different display shapes. However,
for visual content which may have a significant
locational relation this technique may be unsuitable;
for example, the order in which windows are

created will influence where the technique positions
them. The technique currently has no method
to accommodate any locational relationships which
should exist between windows. When two visual
content items must be in close proximity to each
other, there is no guarantee that the technique will
position them together. As the positioning of content
items can imply functional relations to the user [18],
the loss of intended locational relations is undesirable
for some systems.

The potential benefits [8, 11] and growing
supporting technologies [2, 3] of non-rectangular
displays indicate an increasing demand for systems
to support them; more specifically, there is a growing
demand for different display shapes in tabletop
systems [5, 6]. For tools which are used to design the
layout of software [15] or systems which dynamically
update the layout of visual content items [16], a new
method of adapting visual content layouts to different
tabletop display shapes is needed.

3 Identifying display shape dependence
issues

To develop a method of adapting visual content layouts
to different display shapes, the effects of applying a
new display shape to a system’s visual output need
to be considered. Issues can occur when a display
shape is used which differs from the shape of a display
assumed by the software; in this section we discuss
six of these display shape dependence issues (DSDIs ).

The DSDIs presented in this work are entirely
novel; they were derived from first-hand observations
of attempts by the authors to manually fit visual
contents to different display shapes, and from
observations discussed in related work of Serrano
et al. [13, 14]. Figure 1 puts the DSDIs into two
groups: primary and secondary. Primary DSDIs
are issues which can occur when displaying content
intended for a particular display shape on a display
of another shape, without modification. Secondary
DSDIs are issues which can occur when performing
modifications when displaying content intended for
a particular display shape on a display of another
shape, e.g., when attempting to resolve any primary
DSDI. Note that the order of the DSDIs given here
has no significance and is only used for identification
purposes.
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Fig. 1 A flowchart indicating causality of display shape dependence issues (DSDIs).

i) Cropping DSDI: Content items appear cropped,
as parts of them are positioned outside the display area.
The scope of DSDIs outlined in this work is limited
to environments where there is no hardware-level
attempt to fit the visual contents to the display shape.
This is in keeping with the ideas in Section 2 where the
majority of works considered create non-rectangular
displays by showing a region of a rectangular output
by, e.g., partially covering parts of a display or
occluding areas of a projection.

Cropping can make visual content items unfit for
purpose if visual information they convey is lost.
Users may also be unable to interact directly with
cropped items. The cropping of visual content items
outside the display area was also noted by Waldner
et al. [17]. One method of resolving cropping issues
is to make software capable of adapting to different
display shapes. Attempts to resolve cropping can
result in secondary DSDIs.

ii) Overlapping DSDI: Occlusion by other visual
content items.

Attempts to resolve the Cropping DSDI by movement
of content items can result in further issues such as
causing items which did not previously overlap to
cover each other. This can result in regions of visual
content items becoming obscured, with the same
negative impact as the Cropping DSDI . Overlapping

content items is not always an issue, especially if
the obscuring items can be moved by the user, but
in systems where these items are immovable the
occlusion may hide important information.

iii) Layout DSDI: Loss of layout relations between
visual content items.

Changing content item positions may be an issue
in applications where layout is important, as the
positioning of content items can imply functional
relations between them to the user [18, 19]. For
example, controls in an application may be placed
next to the items they influence. If this layout
relationships are lost, this may confuse users as to
what items the set of controls influences. The loss of
layout may not make content unfit for purpose, but
could be highly undesirable for software where the
layout is intended to aid the user. However, loss of
layout is not always problematic, and this DSDI only
applies to specific content, tasks, or applications.

iv) Scaling DSDI: Excessive scaling of visual
content items.

Scaling—resizing a visual element whilst maintaining
its aspect ratio—may be performed to avoid cropping
content. If this scaling is excessive, the visual
information displayed by a content item may no longer
be communicated. For example, if a textual content
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item is excessively scaled down, its characters may
become too small to be legible to users.

v) Warping DSDI: Warping of visual content items.

Warping occurs when the contents of a system
are stretched and/or squashed in a non-uniform
manner [20]. This may be applied to the entire
visual output of a system to make it fit a particular
display shape, causing content items to be stretched
and squashed non-uniformly. Even when such
deformation is relatively small, it can make visual
information in a content item incomprehensible
to the user. This DSDI may not apply in all
circumstances; some visual content items may display
visual information which is comprehensible to the user
no matter how severely it is deformed. For example, if
a content item’s visual information is its colour, then
as long as the item can be seen, it can successfully
communicate its visual information to the user.

vi) Display Use DSDI: Display regions remain
unused by the layout of visual content items.

As a result of attempting to resolve cropping, visual
content items may often be translated to the same
regions of the display, leaving large areas of an
interface unused. While this may not make the
software unfit for purpose, it is not desirable for
large tabletop interfaces, as on larger interfaces some
regions of the display may be beyond a user’s reach.
If the display uses direct touch interaction, items in
these regions are isolated from the user’s influence.
There are solutions to this problem, such as users
changing their positions around the interface or
controls which can be used to indirectly manipulate
out of reach items [21]. However, if all content items
are constrained to a single region of the display
beyond a user’s reach, the need to repeatedly use
such solutions is undesirable. Changing positions
to access remote content may not be possible in
some environments due to the placement of the
interface: for example, multi-touch interfaces may
have several users positioned around them. Users
interacting simultaneously with a single interface
often have a tendency to establish “territories” [22].
A user wishing to move when using such interfaces
may disrupt others who are also interacting with the
system. Solutions involving the remote control of out
of reach content items result in users manipulating
content items through a proxy [23]. This means that

their interaction is no longer direct, which can be
undesirable as it counteracts the benefits of direct
touch interaction [24]. Ensuring content items are
spread out across the interface reduces the likelihood
that all items are placed beyond the reach of the
users.

For a tabletop software system to be capable of
dynamically adapting its visual content to different
display shapes, the Cropping DSDI needs to be
resolved in a manner that minimises the influence of
any potential secondary DSDIs. Figure 1 maps the
causality of the DSDIs and notes circumstances in
which they may have undesirable consequences on a
system’s visual content. In the next section, we use
this list of DSDIs to present a technique to adapt
software to different display shapes in a way that
reduces the possibility of software becoming unusable
due to these issues arising.

4 Minimising display shape dependence
issues

We have developed a novel technique to resolve
the Cropping DSDI while minimising the effect of
secondary DSDIs. This technique is a method of
adapting visual content items dynamically to different
display shapes, using two stages. The first stage relies
on taking the original visual output of the software
and transforming it to fit within the borders of a new
display shape. This stage is referred to as virtual
projection. The second stage uses the difference
between the shape of the virtual projection and the
display shape to ensure that the layout can, if needed,
utilise all regions of the display. This stage is referred
to as position pulling.

4.1 Virtual projection

For the first stage, the original shape of the software
environment’s visual output is treated as a single
item. This item, referred to as the virtual projection,
is translated, rotated, and scaled so that it fits within
the display shape being used. The transformations
applied to the virtual projection are applied to
all visual content items displayed in the software’s
original layout.

This stage of the technique has the effect of keeping
the visual content items aligned with the virtual
projection. This ensures that visual contents do
not become occluded by lying outside the borders
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of the new display shape: the content items are all
contained within the virtual environment which fits
inside the display. Figure 2 demonstrates how the
virtual projection and its contents are transformed
together to fit a new display shape.

As the original visual output of most current
software is likely to be rectangular, the virtual
projection for most systems can be assumed to be a
rectangle. Finding the largest rectangle which can be
placed within the display is required for this technique
to utilise as much of the display as possible. The
concept of finding the largest rectangle inside a shape
is known as the largest empty rectangle problem or the
maximal rectangle problem; there are several existing
solutions to this problem [25, 26].

Methods also exist for finding the largest polygon
of any specific shape within in the display shape
[27], allowing for the adaptation of any software
environment whose display was not originally rec-
tangular. Therefore the technique can be used to
adapt software originally designed for any specific
display shape to other display shapes.

As all content items are translated, rotated, and
scaled identically, their layout relations are preserved
preventing the Overlapping DSDI . As no warping
deformations are used, the Warping DSDI cannot
occur. It is important to note that because the scope
of this work is limited to tabletop displays, rotation of
the content is not considered an issue. By definition,
tabletop interfaces are horizontal, allowing them to
be accessed from any direction, making orientation
unimportant.

However, the Scaling DSDI may arise: if the virtual
projection is significantly smaller than the initial
layout’s environment, the contained content items
may be excessively scaled. Indeed, it is possible that
the content items may be scaled to an extent that
they become unfit for purpose. To counter this, the
virtual projection technique adheres to scaling limits.

Fig. 2 An example of the virtual projection stage.

For systems where content items cannot be scaled
to extremes, its content items should only be scaled
within a predetermined limit. This may result in
sections of the content items becoming occluded by
mutual overlap or by the display edge if they cannot
be made small enough. Without scaling limits, the
Cropping and Overlapping DSDIs are guaranteed not
to occur but the Scaling DSDI remains a risk; with
scale limits, the potential risks of DSDIs are reversed.
When utilising this technique, developers must decide
on DSDI trade-offs in their software.

This stage of the technique is similar to previously
presented methods of dynamically adapting content
to different displays which entails constricting the
placement of content to a specific region of the
displays used [28, 29]. This region is recreated
for every display shape using the same dimensions,
ensuring the contained content keeps layout, scale,
and orientation relative to the region.

This stage of the technique has the potential to
minimise the effects of most DSDIs. However, it
does not prevent occurrence of the Display Use DSDI
since only a single region of the display, the virtual
projection, is used.

4.2 Position pulling

The second stage of the technique fills the gaps
between the virtual projection and the display edges.
The objective of this stage is to move content items
into areas of the display which are left unused by
the virtual projection. The edges of the virtual
projection exert a “pulling force” on content items.
The magnitude of this force is determined by the sizes
of the gaps between the display border and the virtual
projection’s edges. The magnitude of this pulling
force is also influenced by a content item’s proximity
to the edge instigating the force. Content items are
pulled from their centroids to simplify calculations:
shapes and sizes of the items moved are ignored.

The position pulling stage moves content items
into unused regions of the display (see Fig. 3).
Items positioned near large gaps between the virtual
projection and the display borders are pulled into
these areas. Figure 3(left) shows the pulling forces
which result from the gaps between the virtual
projection area’s edges adjacent to the content items.
Figure 3(right) shows the translations of the content
items resulting from the combined influence of the
pulling forces.
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Fig. 3 An example of the position pulling stage.

Algorithm 1 shows how each vector representing
the individual pulling force is calculated and
made proportional to the item’s proximity to
the corresponding edge. Algorithm 2 details how
pulling force vectors are computed; θ represents the
orientation of the virtual projection. The notations
in Algorithms 1 and 2 correspond to that in Fig. 4.

Algorithm 1 Calculating pulling force vectors
getPullVectors(O, A1, A2, B1, B2, C1, C2, D1, D2)−−−−→

LEF T ← (
−−−→
D1D2 ∗ (|−−→

OD1| / |−−−→
B1D1|))−−−−−→

RIGHT ← (
−−−→
B1B2 ∗ (|−−→

OB1| / |−−−→
B1D1|))−−→

UP ← (
−−−→
A1A2 ∗ (|−−→

OC1| / |−−−→
A1C1|))−−−−−→

DOW N ← (
−−−→
C1C2 ∗ (|−−→

OA1| / |−−−→
A1C1|))

return −−−−→
LEF T ,

−−−−−→
RIGHT ,

−−→
UP ,

−−−−−→
DOW N

Algorithm 2 Applying the “pulling force” vectors

applyPull(item, θ,
−−−−→
LEF T ,

−−−−−→
RIGHT ,

−−→
UP ,

−−−−−→
DOW N)−−−−→

P ULL ← −−−−→
LEF T +

−−−−−→
RIGHT +

−−→
UP +

−−−−−→
DOW N−−−−→

P ULL.rotateBy(θ)
item.translateBy(

−−−−→
P ULL)

return

This stage of the technique effectively deforms the
layout of the content items by warping it to fit the
display shape. Although the layout is warped, the
content items themselves are not deformed in any way
by this stage of the technique. The deformation of the

Fig. 4 Detailed view of the information used in position pulling.

layout ensures that more of the display’s real estate
is utilised and that the layout is not constrained to a
small region of the display. This minimises possible
effects of the Display Use DSDI . The shape of each
item does not influence the pull vectors, only the point
it uses for translation. Taking shapes into account
would require significantly more processing but would
only result in a marginally more accurate pull vector.

The pulling forces given here assume the original
environment of a piece of software is rectangular.
This can be considered acceptable due to the
current prevalence of software intended for use with
rectangular displays [30]. However, it is possible
that, in future, the technique may need modification
to adapt software for non-rectangular displays to
different shapes. The virtual projection stage can
easily be modified to use the maximal polygon
opposed to the maximal rectangle. For the position
pulling stage, a vector representing the pulling force
for every unique edge of the virtual projection would
need to be created. Addition of these vectors would
then create an overall vector which used to translate
a content item.

4.3 Technique observations

Our method employing the two stages discussed has
the potential to minimise any of the DSDIs identified,
when used on tabletop displays, two-dimensional
displays which are positioned horizontally. The
technique allows for interventions at different points
which can depend on how content should be treated,
giving developers greater control over the influence
and impact of the technique. In addition, the
technique uses only linear transformations, resulting
in a simple implement piece of functionality. These
characteristics make our technique a promising
approach to handling different display shapes on
tabletops for real-world applications.

5 Study
A study was carried out in which an implementation
of our technique was used for several different software
applications, and several different display shapes.

5.1 Implementation of the technique

The technique was implemented within version 2.1
of the SynergyNet framework [31, 32], a multi-touch
software framework intended for use with rectangular
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tabletop interfaces. The framework functions by
rendering a range of content items, such as images,
text, and video, which can then be manipulated by
users. SynergyNet is written in Java, allowing it to be
run across different operating systems. It can accept
a wide range of different multi-touch protocols such
as TUIO [33]. The framework’s ability to adapt to
different systems makes it a suitable candidate for
use with different display shapes.

Another reason for the choice of the SynergyNet
framework was the range of readily available app-
lications written using it. Implementing our technique
within this framework allowed any application written
for this version of SynergyNet to potentially utilise
different display shapes. The available applications
were produced by a number of different developers
for different purposes, allowing the technique to be
tried with various kinds of content, with not just
differing layouts, but also differing significance to their
layouts.

For the technique to work, the software needs
to be informed of the dimensions of the display
shape currently available. This is done via files
containing vectors corresponding to the display shape.
These vector files also include information on the
display shape’s maximal polygon (a rectangle is used
as all previous SynergyNet applications assume a
rectangular display).

Figure 5 shows the options available to application
developers utilising the technique. Choices made
in its usage, such as which stages of the technique
are employed and the constraints placed on these
stages, can influence which DSDIs it prevents and
counters. For example, if a developer wishes a
content item to act as the background to the entire
display, and cropping it is not an issue, then both
stages of the technique can be omitted. For content
items other than background images, developers can
choose whether or not to apply the position pulling
stage of the technique. If applied, the content items
maximise use of the display shape’s real estate by
being pulled into previously unused areas of the
display. However, if the layout of the content items
is of greater importance than the maximisation of
display usage, the developer can omit the position
pulling stage for certain content items in the layout.

5.2 Selection of applications

Our technique was tested using a number of
applications created by several developers for previous
studies in the SynergyNet project [34]. The study
focused on two specific applications, Grid and Simple
Map (see Fig. 6):
• Grid:

– Nine items are positioned in a grid layout which
users can reposition, rotate, and scale through

Fig. 5 Flowchart demonstrating navigation of the technique.

Fig. 6 Applications chosen for observation, from left to right: Grid and Simple Map.
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multi-touch gestures;
– All content in this application is specifically

positioned;
– Relative locations of all items in this application

are significant;
– This is one of the applications provided by

the SynergyNet framework to help familiarise
users with interacting with a large multi-touch
interface.

• Simple Map:
– Users supply countries in a configuration file

and the application shows a world map with
the specified countries’ flags positioned on top
of them;

– Users may move the flags around the map;
– All content in this application is specifically

positioned;
– The locational relations between the flag items

and the background image is strong.
These two were chosen because of the differing

significance of their items’ layouts, as the study
intended to investigate how the technique would
impact the arrangement of items having significant
layout intent.

5.3 Selection of display shapes

The SynergyNet framework was adapted to allow use
of a range of display shapes. These shapes were
chosen after consultation with a UK-based furniture
manufacturer with experience of designing multi-
touch tables. The manufacturer was in a strong
industry position for making predictions concerning
the likely design features of future multi-touch
tabletops, including their display shapes; the shapes
chosen are shown in Fig. 7.

Some of these shapes were derived from common
table shapes which could be used with tabletop
interfaces, such as the semi-circular design. They
allow users positioned around the display to have an
equal share of the interface, which can be beneficial

to collaboration. A circle was also chosen for its
ability to allow users to have equal shares of the
display. A triangle was chosen because of its regular
nature: all of its sides and corners are congruent.
The intersecting circles shape was designed to
make further use of multi-touch’s facilitation of
collaboration by providing focal points and areas to
share content items in. The larger circle of the display
shape can be used for one activity such as displaying
content items whereas the smaller circle could be used
for another activity such as manipulating the items.
A semi-circle was selected as it is a commonly used
shape for tables.

5.4 Approach

In the study, both stages of the technique were always
applied to all content items to investigate the full
impact of the technique. No limitations were placed
on the technique in the study. The technique was
implemented in such a way that it was applied to the
initial layout of content in an application.

The four different display shapes were emulated in
the study by using a large rectangular display shape,
then covering parts of the screen used to make the
visible area of the shape match an intended display
shape. Both of the applications of the study were used
with each of the four display shapes. The framework
was set up to capture screenshots taken at various
times during application of the technique: (i) before
application; (ii) after the placement of the display
shape’s outline (blanking out anything that would not
visible on the display); (iii) after the virtual projection
stage; and (iv) after the position pulling stage.

5.5 Data analysis

The impact of the technique on the DSDIs was
measured using the screenshots taken during the
execution of the technique. For each combination
of the two software applications and four display
shapes, the presence of DSDIs can be ascertained.

Fig. 7 Display shapes chosen for observation. Left to right: circle, triangle, intersecting circles, and semi-circle.
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For each DSDI a measurement was outlined which
could be obtained from the screenshots. These
measurements were then used to evaluate the impact
of the various stages of the technique on the DSDIs.
The measurements were converted to percentages to
allow simple comparison between the applications, as
the sizes of their layouts, initial scales, and number
of items differ. These measurements were as follows:
• Occluded items: To measure impact of the

Cropping DSDI, we measured the percentage of
items suffering occlusion by the display shape.

• Overlapping items: To measure impact of
the Overlapping DSDI, the percentage of items
suffering occlusion by other items was measured.

• Change in layout: To measure impact of the
Layout DSDI, the distance of items from where they
were expected to be with a layout of the same scale
and orientation (but no other deformations) was
determined. This average of these values, expressed
as a percentage of the width of the layout’s minimal
bounding rectangle, was used.

• Display shape unused: To measure impact
of the Display Use DSDI, a minimal bounding
rectangle was drawn around the visual content.
The area unused (i.e., area of the display outside
the rectangle) divided by the total area of the
display shape gives the fractional unused area.

• Change in scale: The impact of the Scaling DSDI
was measured as the absolute maximum percentage
change in scale of all items in the application.

• Deformed items: The impact of the Scaling

DSDI was measured as the percentage of items
deformed in a non-uniform manner.

6 Results
The results are summarised for each application, for
each shape and phase, in Tables 1 and 2. The phases
used in the tables represent the following stages of
the execution of the technique as follows:
• Phase 0: When the application is first started,

before execution of the technique starts.
• Phase 1: After the display shape borders are

applied to the application.
• Phase 2: After the virtual projection stage of the

technique is carried out.
• Phase 3: After the position pulling stage of the

technique is completed.

6.1 Grid application

Table 1 shows that the technique reduced the
initial occlusion for all shapes without incurring any
occlusion from overlapping items or deformation of
items throughout its execution. However, the virtual
projection stage did increase the change in scale
and the proportion of the display shape which went
unused. The position pulling stage of the technique
did reduce the amount of the display shape which
went unused quite significantly for some shapes but
did increase the change in layout. The change in
layout for some display shapes was quite significant;
for example, see the triangle in Fig. 8, where the grid
layout becomes nearly unrecognisable.

Table 1 DSDI measurements from the study in SynergyNet’s Grid application

Grid application
DSDI measurements

Occluded Overlapping Change in Display shape Change in Deformed
Shape Phase items items layout unused scale items
Rectangle 0 0% 0% 0% 0% 0% 0%

Circle
1 66.7% 0% 0% 0% 0% 0%
2 0% 0% 0% 35.8% 39.5% 0%
3 0% 0% 6.4% 20.9% 39.5% 0%

Triangle
1 77.8% 0% 0% 0% 0% 0%
2 0% 0% 0% 50.1% 48.8% 0%
3 0% 0% 20.7% 7.6% 48.8% 0%

Intersecting circles
1 66.7% 0% 0% 0% 0% 0%
2 0% 0% 0% 56.9% 44.2% 0%
3 0% 0% 27.4% 14.6% 44.2% 0%

Semi-circle
1 88.9% 0% 0% 0% 0% 0%
2 0% 0% 0% 40.9% 44.2% 0%
3 0% 0% 11.9% 13% 44.2% 0%
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Fig. 8 Influence of our technique on SynergyNet’s Grid application.

6.2 Simple Map application

In the map application, the large item displaying the
map was exempted from the influence of the position
pulling stage of the technique.

Table 2 shows that the technique reduced the
initial occlusion for all shapes without incurring
any additional occlusion from overlapping items
or deformation of items throughout its execution.
However, the virtual projection stage increased the
change in scale and the amount of the display shape
which went unused. The position pulling stage of the
technique reduced the amount of the display shape
which went unused quite significantly for some shapes
but also increased the change in layout. The change
in layout for some of the display shapes was quite
significant, as for the grid app, implying that the
display shape has a large influence on the impact of
the technique, not just the content.

Figure 9 demonstrates the importance of the layout
of content items. Up to the virtual projection stage
of the technique, the flag items are correctly aligned
with the countries on the map. However, the position
pulling stage deforms the layout of the flags in such a
way that disengages this alignment. If it is important
for this alignment to be kept then the flags should
also be exempted from the position pulling stage of
the technique; as a consequence, however, areas of the
display will be left unused by the layout. There is a
clear choice developers must make between preserving
the layout of content items or maximising usage of
the display’s real estate. A clear example of this
choice can be seen in the technique’s influence on the
intersecting circles display shape in Fig. 9. Without
the influence of the position pulling stage of the
technique, a large region of the display is left unused
by the initial layout, resulting in the Display Use
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Table 2 DSDI measurements from the study in SynergyNet’s Simple Map application

Simple Map application

DSDI measurements

Occluded Overlapping Change in Display shape Change in Deformed

Shape Phase items items layout unused scale items

Rectangle 0 0% 20% 0% 0% 0% 0%

Circle

1 60% 20% 0% 0% 0% 0%

2 0% 20% 0% 37.9% 42% 0%

3 0% 20% 5.2% 37.1% 42% 0%

Triangle

1 100% 20% 0% 0% 0% 0%

2 0% 20% 0% 50.2% 50% 0%

3 0% 20% 17.6% 22.7% 50% 0%

Intersecting circles

1 80% 20% 0% 0% 0% 0%

2 0% 20% 0% 58.1% 48.2% 0%

3 0% 20% 16.4% 42% 48.2% 0%

Semi-circle

1 80% 20% 0% 0% 0% 0%

2 0% 20% 0% 40.3% 44.6% 0%

3 0% 20% 9.9% 28.2% 44.6% 0%

Fig. 9 Influence of the implemented technique on SynergyNet’s Simple Map application.



Resolving display shape dependence issues on tabletops 361

DSDI occurring. However, with the influence of the
position pulling stage of the technique, several of flag
items appear off the map, away from their respective
positions, indicating the Layout DSDI has occurred.

7 Conclusions and future work
Developers must consider how any proposed method
counters the DSDIs. The identification, or creation
of, an adequate DSDI-minimising technique which
allows a particular system to adapt to different
display shapes could form part of design guidelines
for emerging technologies. It is important to note
that the list of DSDIs for a system should not
be the only influence on the design of a DSDI-
minimising technique; the need for applications
to control the magnitude of a DSDI-minimising
technique’s influence is also important.

The development of the technique presented in
Section 4 has shown that when designing software
for use on differently shaped tabletop displays, the
Cropping DSDI must be considered. In addition to
this, secondary DSDIs which can result from attempts
to resolve the initial cropping must also be addressed.
Developers should also consider which DSDIs their
software can tolerate and which must be handled by
a DSDI-minimising technique. Choices must be made
between preserving the layout of content items and
maximising display usage.

In the study, both stages of the technique were
applied to investigate its impact; in typical usage,
an application developer using the framework would
have the option to override them for specific content
items. For example, they could apply scale limits to
the virtual projection for all content in an application
or to individual items. The ability to choose which
stages of the technique affect each content item gives
developers control over their influence. Without
this ability there is still a danger of unacceptable
DSDIs occurring in software despite the presence
of the implemented technique. This highlights that
any technique intended to minimise the influence of
the potential DSDIs in a system should not only be
adaptable to different display shapes, but also be
adaptable to the needs of the developer. Doing so
allows developers to make informed, user-centered
design and implementation decisions on how content
should be displayed.

However, developers must consider the limitations

of the technique before adopting it. One such
limitation relates to items providing backgrounds.
Depending on what stages of the technique are applied
to a background item the result may either be a
partially occluded background or blank spaces left
where the item is absent due to it being scaled to fit
the maximal rectangle. Both of these outcomes may
be undesirable in some scenarios. Possible solutions
which could be explored include adding an extra
step to apply warping to the background item or
context-aware filling of blank regions of the display.
Another limitation is the assumption that there is
no hardware-level attempt to fit the output to the
display shape.

Although the technique presented in this work helps
to overcome the DSDIs of tabletop interfaces, it is
not always guaranteed to be the best solution. It
may be possible in many combinations of content
and display shapes to find solutions where the impact
of the steps taken to avoid DSDIs is lower than the
impact of the presented technique. A solution of
lower impact is generally preferable for developers,
as it allows content to appear more consistent across
different displays, allowing the software to appear
more intuitive and familiar to users across devices.
Identifying what solution is best suited for a given
situation should be at the centre of any future research
involving this topic. Despite lack of a guarantee that
the technique is optimal for a given situation, it is
still a significant step forward for resolving DSDIs
as it can (i) always supply an adequate solution in
a wide range of scenarios; (ii) be automated as part
of an implementation as shown in this work; and (iii)
allow developers some control over its execution.

There are various reasons why it is important that
software should become display shape independent.
There is now a growing push for software systems
to become ubiquitous with the increased availability
of natural user interfaces; for a system to become
ubiquitous it must fit its environment [8]. Being able
to change the display shape of a system would aid in
achieving this.

The examples of non-rectangular displays discussed
in Section 2 reinforce the need for their support. In
addition to these, many devices coming to the mass
consumer market—for example, recently popular
wearable devices—utilise non-rectangular displays,
especially smart watches [35]. Figure 10 shows a
prototype built by a leasing furniture manufacturer
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Fig. 10 A prototype of a circular tabletop display.

featuring a circular tabletop interface intended for
use as an interactive kiosk for public spaces. The
lack of readily available software for the interface’s
circular display meant that to use the tabletop,
bespoke software would need to be commissioned at a
significant cost to the manufacturer. Readily available
off-the-shelf products intended for interactive kiosks
could not be directly used. This highlights the need to
make it as simple as possible for software to support
different display shapes.

The technique presented in this paper can be
adopted by developers to allow their content to fit
different display shapes, much like the guidelines
presented in the work of Serrano et al. [13, 14].
However, while our technique deviates from their
guidelines, it provides developers with greater
freedom and flexibility. Without encumbering
software developers and content designers with
additional restrictions, the technique is able to
resolve the DSDIs with minimal input. This saves
development time when adding support for different
display shapes and also offers more freedom in the
design of content.

Furthermore, the technique outlined in Section 4
could also be used beyond tabletop systems. However,
the DSDIs in other systems may differ from those
presented in this work [14]. For example, attempts
to resolve the initial Cropping DSDI may require
content items to be rotated. If a user views the
display from a fixed viewpoint, e.g., using a vertical
display, then any change in content orientation is
undesirable: rotated visual content items, such as
text, could be difficult to understand. This is not an
issue for systems which utilise horizontal interfaces
and allow users to adopt multiple positions around

the display. Future work could entail the outlining of
DSDI for other kinds of systems and the production
of techniques to minimise their influence.

Further research involving the technique could
involve investigating how it functions with more
extreme shapes. Although the shapes used in the
study vary somewhat and cover a wide range of what
may be used as tabletop display shapes, it is possible
that shapes varying from rectangular display in much
more extreme ways could be useful. Research utilising
these extreme shapes could involve finding acceptable
limits to place on parts of the technique such as
maximum distances to pull content items.

While this work details an implementation of the
technique, the next step should be a full user study
investigating how well the technique works for both
real-world developers and end users; for example,
a study similar to that carried out by Serrano et
al. [14] to review the impact of their proposed
guidelines is likely to be a suitable approach. By
instructing developers to utilise the technique when
building software, it should be possible to discover
the suitability of the technique in real-world scenarios.
We can then review the impact of the technique
in these implementations to find if the results are
suitable for end-users.

It is important to note that the scope of this work
entailed resolving DSDIs relating to the layout of
visual contents on tabletop interfaces. Future work
has the potential to apply the technique presented
to other kinds of interfaces. This future work would
likely focus on additional restrictions the technique
would have to take into account, such as the need for
a specific orientation with vertical displays. Future
work could also consider expanding the technique to
resolve more than just DSDIs relating to the layout
of visual content. Extra steps or adding limits to the
transformations of elements within the technique may
help improve usability and readability when applying
content to a different display shape.

The technique presented in this paper can be
used in various scenarios; one such use is its
implementation in the application layer of a piece of
software; this would allow a specific layout of visual
content items to be dynamically adapted to different
display shapes. As this implementation of the
technique would be customised to the application’s
specific layout, it would ensure the best results.
However, this does have the drawback that the
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technique would need to be redefined for every unique
application.

Another use for the technique is its implementation
in an adaptable and extensible framework. In a
framework-level implementation, the same technique
could be employed by various applications to adapt
their visual contents to different display shapes; this
is similar to how systems like SUPPLE [16] adapt
contents to display parameters. However, a drawback
to this approach is that the technique’s implementation
may be unsuitable for some applications. For example,
if the implementation does not enforce scale limits,
the Scaling DSDI may occur. This may be acceptable
for some applications, such as those intended to use
content which can still communicate information to the
user at any size. However, it would be unacceptable for
other applications, such as those using text. Therefore,
it is important when implementing this technique at
a framework level that applications can change how
the technique influences them. The technique’s use
of higher-level functions, such as the ray firing used
in the position pulling stage, make it unsuitable for
implementation in lower level software.

The technique could also be implemented as
part of a design tool used to adapt the layout of
visual content, similar to GUMMY [15]. Using this
implementation, software developers could use the
resulting tool to adapt a layout of content items
to a specific display shape. Developers could then
make any further changes manually if the tool’s
automatically generated DSDI-minimising technique
were not adequate. Once a developer is satisfied with
the software layout they could then specify its use in
their software when the appropriate display shape is
present. This approach has the advantage of allowing
developers to check that the layout will be suitable
for a specific shape. However, it does potentially limit
the display shapes the system can use to those the
developer has input into the tool.

Finally, the technique could be transformed into
a set of guidelines for developers to follow when
creating software interfaces without the use of a
design tool. The guidelines could also incorporate
the decisions to be made concerning the trade-offs in
which DSDIs are minimised. These guidelines could
then be formalised [36], allowing their application

to software to be automated in places. This would
aid with the technique’s integration into frameworks
and design tools. With the technique implemented
in a tool used to design a wider range of software,
its influence can be tested on a wider range of user
interfaces with varying complexities in future studies,
especially in educational contexts [31, 37].

In summary, the technique presented in this paper
can efficiently minimise the effects of the identified
DSDIs, but requires trade-offs. Developers using
the technique must decide which DSDIs cannot
be tolerated by their software and must adapt
the technique according. Future tabletop software
development would benefit greatly from the creation
of guidelines to follow when adapting software to
become display shape independent. The technique
produced in this paper, or another similar DSDI-
minimising technique, could form part of these
guidelines.
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