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In this note we study SL(2,Z)-invariant functions such as modular graph functions

or coefficient functions of higher derivative corrections in type IIB string theory. The

functions solve inhomogeneous Laplace equations and we choose to represent them as

Poincaré series. In this way we can combine different methods for asymptotic expan-

sions and obtain the perturbative and non-perturbative contributions to their zero

Fourier modes. In the case of the higher derivative corrections, these terms have an

interpretation in terms of perturbative string loop effects and pairs of instantons/anti-

instantons.
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1 Introduction

1.1 Two instances of SL(2,Z) in string theory

SL(2,Z) automorphic forms and functions arise in closed string theory in at least two distinct

instances, depending on the interpretation of the modular group SL(2,Z). In the first instance,

SL(2,Z) plays the role of the mapping class group of the toroidal genus-one world-sheet and is thus

associated to perturbative aspects of the string at one-loop order and the group SL(2,Z) acts on

the modular parameter τ of the string world-sheet. The second instance is when SL(2,Z) is the

non-perturbative U-duality group of the type IIB string in ten dimensions, and we shall now describe

both cases in more detail.

The appearance of SL(2,Z) automorphic forms in closed string scattering at one-loop order

has been recently formalised in the framework of modular graph functions [1] and modular graph

forms [2, 3], where an SL(2,Z)-invariant or covariant function is associated with a certain graph
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that is to be thought of as describing a Feynman diagram on the toroidal world-sheet. The modular

function is then obtained from the graph by Feynman-type rules and the resulting functions quickly

go beyond the usual types of holomorphic or non-holomorphic modular forms when considering

complicated Feynman diagrams. Understanding them is crucial for exploring the structure of the

low-energy expansion of string theory at one-loop order, see [4–13] for further work on this topic for

type II and heterotic strings.

In the second instance, the group SL(2,Z) is interpreted as the non-perturbative U-duality group

of ten-dimensional type IIB string theory [14]. Now, SL(2,Z) acts on the axio-dilaton of the string

that includes the string coupling gs and is thus a non-perturbative symmetry, relating perturbative

and non-perturbative effects in gs. The symmetry, together with differential constraints from super-

symmetry, is powerful and very constraining and can serve to predict effects in string theory and its

low-energy effective approximation that are hard to compute otherwise [15–21], if one can determine

the exact function invariant under SL(2,Z), an increasingly difficult task as one progresses in the

low-energy approximation, e.g., higher curvature corrections to the four-graviton sector of the form

D2kR4 with increasing k.

1.2 Inhomogeneous equations and Poincaré series

A common feature of both instances is that the SL(2,Z)-invariant functions that arise generically

satisfy inhomogeneous Laplace equations. Denoting the variable on which SL(2,Z) acts by z =

x+ iy ∈ H for both cases, this differential equation is of the form

(∆− s(s+ 1)) f(z) = R(z) , (1.1)

where ∆ = y2
(
∂2
x + ∂2

y

)
is the SL(2)-invariant scalar Laplacian and R(z) an SL(2,Z)-invariant right-

hand side. In the first instance (modular graph functions), f(z) has a known representation as a

multi-lattice sum, whereas in the second instance f(z) is in general unknown. But even in the multi-

lattice sum case, it is often not obvious how to extract different explicit forms of the modular graph

function, such as the Fourier expansion that contains (elliptic) single-valued multi-zeta values [22–24].

The aim of this paper is to provide tools for analysing f(z) in the case when R(z) can be

represented as a convergent Poincaré series

R(z) =
∑

γ∈B(Z)\SL(2,Z)

ρ(γz) (1.2)

with the standard SL(2,Z) action

γ =

(
a b

c d

)
∈ SL(2,Z) ⇒ γz =

az + b

cz + d
, (1.3)

and where the Borel subgroup

B(Z) =

{
±

(
1 m

0 1

)∣∣∣∣∣m ∈ Z

}
⊂ SL(2,Z) (1.4)
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thus acts by translations z 7→ z + m. The quotient by B(Z) in the Poincaré sum (1.2) indicates

that the function ρ(z) is periodic, ρ(z +m) = ρ(z) for all m ∈ Z, and is necessary in order to avoid

divergences.

A representation of the form (1.2) for R(z) is easy to obtain for the case of the simplest modular

graph functions and for the D6R4 correction coefficient as it is known in this case that R(z) is a

polynomial (of second order) in non-holomorphic Eisenstein series

Es(z) =
∑

γ∈B(Z)\SL(2,Z)

[Im(γz)]s

= ys +
ξ(2s− 1)

ξ(2s)
y1−s +

2

ξ(2s)
y1/2

∑
n6=0

|n|s−1/2σ1−2s(n)Ks−1/2(2π|n|y)e2πinx , (1.5)

whose Poincaré series is absolutely convergent for Re(s) > 1. In the second line, we have given the

Fourier expansion of Es(z) in terms of the completed Riemann zeta function ξ(k)=π−k/2Γ(k/2)ζ(k),

the divisor sum σk(n) =
∑

d|n d
k and the modified Bessel function Ks(y). The Eisenstein series

Es(z) has a standard analytic continuation to Re(s) < 1 (obtainable from (1.5)) and also satisfies

the functional relation ξ(2s)Es(z) = ξ(2(1− s))E1−s(z). The continuation implies in particular that

E0(z) = 1.

The strategy proposed in [25] (see also [1, 26]) is to represent the function f(z) in (1.1) also as a

Poincaré series

f(z) =
∑

γ∈B(Z)\SL(2,Z)

σ(γz) (1.6)

with a periodic ‘seed function’ σ(z) = σ(z +m) for all m ∈ Z. If this sum is absolutely convergent,

one may attempt to solve the equation

(∆− s(s+ 1))σ(z) = ρ(z) (1.7)

instead of (1.1) due to the SL(2,Z)-invariance of the Laplacian. The complexity of this equation

is typically less than that of the original equation (1.1). The price to pay for this is that one has

to analyse in more detail the convergence of (1.6), that one has to provide appropriate boundary

conditions for (1.7) and lastly that one only has indirect information about f(z) through (1.6) even

if σ(z) is completely known.

1.3 Outline

In this paper, we shall study how to extract information about the Fourier expansion of f(z) from

that of σ(z) and will address different subtleties that arise. We focus mainly on the zero Fourier mode

of f(z) and study its perturbative part (power series in y) and non-perturbative part (power series

in e−2πy). In the case of SL(2,Z) U-duality, these terms are interpreted as string perturbative and

instanton/anti-instanton corrections to the higher-derivative correction term. In the case of modular

graph functions, they encode the asymptotic behaviour of the one-loop scattering amplitude as the

torus world-sheet degenerates to a very thin torus of large diameter.
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In Section 2, we review how to generally relate the Fourier expansion of f(z) to its Poincaré

seed σ(z) and a certain important proposition of Zagier’s that can be used to extract from this the

asymptotic expansion of the zero mode of f(z). This procedure will be carried out for a general class

of seeds σ(z) in Section 3 and the subsequent sections contain several examples of modular graph

functions and the D6R4 higher-derivative correction that all can be mapped back to this general

class. Two appendices contain complementary technical details for some of the calculations carried

out in the main body of the paper.

2 General strategy

It is well-known how to relate the Fourier expansion of f(z) to that of σ(z) if the two are related

through the convergent Poincaré series relation (1.6), see for instance [27, 28] or the brief review in

Appendix A.1. If the Fourier expansions of f(z) and σ(z) are given by

f(z) =
∑
n∈Z

an(y)e2πinx , σ(z) =
∑
n∈Z

cn(y)e2πinx , (2.1)

then one has

an(y) = cn(y) +
∑
c>0

∑
m∈Z

S(m,n; c)

∫
R
e
−2πinω−2πim ω

c2(y2+ω2) cm

(
y

c2(y2 + ω2)

)
dω . (2.2)

Here, S(m,n; c) denotes in general a Kloosterman sum

S(m,n; c) =
∑

q∈(Z/cZ)×

e2πi(mq+nq−1)/c , (2.3)

a finite sum over all 0 ≤ q < c that are co-prime to c such that q is a multiplicatively invertible

element of Z/cZ as indicated in the sum.

Our main interest at present lies with the zero mode a0(y) and therefore we are faced with making

sense of

a0(y) = c0(y) +
∑
c>0

∑
m∈Z

∑
q∈(Z/cZ)×

e2πimq/c

∫
R
e
−2πim ω

c2(y2+ω2) cm

(
y

c2(y2 + ω2)

)
dω

= c0(y) + y
∑
c>0

∑
m∈Z

∑
q∈(Z/cZ)×

e2πimq/c

∫
R
e
−2πm it

yc2(1+t2) cm

(
y−1

c2(1 + t2)

)
dt

= c0(y) + y
∑
c>0

∑
q∈(Z/cZ)×

∫
R
c0

(
y−1

c2(1 + t2)

)
dt+ I , (2.4)

for a given set of Fourier modes cm(y) of a seed σ(z). Here, we have introduced the separate notation

I = y
∑
c>0

∑
m6=0

∑
q∈(Z/cZ)×

e2πimq/c

∫
R
e
−2πm it

yc2(1+t2) cm

(
y−1

c2(1 + t2)

)
dt (2.5)

for the contribution from the non-zero modes cm with m 6= 0 to a0.
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We are interested in the asymptotic expansion of this expression around y → ∞. We see that

the exponent in the integral contains the combination my−1 and also the typical seed Fourier modes

contain m accompanied by y−1 after some manipulations, so that we are faced with expanding a sum

of a function evaluated at multiples of its argument asymptotically. Zagier has proved a very useful

result for this situation [29]. Consider a smooth function ϕ(t) for t > 0 such that itself and all its

derivatives are of rapid decay at infinity. Assume also that around the origin one has the asymptotic

series ϕ(t) ∼
∑

n≥0 bnt
n. Then∑

m≥0

ϕ((m+ a)t) ∼ Iϕ
t

+
∑
n≥0

bnζ(−n, a)tn (2.6)

as asymptotic expansion around t = 0 for the periodic sum with a > 0. Here, ζ(−n, a) is the Hurwitz

zeta function1 and

Iϕ =

∫ ∞
0

ϕ(t)dt . (2.7)

Let us briefly indicate where the terms come from. Plugging in näıvely the expansion of ϕ(t)

leads to [29]

∑
m≥0

ϕ((m+ a)t) ∼
näıve

∑
m≥0

∑
n≥0

bn(m+ a)ntn =
∑
n≥0

bn

∑
m≥0

(m+ a)n

 tn =
∑
n≥0

bnζ(−n, a)tn . (2.8)

The calculation above is formal since the two sums cannot be interchanged: the m-sum is divergent

and we have used the Hurwitz zeta function as analytic continuation.

The other term in (2.6) is what Zagier calls the Riemann term and can be understood by viewing

the sum as an approximation to the Riemann integral for small t, where 1
t is the length of the

interval.2

Zagier has also proved extensions of (2.6) for the case when ϕ(t) is not C∞ at the origin but

includes terms of the form ts log t or t−s for s > 0, see [29].

3 Asymptotic expansion for general seed

We will now present the details of the strategy outlined in the previous section and we consider the

asymptotic expansion of the Poincaré series associated to a very general type of seed function. In

particular suppose the non-zero Fourier mode of the seed is of the form

cm(y) = σa(|m|)(4π|m|)byre−2π|m|y (3.1)

for parameters a, b and r. This is true, up to an overall constant, for all the modular graph functions

and all other concrete examples we shall present later are (possibly infinite) combinations of such

terms.
1We note for reference that the Hurwitz zeta function is related to the Bernoulli polynomials by the relation

ζ(1− k, a) = −Bk(a)
k

for positive k.
2This is the term that was missed in [25] where only the analytically continued ζ terms were found. This explains

why [25] was off at one specific power of the asymptotic variable.
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Plugging (3.1) into the relevant part of the Fourier mode of the Poincaré sum (2.4) leads to a

contribution from the non-zero modes of the form

I = y
∑
c>0

∑
m 6=0

∑
q∈(Z/cZ)×

θmq
∫
R
e
−2πm it

yc2(1+t2)σa(|m|)
(4π|m|)b

(yc2(1 + t2))r
e
−2π|m| 1

yc2(1+t2)dt

= 2y1+b−r
∑
c>0

c−2r+2b
∑
m>0

∑
q∈(Z/cZ)×

θmqσa(m)

(
4πm

yc2

)b ∫
R
e
−2πm 1+it

yc2(1+t2)
1

(1 + t2)r
dt (3.2)

=
23−2r+2bπy1+b−r

Γ(r)

∑
c>0

c−2r+2b
∑

q∈(Z/cZ)×

∑
m>0

θmqσa(m)

(
πm

yc2

)b∑
k≥0

(−πmy−1c−2)k

k!

Γ(2r + k − 1)

Γ(r + k)
,

when using (A.9) for the integral and having defined θ = e2πi/c. The parameter r must have Re(r) >

1/2 for the integral to converge so we will assume it in what follows. For positive integer r, the quotient

of Γ functions becomes a polynomial in k such that one could write this as a polynomial in times

e−πm/yc
2
. In general the sum over k produces the hypergeometric function 1F1(2r − 1, r;−πm/yc2),

but we shall leave it as a sum.

In order to determine the asymptotic behaviour of this expression we analyse first the sum over

m that can be written as∑
m>0

θmqσa(m)

(
πm

yc2

)b∑
k≥0

(−πmy−1c−2)k

k!

Γ(2r + k − 1)

Γ(r + k)

=
c∑

h=1

∑
m≥0

∑
n>0

θnhqna+b((m+ h̃)t)b
∑
k≥0

(−(m+ h̃)t)k

k!
nk

Γ(2r + k − 1)

Γ(r + k)
(3.3)

by writing out the divisor and grouping terms in additive classes modulo c, and where we have

introduced h̃ = h
c and t = π

yc .

The sum over m in (3.3) is of the general form studied in [29] and thus amenable to formula (2.6).

We assume b > −1 and not an integer at first, other cases can be obtained from the final result by

analytic continuation. As (3.3) is already expanded in powers of t, we can immediately write down

the asymptotic expansion for fixed h as∑
m≥0

∑
n>0

θnhqna+b((m+ h̃)t)b
∑
k≥0

(−(m+ h̃)t)k

k!
nk

Γ(2r + k − 1)

Γ(r + k)

∼ Ih
t

+ δh,c ζ(a+ 1)
Γ(a+ b+ 1)Γ(2r − a− b− 2)

Γ(r − a− b− 1)
t−a−1

+ tb
∑
n≥0

(−t)n

n!
ζ
(
− b− n, h

c

)Γ(2r + n− 1)

Γ(r + n)
Li−a−b−n(θhq) , (3.4)

where the extra term for h ≡ c (mod c) is the ‘Riemann term’ in the asymptotic expansion of the

sum over n while the ‘Riemann integral term’ Ih in the sum over m is given for all h by

Ih =

∫ ∞
0

∑
n>0

θnhqna+btb
∑
k≥0

(−nt)k

k!

Γ(2r + k − 1)

Γ(r + k)
dt =

Γ(b+ 1)Γ(2r − b− 2)

Γ(r − b− 1)
Li1−a(θ

hq) (3.5)
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when using (A.11). Note also that the quotient of gamma functions in (3.4) is again a polynomial in

n for positive integral r.

Summing this over h, q and c can be done with the help of formulas (A.22) and (A.23) to obtain

the following expression for I of (3.2):

I ∼ 23−2r+2bπy1+b−r

Γ(r)

[
y

π

Γ(b+ 1)Γ(2r − b− 2)

Γ(r − b− 1)

ζ(2r − a− 2b− 2)ζ(1− a)

ζ(2r − a− 2b− 1)

+
( y
π

)a+1 Γ(a+ b+ 1)Γ(2r − a− b− 2)

Γ(r − a− b− 1)

ζ(2r − a− 2b− 2)ζ(a+ 1)

ζ(2r − a− 2b− 1)

+

(
π

y

)b∑
n≥0

(
−π
y

)n Γ(2r + n− 1)

n! · Γ(r + n)

× ζ(−b− n)ζ(−a− b− n)ζ(2r − a− b+ n− 1)ζ(2r − b+ n− 1)

ζ(2r + 2n)ζ(2r − a− 2b− 1)

]
≡ I(a, b, r) . (3.6)

Here, we have set Lis(1) = ζ(s) by analytic continuation and introduced a short-hand notation for

terms of this type. The powers of y appearing in the above expression are y2+b−r, y2+a+b−r and then

y1−r−n for n ≥ 0.

We also note that the quotient of zeta functions appearing can be rewritten as a Dirichlet series

of two divisor sums as

ζ(−b− n)ζ(−a− b− n)ζ(2r − a− b+ n− 1)ζ(2r − b+ n− 1)

ζ(2r + 2n)

=
4 sin

(
π(b+n)

2

)
sin
(
π(a+b+n)

2

)
Γ(1 + b+ n)Γ(1 + a+ b+ n)

(2π)a+2b+2n+2

×
∑
m>0

σa(m)σa+2b+2−2r(m)m−1−a−b−n (3.7)

where we have used the functional equation for the Riemann zeta function and an identity of Ra-

manujan’s. The only n-dependence is in the exponent of the new summation variable m, but with this

rewriting it appears manifest that for general parameters a, b, and r, the sum over n is a factorially

divergent asymptotic series.

We will now provide some concrete examples and show how the procedure described above allows

us to reproduce the perturbative expansion of the zero Fourier mode for certain Poincaré sums and

how it can also be used to retrieve the non-perturbative, exponentially suppressed terms.

4 Modular graph functions

In this section, we apply the method outlined in Section 2 to modular graph functions by making

use of expression (3.6) derived in the previous section. Rather than giving a general analysis, we

present two exemplary cases that highlight also how to deal with certain analytical continuations

and singularities.
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4.1 The C3,1,1 modular graph function

We consider first the example of the modular graph function C3,1,1(z) that is given explicitly by the

double-lattice sum [1]

C3,1,1(z) =
∑

(m1,n1),(m2,n2)∈Z2

(mi,ni) 6=(0,0)

(m1+m2,n1+n2)6=(0,0)

y5

π5|m1z + n1|6|m2z + n2|2|(m1 +m2)z + (n1 + n2)|2
, (4.1)

and its zero mode has the known terms [1, 5]

a0(y) =
2π5

155 925
y5 +

2π2ζ(3)

945
y2 − ζ(5)

180
+

7ζ(7)

16π2
y−2 − ζ(3)ζ(5)

2π3
y−3 +

43ζ(9)

64π4
y−4 +O(e−4π|n|y) .

(4.2)

This result was derived by studying the zero mode of the differential equation satisfied by C3,1,1(z)

directly, with appropriate boundary conditions. We shall rederive this result from the Poincaré series

method outlined above.

The function f(z) = C3,1,1(z) satisfies the differential equation [1]3

(∆− 6) f(z) =
172π5

467 775
E5(z)− 8π5

42 525
E2(z)E3(z) +

ζ(5)

10
. (4.3)

Using the Poincaré series representation (1.5) for E3 and E5 we deduce that the seed function σ(z)

for f(z) has to satisfy the differential equation

(∆− 6)σ(z) =
172π5

467 775
y5 − 8π5

42 525
y3E2(z) +

ζ(5)

10
yε . (4.4)

We have introduced a regulating yε for the constant term ζ(5)/10 in (4.3), keeping in mind that

limε→0Eε(z) = 1 is constant by the standard analytic continuation of the convergent Eisenstein

series and this shows how to deal with constant sources in the original differential equation.

The differential equation (4.4) can be solved for the Fourier modes cm(y) of the seed σ(z) =∑
n∈Z cn(y)e2πinx by [25]

c0(y) =
2π5

155 925
y5 +

2π2ζ(3)

945
y2 +

ζ(5)

10(ε(ε− 1)− 6)
yε ,

cm(y) =
2π2

945
σ−3(|m|)y2e−2π|m|y , (m 6= 0) . (4.5)

Here, we have used the Fourier expansion of the Eisenstein series from (1.5) and the simple form

of cm(y) is tied to the fact that K3/2 appearing in E2 has an exact expansion around y → ∞.

The particular solution of the Laplace equation (4.4) above has been fixed by requiring the correct

asymptotic behaviour fixed uniquely from the behaviour of the right-hand side.

3Note that the Eisenstein series in [1] are normalised differently from those in (1.5).

8



4.1.1 Perturbative contributions to the zero mode

Note that the seed function (4.5) is precisely of the type (3.1) described in the previous section when

we substitute a = −3, b = 0, r = 2. As it will be shortly clear it is better to keep b as a regulator and

send it to zero only at the very end, this is by no mean necessary but it allows us to have a uniform

description given by the asymptotic expansion of seeds of the type (3.1). (Otherwise, one could use

the extension of Zagier’s method to include log-terms.)

The solution (4.5) can now be substituted into (2.4) to obtain the zero mode of C3,1,1(z) =∑
n∈Z an(y)e2πinx and the contribution I from all cm(y) with m 6= 0 to a0(y) is precisely captured

by the general formula (3.6) specialized to the present case

I ∼ lim
b→0

2π2

945
I(−3, b, 2) , (4.6)

= lim
b→0

4bπ3

945y1−b

[
y

π

Γ(1 + b)Γ(2− b)
Γ(1− b)

ζ(5− 2b)ζ(4)

ζ(6− 2b)
+

(
π

y

)b∑
n≥0

(
−π
y

)n (n+ 2)

n!

× ζ(−n− b)ζ(3− n− b)ζ(3 + n− b)ζ(6 + n− b)
ζ(4 + 2n)ζ(6− 2b)

]
,

here the second term of (3.6) is absent since it is proportional to ζ(a+ 1) that in the present case is

ζ(−2) = 0.

It is simple to see that b serves as a regulator only for the n = 2 term in the infinite series by

producing a finite limit for the ζ(−2−b)ζ(1−b) term and can be set to zero in all the remaining terms.

Furthermore this asymptotic series does actually truncate when b→ 0 due to the presence of the first

two zetas ζ(−n− b)ζ(3− n− b)→ 0 when n ≥ 4 since either one of the two zetas will be evaluated

at a negative even integer, hence vanishing. This opposite parity, crucial for the truncation of the

asymptotic series, can be traced back to the odd index of the divisor function σ−3(|m|), appearing

in the seed function (4.5). For general index (in particular even) divisors the asymptotic expansion

(3.6) will not truncate.

With these considerations in mind it is fairly simple to take the limit for b→ 0 in (4.6) obtaining

I ∼ ζ(5)

90
− 2ζ(3)2

21πy
+

7ζ(7)

16π2y2
− ζ(3)ζ(5)

2π3y3
+

11ζ(9)

32π4y4
. (4.7)

As the zero mode of C3,1,1(z) is given according to (2.4) by

a0(y) = c0(y) + y
∑
c>0

∑
q∈(Z/cZ)×

∫
R
c0

(
y−1

c2(1 + t2)

)
dt+ I , (4.8)

and we have computed the asymptotic expansion of I, it remains to determine the contributions from

c0(y). These are with (4.5) given by4

c0(y) + y
∑
c>0

φ(c)

∫
R
c0

(
y−1

c2(1 + t2)

)
dt →

ε→0

2π5y5

155 925
+

2π2ζ(3)y2

945
− ζ(5)

60
+

2ζ(3)2

21πy
+

21ζ(9)

64π4y4
. (4.9)

4The Euler totient function φ(c) gives the cardinality of (Z/cZ)× and has Dirichlet series
∑
c>0 φ(c)c−s = ζ(s−1)

ζ(s)
.

9



Compared to the asymptotic calculation of I, this is an exact result and we have taken the limit of

ε→ 0 after performing the integral of c0.

Combining (4.7) and (4.9) leads to the full asymptotic zero mode perturbative expansion of

C3,1,1(z) as already presented in (4.2). As we will see shortly see it will also be possible to extract

from equation (4.7) the complete non-perturbative completion of the zero mode which is entirely

captured by the perturbative data.

4.1.2 Non-perturbative terms

We have just reconstructed the full perturbative expansion of the zero-mode of the C3,1,1(z) modular

graph function, however it is simple to see from the partial differential equation (4.3) that due

to the Eisenstein series (1.5), this zero-mode will need to receive infinitely many non-perturbative

corrections of the the form e−4πmy with m ∈ N.

Given an asymptotic power series, a standard approach to reconstruct the full non-perturbative

contributions out of the perturbative data is given by resurgent analysis and Borel–Ecalle resumma-

tion [30] (see also [31]), but unfortunately this is not directly amenable to the present case due to

the truncation of the perturbative series (4.2) to a finite number of terms. Here, we only need to

consider the contribution from I in (4.6) since the zero mode c0(y) does not produce an asymptotic

tail but only gives rise to a simple Laurent polynomial in y as presented in equation (4.9).

However, thanks to our analysis of the asymptotic expansion of this Poincaré series via the seed

function presented in equation (4.7) we will see that we can reconstruct the complete non-perturbative

transseries expansion for (4.2) entirely out of the purely perturbative data (4.7) in a beautiful example

of Cheshire-cat resurgence [32–34].

Our starting point is the asymptotic expansion (4.6) before taking the b→ 0 limit

I(b) = Ipert(b) +
4επ3+b

945y

∑
n≥4

(
−π
y

)n (n+ 2)

n!

ζ(−n− b)ζ(3− n− b)ζ(3 + n− b)ζ(6 + n− b)
ζ(4 + 2n)ζ(6− 2b)

, (4.10)

where we split the infinite asymptotic series into the sum of a piece

Ipert(b) =
4bπ2

945y−b
Γ(1 + b)Γ(2− b)

Γ(1− b)
ζ(5− 2b)ζ(4)

ζ(6− 2b)
(4.11)

+
4bπ3+b

945y

3∑
n=0

(
−π
y

)n (n+ 2)

n!

ζ(−n− b)ζ(3− n− b)ζ(3 + n− b)ζ(6 + n− b)
ζ(4 + 2n)ζ(6− 2b)

with non-vanishing b → 0 limit, reproducing precisely the perturbative expansion (4.7), and an

asymptotic tail that vanishes when b→ 0.

To make this manifest we can rewrite the asymptotic tail using Riemann’s functional equation

and shift n→ n+ 4 to obtain

I(b) = Ipert(b) +
16π5−b

945 ζ(6− 2b)
sin(πb)

∑
n≥0

(4πy)−n−5 (n+ 6)Γ(n+ 2 + b)Γ(n+ 5 + b)

(n+ 4)!

× ζ(5 + n+ b)ζ(2 + n+ b)ζ(7 + n− b)ζ(10 + n− b)
ζ(2n+ 12)

. (4.12)
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As anticipated the tail is a Gevrey-1 asymptotic series, i.e., growing like n!, regular in the b→ 0

limit and multiplied by sin(πb) that also vanishes manifestly in the same limit. Our strategy will be

now to keep this vanishing sin(πb) while setting b = 0 in all the remaining regular terms5 and then

try to perform a Borel–Ecalle resummation (see for example [31]) of the asymptotic tail

Iasy(b) =
16

π
sin(πb)

∑
n≥0

(4πy)−n−5(6 + n)Γ(n+ 2)
ζ(2 + n)ζ(5 + n)ζ(7 + n)ζ(10 + n)

ζ(2n+ 12)
. (4.13)

To proceed with this strategy we would need first to find a measure dµ(t), say for t ∈ R+, whose

momenta ∫ ∞
0

tn+5 dµ(t) = dn (4.14)

have the same asymptotic growth as the coefficients cn = (6 + n)Γ(n+ 2) ζ(2+n)ζ(5+n)ζ(7+n)ζ(10+n)
ζ(2n+12) of

equation (4.13). More precisely we require the modified Borel transform

B(t) =
∑
n≥0

cn
dn
tn+5 , (4.15)

to have finite radius of convergence, thus defining a germ of analytic functions at the origin t = 0. If

this happens we can commute the formal series in equation (4.13) with the above integral to define

a possible resummation of the original asymptotic series via

16

π
sin(πb)

∫ ∞
0

∑
n≥0

cn
dn

(
t

4πy

)n+5

dµ(t) =
16

π
sin(πb)

∫ ∞
0

B

(
t

4πy

)
dµ(t) . (4.16)

Under certain reasonable assumptions (see [30, 31]), this integral defines an analytic function in a

certain sector of the complex y-plane whose asymptotic expansion for y � 1 coincides with (4.13).

The usual Borel kernel amounts to considering the simple measure dµ(t) = e−t tα dt so that the

momenta (4.14) are simply dn = Γ(n + 4 + α). In the present case we could consider this measure

however we would not be able to compute analytically the standard Borel transform for the given

coefficients cn of equation (4.13) due to the presence of the ratio of Riemann zetas. An alternative

would be to find a measure whose momenta dn cancel in the Borel transform not only the factorial

growth of the coefficients cn but also this particular ratio of zetas, so to make the modified Borel

transform (4.15) amenable to calculation, however no such measure is known to us.6

5This is not necessary and one can repeat this analysis while keeping b 6= 0 in all terms, the expression will just be

slightly more involved but the final result for the non-perturbative corrections will not change when we take b→ 0.
6 It is interesting to notice that the coefficients of the asymptotic tail are schematically of the form Γ(n+α)Π4

i=1ζ(n+

αi)/ζ(2n + β). Had there been instead only a single zeta function multiplying the gamma we would have known a

measure [35] (see also [36]) whose momenta would produce both:∫ ∞
0

tn
dt

4 sinh2(t/2)
= Γ(n+ 1)ζ(n) ,

valid for n ≥ 2, or more generally we find that the measure dµ(t) = Liβ−α(e−t) tα−1 dt has momenta∫ ∞
0

tndµ(t) = Γ(n+ α)ζ(n+ β)
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To proceed, we realise that we can write that particular ratio of zetas, as discussed in equation

(3.7), in terms of the Dirichlet series

ζ(2 + n)ζ(5 + n)ζ(7 + n)ζ(10 + n)

ζ(2n+ 12)
=
∑
m>0

σ−3(m)σ−5(m)m−n−2 , (4.17)

so that we can rewrite (4.12) as an infinite series of a very simple asymptotic expansion evaluated at

shifted coupling y → my very reminiscent of [37]:

Iasy(b) =
16

π
(4πy)−3 sin(πb)

∑
m>0

σ−3(m)σ−5(m)
∑
n≥0

(4πmy)−n−2(6 + n)Γ(n+ 2) . (4.18)

At this point we can just use standard Borel transform to resum the asymptotic tail. We make

use of the known Laplace integral∫ ∞
0

e−t(t/z)n+1dt = z−n−1Γ(n+ 2) (4.19)

to give a well-defined resummation of the formal asymptotic series

F (z) =
∑
n≥0

z−n−2(6 + n)Γ(n+ 2) 7→ Sθ[F ](z) ≡
∫ ∞e−iθ

0
e−z t

∑
n≥0

tn+1(6 + n)

 dt
=

∫ ∞e−iθ
0

e−z t
t(6− 5t)

(t− 1)2
dt , (4.20)

where θ = arg z and Sθ denotes what is usually referred to as directional Borel resummation.

We define in this way the resummation of the asymptotic series (4.18):

Iasy(b) =
16

π
(4πy)−3 sin(πb)

∑
m>0

σ−3(m)σ−5(m)Sθ[F ](4πmy) . (4.21)

However, we see that since arg(4πmy) = 0, the relevant region y > 0, is a Stokes direction, i.e.

a singular direction for the Borel transform (4.20). This means that if we define the two lateral

resummations

S±[F ](4πmy) = lim
θ→0+

∫ ∞e∓iθ
0

e−4πmyt t(6− 5t)

(t− 1)2
dt , (4.22)

we will have a very simple, yet non-zero, discontinuity for (4.20) called Stokes automorphism:

S−[F ](4πmy)− S+[F ](4πmy) =

∮
t=1

e−4πmyt t(6− 5t)

(t− 1)2
dt = −2πie−4πmy(4 + 4πmy) . (4.23)

This means that our resummation (4.21) would give rise to ambiguities in defining the value for

the starting asymptotic series (4.21) when y > 0, since as just shown we would get two different

valid for n > −α when β − α > 1, or n > 1 − β when β − α ≤ 1. A Borel–Ecalle resummation with this modified

kernel is possible and in [37] it was shown that one can reinterpret an asymptotic series with coefficients of the form

Γ(n + α)ζ(n + β) as a series with simpler coefficients evaluated at shifted couplings y → my with m ∈ N for which it

is easier to evaluate the full non-perturbative completion. A very similar phenomenon will arise in the present case.
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results by taking the limit arg(4πmy) → 0± in (4.21); furthermore, although the formal expression

(4.13) we started with is manifestly real for y > 0 neither of the two lateral resummations is.

To obtain a real and unambiguous resummation for y > 0 we have to consider a sort of average

between the two lateral resummations, usually referred to as median resummation [31], and define

the resummation of (4.18)

Iasy(b) =
16(4πy)−3

π

∑
m>0

σ−3(m)σ−5(m)
[

sin(πb)S±[F ](4πmy)− π(±i sin(πb))e−4πmy(4 + 4πmy)
]
,

(4.24)

where the sign is according to arg y < 0 or arg y > 0. We have substracted half of the Stokes

automorphism (with sign) from the lateral resummations so that in practice this amounts to use a

principal value prescription to compute the lateral resummation (4.21) for θ = arg y = 0. Clearly

the asymptotic expansion for y � 1 of the above equation coincides with (4.18) since we have only

added non-perturbative terms, and precisely thanks to these non-perturbative terms the median

resummation produces a real and unambiguous result in the limit arg(4πmy)→ 0±, i.e. y > 0.

As we send b → 0 we see that both the asymptotic tail and the non-perturbative contribu-

tions seem to vanish, however, we will make the hypothesis that this is an example of Cheshire-cat

resurgence [32–34] for which the non-perturbative terms will still be present in this limit despite

the vanishing of the asymptotic tail. We make the assumption that the transseries parameter, i.e.

the factor σ = ±i sin(πb) has also a real part and it exponentiates to σ → exp(±iπb), so that its

imaginary part still vanishes in the b → 0 limit, while its real part remains and the full transseries

becomes

I(b) = Ipert(b) +
16

π(4πy)3

∑
m>0

σ−3(m)σ−5(m)
[
sin(πb)S±[f ](4πmy)− πe±iπbe−4πmy(4 + 4πmy)

]
→
b→0

Ipert(0)− 16(4πy)−3
∑
m>0

σ−3(m)σ−5(m)e−4πmy(4 + 4πmy)

= Ipert(0)−
∑
m>0

σ−3(m)σ−5(m)(πy)−2me−4πmy

(
1 +

1

πmy

)
, (4.25)

which reproduces precisely the non-perturbative contribution that can be easily extracted from the

PDE (4.3) and have been recently discussed in [26]. In principle, if we had a PDE formulation for

the seed function with b 6= 0, it should be possible to extract the complete transseries parameter

without having to assume any exponentiation hypothesis, however at the present time this deformed

PDE description in b is lacking.

To conclude this section, we want to stress the importance of the result: from a suitable deforma-

tion of the seed function we obtain a perturbative expansion of the zero Fourier mode that does not

truncate. Using a clever rewriting of the Riemann zeta functions we can write this asymptotic tail

as an infinite series of two divisor functions times a simpler asymptotic series evaluated at shifted

coupling 4πmy. The Borel–Ecalle resummation of this asymptotic tail forces us to introduce non-

perturbative terms of the form e−4πmy, entirely encoded in the perturbative data, and, under some

reasonable assumption, these non-perturbative terms survive even when we remove this b regulator

thus giving us the full non-perturbative completion of the zero Fourier mode for the modular graph

function.
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4.2 The C2,1,1 modular graph function

We consider next the example of the modular graph function C2,1,1(z) that is given explicitly by the

double-lattice sum

C2,1,1(z) =
∑

(m1,n1),(m2,n2)∈Z2

(mi,ni)6=(0,0)

(m1+m2,n1+n2) 6=(0,0)

y4

π4|m1z + n1|4|m2z + n2|2|(m1 +m2)z + (n1 + n2)|2
, (4.26)

and its zero mode has the known terms [1, 5]

a0(y) =
2π4

14 175
y4 +

πζ(3)

45
y +

5ζ(5)

12π
y−1 − ζ(3)2

4π2
y−2 +

9ζ(7)

16π3
y−3 +O(e−4π|n|y) . (4.27)

As mentioned already for C3,1,1, this result was derived by studying the zero mode of the differential

equation satisfied by C2,1,1(z) together with its large y limit. We shall rederive this result from the

Poincaré series method.

The function

f(z) = C2,1,1(z)− 2π4

14 175
E4(z) (4.28)

satisfies the differential equation [1]7

(∆− 2) f(z) =
π4

2 025

(
E4(z)− E2(z)2

)
. (4.29)

The reason for choosing this particular combination is that the leading perturbative power y4 of y

cancels on the right-hand side when plugging in (1.5).

The right-hand side is problematic now because the E2
2 term contains a linear term in y due

to (1.5) and from the seed function point of view this will introduce divergences upon Poincaré

summation. This is very general and a special treatment must be made to discuss modular functions

with source terms of the form E2
s , i.e., squares of Eisenstein series. This was also noticed in [38]

where differential equations with non-linear sources EsEs′ were analysed using spectral theory and

the case s = s′ had to be treated separately. This also happens for the D6R4 case discussed in

Section 5.

The way to proceed is to deform the differential equation [25] and to write E2
2 as the limit of

E2E2+ε as ε→ 0. The deformed Laplace equation in this case can be taken as

(∆− (2 + ε)(1 + ε)) f(z) =
2π−εζ(4 + 2ε)

45
(E4+ε(z)− E2(z)E2+ε(z)) . (4.30)

Proceeding as for the C3,1,1 case and using the Poincaré series (1.5) for the Eisenstein series E4+ε

and E2+ε, one can deduce that the seed function σ(z) for f(z) has to satisfy an associated differential

7Again note that the Eisenstein series in [1] are normalised differently from those in (1.5).
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equation that can be solved for its Fourier modes expansion σ(z) =
∑

n∈Z cn(y)e2πinx by [1,25]

c0(y) =
π−3−εζ(3)ζ(4 + 2ε)

(1 + ε)
y1+ε ,

cm(y) =
π−3−εζ(4 + 2ε)

(1 + ε)
σ−3(|m|)y1+εe−2π|m|y , (m 6= 0) . (4.31)

Once again, as anticipated in Section 3, this seed function is of the general type (3.1) discussed

above when we substitute a = −3, b = 0, r = 1 + ε. As for the C3,1,1 case, it is better to keep b 6= 0

as a regulator and send it to zero only after having computed the asymptotic series (3.6), finally we

will send ε→ 0.

The solution (4.31) can now be substituted into (2.4) to obtain the zero mode of f(z) =∑
n∈Z an(y)e2πinx and the contribution I from all cm(y) with m 6= 0 to a0(y) is precisely captured

by the general formula (3.6) specialized to the present case

I ∼ lim
b→0

π−3−εζ(4 + 2ε)

(1 + ε)
I(−3, b, 1 + ε)

= lim
b→0

21+2b−2εyb−ε

π2+εΓ(2 + ε)

[
y

π

Γ(b+ 1)Γ(2ε− b)
Γ(ε− b)

ζ(3 + 2ε− 3b)ζ(4)

ζ(4 + 2ε− 2b)

+

(
π

y

)b∑
n≥0

(
−π
y

)n Γ(n+ 1 + 2ε)ζ(−n− b)ζ(3− n− b)ζ(1 + n+ 2ε− b)ζ(4 + n+ 2ε− b)
n! · Γ(n+ 1 + ε)ζ(4 + 2n+ 2ε)ζ(4 + 2ε− 2b)

]
,

(4.32)

where the second term of (3.6) is absent once again since it is proportional to ζ(a + 1) that in the

present case is ζ(−2) = 0.

Once more b regularises the n = 2 term and the asymptotic series terminates at n = 3 due to the

presence of the first two zetas ζ(−n− b)ζ(3− n− b) vanishing for n ≥ 4 in the limit b→ 0.

Taking the limit b→ 0 we produce

I ∼21−2εζ(3 + 2ε)ζ(4)

π3+εΓ(2 + ε)

Γ(2ε)

Γ(ε)
y1−ε − 4−εΓ(1 + 2ε)ζ(3)ζ(4 + 2ε)

π−2−εΓ(1 + ε)Γ(2 + ε)ζ(2 + 2ε)
ζ(1 + 2ε)y−ε+

+
5ζ(5)

12π
y−1 − ζ(3)2

4π2
y−2 +

7ζ(7)

48π3
y−3 , (4.33)

where we have already taken the limit ε→ 0 in all the terms of (4.32) besides the first and the n = 0

term since they deserve some comments.

First of all, we notice in the first term of (4.32) that we have the ratio Γ(2ε − b)/Γ(ε − b) for

which the two limits b → 0 and ε → 0 do not commute! This means that, had we started with

the undeformed equation (4.29), for which ε = 0 to begin with, we would have found the wrong

coefficient. The deformation of the PDE source term E2
s → EsEs+ε is crucial.

Secondly, this deformation is also crucial to regularise the divergences arising in the integral of the

zero mode c0(y) of the seed function caused by the presence of a linear term in y in the expansion E2
2 .

In particular, we see that the n = 0 term in equation (4.32) produces a term in (4.33) proportional

to ζ(1 + 2ε).
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Having computed the contribution I to the zero mode a0(y) in (2.4), we still have to consider the

part coming from c0(y). With (4.31) this is given by

c0(y) + y
∑
c>0

φ(c)

∫
R
c0

(
y−1

c2(1 + t2)

)
dt =

πζ(3)

90
y (4.34)

+
∑
c>0

φ(c)c−2−2ε

(
4−εΓ(1 + 2ε)ζ(3)ζ(4 + 2ε)

π−2−εΓ(1 + ε)Γ(2 + ε)
y−ε
)

=
πζ(3)

90
y +

4−εΓ(1 + 2ε)ζ(3)ζ(4 + 2ε)

π−2−εΓ(1 + ε)Γ(2 + ε)

ζ(1 + 2ε)

ζ(2 + 2ε)
y−ε .

As previously stated, the deformation (4.30) is essential otherwise we would have produced the

divergent expression
∑

c>0 φ(c)c−2 signalled by the ζ(1+2ε) factor. We note that the divergent term

coming from the integral of the zero mode is matched exactly and with opposite sign by the n = 0

term in (4.33).

Combining (4.33) and (4.34) we cancel the divergent term and we can safely send ε→ 0 to recover

the full asymptotic zero mode perturbative expansion of C2,1,1(z) already presented in (4.27), after

adding back in the zero modes coming from 2π4

14 175E4 in order to relate f(z) to C2,1,1(z) via (4.28).

One can repeat a similar analysis as we did in Section 4.1.2 and extract from equation (4.32) using

(3.7) the complete non-perturbative completion of the zero mode. We have checked that this matches

exactly the non-perturbative corrections recently found in [26] using a completely different approach.

5 The D6R4 correction in type IIB

We now employ the method of Section 3 to derive the asymptotic expansion of the D6R4 coefficient

function in ten-dimensional type IIB superstring theory. Calling this function f(z), it was argued

in [20] to satisfy the differential equation

(∆− 12) f(z) = −4ζ(3)2E3/2(z)2 (5.1)

by considering compactified eleven-dimensional supergravity and making extensive use of supersym-

metry.

A Poincaré series representation of f(z) was given in [21]. Here, we use a slightly different one

that stems from the deformed problem studied in [25] in order to avoid problems related to the square

of the E3/2 on the right-hand side, similar to the discussion in Section 4.2.

The non-zero Fourier mode of the deformed D6R4 seed is given by [25]

cn(y) =
8ζ(3 + 2ε)

1− 4ε2
σ−2(|n|)y1+ε

(
(1− 2ε)K2(2π|n|y) +

5− 2ε

π|n|y
K3(2π|n|y)

− 10− 4ε

Γ(7/2− ε)(π|n|y)1/2+ε
K7/2−ε(2π|n|y)

)
. (5.2)

The virtue of this combination is that it is regular for y → 0 and it has a convergent expansion for

y ∼ 0 of the form yεe−2π|n|y∑
`≥0 a`(4π|n|y)`, plus possibly log y terms. Note that, as derived in full

detail in Appendix B.1, this expansion is not the usual expansion for Bessel functions at y = 0. It
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is crucial for the evaluation of the integral of the seed function, as in equation (3.2), to have both

the exponential factor and a convergent expansion around the origin, the asymptotic nature of the

Poincaré series will arise by performing the sum over the Fourier mode number n after integration

and not by using the asymptotic expansion for the Bessel functions. Let us also note that we are

focussing on the expansion around y = 0 in this discussion—even though we are ultimately interested

in the asymptotic expansion of a0(y) around y →∞—is that the formula (2.4) for a0(y) involves an

‘S-transformation’ of y, that exchanges the asymptotic regimes.

Our strategy will be to write (5.2) as a combination of the basic general building blocks (3.1)

and this can be done most conveniently by considering a shift-differential operator acting on a single

term. Using the properties of Bessel functions and confluent hypergeometric functions and after some

tedious calculations, that we relegate to Appendix B.1, one finds that the non-zero Fourier mode

(5.2) of the deformed seed function can be written succinctly as

cn(y) = D
[
σ−2(|n|)(4π|n|)αy1+α+εe−2π|n|y

]
α=0

, (5.3)

where D is a shift-differential operator in an auxiliary variable α. We refer to Appendix B.2 for all

the details while for the rest of the present discussion we only need to remember that D is function

only of α and not of y or n, and that its action commutes with the procedure discussed in Section 3

to extract the asymptotic expansion for the Poincaré series.

In particular we notice immediately that the form of the non-zero Fourier mode (5.3) is precisely

of the type (3.1) considered previously. This means that the perturbative part to the zero mode of

the D6R4 coefficient function coming from the non-zero Fourier modes of the seed function can be

obtained directly from equation (3.6) specialized to the present case

I ∼ D [I(−2, α, 1 + α+ ε)]α=0 . (5.4)

The application of the shift-differential operator in α after using (3.6) is rather involved but

straightforward, the details have been relegated to Appendix B.3. Once all the terms are collected

we obtain (see equation (B.38))

I ∼ 2

3
ζ(2)ζ(3)y + 4ζ(4)y−1 − πζ(3)2ζ(5)

4ζ(6)
y−2 +

4ζ(6)

27
y−3

− π5/2Γ(ε+ 1/2)ζ(1 + 2ε)ζ(3 + 2ε)

(9− 6ε)Γ(1 + ε)ζ(2 + 2ε)
y−ε +O(ε) . (5.5)

We note the occurrence of ζ(1 + 2ε) that diverges in the limit ε→ 0.

As before, in order to obtain the complete perturbative zero mode of the D6R4 coefficient function

we also need the contributions coming from the zero-mode of the seed function, however these are

easier to obtain.

The zero Fourier mode of the deformed seed is given by

c0(y) =
2ζ(3)ζ(3 + 2ε)

3− 6ε
y3+ε +

π2ζ(3 + 2ε)

9− 6ε
y1+ε . (5.6)
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Its contribution to the zero mode of the Poincaré sum is just like for ordinary Eisenstein series. Hence

we obtain

c0(y) + y
∑
c>0

φ(c)

∫
R
c0

(
y−1

c2(1 + t2)

)
dt =

2ζ(3)ζ(3 + 2ε)

3− 6ε

[
y3+ε +

ξ(5 + 2ε)

ξ(6 + 2ε)
y−2−ε

]
(5.7)

+
π2ζ(3 + 2ε)

9− 6ε

[
y1+ε +

ξ(1 + 2ε)

ξ(2 + 2ε)
y−ε
]

with the completed zeta function ξ(s) = π−s/2Γ(s/2)ζ(s). We see that the last term contains a

ξ(1 + 2ε) ∝ ζ(1 + 2ε) that diverges in the limit ε→ 0. As it happened in Section 4.2, also in here this

term is the reason that one has to deform the differential equation. Near ε = 0 the above expression

takes the form

(5.7) =
2

3
ζ(3)2y3 +

πζ(3)2ζ(5)

4ζ(6)
y−2 +

2

3
ζ(2)ζ(3)y

+
π5/2Γ(ε+ 1/2)ζ(1 + 2ε)ζ(3 + 2ε)

(9− 6ε)Γ(1 + ε)ζ(2 + 2ε)
y−ε +O(ε) , (5.8)

such that the final total perturbative zero mode of the D6R4 coefficient function that arises by

combining with (5.5) is

E(0,1) ∼
2

3
ζ(3)2y3 +

4

3
ζ(2)ζ(3)y + 4ζ(4)y−1 +

4ζ(6)

27
y−3 +O(e−2πy) (5.9)

in agreement with [20,21]. The three terms represent the perturbative tree-level, one-loop, two-loop

and three-loop contributions to the four-graviton scattering amplitude in ten-dimensional type IIB

string theory. The term proportional to y−3 is a homogeneous solution to the differential equa-

tion (5.1) satisfied by the D6R4 correction that comes out correctly of the Poincaré series approach.

The correctness of the three-loop term was verified in a direct pure spinor calculation in [39].

The regularisation with ε is important to both circumvent a divergent Poincaré series and to

correct the y1 term. As already explained in Section 4.2, this regularisation is necessary because

the inhomogeneous Laplace equation (5.1) satisfied by the D6R4 correction contains a source term,

arising from the square of the R4 coefficient function, that is precisely of the form E2
3/2. From the

seed function analysis this term has to be regularised via E3/2E3/2+ε as we did for the C2,1,1 modular

graph function.

6 Conclusions

In this paper, we have presented a method for obtaining the asymptotic expansion of certain classes

of Poincaré series f(z) whose seed Fourier modes are associated with the class (3.1). It is also possible

to obtain non-perturbative information from this asymptotic expansion using resurgent analysis as

we have demonstrated in several examples.

At the moment the focus of our studies has been entirely devoted to the derivation of the zero

mode sector. An obvious future direction is to extend our analysis to the non-zero modes and derive

their perturbative and non-perturbative expansions starting from the integral form (2.2).
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Another task yet to be completed is the reconstruction of the non-perturbative corrections to the

D6R4 coefficient function by combining the use of the shift operator introduced to rewrite the Fourier

modes (5.3) together with a Cheshire-cat type of resurgence similar to the discussion in Section 4.1.2

for the simpler setup of the C3,1,1 modular graph function.

Furthermore, even within the class of modular graph functions discussed in the present paper,

it is conceivable that from our asymptotic expansion (3.6) it will be possible to write the general

expression of the non-perturbative corrections, reconstructing them entirely out of the perturbative

data. For the two cases C3,1,1 and C2,1,1 discussed in here we have checked that these non-perturbative

corrections match exactly the one derived recently in [26] using a completely different approach.

We have little doubt that our method can be applied to many more modular graph functions, for

example those in the class Ca,b,c studied in [1] or the tetrahedral functions studied in [9] and whose

Laplace equations are known. Since the Laplace equation for a given value of (a, b, c) higher than the

examples considered here can generally involve also sources involving other Ca′,b′,c′ functions (before

diagonalisation of the Laplacian), we expect the corresponding Fourier modes to be more involved but

still derivable from (3.1), presumably up to the action of a differential operator. It is also extremely

interesting to understand how to extend our analysis to different type of multiplicative functions,

besides the divisor sum σa, appearing in the seed function (3.1) and whether or not such cases exist

within string theory.

There are several possible generalisations of the present analysis presented here. Besides an

extension to the analysis of the non-zero modes f(z), one tantalising avenue seems to be to use the

methods to investigate higher-derivative terms in the type IIB effective action starting from D8R4

whose exact form is currently unknown. Laplace equations for D8R4 and, in particular, D10R4 have

been proposed in the literature [20,40] and it would be interesting to analyse them via the Poincaré

series approach and study their perturbative terms.

It is also conceivable to extend the present strategy beyond SL(2,Z) to higher rank groups.

According to the two instances in the introduction, there are two different generalisations: either

going to higher genus world-sheets (which means Sp(2g,Z) for low genus g) or going to higher rank

U-duality groups (which means En(Z) for compactification of type II on a space-time torus Tn−1).

Modular graph functions for world-sheets of genus two and higher have been explored recently [41–46]

with a focus on obtaining the perturbative terms in the non-separating divisor limit of the Riemann

surface that is similar to the asymptotic expansion studied in the present paper.

For higher rank U-duality groups En(Z), there is a fair amount known for the lowest derivative

corrections R4 and D4R4, see [47–50], where the solutions can be given in terms of parabolic Eisen-

stein series, i.e., Poincaré sums of characters of a parabolic subgroup. As Eisenstein series satisfy

homogeneous differential equations and since there are many methods available for analysing them,

these cases have been treated in detail. The situation is less clear starting from D6R4 where the

differential equation implied by supersymmetry again is inhomogeneous [20,51,52]. For some higher

rank cases, solutions have been proposed in the literature based on different methods [25, 51, 53],

however, their equivalence and their full physical content in terms of an asymptotic expansion are

in general not known. We hope that the methods of the present paper can also help to study these

functions.
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A Useful identities

A.1 From Poincaré series to Kloosterman sums

In this appendix, we briefly review how to obtain the relation (2.2) between the Fourier coefficients

of the seed of a Poincaré and those of the summed function. We follow [27, 28] to which we direct

the reader for additional details and references.

The Poincaré sum (1.6) is a sum over cosets in B(Z)\SL(2,Z). These can be represented by

matrices (
a b

c d

)
(A.1)

with c ∈ Z and d > 0 coprime, where choosing a representative of the coset means choosing any

fixed solution for a and b of the condition ad − bc = 1. The sum over coset classes with coprime

c and d can be further refined by grouping the terms in d modulo c using a further right quotient

B(Z)\SL(2,Z)/B(Z) as follows. Multiplying by elements from B(Z) on the right means(
a b

c d

)(
1 k

0 1

)
=

(
a b+ ak

c d+ ck

)
, (A.2)

so one may sum over all k ∈ Z and all elements in Z/cZ that coprime with c as long as c 6= 0. This is

the set (Z/cZ)× that appears in many places in this article. For c = 0, there is only the term d = 1

and the coset is represented by the identity element. Therefore the Poincaré sum (1.6) is

f(z) = σ(z) +
∑
c>0

∑
d∈(Z/cZ)×

∑
k∈Z

σ

(
a

c
− 1

c(c(z + k) + d)

)
, (A.3)

where we have rewritten the argument of σ using ad − bc = 1 with a any fixed solution. The sum

over c 6= 0 is restricted to positive numbers as the right quotient by B(Z) also includes a possible

sign change.

Performing a Poisson resummation on k ∈ Z leads to

f(z) = σ(z) +
∑
c>0

∑
d∈(Z/cZ)×

∑
n∈Z

∫
R
e−2πinωσ

(
a

c
− 1

c(c(z + ω) + d)

)
dω . (A.4)
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Shifting the integration variable ω → ω + x+ d/c then yields with z = x+ iy

f(z) = σ(z) +
∑
n∈Z

e2πinx
∑
c>0

∑
d∈(Z/cZ)×

e2πind/c

∫
R
e−2πinωσ

(
a

c
− 1

c2(ω + iy)

)
dω

= σ(z) (A.5)

+
∑
n∈Z

e2πinx
∑
c>0

∑
d∈(Z/cZ)×

e2πind/c

∫
R
e−2πinω

∑
m∈Z

e2πima/ce
−2πim ω

c2(ω2+y2) cm

(
y

c2(ω2 + y2)

)
dω ,

where we have inserted the Fourier expansion σ(z) =
∑

m∈Z cm(y)e2πimx at the given argument.

From the above equation we can read off the Fourier modes of f(z) =
∑

n∈Z an(y)e2πinx as

an(y) = σn(y) +
∑
c>0

∑
d∈(Z/cZ)×

∑
m∈Z

e2πind/c+2πima/c

∫
R
e
−2πinω−2πim ω

c2(y2+ω2) cm

(
y

c2(y2 + ω)

)
dω .

(A.6)

Replacing d by q one arrives at (2.2).

A.2 Integrals of Fourier modes

The Fourier modes we encounter are combinations of terms of the form cn(y) ∝ yre−2πny for some

power r. For the zero modes in (2.4) we then have to evaluate integrals of the type∫
R
e
−2πm 1+it

yc2(1+t2)
1

(1 + t2)r
dt . (A.7)

Expanding the exponential, the individual terms are in the class (for Re(a+ b) > 1)∫
R

1

(1 + it)a
1

(1− it)b
dt = 22−a−bπ

Γ(a+ b− 1)

Γ(a)Γ(b)
, (A.8)

such that ∫
R
e
−2πm 1+it

yc2(1+t2)
1

(1 + t2)r
dt =

π

4r−1Γ(r)

∑
k≥0

(−πmy−1c−2)k

k!

Γ(2r + k − 1)

Γ(k + r)
, (A.9)

valid for Re(r) > 1/2. For integer r this is a polynomial of degree r − 1 in πm
yc2

times exp(−πm
yc2

). For

generic r we can rewrite the result using the shift operator Dα = e∂α that satisfies Dk
αf(α) = f(α+k).

Then the formula becomes∫
R
e
−2πm 1+it

yc2(1+t2)
1

(1 + t2)r
dt =

π

4r−1Γ(r)
exp

(
−πm
yc2

Dα

)
Γ(2r + α− 1)

Γ(α+ r)

∣∣∣∣
α=0

. (A.10)

Another integral that will be useful is∫ ∞
0

∑
n>0

θnhqn−stb
∑
k≥0

(−nt)k

k!

Γ(2r + k − 1)

Γ(r + k)
dt =

Γ(b+ 1)Γ(2r − b− 2)

Γ(r − b− 1)
Lis+b+1(θhq) (A.11)

that can be computed using the shift operator Dα and also uses∫ ∞
0

tbLis(θ
hqe−t)dt = Γ(b+ 1)Lis+b+1(θhq) . (A.12)
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A.3 Sums of polylogarithms

In this appendix, we consider sums of the form

∑
c>0

c−s
∑

q∈(Z/cZ)×

c∑
h=1

ζ
(
1− k, h

c

)
Lin(θhq) , (A.13)

where θ = e2πi/c is a primitive c-th root of unity. The parameters k and n need not be integers in

this expression and in fact many expressions become singular when they are.

First, we note that the Hurwitz zeta function can be rewritten according to [54]

ζ
(
1− k, h

c

)
=

Γ(k)

(2π)k

(
i−kLik(θ

h) + ikLik(θ
−h)
)
. (A.14)

The two terms are related by complex conjugation, so it is sufficient to consider one of them. Therefore

the basic object we are facing is

∑
c>0

c−s
∑

q∈(Z/cZ)×

c−1∑
h=0

Lik(θ
h)Lin(θhq) , (A.15)

where we have shifted the h-summation using the periodicity of θh.

Under the (numerically verified) assumption that the object obtained by summing over q and h

and dividing by Lik(1)Lin(1) is multiplicative in c, it is sufficient to consider the case c = p`, where

p is a prime and ` an integer. In that case one has to determine

Sk,n(p`) =

p`−1∑
h=0

∑
q∈(Z/p`Z)×

Lik(θ
h)Lin(θhq) (A.16)

=
`−1∑
m=0

∑
a∈(Z/p`−mZ)×

∑
q∈(Z/p`Z)×

Lik(θ
apm)Lin(θap

mq) + Lik(1)Lin(1)φ(p`) ,

where we have grouped the sum over h into different classes. Now one uses that for gcd(a, p`−m) = 1

the second factor in the sum is independent of a and yields∑
q∈(Z/p`Z)×

Lin(θap
mq) =

∑
q∈(Z/p`Z)×

Lin(θp
mq) = Lin(1)pm

(
p(`−m)(1−n) − p(`−m−1)(1−n)

)
, (A.17)

while the first factor leads to∑
a∈(Z/p`−mZ)×

Lik(θ
apm) = Lik(1)

(
p(`−m)(1−k) − p(`−m−1)(1−k)

)
. (A.18)
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We obtain therefore

1

Lik(1)Lin(1)

p`−1∑
h=0

∑
q∈(Z/p`Z)×

Lik(θ
h)Lin(θhq)

=
`−1∑
m=0

[
pm
(
p(`−m)(1−n) − p(`−m−1)(1−n)

)(
p(`−m)(1−k) − p(`−m−1)(1−k)

)]
+ φ(p`)

= (1− pk−1)(1− pn−1)p−`(k+n−2) 1− p`(k+n−1)

1− pk+n−1
+ φ(p`) . (A.19)

For the Dirichlet series written as an Euler product we next need to form∑
`≥0

Sk,n(p`)p−`s = Lik(1)Lin(1)
(1− p1−k−s)(1− p1−n−s)

(1− p2−n−k−s)(1− p1−s)
, (A.20)

leading for sufficiently large Re(s) to∑
c>0

c−s
∑

q∈(Z/cZ)×

c−1∑
h=0

Lik(θ
h)Lin(θhq) = ζ(k)ζ(n)

ζ(n+ k + s− 2)ζ(s− 1)

ζ(k + s− 1)ζ(n+ s− 1)
. (A.21)

where we have also substituted Lik(1) = ζ(k) to continue Lik(1) to most values of k. As said before

this calculation requires k and n to be analytically continued and the above formula works well to

determine limiting values.

Returning to the original expression (A.13) we then find∑
c>0

c−s
∑

q∈(Z/cZ)×

c∑
h=1

ζ
(
1− k, h

c

)
Lin(θhq) =

Γ(k)

(2πi)k
ζ(k)ζ(n)

ζ(n+ k + s− 2)ζ(s− 1)

ζ(k + s− 1)ζ(n+ s− 1)
+ c.c.

=
ζ(1− k)ζ(n)ζ(n+ k + s− 2)ζ(s− 1)

ζ(k + s− 1)ζ(n+ s− 1)
. (A.22)

Here, c.c. stands for the complex conjugate and we have used the functional equations for ζ(k) and

Γ(k) for the simplified expression.

We also note∑
c>0

c−s
∑

q∈(Z/cZ)×

c∑
h=1

Lin(θhq) =
∑
c>0

c−s+1−nφ(c)Lin(1) =
ζ(n)ζ(s+ n− 2)

ζ(s+ n− 1)
. (A.23)

When taking limits it can be useful to remember that the derivative of the Riemann zeta function

at negative even integers satisfies

ζ ′(−2n) = (−1)n
(2n)!

2(2π)2n
ζ(2n+ 1) . (A.24)

B Expanding the D6R4 seed modes

In this appendix, we perform the rewriting of the Fourier mode of D6R4 seed function presented

in (5.2) and derive its contribution to the asymptotic expansion of the zero mode of the D6R4

coefficient itself.
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B.1 Bessel functions and confluent hypergeometric functions

The modified Bessel function can be written as

Ks(z) =
√
πe−z(2z)sU(s+ 1

2 , 2s+ 1; 2z) (B.1)

in terms of the confluent hypergeometric function U(a, b; z) that is a variant of Kummer’s function

M(a, b; z) = 1F1(a, b; z) =
∑
`≥0

(a)`
(b)`

z`

`!
, (B.2)

defined in terms of the rising Pochhammer symbols (a)` = a · (a + 1) · · · (a + ` − 1) = Γ(a+`)
Γ(a) . For

b /∈ Z one has the relation [54]

U(a, b; z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b; z) + z1−bΓ(b− 1)

Γ(a)
M(a− b+ 1, 2− b; z) . (B.3)

Putting this back into (B.1) makes the symmetry Ks(z) = K−s(z) manifest. The second term in (B.3)

contains a finite number of singular terms (in z) for b > 1 but b /∈ Z.

We also require the expansion of the confluent hypergeometric function U(a, n + 1; z) around

z = 0 when n ∈ Z≥0. This is given by [54]

U(a, n+ 1; z) = Ũ(a, n+ 1; z) +
Γ(n)

Γ(a)
z−n

n−1∑
`=0

(a− n)`
(1− n)`

z`

`!
(B.4)

where

Ũ(a, n+ 1; z) (B.5)

=
(−1)n+1

Γ(a)Γ(a− n)

∑
`≥0

Γ(a+ `)z`

Γ(n+ 1 + `)Γ(1 + `)
(log(z) + ψ(a+ `)− ψ(n+ `+ 1)− ψ(`+ 1))

contains the regular and log terms and the digamma function is the logarithmic derivative of the

gamma function according to ψ(x) = Γ′(x)/Γ(x). Using formulas (B.1), (B.3) and (B.4) we can

obtain the expansion of Ks(z) of the form

Ks(z) = e−z × (shifted Laurent series around z = 0) . (B.6)

The lowest power that occurs in the series is z−s for any real s > 0.

We note that we can rewrite (B.5) by introducing an auxiliary parameter α as in appendix A.2.

In this way one obtains with the shift operator Dα = e∂α the following compact expression for the

regular part Ũ(a, n+ 1; z):

Ũ(a, n+ 1; z) =
(−1)n+1

Γ(a)Γ(a− n)

∑
`≥0

∂α

[
Γ(a+ `+ α)z`+α

Γ(n+ `+ 1 + α)Γ(`+ 1 + α)

]
α=0

=
(−1)n+1

Γ(a)Γ(a− n)

∑
`≥0

D`
α∂α

[
Γ(a+ α)zα

Γ(n+ 1 + α)Γ(1 + α)

]
α=0

=
(−1)n+1

Γ(a)Γ(a− n)

1

1−Dα
∂α

[
Γ(a+ α)zα

Γ(n+ 1 + α)Γ(1 + α)

]
α=0

. (B.7)

24



B.2 Rewriting the D6R4 seed

The specific combination appearing in the D6R4 seed Fourier mode is

cn(y) =
8ζ(3 + 2ε)

1− 4ε2
σ−2(n)(2π|n|)−1−ε (B.8)

× z1+ε

[
(1− 2ε)K2(z) +

10− 4ε

z
K3(z)− (10− 4ε)21/2+ε

Γ(7/2− ε)z1/2+ε
K7/2−ε(z)

]
,

where we use z = 2π|n|y.

We shall first rewrite the second line in the form e−z × (convergent power series in z), showing

along the way that there are no negative powers of z appearing in this particular combination. As

a second step we shall write the whole expression as the action of a differential operator acting on a

simpler term.

The expansions of the various Bessel functions near z = 0 are

K2(z) =
√
πe−z

[
(2z)2Ũ(5

2 , 5; 2z) +
Γ(4)

Γ(5/2)
(2z)−2

(
1 + z +

z2

4
− z3

12

)]
,

K3(z) =
√
πe−z

[
(2z)3Ũ(7

2 , 7; 2z) +
Γ(6)

Γ(7/2)
(2z)−3

(
1 + z +

3z2

8
+
z3

24
− z4

192
+

z5

320

)]
,

K7/2−ε(z) =
√
πe−z

[
(2z)7/2−εΓ(2ε− 7)

Γ(ε− 3)
M(4− ε, 8− 2ε; 2z) (B.9)

+ (2z)ε−7/2 Γ(7− 2ε)

Γ(4− ε)
M(ε− 3, 2ε− 6; 2z)

]
=
√
πe−z

[
(2z)7/2−εΓ(2ε− 7)

Γ(ε− 3)
M(4− ε, 8− 2ε; 2z)

+ (2z)ε−7/2 Γ(7− 2ε)

Γ(4− ε)

(
1 + z +

2− ε
5− 2ε

z2 +
1− ε

15− 6ε
z3 +

∑
`>3

(ε− 3)`
(2ε− 6)`

(2z)`

`!

)]
.

Note that, as stressed above, this is not the usual asymptotic expansion of the Bessel functions

around z = 0 where we have stripped away the exponential factor, necessary for the convergence of

the integral (2.4).

Taking into account also the pre-factors of the second line of (B.8), the possible singular and

constant terms are of the orders z−3+ε, z−2+ε, z−1+ε and zε with coefficients (after dropping the

common
√
πe−z) :

z−3+ε : (10− 4ε)
Γ(6)

Γ(7/2)
2−3 − 10− 4ε

Γ(7/2− ε)
22ε−3 Γ(7− 2ε)

Γ(4− ε)
= 0 ,

z−2+ε : (10− 4ε)
Γ(6)

Γ(7/2)
2−3 − 10− 4ε

Γ(7/2− ε)
22ε−3 Γ(7− 2ε)

Γ(4− ε)
= 0 , (B.10)

z−1+ε : (1− 2ε)
Γ(4)

Γ(5/2)
2−2 +

3

8
(10− 4ε)

Γ(6)

Γ(7/2)
2−3 − 2− ε

5− 2ε

10− 4ε

Γ(7/2− ε)
22ε−3 Γ(7− 2ε)

Γ(4− ε)
= 0 ,

zε : (1− 2ε)
Γ(4)

Γ(5/2)
2−2 +

1

24
(10− 4ε)

Γ(6)

Γ(7/2)
2−3 − 1− ε

15− 6ε

10− 4ε

Γ(7/2− ε)
22ε−3 Γ(7− 2ε)

Γ(4− ε)
= 0 .
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Therefore, the non-zero Fourier mode (B.8) of the seed of the D6R4 function can be written in an

expansion where every term is at least of the order z1+ε:

cn(y) =
8
√
πζ(3 + 2ε)

1− 4ε2
σ−2(n)(2π|n|)−1−εe−z

×
[
4(1− 2ε)z3+εŨ(5

2 , 5; 2z) +
Γ(4)

4Γ(5/2)
(1− 2ε)

(
z1+ε

4
− z2+ε

12

)
+ 8(10− 4ε)z3+εŨ(7

2 , 7; 2z) +
Γ(6)

8Γ(7/2)
(10− 4ε)

(
−z

1+ε

192
+
z2+ε

320

)
− 16

(10− 4ε)Γ(2ε− 7)

Γ(7/2− ε)Γ(ε− 3)
z4−εM(4− ε, 8− 2ε; 2z)− 8

10− 4ε√
π

z−3+ε
∑
`>3

(ε− 3)`
(2ε− 6)`

(2z)`

`!

]
,

=
8
√
πζ(3 + 2ε)

1− 4ε2
σ−2(n)(4π|n|)−1−εe−z (B.11)

×

[
(1− 2ε)(2z)3+εŨ(5

2 , 5; 2z)+(20− 8ε)(2z)3+εŨ(7
2 , 7; 2z)+

1− 10ε

12
√
π

(2z)1+ε+
5 + 14ε

120
√
π

(2z)2+ε

+ 22+2εΓ(ε− 3/2)

π

(
Γ(1 + ε)

Γ(2ε− 2)Γ(5)
(2z)1+ε +

Γ(2 + ε)

Γ(2ε− 1)Γ(6)
(2z)2+ε +

Γ(3 + ε)

Γ(2ε)Γ(7)
(2z)3+ε

)
− 22+2εΓ(ε− 3/2)

π

∑
`≥0

(
Γ(4 + `− ε)(2z)4+`−ε

Γ(8 + `− 2ε)Γ(1 + `)
− Γ(4 + `+ ε)(2z)4+`+ε

Γ(8 + `)Γ(1 + `+ 2ε)

)]

where we have also inserted the expansion of Kummer’s function (B.2). Note that the above ex-

pression has a smooth limit ε → 0 in which the sum over ` disappears, reflecting the fact that

K7/2−ε → K7/2 with a finite expansion, and the three terms in the second line also disappear such

that

cn(y) −→
ε→0

8
√
πζ(3)σ−2(n)(4π|n|)−1e−z

[
(2z)3Ũ(5

2 , 5; 2z) + 20(2z)3Ũ(7
2 , 7; 2z) +

2z

12
√
π

+
(2z)2

24
√
π

]
.

(B.12)

We further simplify (B.11) by writing it as the application of a differential on a simpler function.

This was already done for the Ũ functions in (B.7).

We start with the terms involving Ũ and rewrite the relevant part of (B.11) as

(1− 2ε)(2z)3+εŨ(5
2 , 5; 2z) + (20− 8ε)(2z)3+εŨ(7

2 , 7; 2z) (B.13)

= − 1

1−Dα
∂α

[
(1− 2ε)(2z)3+ε

Γ(5/2)Γ(−3/2)

Γ(5/2 + α)(2z)α

Γ(5 + α)Γ(1 + α)
+

(20− 8ε)(2z)3+ε

Γ(7/2)Γ(−5/2)

Γ(7/2 + α)(2z)α

Γ(7 + α)Γ(1 + α)

]
α=0

= − 1

π

D2
α

1−Dα
∂α

[(
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

) Γ(1/2 + α)

Γ(5 + α)Γ(α− 1)
(2z)1+α+ε

]
α=0

.

We note also that

− 1

π
(1 +Dα)∂α

[(
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

) Γ(1/2 + α)

Γ(5 + α)Γ(α− 1)
(2z)1+α+ε

]
α=0

=
1− 10ε

12
√
π

(2z)1+ε +
5 + 14ε

120
√
π

(2z)2+ε , (B.14)
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so that the first line of the square brackets in (B.11) can be rewritten as

(1− 2ε)(2z)3+εŨ(5
2 , 5; 2z) + (20− 8ε)(2z)3+εŨ(7

2 , 7; 2z) +
1− 10ε

12
√
π

(2z)1+ε +
5 + 14ε

120
√
π

(2z)2+ε

= − 1

π

1

1−Dα
∂α

[(
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

) Γ(1/2 + α)

Γ(5 + α)Γ(α− 1)
z1+α+ε

]
α=0

. (B.15)

The three contributions in the second line of (B.11) can be written as

22+2εΓ(ε− 3/2)

π

(
Γ(1 + ε)

Γ(2ε− 2)Γ(5)
(2z)1+ε +

Γ(2 + ε)

Γ(2ε− 1)Γ(6)
(2z)2+ε +

Γ(3 + ε)

Γ(2ε)Γ(7)
(2z)3+ε

)
=

22+2ε

π
Γ(ε− 3/2)(1 +Dα +D2

α)

[
Γ(1 + α+ ε)

Γ(5 + α)Γ(2ε− 2 + α)
(2z)1+α+ε

]
α=0

(B.16)

The last line of (B.11) involving the `-sum takes the form

− 22+2εΓ(ε− 3/2)

π

∑
`≥0

(
Γ(4 + `− ε)(2z)4+`−ε

Γ(8 + `− 2ε)Γ(1 + `)
− Γ(4 + `+ ε)(2z)4+`+ε

Γ(8 + `)Γ(1 + `+ 2ε)

)

= −22+2εΓ(ε− 3/2)

π

1

1−Dα

[
Γ(4 + α− ε)(2z)4+α−ε

Γ(8 + α− 2ε)Γ(1 + α)
− Γ(4 + α+ ε)(2z)4+α+ε

Γ(8 + α)Γ(1 + α+ 2ε)

]
α=0

. (B.17)

In this way, the whole seed Fourier mode cn(y) can be written as (finite) linear combinations of terms

of the form σa(n)(4π|n|)byre−2π|n|y together with the action of differential operators on them, where

we recall that z = 2π|n|y.

The notation we introduce for this rewriting is

cn(y) = c(1)
n (y) + c(2)

n (y) (B.18)

where

c(1)
n (y) = D(1)

(
σ−2(n)(4π|n|)−1−ε(2z)1+α+εe−z

)
, (B.19)

c(2)
n (y) = −25+2εζ(3 + 2ε)Γ(ε− 3/2)√

π(1− 4ε2)

× 1

1−Dα

[
σ−2(n)(4π|n|)−1−εe−z

(
Γ(4 + α− ε)(2z)4+α−ε

Γ(8 + α− 2ε)Γ(1 + α)
− Γ(4 + α+ ε)(2z)4+α+ε

Γ(8 + α)Γ(1 + α+ 2ε)

)]
α=0

and

D(1)f(α) = − 8ζ(3 + 2ε)√
π(1− 4ε2)

∂α
1−Dα

[(
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

) Γ(α+ 1
2)

Γ(5 + α)Γ(α− 1)
f(α)

]
α=0

+
25+2εζ(3 + 2ε)Γ(ε− 3/2)√

π(1− 4ε2)
(1 +Dα +D2

α)

[
Γ(1 + α+ ε)

Γ(5 + α)Γ(2ε− 2 + α)
f(α)

]
α=0

.

(B.20)

The reason that we have split the Fourier mode cn(y) in this way is because the two parts have

different contributions to the asymptotic expansion.
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B.3 Applying the general formula for the asymptotic expansion

We now apply the general formula (3.6) for the asymptotic expansion of Fourier modes of the

type (3.1) to (B.18) to obtain the asymptotic expansion for z → 0 in a similar decomposition

I ∼ I(1) + I(2) , (B.21)

where, after exchanging the differential operator and the asymptotic expansion,

I(1) = D(1)I(−2, α, 1 + α+ ε) (B.22)

will be evaluated momentarily and I(2) follows from applying (3.6) to c
(2)
n (y).

We begin by showing that I(2) vanishes in the asymptotic expansion for ε → 0. Writing out the

geometric series 1/(1−Dα) =
∑

`≥0D
`
α again, a single term in c

(2)
n (y) contributes to the asymptotic

expansion either as I(−2, 3 + `− 2ε, 4 + `− ε) or I(−2, 3 + `, 4 + `+ ε) which are given by

I(−2, 3 + `− ε± ε, 4 + `± ε) =
21−επy−ε

Γ(4 + `± ε)

[
y

π

Γ(4 + `− ε± ε)Γ(3 + `+ ε± ε)
Γ(ε)

+

+
π

y

Γ(2 + `− ε± ε)Γ(5 + `+ ε± ε)
Γ(2 + ε)

ζ(2 + 2ε)ζ(3)

ζ(3 + 2ε)
+

(
π

y

)3+`−ε±ε∑
n≥0

(
−π
y

)n Γ(7 + 2`+ n± 2ε)

n! · Γ(4 + `+ n± ε)

× ζ(−3− `− n+ ε∓ ε)ζ(−1− `− n+ ε∓ ε)ζ(4 + `+ n+ ε± ε)ζ(6 + `+ n+ ε± ε)
ζ(8 + 2`+ 2n± 2ε)ζ(3 + 2ε)

]
. (B.23)

Inspecting this expression we see that all individual terms are continuous and finite in the limit ε→ 0

(since ` ≥ 0 and n ≥ 0), and we can set ε = 0; the very first term even vanishes. Since the two terms

with ±ε appear with opposite signs in c
(2)
n (y) their contribution to the (perturbative) asymptotic

behaviour vanishes when ε→ 0 and thus:

I(2) ∼
ε→0

0 (B.24)

and we are left with the contribution I(1) in (B.22) coming from c
(1)
n (y).

In order to evaluate (B.22) we first note that

I(−2, α, 1 + α+ ε) (B.25)

=
21−2επy−ε

Γ(1 + α+ ε)

[
y

π

Γ(1 + α)Γ(α+ 2ε)

Γ(ε)

ζ(2 + 2ε)ζ(3)

ζ(3 + 2ε)
− 1

12

π

y

Γ(α− 1)Γ(2 + α+ 2ε)

Γ(2 + ε)

ζ(2 + 2ε)

ζ(3 + 2ε)

+

(
π

y

)α∑
n≥0

(
−π
y

)n Γ(1 + 2α+ 2ε+ n)

n! · Γ(1 + α+ ε+ n)

× ζ(2− α− n)ζ(−α− n)ζ(3 + α+ 2ε+ n)ζ(1 + α+ 2ε+ n)

ζ(2 + 2α+ 2ε+ 2n)ζ(3 + 2ε)

]
.

We begin with the contributions from the second line of the differential operator in (B.20). These

can be evaluated fully since

D`
α

[
Γ(1 + α+ ε)I(−2, α, 1 + α+ ε)

Γ(5 + α)Γ(2ε− 2 + α)

]
α=0

=
Γ(1 + `+ ε)I(−2, `, 1 + `+ ε)

Γ(5 + `)Γ(2ε− 2 + `)
, (B.26)
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and the factor 1/Γ(2ε − 2 + `) goes to zero when ε → 0 and ` = 0, 1, 2. Therefore, we only need to

analyse the potentially diverging terms for ε→ 0 in I(−2, `, 1 + `+ ε). Inspecting (B.25), there are

no such terms for ` = 1 and ` = 2. For ` = 0, there is such a term when n = 0 in the sum and this

is the only possible contribution. The result is that the second line of (B.20) contributes as

lim
ε→0

(
26ζ(3)Γ(−3/2)

√
π
ζ(0)ζ(1 + 2ε)

Γ(5)Γ(2ε− 2)

)
= −32

9
πζ(3) (B.27)

to the asymptotic expansion of I(2), i.e. to the y-independent terms.

We are then left with the first line of the differential operator (B.20) acting on I(−2, α, 1 +α+ ε)

given in (B.25). We treat the three terms in I(−2, α, 1 + α + ε) separately as they contribute at

specific orders in y: The first term only contributes at order y1, the second term only at order y−1

and the third term in (B.25) contributes at all orders y−k for k ≥ 0 (and potentially log(y)).

In order to evaluate the action of the differential operator on the first term in (B.25), we observe

that for cancelling the 1/Γ(ε) in this expression, one requires α = 0 in the numerator of (B.20) and

thus should not apply any of shift operators D`
α contained in the differential operator, otherwise the

result vanishes for ε→ 0. The complete contribution at linear order in y in the limit is therefore

y1 : −16ζ(2)ζ(3)
y√
π

lim
ε→0

∂α

[
(α2 − 13α+ 2)

Γ(α+ 1/2)Γ(1 + α)Γ(α+ 2ε)

Γ(α− 1)Γ(5 + α)Γ(ε)

]
α=0

=
2

3
ζ(2)ζ(3)y .

(B.28)

This deals completely with the first term in (B.25).

Proceeding to the second term in (B.25) we are dealing with the order y−1. Since the potentially

diverging Γ(α− 1) cancels between (B.25) and the differential operator, we are left with

22−επ3/2y−1−ε

3(1− 4ε2)

∂α
1−Dα

[ (
α2 − 13α+ 2− 2ε(α2 + 3α+ 10)

) Γ(α+ 1
2)Γ(2 + α+ ε)ζ(2 + 2ε)

Γ(1 + α+ ε)Γ(5 + α)Γ(2 + ε)

]
α=0

−→
ε→0

4π3/2ζ(2)

3
y−1∂α

1

1−Dα

[ (
α2 − 13α+ 2

) Γ(α+ 1/2)Γ(2 + α)

Γ(1 + α)Γ(5 + α)

]
α=0

=
4π3/2ζ(2)

3
y−1∂α

[
2α(α− 2)(α+ 1)Γ(α+ 1/2)

Γ(4 + α)

]
α=0

= −40ζ(4)

3
y−1 (B.29)

The limit ε→ 0 can be taken first since there are no singularities in this limit and the geometric sum

converges uniformly. This is the complete contribution from the second term in (B.25).

The final contribution we need to evaluate is the third sum term in (B.25) when the first line of

the differential operator (B.20) is applied to it. This can have contributions at orders y−k for k ≥ 0

and the lowest few values of k have to be analysed differently from the generic cases due to diverging

terms.

Let us denote by

un = (−1)n
(
π

y

)α+n Γ(1 + 2α+ n+ 2ε)ζ(2− α− n)ζ(−α− n)ζ(3 + α+ n+ 2ε)ζ(1 + α+ n+ ε)

n! · Γ(1 + α+ n+ ε)ζ(2 + 2α+ 2n+ 2ε)ζ(3 + 2ε)

(B.30)
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the nth term in the sum of the third term in (B.25). We note that most terms depend only on α+n

that also sets the order in y. Potential divergences in un come from the zeta functions when the

argument approaches one. This can happen for ζ(2 − α − n) when (α, n) = (1, 0) or (α, n) = (0, 1)

and for ζ(1 + α + n + ε) when (α, n) = (0, 0). Shifts in α come from expanding out the geometric

sum 1/(1−Dα) =
∑

`≥0D
`
α. In the differential operator (B.20) there is also a factor 1/Γ(α− 1) that

can vanish for α = 0 or α = 1 and combine with diverging terms in un.

At order y0 and for the first line of the differential operator there is only a contribution from the

u0 in (B.25) and one should not apply any shift operator Dα for this order in y. This contribution

has a divergent contribution in the limit ε→ 0 and comes out as

y0 :
32

9
πζ(3)− π5/2Γ(ε+ 1/2)ζ(1 + 2ε)ζ(3 + 2ε)

(9− 6ε)Γ(1 + ε)ζ(2 + 2ε)
y−ε +O(ε) (B.31)

that has to be combined with (B.27) and thus cancels the finite piece. We also see that there is

an explicit divergent piece due to the ζ(1 + 2ε) that we leave as it is since it combines with a piece

coming from c0(y).

At order y−1, there are two contributions coming from the third term in (B.25), one with u1 and

no α-shift and one with u0 and a single α shift. Combining the two leads to8

y−1 :
52ζ(4)

3
y−1 (B.32)

that has to be combined with the contribution (B.29).

At order y−2, there are three contributions from the third term in (B.25). Combining these leads

to

y−2 : −πζ(3)2ζ(5)

4ζ(6)
y−2 . (B.33)

At order y−3, there are four contributions from the third term in (B.25). Combining these leads

to

y−3 :
4ζ(6)

27
y−3 . (B.34)

In order to analyse the general term y−k with k ≥ 4 we note first that there are no potential

singularities when ε→ 0, so we take this limit first. Then we are left with evaluating for k ≥ 4

y−k : −16
√
πζ(3)∂α

[ k∑
`=0

D`
α

(
(α2 − 13α+ 2)

Γ(α+ 1/2)

Γ(5 + α)Γ(α− 1)Γ(α+ 1)
uk−`

)]
α=0

. (B.35)

Inspecting (B.30) we see that the only the combination α+n appears in the zeta functions. Therefore

all terms in the inner sum have the same common factor

ζ(2− α− k)ζ(−α− k)ζ(3 + α+ k)ζ(1 + α+ k)

ζ(2 + 2α+ 2k)
. (B.36)

8Here, as elsewhere, potential log(y) terms cancel.
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If k is even, this function starts at order α2 when expanded around α = 0 due to the vanishing of

the zeta function at negative even integers. Since the sum multiplying this common factor is regular

at α = 0 this shows that there are no contributions at order y−k for k = 2n ≥ 4 with n an integer.

For odd k the quotient of the zeta functions starts at order α0.

If k is odd, we then look in more detail at the non-zeta factors that multiply the common zetas(
π

y

)α+k k∑
`=0

(−1)k−`
((α+ `)2 − 13(α+ `) + 2)Γ(α+ `+ 1/2)

Γ(5 + α+ `)Γ(α+ `− 1)Γ(α+ `+ 1)

Γ(1 + 2α+ k + `)

Γ(k − `+ 1)Γ(1 + α+ k)
. (B.37)

We have verified that this sum starts at order α2 for odd 5 ≤ k ≤ 99 and are confident that this

holds for all odd k ≥ 5. This means that there are no terms in the asymptotic expansion of the form

y−k with k > 3.

Let us collect all terms in the asymptotic expansion of I as defined in (B.21). Combining the

terms (B.27), (B.28), (B.29), (B.31), (B.32), (B.33) and (B.34) leads to

I ∼ 2

3
ζ(2)ζ(3)y + 4ζ(4)y−1 − πζ(3)2ζ(5)

4ζ(6)
y−2 +

4ζ(6)

27
y−3

− π5/2Γ(ε+ 1/2)ζ(1 + 2ε)ζ(3 + 2ε)

(9− 6ε)Γ(1 + ε)ζ(2 + 2ε)
y−ε +O(ε) . (B.38)

References

[1] E. D’Hoker, M. B. Green and P. Vanhove, “On the modular structure of the genus-one Type II

superstring low energy expansion,” JHEP 1508 (2015) 041 [1502.06698 [hep-th]].

[2] E. D’Hoker and M. B. Green, “Identities between Modular Graph Forms,” J. Number Theor.

189 (2018) 25 [1603.00839 [hep-th]].

[3] E. D’Hoker and J. Kaidi, “Hierarchy of Modular Graph Identities,” JHEP 1611 (2016) 051

[1608.04393 [hep-th]].

[4] M. B. Green and P. Vanhove, “The Low-energy expansion of the one loop type II superstring

amplitude,” Phys. Rev. D 61 (2000) 104011 [hep-th/9910056].

[5] M. B. Green, J. G. Russo and P. Vanhove, “Low energy expansion of the four-particle genus-one

amplitude in type II superstring theory,” JHEP 0802 (2008) 020 [0801.0322 [hep-th]].
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