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Abstract 27 

The impact of inbreeding on fitness has been widely studied and provides 28 

consequential inference about adaptive potential and the impact on survival for 29 

reduced and fragmented natural populations. Correlations between heterozygosity 30 

and fitness are common in the literature, but they rarely inform about the likely 31 

mechanisms. Here we investigate a pathology with clear impact on health in striped 32 

dolphin hosts (a nematode infection that compromises lung function). Dolphins 33 

varied with respect to their parasite burden of this highly pathogenic lung nematode 34 

(Skrjabinalius guevarai). Genetic diversity revealed by high resolution restriction 35 

associated DNA (43,018 RADseq SNPs) analyses showed a clear association 36 

between heterozygosity and pathogen load, but only for female dolphins, for which 37 

the more heterozygous individuals had lower Skrjabinalius guevarai burden. One 38 

locus identified by RADseq was a strong outlier in association with parasite load 39 

(heterozygous in all uninfected females, homozygous for 94% of infected females), 40 

found in an intron of the Citron Rho-Interacting Serine/Threonine Kinase (CIT) 41 

locus (associated with milk production in mammals). Allelic variation at the Class 42 

II MHC DQB locus was also assessed and found to be associated with both 43 

regional variation and with pathogen load. Both sex specificity and the 44 

identification of associating functional loci provide insight into the mechanisms by 45 

which more inbred individuals may be more susceptible to the infection of this 46 

parasite. This provides important insight towards our understanding of the impact 47 

of inbreeding in natural populations, relevant to both evolutionary and practical 48 

conservation considerations.   49 

 50 

 51 

52 



1. Introduction 53 

Genetic diversity affects both short-term individual fitness and long-term 54 

population adaptive potential, and these factors are inter-dependent. Populations 55 

need to retain diversity to respond to new selection pressures in a changing 56 

environment, including pathogen challenges, which may in turn be affected by 57 

environmental change. A relationship between diversity and fitness has been shown 58 

in small populations where susceptibility to pathogens can be promoted by the loss 59 

of heterozygosity due to both inbreeding and genetic drift (e.g. [1]). In fact this 60 

relationship holds for a broad range of population sizes, and there have been many 61 

studies reporting heterozygosity-fitness correlations (HFCs; see reviews in [2, 3]) 62 

and assessments of the most effective measures of inbreeding to identify these 63 

correlations (see [3]). Many earlier studies used microsatellite DNA markers, but 64 

more recent studies demonstrate that the greater power availed by genome 65 

sampling reveals patterns that may otherwise have been missed (e.g. [4, 5, 6]). The 66 

restriction associated DNA (ddRADseq; [7]) method employed here screens across 67 

the genome at thousands of loci.  68 

A positive correlation could be associated with a particular locus, loci in 69 

linkage disequilibrium (LD) with the marker loci, or it may reflect a more general 70 

pattern of inbreeding across the genome (see [8]). In a study on Galapagos sea lions 71 

(Zalophus wollebaeki), the relative importance of genome-wide effects compared 72 

to specific loci (in that case the major histocompatability complex ‘MHC’ loci) 73 

were investigated [9]. The authors controlled for genome-wide inbreeding to test 74 

the influence of the MHC DRB locus and found strong associations between DRB 75 

diversity and all tested fitness traits (which included birth mass, pup survival and 76 

female reproductive success), indicating that single-locus effects can be important. 77 



At the same time, from a review of the literature, Szulkin et al. [10] concluded that 78 

HFC can most often be explained by inbreeding, which affects the whole genome. 79 

Evidence for balancing selection at MHC loci to retain diversity is extensive, 80 

and defense against pathogens is the likely driver (e.g. [11]). This is known to be an 81 

important factor in marine species, including cetaceans [12, 13]. Diversity at these 82 

loci may also be promoted by sexual selection, based on evidence that females in 83 

some species select mates based on their MHC genotype [14, 15]. Vassilakos et al. 84 

[13] found evidence for regional variation in the charge structure of the peptide 85 

binding region of the MHC DQB locus (among the ‘pocket 4’ residues that 86 

influence T-cell recognition; after [16]) for two species of cetacean (Orcinus orca 87 

and Tursiops truncatus), which may imply fitness variation among populations 88 

associated with local adaptation.  89 

Here we study inbreeding in striped dolphins (Stenella coeruleoalba) with 90 

variable burdens of the parasitic lungworm, Skrjabinalius guevarai. Lungworm 91 

nematodes are common in the delphinid respiratory system [17], and this species of 92 

lungworm can cause almost total occlusion of bronchi and bronchioles [18, 19]), 93 

thereby imposing a significant impact on health. We test the hypothesis that there 94 

will be a correlation between genome-wide measures of heterozygosity and 95 

pathogen load, but also look for strong effects at single loci (from a genome scan), 96 

and at exon 2 of the MHC DQB locus, including pocket 4 charge properties in the 97 

peptide binding region (see [13]). Given the potential for a differential impact of 98 

parasite load on males and females (e.g. associated with the added energetic 99 

requirements of females during pregnancy), we also test the hypothesis that the 100 

relationship between parasite load and inbreeding will differ between males and 101 

females.   102 



2. Materials and Methods 103 

(a) Samples and sex identification 104 

Eighty four striped dolphins from the western Mediterranean Sea (near 105 

Valencia, Spain) were collected as stranded animals between1990 & 2008 (see 106 

Table S1). Of these 51 were collected during periods of morbillivirus epizootics 107 

[20] and 33 were outside those time periods. Morbillivirus infection was not 108 

confirmed for the samples collected during the epizootics and used in this study. 109 

Dolphins were transferred to the laboratory where necropsy and anatomical 110 

analyses were carried out immediately (following the protocols of [21]), or 111 

alternatively stored at -20oC for later analysis. Sex was identified visually or by 112 

PCR on DNA extracted using standard protocols (see [22]) using the primers 113 

P15EZ, P23EZ for the Zfx/Zfy gene (after [23]) or Y53-3c and Y53-3d for the 114 

SRY gene [24]. We considered dolphins longer than 160 cm to be at least several 115 

years old (after [25]). There were 8 out of 68 for the ddRAD analyses and 16/ 80 116 

for the MHC analyses that were shorter than 160 cm. In case parasite load is 117 

associated with age (e.g. due to accumulation with time or the nature of infection), 118 

we repeated all analyses excluding the younger dolphins. All results that had been 119 

significant for the full dataset remained significant (data not shown). 120 

 121 

(b) Parasite analysis 122 

Lungs were removed for parasite analysis and each lung was weighed to the 123 

closest milligram. The lung was always opened starting from the main bronchus of 124 

the upper lobe which is connected to the trachea, and then the duct of each 125 

bronchioles and alveoli were followed through to the end of the bottom lobe (see 126 

Figure S1). Only whole parasites or the parasites’ tail were collected, and then 127 



stored in saline buffer to maintain a constant pH and isotonic environment [26]. 128 

After cleaning with the isotonic buffer, parasites from each lung were preserved in 129 

70% alcohol. After gross examination, lungs were washed out on a 0.2 mm sifter 130 

and any parasites (whole or tails) obtained were collected. All parasites were 131 

examined in a stereoscope for species identification. Furthermore, 10% of the total 132 

number of parasites were prepared and screened under a microscope to ensure the 133 

consistency of species identification. A Petri dish with divided areas was used for 134 

the parasite counting. Parasites of each lung were combined for the total individual 135 

lung-parasite burden.  136 

There was a relatively low number of worms (1 – 20; for both lungs 137 

combined) for some infected individuals, and visual examination indicated that this 138 

number of worms was not sufficient to occlude the bronchioles or alveoli. At the 139 

same time, a medium or high level of infestation resulted in obvious occlusions. 140 

This may suggest a threshold value above which an impact may begin to be seen. 141 

For this reason, analyses included the comparison of two infestation categories; 142 

none/low infection (0 to 20 parasites) and medium/high (>20 parasites) infection. 143 

However, it is possible that pathology is also or primarily related to secondary 144 

bacterial infections, though we have no data on this for these animals. For example, 145 

Torynurus convolutus and Pseudalius inflexus lung infestation led to secondary 146 

bacterial infections responsible for mortality of North and Baltic Sea harbour 147 

porpoise (Phocoena phocoena; [27])]. Therefore, we also consider the comparison 148 

between lungworm infected and uninfected dolphins. 149 

 150 

(c) Genomic analyses 151 



We constructed a DNA library of 84 samples (7 pools of 12 samples each) 152 

following the ddRADseq protocol described in [7]. We chose a 6 bp cutter 153 

(HindIII) and a 4 bp cutter (MspI) based on in silico simulations with the R 154 

package SimRAD [28]. The fragment size selection window  was 250 - 350 bp 155 

with a size range of 100bp (selected using a Sage Science PippinPrep). Sequencing 156 

was paired end (2X 125bp) in one lane on an Illumina HiSeq_2500 (version 4 157 

chemistry). Reads were trimmed to 110 bp and demultiplexed using the 158 

process_radtags command of the software STACKS [29]. After quality control 159 

(rejecting samples with less than 1 million reads) 68 samples were retained and 160 

there was an average of 2.8 million read pairs per sample among these. Paired reads 161 

were mapped against the Tursiops truncatus genome (accession 162 

GCA_001922835.1; [30]}) using BWA v. 0.7.12 (bwa mem –aM; [31]). Each 163 

resulting sam file was converted to bam format using SAMTOOLS v.1.3. [32].  164 

Using the command SelectVariants, indels and non-biallelic SNPs were 165 

filtered out. Then using the command VariantFiltration, SNPs were filtered based 166 

on mapping quality using the following settings: --filterExpression 167 

"QD<2.0||FS>60.0||MQ<40.0||MQRankSum←12.5||ReadPosRankSum←8.0".  The 168 

QUAL score (QD) was normalized by allele depth (AD) for a variant, and the 169 

Phred- scaled p-value (FS) used Fisher's exact tests to detect strand bias. The 170 

MQRankSum command set the Z-score from a Wilcoxon rank sum test of Alt vs. 171 

Ref read mapping qualities, and ReadPosRankSum did this for read position bias. 172 

SAMTOOLS was also used to pick up reads in concordance and retain SNPs with a 173 

single hit. Loci were assembled using the GATK HaplotypeCaller [33].  174 

Using the -filterAlign plugin through TASSEL v.5.0 [34], the vcf file was 175 

filtered to require a minimum of 80% of taxa for which the SNP must have been 176 



scored and a minor allele frequency (MAF) of 0.05.  These settings generated 177 

83,414 SNPs. Vcf-tools [35] through the command --thin (set at 200bp) was then 178 

used to retain a single SNP per read, reducing the final number to 43,018 SNPs for 179 

further analyses. The software TASSEL v.5.0 was also used for General Linear 180 

Model analysis. As required by TASSEL, the vcf file was sorted using the 181 

SortGenotypeFile plugin. For the Generalized Linear Model (GLM) analyses  the 182 

filtered vcf file and the trait file (samples allocated to different infestation 183 

categories, age class and mortality during a morbillivirus event) were merged 184 

through the -intersect command.  For the final GLM analysis, permutations were 185 

set to 1,000, under the -FixedEffectLMPlugin command. This function performs 186 

association analysis using a least squares fixed effects linear model and utilizes a 187 

fixed effects linear model to test for association between segregating sites and a 188 

trait. The qqman package [36] was used to visualize Manhattan plots and QQ plots 189 

of the outputs of the GLM analyses. The program plots the negative logarithm of p-190 

value for each SNP across the genome. Bonferroni type one correction was used to 191 

assess significance for multiple tests.  192 

The samples were considered to be from a single population, and to confirm 193 

this we used the PCA method implemented in the R package Adegenet version 2.0 194 

[37].  To test for presence of SNPs on sex chromosomes we used the Perl script 195 

nucmer in the program MUMmer [38] to align the Tursiops reference genome 196 

against the Cow genome (accession number: GCA_002263795.2; [30]). The 197 

program finds maximal exact matches and aligns them to join the clusters into a 198 

single high scoring pair-wise alignment. The ‘delta’ file generated by this analysis 199 

was filtered using the --delta-filter flag. The program show-coords was then used to 200 



parse the delta alignment output displaying summary information such as position, 201 

percent identity and percent alignment coverage. 202 

We compared pathogen loads against several metrics of genomic diversity 203 

derived using the R package InbreedR [39].  The first is standardised multilocus 204 

heterozygosity (sMLH; see [10]), which assesses average heterozygosity across the 205 

genome.  We used the second metric, g2 [40], as a proxy for identity 206 

disequilibrium, providing an estimate of variation in identity by descent (e.g. if 207 

g2=0 there is no variance in inbreeding in the sample).  We also show the results 208 

from an alternative method for assessing identity disequilibrium, heterozygosity-209 

heterozygosity correlation coefficients (HHC; [41]).  This analysis reiterates the 210 

comparison of random subsets to show the distribution of HHC in the sample.  We 211 

provide this as an illustrative metric, since it is less robust as a statistic that g2 given 212 

that samples within the HHC distribution are non-independent.  To further consider 213 

the role of inbreeding, we ran two analyses (see [10, 42]), one for the expected 214 

correlation between the trait value (W, pathogen load in this case) and 215 

heterozygosity (h): r2
Wh, and one for the expected correlation between inbreeding 216 

level (f) and the trait value (r2
Wf).  All analyses quantifying diversity assessments 217 

for the SNP dataset were repeated for the 23 microsatellite DNA locus dataset, 218 

which was analysed for the same set of samples and reported in [22]. 219 

 220 

(d) MHC analyses 221 

Exon-2 of the MHC Class II DQB1 locus was amplified with DQB1 F: 222 

CTGGTAGTTGTGTCTGCACAC & DBQ1 R: CATGTGCTACTTCACCTTCGG 223 

(after [43]). Reaction conditions were 10mM Tris-HCl, 50mM KCl, 2,5mM 224 

MgCl2, 0.2mM of each dNTP, 0.25μM of each primer, 2 units of high fidelity Pfu 225 



Taq polymerase (Promega, UK), 0.8mM DMSO 20% and 1μl of total DNA in 20μl 226 

final volume. The PCR cycling profile was an initial denaturation step at 95oC for 227 

15 minutes, following by 30 cycles of denaturation at 95oC for 1 minute, annealing 228 

at 55oC for 30 seconds, and elongation at 72oC for 30 seconds followed by a final 229 

elongation step at 72oC for 15 minutes. To identify allelic diversity individuals 230 

were screened by Single Strand Conformation Polymorphism (SSCP) analysis [27]. 231 

Allelic conformation was visualized by exposure to UV light. The allelic diversity 232 

for each individual was scored and genotypes were assigned. After the 233 

identification of putative unique alleles, the same PCR products were loaded again 234 

onto a non-denaturing acrylamide gel (6%) and this time the bands representing 235 

unique alleles (with some replication) were extracted from the gel.  236 

Gel fragments were crushed in 50μl of 10mM T.E. and incubated overnight at 237 

37oC. One μl of the solution was then amplified by PCR (using the same 238 

concentrations and PCR profile as described before) using the high fidelity Pfu Taq 239 

polymerase. PCR products, prior to sequencing, were purified using a Qiagen 240 

QIAquick PCR purification KitTM, to remove primer dimmers, unincorporated 241 

dNTPs and chemicals, according to manufacturer instructions. Purified DNA was 242 

sequenced in both directions on an ABI 377 automated sequencer. The PCR 243 

products of the putative unique alleles were cloned, using Easy T-Vector Cloning 244 

Kit (Promega) according to manufacturer instructions, in order to compare allele 245 

sizes and confirm that a single band represented a single allele. Up to 8 clones were 246 

screened by SSCP from different individuals.  A total of 80 individuals were 247 

successfully genotyped from the Valencia population. For this analysis and 248 

additional 22 striped dolphin samples from Ireland were also genotyped to consider 249 

the possibility of regional variation at the MHC loci (as reported earlier [13]).  The 250 



samples from Ireland were from stranding events outside of morbillivirus periods.  251 

Sequences were analysed using ChromasPro v. 1.5 (Technolysium Ltd.). 252 

Nucleotide sequences were aligned using ClustalX v. 2.0.12 [44]. BLAST 253 

(http://www.blast.ncbi.nlm.nih.gov/Blast.cgi/) was used to confirm that DNA 254 

sequences represented the exon-2 MHC Class II DQB1 locus. Rates of non-255 

synonymous and synonymous substitutions were calculated using the software 256 

MEGA v. 6 [45]. The dN / dS ratio was computed according to the Nei-Gojobori 257 

method [46]. 258 

Amino acid distributions were calculated in the 10 residues of the peptide 259 

binding region (PBS; after [47]) to test for associations with specific functional 260 

components and parasite load. The charge of amino acids of P4 pocket was based 261 

on the β70 β71 β74 residues according to physicochemical properties [48]. The 262 

amino acids’ supertype state was determined according to the following 263 

categorization [49]: 264 

(n) Neutral supertype: F, M, W, I V, L, A, P, C, N, Q, T, Y, S, G 265 

(+) Positive supertype: H, K, R 266 

(-) Negative supertype: D, E 267 

The total charge of each allele was the sum of each residue’s charge. For 268 

example if an allele was positively and negatively charged in the Pocket 4 it was 269 

classified in the di-charged supertype group. A Generalised Linear Model (GLM) 270 

was performed to evaluate associations between MHC genotype and gender, 271 

length, morbillivirus epizootic event periods and parasite load. The morbillivirus 272 

epizootic events were categorised as: 1) samples from the first recorded event 273 

from1990 to 1992, 2) samples from 1993 to 2006 which were outside of the 274 

morbillivirus epizootic events, and 3) samples from after 2007 during the second 275 



morbillivirus epizootic.  Parasite load was used as the response variable. Statistics 276 

were conducted using the statistical package R-platform. False Discovery Rates 277 

were determined using the largeQvalue software package [50]. 278 

 279 

3. Results 280 

(a) Parasites 281 

Comparing dolphins collected during or outside the time of morbillivirus 282 

epizootics showed no significant differences in genetic diversity, and no clear 283 

distortion of the pattern observed for lungworm infection (for either SNP or MHC 284 

analyses; data not shown), so all samples were used for further assessment based on 285 

lungworm parasite load. For the SNP dataset, 42 animals were infected with 286 

lungworm (61.8%), whereas 26 (38.2%) were uninfected. Only a single parasite 287 

species was found during the gross lung examination, the nematode Skrjabinalius 288 

guevarai (Nematoda: Pseudaliidae). The infestation load among individuals ranged 289 

from 0 to 370 worms. Lungworm counts fit a negative binomial distribution 290 

(skewness measure=0.159, with respect to the negative binomial, p<0.05). Parasite 291 

count intensity parameters (skewness, mean, median, exact confidence intervals) 292 

are shown in table S2. There were 18 infected individuals out of the 30 female 293 

striped dolphins, and 24 infected out of 38 males (Table S1) and these ratios are not 294 

significantly different (Contigency Test: Pearson chi-square= 0.02, P = 0.8875).  295 

 296 

(b) Genomic measures of diversity 297 

PCA analyses revealed a single cluster with a few outliers (figure S2), so the 298 

sample set was treated as a single population. All results were essentially the same 299 

when those outliers were removed (see Supplementary file and below), and so all 300 



samples were retained.  No significance was found for any tested associations 301 

between parasite load and genomic diversity as estimated using 23 microsatellite 302 

DNA markers (e.g. figure S3). Further analyses reported are therefore based on the 303 

43,018 ddRAD SNP dataset. From our mapping of the Tursiops genome against 304 

cow (Bos Taurus, sequenced to chromosomes), we identified contigs in the 305 

Tursiops genome that map to the cow X-chromosome (see table S3).  None of our 306 

SNPs map to those contigs, and so our results will be unbiased by sex-linked loci.  307 

For the SNP data, standardized Multilocus Heterozygosity ( sMLH) was strongly 308 

correlated with parasite load in female individuals, but not in males (based on all 309 

individuals; see results in figure 1). This remains true when only infected 310 

individuals are considered (females: r2
Wh = 0.517, F1,16 = 17.14, p = 0.0007; males: 311 

r2
Wh = 0.030, F1, 22 = 1.804, p = 0.193; table 1), and when the three female samples 312 

with the lowest sMLH were removed (r2=0.26, F1,13=8.08, P= 0.0089). 313 

Mean sMLH was significantly elevated in low level compared to high level 314 

infected female individuals (sMLH= 1.10 ± 0.046 (s.d.) vs 0.948 ± 0.177, 315 

respectively; Mann-Whitney U test, Z= 2.523, p = 0.0114; figure 2; see table 1 for 316 

variance values). For males there was no significant difference (0.966 ± 0.170 vs 317 

0.961 ± 0.132; Z= 1.40, p= 0.132). A highly significant relationship was also 318 

obtained between parasite load and measures of genome-wide inbreeding in female 319 

individuals, but not in males (see r2
Wh and r2

Wf in table 1). Analysing all 68 samples 320 

together, g2 (assessing inbreeding among loci; [10, 38]) was significantly different 321 

from zero (p = 0.001), implying inbreeding (table 1). The distribution of 322 

heterozygosity– heterozygosity (het-het) correlation coefficients (HHC) show tight 323 

distributions for both SNP (table 1, figure S3) and microsatellite DNA data (figure 324 

S4) with a mean close to one, suggesting inbreeding.  The GLM analysis 325 



(implemented in TASSEL) showed a highly significant association between 326 

parasite load and a specific SNP, but this was revealed only in female individuals 327 

(p= 8.21 x 10-11; figure S5) after correction for Type I error (threshold p = 1.16 x 328 

10-6). This SNP is found within the intronic region of the Citron Rho-Interacting 329 

Serine/Threonine Kinase (CIT) gene that functions in cell division. Uninfected 330 

females were all heterozygous at this SNP, and all but one infected individuals 331 

were homozygous (table 2). GLM analyses based on age class and/or mortality 332 

during morbillivirus events in conjuction with infestation categories for each 333 

gender did not reveal any strong associations as illustrated in the QQ-plots (figure 334 

S6).  All analyses were replicated omitting the four outlier individuals from the 335 

PCA analysis shown in Figure S1.  There were no differences in the patterns 336 

observed or levels of significance, illustrated by a replication of Table 1 omitting 337 

these samples in Table S4. 338 

 339 

(c) MHC variation 340 

Sequenced MHC clones revealed no more than two sequences in each 341 

individual. Twenty one alleles were found with a unique amino acid composition 342 

(table S5). Alleles were named Sc-DQB*01 to Sc-DQB*21 according to their 343 

frequency in the study population. A Blast search indicated amplification of the 344 

correct locus. Only one individual was homozygous at this locus, and so a test 345 

between parasite load and heterozygosity was not possible. In pocket4 of the PBS 346 

region, 100% of the translated amino acids were variable. The rate of 347 

nonsynonymous (dN) compared to synonymous substitutions (dS) was significantly 348 

elevated at antigen binding sites and within the P4 region (table 3). There was a 349 

significant difference in the P4 charge property profile comparing the populations 350 



in Valencia and Ireland (χ2 = 9.16, d.f. = 2, p = 0.01; figure S7). In the Valencia 351 

population we compared parasite load levels with allelic diversity. We found two 352 

alleles (Sc-DQB*11 and Sc-DQB*21) that were disproportionately likely to be 353 

present in individuals with no parasites (binomial test for the presence of either or 354 

both alleles calculating the combined probability (frequency) of these alleles in 355 

dolphins with parasites, and then determining the probability of finding none 356 

among the dolphins without parasites, p = 7.02 x 10-8; table S3). GLM analyses did 357 

not reveal any associations between factors listed in table S6.  358 

 359 

4. Discussion 360 

Our RADseq analyses showed that genome-wide heterozygosity was 361 

significantly associated with lungworm infection, especially beyond a stage of 362 

infection that reflects substantial blockage of airways, however only in females. 363 

This could have important implications both for understanding evolutionary 364 

process (e.g. if selection affected males and females separately as a consequence), 365 

and for developing conservation strategy (e.g. if females are more impacted by low 366 

effective population size (Ne) and the loss of diversity than males).  Lungworm 367 

infection is widespread in marine mammals [51] impacting on the health of both 368 

cetaceans and pinnipeds (e.g. [4]).  Therefore inference drawn from our study could 369 

have implications for a broad range of other species.  370 

A significant result restricted to females may be due to maternal stress factors 371 

such as parturition or nursing, causing females to cross a threshold such that the 372 

association with parasite resistance becomes apparent. In a study of Seychelles 373 

warbler (Acrocephalus sechellensis) Richardson et al. [52] found that the offspring 374 

of highly heterozygous females survived better than the offspring of inbred 375 



mothers, potentially associated with female condition. They found no HFC for 376 

males. Jamieson et al. [53] also showed that the mother’s level of inbreeding 377 

affects offspring fitness in the New Zealand takahe (Porphyrio hochstetteri). For 378 

the song sparrow (Melospiza melodia) Keller [54] showed that a reduction in 379 

fitness associated with inbreeding was only seen in inbred female individuals. 380 

Although we have no pedigree data, and so cannot assess impact on the health of 381 

offspring, a direct relationship between maternal and offspring health is often 382 

implied. 383 

Relevant to this, we found a female-specific effect at the Citron Rho-384 

Interacting Serine/Threonine Kinase (CIT) locus, discovered from screening the 385 

RAD data across the genome. CIT functions in cell division. Together with kinesin 386 

(KIF14), this protein localizes to the central spindle and mid-body of the cell, and 387 

functions to promote efficient cytokinesis. Smith et al. [55] argue that a greater 388 

increase in the percentages of bi-nucleated/ multinucleated cells were seen after 389 

expression of EGFP-bSV-831–1281, which contains a coiled-coil sequence and 390 

binding sites for the central-spindle protein KIF14. CIT is required for KIF14 391 

localization to the central spindle and mid-body, so there is connection between 392 

CIT and the presence of bi-nucleated/ multinucleated cells, since CIT plays a role 393 

in cytokinesis and displays the serine/ threonine protein kinase activity. Rios et al. 394 

[56] suggest that bi-nucleated cells evolved to maximize milk production and 395 

promote the survival of offspring across all mammalian species through the 396 

expression of serine/threonine kinases (AURKA and PLK-1) as key-regulators of 397 

cytokinesis. This may suggest a more direct connection with fitness, whereby 398 

maternal inbreeding depression could affect the survival of offspring due to 399 

processes associated with lactation.  400 



However, it isn’t clear why CIT heterozygotes in particular would be 401 

associated with reduced lungworm infection. Furthermore, the SNP appears in an 402 

intron, and therefore is not certain to affect the structure or expression of the CIT 403 

locus (though intronic mutations can affect gene expression with or without an 404 

impact on alternative splicing; e.g. [57]). Given that our scan was based on a finite 405 

number of SNPs and referenced against a related species (Tursiops truncatus), it is 406 

likely that there are other relevant loci not identified by our analysis, and possible 407 

that the SNP identified is actually in LD with another locus that reflects the true 408 

function affected. Furthermore, there could be a heterosis effect at CIT or some 409 

other locus, such that the relevant function is improved for heterozygote females, 410 

but further work would be required to assess this and better understand the 411 

mechanisms.  412 

The life history of the parasite may provide some insight into the sex-specific 413 

pattern we observe. This is a pseudaliid parasite, and although little is known about 414 

the life history of any species in this group, the high level of infection in juvenile 415 

and even neonate hosts for a number of parasite species supports the possibility of 416 

vertical transmission in milk or via the placenta (see review in [58]). For example, 417 

there is evidence for trans-placental transmission of Halocercus lagenorhynchi in 418 

bottlenose dolphins (Tursiops truncatus; [59]). At the same time, the prevalence of 419 

infection in older cetaceans of some species suggests the potential for horizontal 420 

transfer (see [58]). Analyses of Skrjabinalius guevarai in striped dolphins strongly 421 

suggests vertical transfer since neonates with only milk in their stomachs were 422 

found with up to 80 parasites [60]. However infection in adults suggests the 423 

possibility of horizontal transfer for this host parasite system as well. Vertical 424 

transfer may be another way in which inbreeding and a consequent higher infection 425 



rate in female striped dolphins could impact on fitness in this species through a 426 

greater transfer of parasites to offspring 427 

For exon-2 of the MHC Class II DQB1 locus, two alleles showed a 428 

significant association with parasite load, in this case between those with no 429 

parasites compared to those with infection at any level, and for both males and 430 

females. There are a number of other studies that also show this type of association 431 

between parasite load and class II MHC alleles, for example in association with the 432 

frequency of a DRB*1 allele in striped mice (Rhabdomys pumilio) infected with a 433 

gastrointestinal parasite [61]. However, the effect is not universal and likely 434 

depends on the particular relationship between the locus or loci investigated and the 435 

specific pathogen [62, 63]. The implication is a selective advantage for particular 436 

alleles in the context of specific pathogens.  Consistent with this, we found that the 437 

charge properties at the pocket 4 residues in this locus varied between the two 438 

sampled populations, showing the possibility of directional selection and local 439 

adaptation as seen for two other delphinid species in an earlier study [13]. 440 

In this study we show that there is a significant female-specific association 441 

between genomic heterozygosity at 43,018 SNP loci and infestation with a parasite 442 

that can reduce lung function, even though an assessment using 23 microsatellite 443 

DNA loci showed no association. A significant g2 value suggests that this 444 

relationship is associated with inbreeding [10]. Possible balancing selection 445 

restricted to females (given that all uninfected females were heterozygous) at a 446 

locus relevant to lactation (CIT) and likely vertical transmission of parasites from 447 

mother to offspring [60], may suggest a more direct connection to fitness if the 448 

health of offspring is affected.  We have no data that could directly explain why 449 

females exposed to this pathogen are apparently more impacted by inbreeding than 450 



males.  However, female-specific effects from inbreeding have been suggested to 451 

be due to various possible factors including maternal investment [64], sex-specific 452 

gene expression [65], and sexual selection or life history [66].  Among the possible 453 

explanations, maternal investment seems most likely for mammals in general, 454 

where only females invest in the gestation and post-natal development of offspring. 455 

For the class II MHC DQB locus we find no sex-specific association, but we do 456 

find putative adaptive differences among populations (c.f. [13]), and an association 457 

between parasite load and genotype for both sexes. In this case the association may 458 

be based on directional selection. Together these data extend our understanding of 459 

the mechanisms by which genomic diversity can be associated with pathogen 460 

resistance and ultimately, fitness.  If a sex bias were to be strong and consistent, it 461 

could affect sex ratios and Ne, and thereby have an impact on strategy for effective 462 

conservation of these populations. 463 
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Table 1. Metrics from the InbreedR analyses for 43,018 SNP loci.  Distribution 480 

variance of standardized Multilocus Heterozygosity [σ2(h)], expected correlation 481 

between a fitness trait and heterozygosity (r2
Wh), expected correlation between a 482 

fitness trait and inbreeding (r2
Wf), Identity disequilibrium (g2), distribution variance 483 

of heterozygosity - heterozygosity correlation coefficient (HHC) with confidence 484 

intervals (CI: 2.5% - 97.5%). Values in bold indicate statistical significance. 485 

 486 
 487 

 σ2(h) r2
Wh r2

Wf g2 HHC 

All (68) 0.0226 0.019 0.0148 0.030±0.007, p=0.001 

(CI: 0.016 – 0.041) 

0.997±0.001  

 (CI:0.996 - 0.998) 

Female (30) 0.0155 0.517 0.387 

 

0.021±0.01, p=0.001 

(CI: 0.003 – 0.040) 

0.991±0.002 

(CI: 0.987 – 0.996) 

Male (38) 0.026 0.030 0.0236  

 

0.030±0.01, p=0.001 

(CI: 0.02 – 0.07) 

0.994±0.001 

(CI: 0.991 – 0.997) 

 488 

 489 

 490 

 491 

 492 

493 



Table 2. Genotypes of the female striped dolphin individuals of the outlier SNP within the 494 

gene Citron Rho-Interacting Serine/Threonine Kinase (CIT). Colour coded for homozygous 495 

(blue or yellow) and heterozygous (green). ‘N’ means the individual could not be scored. 496 

 497 

Uninfected Infected 

Genotype Parasites Genotype Parasites 

AC 0 CC 1 

AC 0 AA 3 

AC 0 AA 4 

AC 0 AC 6 

AC 0 CC 7 

N 0 AA 12 

AC 0 AA 16 

AC 0 AA 16 

AC 0 CC 21 

AC 0 AA 37 

N 0 AA 80 

AC 0 AA 104 

    AA 105 

    AA 119 

    CC 135 

    AA 166 

    AA 232 

    N 256 

 498 

 499 

500 



Table 3. Estimated rates of Nonsynonymous (dN) and Synonymous (dS) substitutions for 501 

Non-Antigen-Binding Sites (Non-ABS), Pocket 4 Peptide Binding Sites (P4-PBS) and 502 

Antigen-Binding-Sites (ABS) of the exon-2 MHC Class II DQB1 locus of striped dolphin 503 

individuals.  Significance was assessed using a two tailed test of the probability that dN and dS 504 

are different using z-test. 505 

 506 

Position dN dS dN/dS p; z-test value 

Non-ABS 0.026 ± 0.013 0.014 ± 0.014 1.85   0.260; z = 0.646 

P4-PBS 0.268 ± 0.037 0.070 ± 0.064 3.82   0.002; z = 2.949 

ABS 0.190 ± 0.054 0.009 ± 0.010 21.11 0.00058; z = 3.465 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 



 522 

 523 

Figure legends 524 

 525 

Figure 1: Correlation between parasite load (total number of parasites counted per 526 

individual) and RAD standardized Multilocus Heterozygosity (sMLH) for a) 30 527 

female striped dolphin individuals and b) 38 male dolphins.  528 

 529 

Figure 2: Relationship between RAD-sMLH mean values (±SE) against the 530 

infestation status of the striped dolphin individuals. F low (sMLH: 1.10 ± 0.013 531 

s.e.) = females with low parasite load (≤20); F high (sMLH: 0.948 ± 0.042)= 532 

females with high load (>20); M low (sMLH: 0.966 ± 0.045)= males with low and 533 

M high (sMLH: 0.961 ± 0.027) = males with high load.  Error bars show standard 534 

error of the mean. 535 

 536 

 537 
 538 
 539 
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 542 
 543 
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 547 
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