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Abstract

A simple density functional theory (DFT) scheme is proposed for estimating neg-

ative vertical electron affinities of neutral systems, based on a consideration of the

integer discontinuity and density scaling homogeneity. The key feature is the deriva-

tion of two system-dependent exchange-correlation functionals, one appropriate for the

electron deficient side of the integer and one appropriate for the electron abundant side.

The electron affinity is evaluated as a linear combination of frontier orbital energies

from self-consistent Kohn-Sham calculations on the neutral system using these func-

tionals. For two assessments comprising a total of 43 molecules, the scheme provides

electron affinities that are in good agreement with experimental values and which are

an improvement over those from the DFT method of Tozer and De Proft [J. Phys.

Chem. A 109 8923 (2005)]. The scheme is trivial to implement in any Kohn-Sham

program and the computational cost is that of a series of generalised gradient approxi-

mation Kohn-Sham calculations. More generally, the study provides a prescription for

performing low-cost, self-consistent Kohn-Sham calculations that yield frontier orbital

energies that approximately satisfy the appropriate Koopmans conditions, without the

need for exact exchange.
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1 Introduction and background

The vertical electron affinity of a neutral, N -electron system is given by

A = EN − EN+1 (1)

where EN and EN+1 are the electronic energies of the neutral and anion, respectively, evalu-

ated at the geometry of the neutral. For brevity, we shall omit the term ‘vertical’ hereafter,

but all occurrences of electron affinities (and ionisation potentials) refer to vertical values.

Many molecules have negative experimental electron affinities, as measured by electron trans-

mission spectroscopy.1,2 A negative affinity implies that the anion has an energy above that

of the neutral and so is unstable with respect to electron loss. Such anions are short-lived

and are termed temporary anions or shape resonances and they play key roles in many areas

of science.3,4 The use of eq (1) with any variational electronic structure method is fundamen-

tally unable to estimate negative affinities − although a negative affinity can be obtained by

using compact basis sets, the affinity will approach the variational value of zero as the basis

set becomes increasingly diffuse because the description of the anion approaches the neutral

plus free electron (assuming no dipole-bound state). Alternative schemes must be used.3–39

Tozer and De Proft22 suggested that negative electron affinities can be estimated in

Kohn-Sham density functional theory (DFT)40 using

A = −
(
εGGA
LUMO + εGGA

HOMO + IGGA
)

(2)

where εGGA
LUMO and εGGA

HOMO are the lowest unoccupied molecular orbital (LUMO) and highest

occupied molecular orbital (HOMO) energies of the neutral, from calculations using a gener-

alised gradient approximation (GGA) exchange-correlation functional. The quantity IGGA is

the corresponding ionisation potential, obtained as the difference between neutral and cation

GGA energies, in analogy to eq (1). Their method has been applied successfully,24–28,30 but
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there remains scope for quantitative improvement, particularly for systems where the mag-

nitude of the negative affinity is large. Very recently, Zhang et al.39 applied a DFT global

scaling correction method to the calculation of negative affinities, yielding accuracy that

surpasses that of eq (2) for modest magnitude affinities.

Central to the methods of Tozer and De Proft and Zhang et al. − and also to the scheme

proposed in the present study − is the integer discontinuity analysis of Perdew, Parr, Levy,

and Balduz.41 These authors demonstrated that the variation in exact electronic energy as a

function of electron number is piecewise linear, meaning that the exact exchange-correlation

potential jumps discontinuously as the electron number increases through integer. For a

given integer, the exact potential in the limit that the electron number approaches the integer

from below (hereafter termed ‘electron deficient’) is denoted v−xc(r). This potential vanishes

asymptotically (r → ∞) and can be routinely estimated from correlated ab initio densities

using methods such as that of Zhao-Morrison-Parr (ZMP)42 or Wu-Yang (WY)43/Lieb.44 A

Kohn-Sham calculation on the neutral using the exact v−xc(r) yields a HOMO energy that

satisfies the exact Koopmans condition

ε−HOMO = −I (3)

where I is the exact ionisation potential.45–47

We can also define an exact potential in the limit that the electron number approaches the

integer from above (hereafter termed ‘electron abundant’). This potential, denoted v+xc(r),

is shifted from v−xc(r) by the discontinuity constant41,48,49

v+xc(r) = v−xc(r) + ∆xc . (4)

Strictly speaking, for finite systems eq (4) holds everywhere except at infinity, where v+xc(r)

reduces to zero46,47 but this is of no consequence in practical calculations. A Kohn-Sham

calculation on the neutral using the exact v+xc(r) yields a LUMO energy that satisfies the
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exact Koopmans condition

ε+LUMO = −A (5)

where A is the exact electron affinity in eq (1).45–47 It follows from Eqs (4) and (5) that the

LUMO energy obtained from a calculation using v−xc(r) is

ε−LUMO = −A−∆xc (6)

and so from Eqs (3) and (6)46

∆xc = I − A− (ε−LUMO − ε−HOMO) . (7)

Another key concept that is central to the present study is that of density scaling homo-

geneity.42,50–59 In ref 53, we investigated the density scaling properties of the exact exchange-

correlation functional, paying particular attention to the influence of the integer discontinu-

ity. We quantified the behaviour using a homogeneity parameter42

kxc =

∫
vxc(r)ρ(r) dr

Exc

, (8)

where Exc is the exchange-correlation energy and ρ(r) is the electron density. The degree of

system-dependence of this parameter provides a measure of the degree to which the exact

functional is homogeneous under density scaling. (A functional F [ρ] is homogeneous of

degree k under density scaling50 if it satisfies F [λρ] = λkF [ρ]).

For a series of neutral atoms and small molecules, we used WY/Lieb quantities deter-

mined from correlated ab initio densities, together with experimental I and A values, to

determine near-exact estimates for v−xc(r), v
+
xc(r) (using Eqs (4) and (7)), and the average

of the two, denoted vavxc(r). These quantities, together with the correlated densities and
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near-exact estimates for Exc, were used to determine near-exact homogeneity parameters

associated with the three potentials, namely

k−xc =

∫
v−xc(r)ρ(r) dr

Exc

, (9)

k+xc =

∫
v+xc(r)ρ(r) dr

Exc

= k−xc +
N∆xc

Exc

, (10)

and

kavxc =

∫
vavxc(r)ρ(r) dr

Exc

= k−xc +
N∆xc

2Exc

, (11)

where N is the electron number. We observed53 that whereas k−xc and k+xc were relatively

system-dependent, the value of kavxc was relatively system-independent and close to 4/3. Of

particular relevance to the present study was the nature of the electron affinity used in eq (7).

For systems with positive experimental affinities there is no choice to make and the kavxc ≈ 4/3

observation was made. For systems with negative experimental affinities, however, one could

choose to use either the negative value or the variational value of zero. The kavxc ≈ 4/3

observation was only made when the negative affinity was used. It follows that for systems

with negative experimental affinities, any reasonable exchange-correlation functional that is

approximately homogeneous of degree 4/3 yields a potential that approximately averages

over the discontinuity computed using the negative affinity (eq (7)). This is consistent with

the observation we made in ref 60 that local functionals such as GGAs yield potentials that

approximately average in the same way − such functionals are dominated by Dirac exchange

and so are, by definition, approximately homogeneous of degree 4/3. Ref 60 also provides

insight into the non-ground state nature of the anions when the affinities are negative,

through an energy vs. electron number perspective.

In subsequent work, Gledhill and Tozer (GT)58 showed that the kavxc ≈ 4/3 observation

could be exploited − in conjunction with the known behaviour60 of GGA functionals re-

garding the integer discontinuity − to determine a system-dependent exchange-correlation

5



functional appropriate for the electron deficient side of the integer, i.e. a functional whose

potential resembles v−xc(r). This was achieved by demanding that the homogeneity param-

eter in eq (8) approximately equals the exact k−xc in eq (9). The scheme uses only GGA

information to estimate the exact k−xc, but it works well, yielding HOMO energies that ap-

proximately equal the negative of the ionisation potential (as required, see eq (3)). See ref

58 and Section 2 for further details.

In light of this, it is natural to ask whether an analogous GT approach based on the kavxc ≈

4/3 observation could be used to determine an exchange-correlation functional appropriate

for the electron abundant side, for which the LUMO energies would approximately equal the

negative of the electron affinity (as required, see eq (5)). If so, then this would provide a

scheme for estimating the electron affinity as the negative of a LUMO energy. And following

the discussion above, the affinity obtained would be an estimate for the negative value, as

desired, in cases where the experimental value is negative.

The aim of the present study is to investigate the use of the GT approach for estimat-

ing negative electron affinities. The methodology is presented in Section 2. Results and

conclusions are presented in Sections 3 and 4, respectively.

2 Methodology

The obvious way forward is to use the GT approach to derive an exchange-correlation func-

tional appropriate for the electron abundant side of the integer and estimate the electron

affinity as the negative of its LUMO energy. There is, however, an immediate problem.

In ref 58, GT determined a functional appropriate for the electron deficient side of the

integer, so required a potential with a −1/r asymptotic form; this was easily achieved by

including a Fermi-Amaldi61 component in their functional. We instead wish to determine a

functional appropriate for the electron abundant side of the integer, for which the asymptotic

potential is −1/r + ∆xc (from eq (4)). Writing down a functional form whose potential
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recovers the discontinuity constant ∆xc is a major challenge. For the present study, we limit

ourselves (as is usually62 the case) to functionals with asymptotically vanishing potentials,

which means we face a fundamental problem: such potentials cannot support positive LUMO

energies. (Positive values can be obtained, but they will approach zero, indicating unbound

orbitals, as the basis set becomes increasingly diffuse63). But our aim is to compute a LUMO

energy that is the negative of a negative electron affinity, i.e. a positive value! So this is a

non-starter.

We therefore instead consider an indirect GT approach for estimating the LUMO energy

on the electron abundant side. The basic idea is to identify negative LUMO energies (i.e.

ones that do not suffer from the aforementioned problem) and then adjust these to make

them appropriate for the electron abundant side, through a consideration of the integer dis-

continuity. There are many ways to achieve this. We now briefly summarise the approaches

we considered and identify an optimal scheme. Full methodological details are then presented

for that optimal scheme.

First we need to identify functionals that yield negative LUMO energies. An obvious

choice is the original electron deficient functional proposed by GT in ref 58. We also consider

a second electron deficient functional, obtained by using the same approach, but without the

Fermi-Amaldi component in the functional. Given the central role of 4/3 homogeneity, we

also use the GT approach to derive a functional whose homogeneity parameter is exactly

4/3 (essentially a GGA-type functional), whose potential approximately averages over the

discontinuity; the omission of Fermi-Amaldi is essential in this case since the lack of a

discontinuity constant would lead to distortion in the shape of the potential if it was included.

For the systems considered (see later), all three functionals yield negative LUMO energies,

as required.

Next, we need to adjust these LUMO energies to make them appropriate for the electron

abundant side. In the exact case, the electron abundant exchange-correlation potential is

simply shifted from the average and electron deficient potentials, meaning the orbital energies
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are shifted in the same way. It follows that we must add ∆xc to the LUMO energy from

the two electron deficient functionals and we must add ∆xc/2 to the LUMO energy from

the 4/3 functional. We therefore need an estimate for ∆xc and we obtain this by again

exploiting the fact that it does nothing more than shift the orbital energies: providing we

have a reliable orbital energy from two different functionals then ∆xc can be estimated in

terms of its difference. Specifically, ∆xc can be estimated as twice the difference between a

given orbital energy from the average 4/3 functional and the same orbital energy from either

of the electron deficient functionals. For the systems considered, all three functionals yield

negative HOMO energies so we choose to use the differences of HOMO energies, although

other orbitals with negative energies could be used. In addition to these two approximations

for ∆xc, we also return to the idea of an electron abundant functional, applying the GT

procedure to the electron abundant side, for which the HOMO energy (unlike the LUMO) is

actually negative for the systems considered. Again, we omit the Fermi-Amaldi component to

avoid distortion of the potential. This provides three additional estimates for ∆xc: twice the

difference between the HOMO energy of this electron abundant functional and the HOMO

energy of the average 4/3 functional; together with the difference between the HOMO energy

of this electron abundant functional and the HOMO energy of either of the electron deficient

functionals. So we have a total of five estimates for ∆xc, which can be combined with the

three estimates for the LUMO energy, yielding 15 estimates for the LUMO energy on the

electron abundant side. The negative of this LUMO energy defines the electron affinity. We

computed affinities for the 14 systems in ref 22 (see later for details) using the 15 schemes

and identified the optimal scheme as the one with the smallest mean absolute error relative to

the experimental affinities. The smallest mean absolute error was 0.55 eV; the next smallest

was 0.69 eV and the largest was 2.62 eV.

The optimal scheme is to use the LUMO energy from the electron deficient functional (no

Fermi-Amaldi), and to shift it by the value of ∆xc, estimated as the difference between the

HOMO energies from the electron abundant and electron deficient functionals (again, both
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without Fermi-Amaldi). The scheme has a pleasing simplicity, with consistency between

electron deficient/abundant functional forms. The full methodological details of the scheme

are now described; for additional details of the GT approach that underlies the scheme, see

ref 58.

1. For the neutral system whose electron affinity is to be computed, a GGA calculation is

first performed, yielding the exchange-correlation energy, EGGA
xc , and HOMO energy, εGGA

HOMO.

A GGA calculation is also performed on the cation and the neutral/cation energies are used

to compute the ionisation potential, IGGA.

2. Two new system-dependent exchange-correlation functionals then need to be derived.

They each have the mathematical form,

E±
xc = α±G±

xc , (12)

where the ± superscript indicates either the electron deficient (−) or electron abundant (+)

functional. Here, α± are parameters and

G±
xc =

[∫
ρ

3k±
3k±−1 (r)dr

] 3k±−1
3

(13)

are local functionals of the form considered by Liu and Parr,51 which are homogeneous of

degree k± under density scaling (meaning that the evaluation of eq (8) for the functional

in eq (12) yields kxc = k±). They are homogenous of degree 1 under the more common

coordinate scaling.64 The values of α± and k± are to be determined on a system-by-system

basis.

3. For the electron deficient functional, the value of the homogeneity parameter k− must

approximate the exact k−xc in eq (9), which can be expressed alternatively as

k−xc = kavxc −
N∆xc

2Exc

, (14)
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through rearrangement of eq (11). We know that kavxc ≈ 4/3 and, following refs 58,60, we

approximate ∆xc as

∆xc ≈ 2(εGGA
HOMO + IGGA) (15)

(which reflects the fact that a GGA functional approximately averages over the discontinuity

computed using the negative A; see earlier discussion). We also approximate the exchange-

correlation energy by the GGA value. Using these approximations in eq (14) yields the value

of k− to be used in eq (13),

k− =
4

3
− N(εGGA

HOMO + IGGA)

EGGA
xc

, (16)

which is evaluated using the quantities from the prior GGA calculations. This is a simplified

version of eq (19) of ref 58, reflecting the absence of Fermi-Amaldi in the present study.

4. The value of k+ must approximate the exact k+xc in eq (10). By analogy with k− we have

k+ =
4

3
+
N(εGGA

HOMO + IGGA)

EGGA
xc

=
8

3
− k− , (17)

where k− is given in eq (16).

5. The values of α± are then obtained from the requirement that the evaluation of the

exchange-correlation energy of the neutral using the GGA density yields the GGA exchange-

correlation energy. From eq (12), this simply requires

α± =
EGGA

xc

G±,GGA
xc

(18)

where G±,GGA
xc is obtained by evaluating G±

xc in eq (13) using the GGA density for the neutral,

using the above values of k±.

10



6. Having established the values of the parameters k± and α±, standard self-consistent Kohn-

Sham calculations are performed on the neutral using the electron deficient functional, E−
xc,

and electron abundant functional, E+
xc. For the implementation of the exchange-correlation

potential, the functional derivative of the functional in eq (13) is given in eq (23) of ref 59.

The LUMO energy on the electron abundant side is then estimated as

ε+,est
LUMO = ε−LUMO + ε+HOMO − ε−HOMO (19)

where ε−LUMO and ε−HOMO are the LUMO and HOMO energies obtained from calculations using

the electron deficient functional and ε+HOMO is the HOMO energy obtained from calculations

using the electron abundant functional. As noted above, this should be interpreted as the

LUMO energy on the electron deficient side, shifted by the discontinuity constant, estimated

as the difference between the HOMO energies from the electron abundant and electron

deficient functionals. Finally, the electron affinity is defined to be the negative of this LUMO

energy,

A = −ε+,est
LUMO

= −
(
ε−LUMO + ε+HOMO − ε−HOMO

)
. (20)

It is pertinent to compare eq (20) with the Tozer-De Proft expression in eq (2). In the

latter, the electron affinity can again be interpreted as the negative of a LUMO energy on

the electron abundant side. However, the LUMO energy is estimated as the LUMO energy

of a near-average GGA functional, shifted by half the discontinuity constant estimated using

Eq (15); it is a pure GGA method with no involvement of density scaling.

Both the scheme proposed here and the Tozer-De Proft method require GGA Kohn-

Sham calculations on the neutral and cation. The former requires three further Kohn-

Sham calculations on the neutral, one to evaluate G±,GGA
xc in eq (18) and two self-consistent

calculations using E±
xc; none of these are more costly than a GGA calculation.
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In Section 3, we compare electron affinities determined using Eqs (2) and (20). For the

GGA, we use the Perdew-Burke-Ernzerhof (PBE) functional65 throughout. All calculations

are performed using the aug-cc-pVTZ basis set with the CADPAC66 program.

3 Results

We start by considering the 14 small molecules considered previously in ref 22, namely F2,

Cl2, H2CO, C2H4, CO, PH3, H2S, HCN, HCl, CO2, NH3, HF, H2O, and CH4. The first two

molecules actually have positive experimental electron affinities, whereas the remainder are

negative, becoming increasingly so across the series. Although the focus of the new method-

ology is on the calculation of negative affinities, the scheme is equally applicable to positive

affinities; in practice, of course, eq (1) is unproblematic in such cases. Calculations are

performed at the near-experimental geometries of refs 22,67 and the affinities are compared

with the experimental values of ref 22.

To fully illustrate the scheme, Table 1 lists the parameters that define E−
xc and E+

xc,

together with the HOMO and LUMO energies obtained from self-consistent calculations

using those functionals. Also listed are the values of ε+,est
LUMO, determined using eq (19).

The impracticability of using the directly computed ε+LUMO is clearly evident: for all the

systems with negative experimental electron affinities, the values of ε+LUMO are marginally

positive, but given that the potential vanishes asymptotically, it follows that these values will

all approach zero as the basis set becomes increasingly diffuse.63 By contrast, the values of

ε+,est
LUMO are significantly more positive and − given that all the orbital energies that contribute

to this quantity through eq (19) are negative − it follows that the values of ε+,est
LUMO will change

only marginally as the basis set becomes increasingly diffuse.

Table 2 presents the electron affinities determined using eq (2), together with affinities

determined using the new expression, Eq (20) (i.e. the negative of the ε+,est
LUMO values in

Table 1, converted into eV). Experimental affinities are also presented, together with mean
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Table 1: Functional parameters defining E−
xc and E+

xc, together with their associated orbital
energies and the estimated LUMO energy in eq (19). All values are in a.u.

k− α− ε−HOMO ε−LUMO k+ α+ ε+HOMO ε+LUMO ε+,est
LUMO

F2 1.523 −0.509 −0.554 −0.424 1.144 −1.338 −0.183 −0.061 −0.053
Cl2 1.420 −0.622 −0.345 −0.232 1.247 −1.061 −0.180 −0.074 −0.068
H2CO 1.515 −0.539 −0.378 −0.239 1.152 −1.293 −0.101 +0.011 +0.037
C2H4 1.521 −0.536 −0.376 −0.161 1.145 −1.324 −0.139 +0.021 +0.076
CO 1.514 −0.553 −0.481 −0.223 1.153 −1.260 −0.205 +0.035 +0.054
PH3 1.437 −0.637 −0.321 −0.065 1.229 −1.049 −0.159 +0.007 +0.097
H2S 1.437 −0.635 −0.309 −0.081 1.230 −1.046 −0.143 +0.004 +0.086
HCN 1.536 −0.528 −0.494 −0.190 1.131 −1.325 −0.199 +0.017 +0.106
HCl 1.442 −0.623 −0.389 −0.096 1.224 −1.058 −0.194 +0.005 +0.099
CO2 1.499 −0.528 −0.491 −0.166 1.168 −1.316 −0.206 +0.020 +0.118
NH3 1.554 −0.546 −0.384 −0.086 1.112 −1.272 −0.095 +0.016 +0.202
HF 1.562 −0.527 −0.574 −0.126 1.104 −1.278 −0.180 +0.018 +0.268
H2O 1.554 −0.542 −0.447 −0.107 1.112 −1.263 −0.120 +0.015 +0.221
CH4 1.576 −0.525 −0.512 −0.066 1.091 −1.335 −0.200 +0.021 +0.247

Table 2: Electron affinities (in eV).

eq (2) eq (20) Expt
F2 −0.10 +1.44 +1.24
Cl2 +0.34 +1.84 +1.02
H2CO −1.84 −1.01 −1.5
C2H4 −2.82 −2.06 −1.8
CO −2.82 −1.46 −1.8
PH3 −3.16 −2.65 −1.9
H2S −3.24 −2.33 −2.1
HCN −3.81 −2.88 −2.3
HCl −3.58 −2.71 −3.3
CO2 −3.70 −3.22 −3.8
NH3 −4.06 −5.49 −5.6
HF −5.70 −7.29 −6.0
H2O −4.62 −6.00 −6.4
CH4 −4.15 −6.71 −7.8
MAD 1.14 0.55
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absolute deviations (MADs) relative to these experimental values. Eq (2) works reasonably

well, with a MAD of 1.14 eV; the largest deviations are for systems where the magnitude

of the experimental affinity is largest. In moving to eq (20), the MAD is reduced by more

than a factor of two to 0.55 eV. The deviations are more uniform, although they can still be

in excess of 1 eV and there is no obvious pattern to them; they reflect the approximations

underlying the approach. To put the results into context, the MAD when eq (1) is used is 2.8

eV. (See ref 22 for numerical values). Evaluating the affinity as the negative of the directly

computed ε+LUMO, rather than the negative of ε+,est
LUMO, yields a similar MAD of 2.9 eV.

Figure 1 presents scatter plots of these calculated vs. experimental electron affinities.

The dotted lines indicate perfect agreement; the solid lines are the lines of best fit and the

corresponding R2 values are listed. The improvement from eq (2) to eq (20) is pronounced,

with R2 increasing from 0.76 to 0.94.

As a second application, we consider the 29 molecules of Table 3, drawn from the studies

in refs 24,25, using the same B3LYP/6-311+G** geometries; electron affinities are compared

with the experimental values described in these earlier studies. The functional parameters

and orbital energies exhibit the same features and signs as those in Table 1 and so we do

not present the individual values. Table 3 presents the affinities determined using Eqs (2)

and (20), together with experimental values and MADs. The MAD using eq (2) is 0.50 eV.

This is a notable improvement over that in Table 2, reflecting the fact that the magnitudes

of the experimental affinities are not large for these systems. All 29 affinities are, however,

underestimated (too negative). In moving to eq (20), all the affinities increase and the MAD

reduces by almost a factor of three, to 0.17 eV. Figure 2 presents scatter plots, where the

improvement in absolute accuracy is clearly evident. Both methods yield good R2 values,

although the value is marginally better with Eq (20).

Zhang et al.39 also included these 29 molecules (with the same basis set and geometries)

in their recent investigation of negative electron affinities from a DFT global scaling method

and so we can make a direct comparison between the methods. For the molecules in Table 3
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Figure 1: Scatter plots of calculated vs. experimental electron affinities. Data from Table 2.
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Table 3: Electron affinities (in eV).

eq (2) eq (20) Expt
Pyrazine −0.55 +0.03 −0.07
Naphthalene −0.34 +0.22 −0.20
Pyrimidine −0.88 −0.24 −0.25
Styrene −0.51 +0.03 −0.25
Pyridazine −0.87 −0.16 −0.32
Cytosine −0.84 −0.18 −0.36
Tricholoroethylene −1.02 −0.11 −0.58
Guanine −1.17 −0.53 −0.64
Adenine −0.96 −0.31 −0.64
Chlorobenzene −1.15 −0.50 −0.75
1,3−Cyclohexadiene −1.14 −0.56 −0.80
Trans−dichloroethylene −1.35 −0.46 −0.82
Fluorobenzene −1.41 −0.81 −0.87
Phenol −1.59 −1.04 −1.01
Norbornadiene −1.54 −1.04 −1.04
m−Xylene −1.57 −1.10 −1.06
Anisole −1.55 −1.03 −1.09
Cis−dichloroethylene −1.52 −0.55 −1.12
Aniline −1.71 −1.18 −1.13
Acetaldehyde −2.04 −1.21 −1.19
Acetone −2.14 −1.46 −1.51
Furan −2.37 −1.58 −1.76
Ethylene −2.82 −2.07 −1.78
Propene −2.74 −2.17 −1.99
Cyclohexene −2.45 −2.16 −2.07
Trans−butene −2.77 −2.31 −2.10
Cis−butene −2.70 −2.22 −2.22
Trimethylethylene −2.51 −2.22 −2.24
Pyrrole −2.50 −2.26 −2.38
MAD 0.50 0.17
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Figure 2: Scatter plots of calculated vs. experimental electron affinities. Data from Table 3.
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and Figure 2, the MAD from their method is 0.18 eV and R2 = 0.93, indicating very similar

overall performance to eq (20). Zhang et al noted that for four of the molecules, they needed

to choose the LUMO+1 (rather than LUMO) as the frontier orbital to perform their scaling

correction and they attributed this to delocalisation error in the underlying PBE functional.

No such correction was necessary in the present study.

4 Conclusions

We have proposed a simple DFT scheme for estimating negative electron affinities of neutral

systems. The key feature is the derivation of two system-dependent exchange-correlation

functionals, one appropriate for the electron deficient side of the integer and one appropriate

for the electron abundant side. For the systems considered, the scheme yields affinities that

are an improvement over those from the Tozer-De Proft expression. The scheme is trivial to

implement in any Kohn-Sham program and the calculations are low cost.

The study can also be viewed from an alternative perspective: It provides a prescription

for performing self-consistent Kohn-Sham calculations that yield frontier orbital energies

that approximately satisfy the appropriate Koopmans conditions. Specifically, the orbital

energy ε+,est
LUMO in eq (19) approximates the negative of the electron affinity (both negative and

positive values; see earlier), whilst the orbital energy ε−HOMO, evaluated from self-consistent

calculations using E−
xc, approximates the negative of the ionisation potential (as it did in ref

58). For the orbital energies in Table 1, the MAD between ε+,est
LUMO and the experimental −A

values is 0.55 eV (Table 2), whilst the MAD between ε−HOMO and the experimental −I values

from ref 22 is 0.93 eV. These deviations are factors of 8 and 5 times smaller, respectively,

than the deviations obtained when GGA orbital energies are used, although the increase in

computational cost associated with the improvement is minimal. Notably, there is no exact

exchange in the methodology. The ability to perform such calculations − together with the

theoretical ideas that underly them − are likely to be useful in other research areas where

18



orbital energies, ionisation potentials, electron affinities, and the integer discontiniuty play

a key role.
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