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ABSTRACT
Closed-loop adaptive optics systems that use minimum mean square error wavefront recon-
struction require the computation of pseudo open-loop wavefront slopes. These techniques
incorporate a knowledge of atmospheric statistics that must therefore be represented within
the wavefront slope measurements. These pseudo open-loop slopes are computed from the
sum of the measured residual slopes and the reconstructed slopes that would be given if the
deformable mirror was flat, generally involving the multiplication of an interaction matrix with
actuator demands from the previous time-step. When using dense algebra, this multiplication
is computationally expensive for Extremely Large Telescopes, requiring a large memory
bandwidth. Here, we show that this requirement can be significantly reduced, maintaining
mathematical correctness and significantly reducing system complexity. This therefore reduces
the cost of these systems and increases robustness and reliability.N

Key words: Instrumentation: adaptive optics – Instrumentation: miscellaneous.

1 IN T RO D U C T I O N

Adaptive optics (AO; Babcock 1953; Hardy 1998) is now a
mainstream technology, and essential for the next generation of
Extremely Large Telescopes (ELTs) , including the European
Southern Observatory ELT, the Thirty Metre Telescope (TMT), and
the Giant Magellan Telescope, which will have light collecting areas
equivalent to primary mirror diameters of at least 20 m. To optimize
AO performance, particularly for wide field of view systems and
at low signal levels, it is necessary to use minimum variance
wavefront reconstruction techniques (Ellerbroek, Gilles & Vogel
2003), also known as minimum mean square error or maximum a
posteriori reconstruction. These methods use atmospheric statistics
to optimize the wavefront reconstruction. However, to do this, they
must rely on having open-loop slope measurements as input, i.e.
those that represent the statistics of the atmosphere, rather than
the residual slope measurements more commonly used by single
conjugate AO (SCAO) systems. This can be achieved in two ways.
Either the wavefront sensors (WFSs) can be operated in open-
loop, as was the case for early phases of the CANARY instrument
(Myers et al. 2008), or the system can use pseudo open-loop (POL)
slope measurements that are reconstructed from the residual slope
measurements and previous AO system states (effectively the shape
of the deformable mirrors, DMs). Given that all proposed AO
systems for the ELTs operate in closed-loop (or partial closed-loop
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in the case of MOSAIC Hammer et al. 2014), the latter technique
must be used.

1.1 Pseudo open-loop slope computation

In a closed-loop AO system, the WFSs measure the residual
wavefront slopes, i.e. the wavefront after correction by the DMs.
Fortunately, when DMs are linear (or can be linearized), the shape
of the DM can be estimated based on the DM demands from the
previous frame (or frames, in the case of non-integer frame delay).
To compute the POL slopes, the known DM shape is used to
reconstruct the corresponding slope measurements that would be
present if the DM surface was flat. This operation typically involves
the multiplication of an interaction matrix with the DM demands.
These slope measurements are then added to the residual slope
measurements obtained from the WFSs to give the POL slopes:

sPOL
n = sRES

n + P · an−1, (1)

where s represents the wavefront slopes (POL and residual, respec-
tively), P is the interaction matrix (which can be measured in a
conventional way by poking the DM ), and a represents the actuator
demands from the previous frame (n−1). In the case where the
AO loop delay is not equal to one frame, a linear combination of
actuator demands from neighbouring frames should be used:

a = (1 − d)an−D + dan−(D+1), (2)
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where d is the fractional frame delay (between 0 and 1) and D is the
total number of frames delay rounded down to the nearest integer.
The total delay is therefore given by d + D.

Although for some AO systems, P can be sparse, for the
ESO ELT it is a dense matrix, of size equal to the total number
of slope measurements by the total number of actuators. This
is because the ELT M4 mirror is treated as a modal DM , with
internal electronics converting the applied modes (which we here
call actuators for cohesiveness) into actual actuator values (after
possible modifications in applied mode strengths to reduce stresses
on the mirror surface). Therefore, the operation P · a, which must be
computed every frame, is a large dense matrix vector multiplication,
requiring significant memory bandwidth (since the matrix has to
be loaded from memory into the computational units every WFS
frame, as it is too large to remain in memory cache). This operation,
along with wavefront reconstruction, represents a bottleneck in the
AO real-time control pipeline. The POL computation therefore
represents a requirement for a significant additional hardware cost
in the AO system design. We note that P is the same size as the
reconstruction matrix, with required memory bandwidth scaling as
the fourth power of telescope diameter.

In Section 2, we introduce a straightforward simplification that
can be used to greatly reduce the computational requirements
of POL computation, whilst maintaining numerical exactness. In
Section 3, we discuss the implications that this method has, and
additional requirements on the AO system supervisor. We also
consider several AO system designs and estimate the hardware
savings that this method delivers. We conclude in Section 4.

2 SI M P L I F I C AT I O N O F PO L C O M P U TAT I O N

An AO real-time controller updates the DM demands at every WFS
time-step. The DM demands, a, required for a DM are typically
computed using

an = gR × sPOL
n + (1 − g) an−1, (3)

where R is the reconstruction matrix (of size equal to the number of
actuators by the number of slope measurements) and g is the loop
gain. Expanding sPOL gives

an = R × sRES
n + R × P × an−1 + (1 − g) an−1, (4)

= gR × sRES
n + Q × an−1 + (1 − g) an−1, (5)

where Q is the pre-computed matrix multiplication product of R
and P multiplied by g, a square matrix of size equal to the number
of actuators squared. It should be noted that in this latter equation,
the POL slopes are never explicitly computed, and therefore not
available to the real-time control system. We hereafter refer to
this approach as Implicit POL , while the conventional approach
is referred to as Explicit POL . This approach was first suggested by
Wang & Ellerbroek (2012), though did not include the gain term.

We can therefore consider the differences in computational
requirements between these equations. In each, two matrix–vector
multiplication operations are required. In the original equation,
equation (3), computation of sPOL requires multiplication of the
matrix P (of size equal to the number of slopes by the number
of actuators) by a vector of size equal to the number of actuators,
followed by multiplication of R, (of size equal to PT) by sPOL

(of size equal to the number of slopes). The proposed version,
equation (5), requires multiplication of Q (a square matrix of size

Table 1. A table summarizing matrix dimensions for the implicit and
explicit POL cases, with nact giving the total number of actuators and nslopes

giving the total number of slopes. It should be noted that the number of
slopes can be significantly larger than the number of actuators.

Matrix Dimensions Explicit POL Implicit POL

R nact × nslopes Yes Yes
P nslopes × nact Yes No
Q nact × nact No Yes

equal to the number of actuators), with the actuator vector, and then
a multiplication by R. These matrices are summarized in Table 1.

2.1 Real-time control system designs

In order to compute the memory bandwidth requirement reduction
that can be made by implicit POL computation, and hence the
reduction in hardware requirements, we must consider designs for
some proposed AO real-time control systems. We concentrate on
ELT systems, including SCAO , laser tomographic AO (LTAO) ,
multiconjugate AO (MCAO), and multiobject AO (MOAO) , map-
ping these designs to currently available computational hardware.
We note that the TMT architecture (Dunn et al. 2018) uses an
explicit POL computation. A flexible real-time controller, such as
the Durham AO real-time controller (DARC; Basden et al. 2010b),
will be able to use both explicit and implicit POL computation,
given sufficient underlying computational hardware.

2.1.1 ELT SCAO

The ELT SCAO real-time control system will be comprised of
a single computational node, which receives WFS pixels, and
computes the corresponding DM demands. When POL is not
performed, it has been shown that a single Xeon Phi can process
ELT SCAO at about 1.2 kHz (Jenkins, Basden & Myers 2018),
in excess of the 1 kHz instrumental requirement. Table 2 gives
the memory bandwidth requirements for both explicit and implicit
POL computation, and Fig. 1 shows measured SCAO latency as
a function of WFS frame rate for the explicit and implicit POL
cases, and for the case without POL calculation. We find that
the maximum WFS frame rate that can be processed using the
explicit POL calculation is 500 Hz, while when using implicit POL
calculation, this increases to 600 Hz, due to the reduced memory
bandwidth requirement. The latency is also lower. Of course, the
case without POL computation can reach highest frame rates (we
show up to 750 Hz for the camera model that we use here) since
memory bandwidths are significantly reduced. However, in this
case, the AO control algorithm is sub-optimal since minimum
variance reconstruction cannot be used. These measurements were
taken using DARC , on an Intel Xeon Phi 7250 processor. The
configuration of DARC is described by Jenkins, Basden & Myers
(2019). In particular, we use a camera simulator to provide pixels
in the same format as the ESO ELT WFSs.

For higher frame rates, the Xeon Phi used here is unable to process
WFS information fast enough, and therefore dropped frames and
eventual real-time control system failure result due to the increased
latency. Although the memory bandwidth requirements are theoreti-
cally achievable using a single Xeon Phi processor (480 GBs−1), or a
quad-CPU Intel Scalable Processor design (512 GBs−1), in practice,
it is not possible to compute the POL computation within a single
node while achieving higher frame rates or reduced latency, due to
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Table 2. A table comparing real-time controller memory bandwidth requirements for the implicit and explicit POL computations.
These numbers also include the wavefront reconstruction. LTAO and MCAO slope count does not include the NGSs, but as these
are low order, the results are not affected significantly.

AO system Number of Number of Frame rate Bandwidth for Bandwidth for
slopes actuators explicit POL implicit POL

ELT SCAO 9232 5318 1 kHz 393 GBs−1 310 GBs−1

ELT LTAO 55 392 5326 500 Hz 1180 GBs−1 647 GBs−1

ELT MCAO 55 392 6326 500 Hz 1402 GBs−1 781 GBs−1

ELT MOAO 61 504 22 666 250 Hz 1722 GBs−1 1515 GBs−1

TMT NFIRAOS 35 808 7675 800 Hz 1859 GBs−1 1068 GBs−1

Figure 1. A figure showing AO system latency as a function of WFS
frame rate for explicit and implicit POL computation. For comparison, the
case without POL is also shown, though this would result in lower AO
performance since minimum variance reconstruction could not be used. The
explicit POL case cannot operate at frame rates above 500 Hz, while using
implicit POL can extend the maximum frame rate to above 600 Hz.

the other operations necessary (pixel reception, calibration, etc.).
In particular, the Xeon Phi has poor single thread performance, so
aspects of the real-time control system that cannot be parallelized,
such as pixel acquisition, can significantly impact performance.
Therefore, a second computational node could be used to receive
the applied DM demands (as sent from the ELT central control
system, CCS), and compute the component of the implicit or explicit
POL slopes. This node would then send either slope adjustments
(explicit POL ) or actuator adjustments (implicit POL ) to the first
computational node, as shown in Fig. 2.

In this case, the use of implicit POL does not reduce the required
hardware (two computational nodes are still required). However,
AO system latency and jitter (variation in latency) can be improved
since the implicit matrix–vector operation is smaller, and the result
combined later, i.e. added to actuators after residual wavefront
reconstruction, rather than being added to residual slopes before
wavefront reconstruction. We note that a hardware accelerator,
for example, a graphics processing unit (GPU) could be used
in place of the second node, though here we consider only
CPU-based designs.

In the case that there is a variation in arrival times of the DM
demands sent from the ELT CCS (e.g. due to the network, or non-
deterministic algorithms), the implicit POL method has a larger
computational window available to mitigate the effect of this jitter.

Figure 2. A possible ELT SCAO real-time control system architecture
based on two CPU nodes. Explicit POL computation data flow is denoted
by red arrows, while implicit POL computation data flow is denoted by the
green arrows. The explicit POL computation result is required earlier in the
pipeline, and therefore has more stringent latency requirements. Pixel and
telemetry information flow is represented by the blue arrows, while DM
demands are represented by the black arrows.

Figure 3. A possible ELT LTAO real-time control system architecture based
on seven CPU nodes (or 13, in the case of explicit POL computation).
Explicit POL computation data flow and extra components are shown in
red (requiring six extra nodes, P8–P13). P represents a processing node
(numbered from 1 to 13), with nodes 1–7 performing image calibration,
slope calculation, and partial wavefront reconstruction, node P7 addition-
ally performing DM vector summation, and nodes 7–13 computing POL
information (all in node 7 in the case of implicit POL). The blue arrows
represent pixel data; the black arrows show DM data.

2.1.2 ELT LTAO

The proposed ELT LTAO system uses six laser guide stars (LGSs)
and between one and three low order natural guide stars (NGSs) to
control the telescope DM via the CCS . Fig. 3 shows a schematic
design for the real-time control system, with each WFS being
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sent to a single processing node. These nodes each perform
image calibration, residual slope calculation and partial wavefront
reconstruction. Finally, these nodes compute partial DM vectors
which are then collected by the NGS node (i.e. a ‘gather’ node) and
summed together to give the final DM demands, before being sent
to the DM .

In the case of implicit POL reconstruction, the POL computation
is performed on this NGS node, and therefore only this node needs
to receive the applied DM demands from the CCS . This POL
calculation involves a square matrix–vector multiplication with
dimensions equal to the number of actuators.

When using implicit POL calculation, the operations performed
on nodes P1–P6 are essentially very similar in form to an SCAO
calculation without any POL , i.e. a residual slope computation, and
reconstruction using these. Fig. 1 shows that using Xeon Phi nodes,
frame rates in excess of 750 Hz could be achieved here.

When using explicit POL calculation, on the WFS nodes, image
calibration and residual slope computation are performed. The
POL residuals are then added, followed by partial wavefront
reconstruction, before computing the partial DM demands that are
then collected and summed by the NGS node. These DM demands
are sent to the ELT CCS . The ELT CCS will then return the actually
applied demands.

If these applied demands are sent to the WFS nodes, P1–P6, the
POL calculation for each WFS is then performed, so that the POL
slope residuals can be added to the residual slope measurements.
We note that the size of these operations on each WFS node is
essentially identical to that of an SCAO system, and therefore as
shown in Fig. 1, a maximum frame rate of about 500 Hz will be
achievable using Xeon Phi nodes.

In the likely case that higher frame rates will be required, the
applied demands can be sent from the CCS to additional nodes,
P8–P13. On these nodes, DM demands are then multiplied by an
interaction matrix to give the explicit POL slope residuals, to be
sent to the WFS nodes for addition during the next frame.

The additional communications required for the explicit POL
computation will reduce reliability. If a UDP protocol is used
(including multicast), packets can go missing, while using a TCP
protocol will increase jitter. In some situations, where delays mean
that POL slope residuals are computed very close to the time at
which they are required, timing issues may result, with different
WFSs either being delayed, or using measurements from a previous
frame. With the implicit POL approach (which is significantly sim-
pler), this will not happen since all POL computation is performed
within a single node. Simplicity within a real-time control system
design is advantageous.

We note that in the explicit POL case, rather than using additional
nodes to achieve higher frame rates, it would also be possible to
use different computational hardware. For example, a quad-CPU
Intel Xeon Gold or Platinum system would achieve slightly higher
memory bandwidth than a Xeon Phi, with improved single-core
performance. Unfortunately, the cost of a single such node would be
at least double that of two Xeon Phi nodes, based on current prices.
We also note that we find that theoretical performance metrics do not
reliably relate to full real-time control system performance, when
real camera packets are included.

In the case of explicit POL reconstruction, six additional nodes
are required to perform this calculation (shown in red) before
sending the slope adjustments to the corresponding WFS processing
node. Each of these additional nodes must also receive the applied
DM demands from the CCS . This therefore represents a significant

Figure 4. A possible ELT MCAO real-time control system architecture
based on seven (or 13) CPU nodes. Explicit POL computation data flow and
extra components are shown in red (requiring six extra nodes, P8–P13), and
DM demands are required to be sent from the CCS and from node P7 to the
additional nodes. P represents a processing node (numbered from 1 to 13).
For the two additional DMs, it is assumed that the requested and applied
DM demands are equal (as is usually the case). The blue arrows represent
pixel data; the black arrows show DM data.

increase in complexity when compared with the implicit POL
approach.

Telemetry information is not shown in Fig. 3 for clarity. How-
ever, the necessary telemetry information (discussed further in
Section 3.3) includes residual slopes from nodes P1–6, POL slopes
from nodes P1–6 when using explicit POL computation, and CCS
return demands from P7.

We note that while a single node based on currently available
hardware (e.g. a Xeon Phi, AMD EPYC or Intel Scalable processor
solution) may be able to process a single WFS and its corresponding
POL calculation (in the explicit case), such a solution would likely
be unstable, with increased jitter and the risk of dropped frames,
particularly at moderate frame rates (e.g. 500 Hz) and above. It
would also be more susceptible to problems arising from the timing
of arrival of CCS information. For this reason, Fig. 3 adds additional
nodes for the POL computation.

2.2 ELT MCAO

From the point of view of the real-time control system, the ELT
MCAO case is similar to the LTAO case. However, the differences
are that the MCAO system will have an increased number of
actuators to compute due to the two additional non-zero-conjugate
DMs . We assume here that the DM demand return will not be
returned from these DMs (as was the case for the CCS ), but will
be computed and known by node P7, as shown in Fig. 4. Therefore,
in the case of implicit POL , these demands are not sent to other
nodes, and are used for implicit POL computation on node P7.
However, in the case of explicit POL , these demands will be
sent from P7 to nodes P8–13, so that the explicit POL compu-
tations can be performed. This represents an additional increase
in complexity, and greater potential for instability, particularly
in the case of real world situations where Ethernet packets can
get lost.

2.3 ELT MOAO

The proposed ELT MOAO system uses four LGS and four high-
order NGS . In addition to the CCS actuators, 10 open-loop DMs are
also used (with a lower spatial order than the CCS mirror, having
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Figure 5. (a) A possible ELT MOAO real-time control system architecture
based on 12 CPU nodes (or 14 nodes when explicit POL computation is
required). The extra components and data flow required for explicit POL
computation are shown in red. The orange lines represent the multicast of
slope measurements between nodes. The green lines represent distribution
of CCS demand output when implicit POL is used. The blue lines represent
pixel flow and the black lines represent DM demand flow. (b) An alternative
ELT MOAO architecture, using 12 CPU nodes in both cases. Here, in the
explicit case, partial POL reconstruction is performed on each node (using
the CCS demands). The resulting slopes are then broadcast to all other nodes
(the red lines). Computation of POL slopes is shared equally between nodes,
as otherwise, the bandwidth requirements for P11 and P12 are likely to be
too great.

48 × 48 actuators). Fig. 5 shows possible schematic designs for the
real-time control system. In each case, images from each WFS are
sent to a single processing node, which computes the corresponding
wavefront slopes. These slopes are then distributed (multicast) to
all other nodes, so that all nodes now have all slope measurements.
Wavefront reconstruction is performed (in a pipelined fashion, as
soon as the corresponding slopes become available) on each node
that has sole responsibility for commanding a single DM . The only
caveat here is that control of the CCS is shared by two nodes due
to the high memory bandwidth requirement, with node P12 passing
its computation back to P11 so that the final CCS demands can be
sent. We propose the use of two nodes for this task since a minimum
of 327 GBs−1 is required (to be able to compute the reconstruction
at loop rate, with higher bandwidth being necessary for reduced
latency), which results in too low spare overhead for a single node,
risking system instability and increased latency.

For implicit POL computation, the applied CCS demands are sent
to all processing nodes where the POL calculation is performed.

For explicit POL computation, there are two possibilities. In the
first case (Fig. 5a), two additional nodes are used for the explicit
POL calculation (with the same memory bandwidth requirements
as nodes P11 and P12), with these slopes then being broadcast to
all other nodes, which add to the residual slopes to give the POL
slopes. This results in extra cost and complexity compared with the
implicit calculation where the CCS output is sent directly to the
processing nodes.

In the second case for explicit POL (Fig. 5b), the applied
CCS demands are sent to all nodes, which then equally share the
computation of POL slopes. These POL slopes are then distributed
to all other nodes. In this case, the number of residual slopes and
POL slope offsets computed on each node differs and so a separate
broadcast of each is required, reducing reliability.

We also note that an eight node design would also be possible
here. In this case, since each MOAO DM is independent, the
22 666 actuator values would need to be spread between these nodes
(approximately 2834 actuators per node), and then broadcast and
collected. These nodes would then need to send DM demands to one
or two DMs each. Since DM demands cannot be broadcast until all
computation is completed (i.e. all slopes have been reconstructed),
latency is increased compared with our first approach with one DM
per node, where slopes can be broadcasted as they become available,
in a pipelined fashion.

2.4 Summary of POL operations

Table 2 summarizes the relative size of these operations for different
proposed AO systems.

It can be seen that in the LTAO and MCAO cases, the memory
bandwidth requirement is reduced by nearly 50 per cent when using
the implicit POL method.

For the MOAO case, we have assumed four LGS and four NGS
each with 74 × 74 sub-apertures giving a total of Ns = 61 504
slopes, which is the current MOSAIC baseline (Morris et al. 2018).
We also assume that there are 10 MOAO DMs each with AM = 1634
actuators (48 × 48), in addition to the ELT CCS (with ACCS = 5326
actuators).

For the explicit POL MOAO case, the memory bandwidth
required is therefore

((ACCS + 10AM) × Ns + ACCS × Ns) × 4f , (6)

where f is the frame rate, and the factor of 4 is the number
of bytes in a 32-bit floating point integer. The left part of this
equation represents the residual slope reconstruction, while the right
part (ACCS × Ns) represents the explicit POL slope computation.
The explicit POL slope computation can be performed either on
two separate nodes (Fig. 5a), or spread over the existing nodes
(Fig. 5b).

For the implicit POL MOAO case, the memory bandwidth is
(
(ACCS + 10AM) × Ns + A2

CCS + 10ACCS × AM

) × 4f , (7)

where the left part of this equation represents the residual slope
reconstruction, and the right part (A2

CCS + 10ACCS × AM) is the
implicit POL computation. For the implicit case, the memory
bandwidth required for the POL computation is approximately a
third of that required in the explicit case.

2.4.1 Considerations of sparsity in the interaction matrix

Even in the case where P can be sparse, the method that we
propose here is still relevant, particularly for MCAO and LTAO
cases, as it reduces communication complexity since it removes
the need to send the POL slopes back to the WFS nodes, thus
reducing complexity and jitter, and increasing reliability. We also
note that with a sparse P matrix, the post-processing of closed-loop
residuals as a batch process (described in Section 3.2) to give POL
slopes for tomography benefits from the sparsity (i.e. becomes a
cheaper operation), as does the Q = R × P matrix multiplication

MNRAS 486, 1774–1780 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/2/1774/5423330 by U
niversity of D

urham
 user on 23 April 2019



Efficient POLC for ELTs 1779

Figure 6. A figure showing the ratio of time to compute a batch of POL
slopes to the time within which these slopes are produced, as a function
of number of frames. When this ratio falls below unity, production of POL
slopes is able to keep up with the real-time control system.

product, which then becomes achievable in shorter time-scales or
with reduced hardware.

3 IMPLICATIONS

Our proposed implicit POL method means that POL slopes are
not explicitly computed by the real-time control system. However,
POL slopes are a necessity for parts of the AO system (such as
tomography), and therefore we discuss these requirements, and
solutions here.

3.1 Computation of Q

The implicit POL technique requires the computation of Q in
equation (5). This operation is a matrix–matrix multiplication, with
the matrix sizes equal to the number of actuators by the number of
slopes. For the ELT SCAO case, we have Q = R · P with R having
dimensions 5318 × 9232 and P having dimensions 9232 × 5318.
This can be performed in under a second on a standard Xeon server
(dual E5-2630-v3 CPUs dating from 2015), and therefore would not
require any additional hardware beyond what would be expected for
an AO supervisor hardware system (used for calibration and soft
real-time tasks).

For the LTAO case, these matrices increase in size to 55392 ×
5326, and the computation of Q takes less than 1 min on this server.
On a modern GPU , this would be far faster, and nearly trivial
to implement (e.g. a call to a BLAS library). It is also a highly
parallelizable problem and so could be spread across several CPU
nodes using the Message Passing Interface as required. However,
an update rate of once per minute is likely to be sufficient, so this is
not a difficult operation. It is also not an operation within the real-
time pipeline, so can be performed on hardware using a standard
(non-real-time) operating system, and considerations of jitter are
not necessary. The MCAO case is similar.

For the LTAO and MCAO cases, if a faster update rate is
required, additional computational hardware would be necessary
in the implicit POL case. However, this would be less than the
additional nodes required to implement explicit POL (which would
also introduce extra complexity and risk, including the necessity to
pass DM demands back to the WFS nodes).

3.2 Atmospheric statistic computation

Computation of atmospheric statistics is necessary for building the
minimum variance control matrix, which requires a knowledge of
the C2

n profile, and estimates of Fried’s parameter and the outer scale.
This requires open-loop slope measurements (Ellerbroek & Vogel
2003). Fortunately, this information is not required in real-time on a
frame by frame basis. Therefore, by recording contiguous frames of
residual slopes and DM demands (a standard operation for facility
AO systems), the POL slopes can be reconstructed after the event.
The key advantage here is that POL slopes can be computed as a
batch, i.e. several thousand frames of POL slopes can be computed
simultaneously:

SPOL = SRES + P × A, (8)

where S is a matrix comprised of many frames of slopes (dimensions
equal to number of slopes by number of frames), and A is a matrix
comprised of many frames of DM demands (dimensions equal to
number of actuators by number of frames).

This calculaion involves a matrix–matrix multiplication, rather
than a matrix–vector multiplication, and therefore is a compute-
bound rather than a memory-bound operation. We have bench-
marked this operation using a conventional server computer, with
dual Xeon E5-2630-v3 CPUs (circa 2015), and find that a single
server is able to keep up with the real-time data rates produced by the
real-time control system when blocks of at least approximately 100
frames of slopes are processed simultaneously, as shown in Fig. 6.
This corresponds to a delay of less than a second between implicit
and explicit POL slopes, and this does not pose any problems for
the AO control system. Table 3 summarizes the benchmark timings
for the different cases given in Table 2. In all cases, it is possible
to process 1 s of data in less than 1 s. On more modern hardware,
processing time would be significantly reduced due to increased
width vector processing units (e.g. AVX512). Fig. 6 shows the
transition between memory-bound operation (for small batch sizes)
to compute-bound operation. This figure shows the time taken to
compute a batch of a given number of frames, and therefore the
latency of this computation (from first frame to end of computation)
will equal the time taken for the real-time control system to deliver
this batch (i.e. frame period multiplied by batch size) plus the batch
computation time.

We do not anticipate that additional hardware would be required
for this task, as it could be performed by supervisory sub-system
hardware (i.e. a soft-real-time system used for calibration and
system supervision). Since this is not a hard real-time task, jitter in
this operation is not critical.

3.3 Telemetry requirements

Using our implicit POL technique, to compute explicit POL slopes
after the event, the AO system must record continuous frames of
residual slopes and DM demands (actually applied, i.e. as returned
from the CCS ).

If an explicit POL technique is used, the AO system will
usually record both residual and POL slopes (residual slopes being
useful for telemetry displays and for computation of telescope
offloading). In addition to this, DM demands would also usually
be recorded, though it would be possible to compute these from the
residual and POL slopes. In any case, the explicit POL technique
requires capture of more telemetry information than the implicit
case.
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Table 3. A summary of computation time for explicit POL slopes derived from residual slopes and DM demands. These are computed
using the SGEMM function available in the Intel Math Kernel Library.

AO system Rate for 1000 frames Rate for 5000 frames Time to process 1 s data MFLOP/frame

ELT SCAO 7.6 kHz 8.9 kHz 0.13 s 98
ELT LTAO 1.4 kHz 1.7 kHz 0.45 s 590
ELT MCAO 1.1 kHz 1.5 kHz 0.67 s 701
ELT MOAO 1.2 kHz 1.6 kHz 0.24 s 655
TMT NFIRAOS 1.5 kHz 1.9 kHz 0.52 s 550

3.4 Simplification of control system network

Another significant benefit to the implicit POL technique is a
simplification of the real-time control system network requirements.
As can be seen in Figs 2, 3, 4, and 5, fewer data paths between
the real-time processing nodes are required. This increases system
robustness since there are fewer packets that could get lost (and we
assume that UDP packets will be used due to the stringent latency
requirements ruling out any TCP retransmissions).

3.5 Slope linearization

Shack–Hartmann WFSs are non-linear due to pixelization effects.
Although this effect is small, and usually ignored, under certain
conditions, AO performance improvements can be achieved using
a look-up table or polynomial fit to linearize slope measurements
(Basden, Myers & Butterley 2010a). Solar AO WFSs can be
particularly affected by this non-linearity.

Once the residual slopes have been linearized, it is not necessary
to take any further linearization steps with either explicit or implicit
POL schemes.

4 C O N C L U S I O N S

We have presented a straightforward and mathematically equivalent
technique for the implicit computation of POL slopes for minimum
variance AO systems, and considered the implications for common
AO operation modes. This technique simplifies real-time control
system design (hence reducing cost), increases robustness and
reliability of the AO system, and leads to a reduction in required
telemetry information. It leads to a simplified real-time control
pipeline, which leads to lower latency and jitter. However when
using the implicit scheme, if explicit slopes are required (for
example, for atmospheric parameter estimation) an additional non-
real-time computation is required, though we note that this still
results in a lower server requirement (and hence cost) than the
traditional explicit POL approach, and can be performed using a
relatively low-end server, or shared with an existing AO supervisor
server, e.g. that used for control matrix computation. Therefore,
significant hardware and complexity savings can be achieved using
implicit POL computation.
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