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ABSTRACT
Using the data from the Sloan Digital Sky Survey and the Gaia satellite, we assemble a
pure sample of ∼3000 blue horizontal branch (BHB) stars with 7D information, including
positions, velocities, and metallicities. We demonstrate that, as traced with BHBs, the Milky
Way’s stellar halo is largely unmixed and cannot be well represented with a conventional
Gaussian velocity distribution. A single-component model fails because the inner portions of
the halo are swamped with metal-rich tidal debris from an ancient, head-on collision, known
as the ‘Gaia Sausage’. Motivated by the data, we build a flexible mixture model that allows
us to track the evolution of the halo make-up across a wide range of radii. It is built from two
components, one representing the radially anisotropic Sausage stars with their lobed velocity
distribution, and the other representing a more metal-poor and more isotropic component
built up from minor mergers. We show that inside 25 kpc the ‘Sausage’ contributes at least
50 per cent of the Galactic halo. The fraction of ‘Sausage’ stars diminishes sharply beyond
30 kpc, which is the long-established break radius of the classical stellar halo.
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1 IN T RO D U C T I O N

Understanding the dynamics of the Milky Way’s stellar halo is not
only key to understanding the formation mechanism of the halo itself
(Eggen, Lynden-Bell & Sandage 1962; Searle & Zinn 1978), but
also for constraining the mass distribution of the Milky Way (Xue
et al. 2008; Gnedin et al. 2010; Deason et al. 2012), the history of
structures accreted in the stellar halo (Frenk & White 1980; Johnston
et al. 2008; Belokurov et al. 2018) and hence the cold dark matter
paradigm of hierarchical structure formation. Due to the wide range
of applications for detailed measurements of the velocity ellipsoid
of the stellar halo, much effort has been made in understanding its
kinematic structure (Frenk & White 1980; Bekki & Chiba 2001;
Sirko et al. 2004; Battaglia et al. 2005; Smith et al. 2009a; Kafle
et al. 2012, 2013). This characterization has sometimes proceeded
by using the full phase space distribution function (Williams &
Evans 2015; Das & Binney 2016). More commonly, just the first and
second moments of the velocity distribution are measured (Chiba &
Yoshii 1998; Xue et al. 2008; Bond et al. 2010; Bowden, Evans &
Williams 2016; Cunningham et al. 2016).

� E-mail: lachlanl@princeton.edu

These kinematic properties of the stellar halo can be compactly
described by the anisotropy parameter β defined as

β = 1 − σ 2
θ + σ 2

φ

2σ 2
r

, (1)

where σ r, σ θ , and σφ are the velocity dispersions referred to
Galactocentric spherical polar coordinates (r, θ , φ). The usefulness
of β is greatly enhanced if the velocity dispersion tensor is aligned
in spherical polar coordinates, as otherwise there are cross-terms
that contain additional kinematic information.

Before the release of Gaia data release 2 (DR2), measurements
of β have been restricted to the nearby inner halo of the Milky Way
due to the lack of measurements of the proper motions of stars out to
significant distances in the stellar halo (Chiba & Yoshii 1998; Smith
et al. 2009a; Belokurov et al. 2018). Thus, so far, the attempts to
gauge the halo anisotropy in the Galactic outskirts have been few
and far between (see e.g. Cunningham et al. 2016; Kafle et al. 2017).
With the advent of DR2, we now have unprecedented access to the
proper motions of stars deep in the stellar halo (Gaia Collaboration
2016, 2018). During the preparation of this manuscript, Bird et al.
(2019) measured the velocity dispersion in the stellar halo using
a sample of ∼8600 K-giant stars from the Large Sky Area Multi-
Object Fibre Spectroscopic Telescope (LAMOST) Data Release
5 (Cui et al. 2012). This study presented the first measurement of

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/1/378/5420447 by U
niversity of D

urham
 user on 11 April 2019

http://orcid.org/0000-0002-0041-4356
http://orcid.org/0000-0003-2644-135X
http://orcid.org/0000-0002-0038-9584
http://orcid.org/0000-0001-6146-2645
mailto:lachlanl@princeton.edu


The halo’s progenitor with BHB stars 379

the evolution of the velocity ellipsoid in the Milky Way, out to large
Galactocentric radii.

With this paper, we aim to supplement the measurement of Bird
et al. (2019) in two ways. First, we analyse a complementary
data set of blue horizontal branch (BHB) stars from the Sloan
Digital Sky Survey’s (SDSS) Data Release 8, thereby using a
different tracer sampled from different parts of the sky. Importantly,
the BHB distances outperform those of K-giant stars due to a
much weaker dependence on age and metallicity. Secondly, we
carry out a more in-depth analysis that imposes strong outlier
filtering and takes into account measurement error, deconvolving
the observed distribution via fitting of simplified Gaussian mixture
models (GMMs). Additionally, our examination is motivated by the
most recent detection of two distinct components in the nearby
stellar halo. The inner halo appears to be dominated by stars
deposited in an ancient major accretion event. This dramatic head-on
collision deposited into the Milky Way stellar debris on highly radial
orbits (e.g. Belokurov et al. 2018; Helmi et al. 2018). This gives rise
to a characteristic shape in velocity, the ‘Gaia Sausage’, a.k.a. ‘Gaia-
Enceladus’, a.k.a. ‘Kraken’. These mostly metal-rich stars are mixed
with a more metal-poor and isotropic halo component built up from
a superposition of various minor mergers (Myeong et al. 2018b).
A simple and robust prediction arises as to the behaviour of the
halo velocity ellipsoid with Galactocentric distance. The ‘Sausage’
stars are not expected to travel far beyond their progenitor’s last
apocentre, shown to roughly coincide with the break in the stellar
halo (Deason, Belokurov & Evans 2011; Deason et al. 2013,
2018). This implies that the fractional contribution of this major
merger to the Galactic halo varies with distance and is predicted
to diminish substantially beyond 20–30 kpc. Therefore, the overall
halo’s velocity anisotropy should reflect the change in the debris
mixture, from radial to isotropic as a function of distance, or, more
specifically, from values close to β ∼ 1 within 20–30 kpc to values
close to β ∼ 0 beyond 30 kpc.

We begin in Section 2 by describing the data that we have used and
how we have filtered it. Next, we describe our methods of analysing
these data in Section 3. In Section 4, we present the results of this
analysis in the form of the kinematics inferred from our models.
Finally, we discuss the implications of our measurement for the
formation history of the Galaxy and conclude in Section 5.

2 DATA

We aim to measure the evolution of the velocity ellipsoid of the
Milky Way’s stellar halo as a function of Galactocentric radius. To
do this, we need 3D kinematic information for a large sample of
stars in the stellar halo. We supplement the proper motion measure-
ments of the Gaia satellite with spectroscopic radial velocity and
photometric distance relations for a large sample of BHB stars.

Our initial sample consists of a catalogue of 4985 BHB stars
compiled by Xue et al. (2011). These stars were selected using
spectroscopic and photometric information from the SEGUE-1,
SEGUE-2, and older SDSS surveys and the data was publicly
released as part of SDSS DR8 (Aihara et al. 2011). Xue et al. (2011)
used similar spectroscopic and photometric selections as Xue et al.
(2008) and Sirko et al. (2004), with some modest relaxations to
increase the statistics of the sample. These studies generally aim for
high-purity samples of BHBs. For this reason, it has generally been
accepted that the Xue et al. (2011) sample is of very high purity,
and of relatively high completeness when restricted to the survey
footprint.

The Xue et al. (2011) catalogue includes sky positions, radial
velocity measurements with error estimates, and distance estimates
to the stars. However, errors on these distance estimates are not
provided. In order to have a more robust inference, we extract
our own distance and (more importantly) distance error estimates.
We do this by cross-matching this sample with SDSS to get the
full photometry information and using it along with the distance
estimator described in equation (7) of Deason et al. (2011) to
produce our own distance estimates and distance errors, based
on Monte Carlo propagation of uncertainty from the photometric
uncertainties. Fig. 1 shows how our derived distances compare to
both the distances that were originally in the catalogue as well as
Gaia’s parallax measurements after making the sample restrictions
described below as well as those in Section 2.3. We can see that the
distances agree very well.

The Monte Carlo propagation of photometric uncertainty does
not include systematic errors in the estimator of Deason et al.
(2011), which should be of comparable order to the errors obtained
from the photometric uncertainty. However, both of these errors are
small enough that it makes no significant impact on the distribution
of errors on Galactocentric velocities. We additionally retrieve
metallicity information from cross-matching our sample with the
SDSS spectroscopic parameters table from DR8. Including the
requirement that the stars have measured metallicities leaves us
with 4879 BHBs.

To make sure we have a cleanest sample of BHBs for the halo
kinematics measurement, we make a few additional requirements on
the data. We summarize these restrictions here, quoting the number
of stars that each selection applies to, though keep in mind that
many of the criteria apply to multiple stars:

(i) The stars have astrometric measurements from the Gaia
satellite (removes 22 stars).

(ii) The stars lie within the colour box for which the distance
estimator from Deason et al. (2011) is valid (this removes 672
stars).

(iii) The astrometric excess noise measured by Gaia is less than
1 mas (removes 26 stars).

(iv) The fractional difference in photometric distance estimate
from Deason et al. (2011) and photometric distance estimate from
Xue et al. (2011) is less than 10 per cent (removes 197 stars).

(v) The parallax � and photometric distance dphoto satisfy � −
1/dphoto < 4σ� . This helps us to remove possible Blue Straggler
(BS) contaminants (see below for more details, this removes 45
stars).

After applying the above selections, we are left with 4126 BHBs.

2.1 Transformation from measurement space

We have the following quantities for each star: right ascension and
declination (α, δ), proper motions in right ascension and declination
(μα , μδ), errors in those quantities (σμα

, σμδ
), covariance of the

proper motion measurements [cov(μα , μδ)], heliocentric radial ve-
locity (vhel) and its error (σvhel ), the base 10 logarithmic heliocentric
distance to the star [log10(dhel)], and its error [σlog10(dhel)]. Here,
we assume that all observables (proper motions, radial velocities,
and logarithm of distance) are Gaussian distributed. Next, we
transform the observables to spherical polar coordinates in the
Galactic rest frame. To account for measurement error, we Monte
Carlo propagate the errors from the data space to our Galactocentric
coordinates. We then use these samples to compute the covariance
matrix of the 6D phase space coordinates in the Galactocentric
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380 L. Lancaster et al.

Figure 1. We show a comparison of the different distance measurements available to us, restricting to the stars left after the selections described in Section 2,
though without removing the Sgr stream. Left-hand Panels: We show the logarithm of the ratio of the two photometric distance estimates (one given by the
Xue catalogue and one from the Deason estimate) versus the logarithm of the distances we calculate. We show the logarithm of the distance as this is the space
in which the errors are approximately Gaussian for our estimate. In order to avoid cluttering the plot, we show the mean error on our estimate as a black bar in
the upper left corner of the plot. Right-hand Panels: We show the parallax (� Gaia) from the Gaia survey, versus the parallax that would be inferred from our
absolute magnitude estimate and errors. The errors on � Deason are 1σ errors and are calculated via Monte Carlo propagation. We additionally restrict to stars
with � Deason > 0.05 as the Gaia parallaxes are only reasonably measured in this region.

frame for each star. We also assume that the resulting uncertainties
on the Galactocentric parameters are still Gaussian. This is not
strictly speaking correct, as the transformation does not preserve
the Gaussianity of the distributions. However, having checked the
kurtosis of the propagated distributions, we find that the effects of
any non-Gaussianity are relatively low.

After this transformation, we work with the Galactocentric radius
(r), the velocity resolved with respect to spherical polar coordinates
(vr, vθ , vφ), as well as the errors and covariances between all these
parameters. Note that in our convention, disc stars have negative
angular momentum: that is, 〈vφ, disc〉 ≈ −220 km s−1. For the sun’s
Galactocentric phase space coordinates, we use the astropy (The
Astropy Collaboration 2018) default values with peculiar motion
v� = (11.1, −232.24, 7.25) km s−1 in Galactocentric Cartesian
coordinates, galactocentric distance of rgc, � = 8.3 kpc, and height
above the disc of z� = 27 pc, which come from Reid & Brunthaler
(2004), Gillessen et al. (2009), Chen et al. (2001), and Schönrich,
Binney & Dehnen (2010).

2.2 Removal of Sagittarius

In order to make an unbiased measurement of the shape of the
velocity ellipsoid, we remove one obvious unrelaxed substructure,
i.e. the Sagittarius (Sgr) stream. We use the Sgr coordinate system
defined in the appendix of Belokurov et al. (2014). Restricting
to stars within 10◦ of the plane of the Sgr stream, we then use the
geometry of the stream given by Hernitschek et al. (2017) to remove
stars based on their heliocentric distance, rather than relying on sky
position alone, thereby avoiding overcleaning our data. Specifically,
at a given Sgr longitude 
̃�, we remove any star that satisfies

0 < dhelio − dsgr < 3σsgr + 2
(
2δ+

(
σsgr

))
(2)

or

− 3σsgr − 2
(
2δ−

(
σsgr

))
< dhelio − dsgr < 0 , (3)

where dsgr, σ sgr, 2δ−(σ sgr), and 2δ+(σ sgr) are taken from columns 3,
8, 11, and 12 (respectively) of tables A4 and A5 of Hernitschek et al.

(2017), and dhelio is the heliocentric distance to a given star. We also
performed removals that included variation on the mean estimated
distance to the Sgr stream (dsgr), including the error estimates on
this quantity, δ+(dsgr) and δ−(dsgr). This, though, made no significant
difference to the resulting purity of the subtraction or the number
of stars retained. In an admittedly rather ad hoc manner, we added
two additional bins to the high 
̃� end of the leading arm of the
Sgr stream, which mimic the properties of the last bin on that end.
We did this in order to remove additional contaminants that we
observed in the data. This filtering process is illustrated in Fig. 2
and reduces our sample size to 3405 stars.

2.3 BS contaminants

Even after removal of the Sgr Stream, there remain a number
of distinct outliers in the distribution of Galactocentric tangential
velocities. In Fig. 3, we illustrate where these outliers are located in
the space of Balmer line shapes and in the space of SDSS colours.
As we are using the photometric distance relation for BHBs from
Deason et al. (2011), if we applied this relation (unknowingly) to
a BS star, which typically is ∼2 mag intrinsically fainter, it would
overestimate the distance. This star would then appear to be moving
at much greater velocity on the sky. This explains the distribution we
see in Fig. 3. Stars with large tangential velocities preferentially lie
in the regions of Balmer line shape space and colour–colour space
where we expect the largest contamination from BSs [see e.g. fig. 2
of Deason et al. (2011) or fig. 1 of Xue et al. (2011)]. Motivated by
this correlation, we remove all stars with SDSS colours satisfying
u − g < 1.15 and g − r > −0.07 as well as stars satisfying u −
g < 1.15 and c(γ ) < 0.925. The first colour–colour selection is
illustrated in the right-hand panel of Fig. 3. After applying these
cuts, we are left with a sample of 3112 BHB stars.

Finally, we remove stars with [Fe/H] > −0.75, as this sample of
stars, like the high-tangential-velocity stars of Fig. 3, is observed to
occupy the same areas of Balmer line shape space and colour–colour
space susceptible to BS contamination. These high-metallicity stars
also lie in the region of velocity space associated with the disc,
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Figure 2. The removal of Sgr stream contaminants. Here, we display the
data in the plane of Sgr longitude 
̃� versus heliocentric distance dhel.
The stars in our sample are shown as blue points. Top Panel: The shaded
regions on the plot mark the regions in which we would have removed stars
if they lay within B̃� < 10◦ of the plane of the Sgr Stream. The dark red
(blue) region is associated with the leading (trailing) arm, while the yellow
region marks additional bins added on to the leading arm. Bottom Panel:
The sample that is left after performing the excision of the Sgr Stream.

with small radial velocity dispersion and high mean rotation. It then
makes sense that this contamination appears at high metallicities.

This final restriction leaves us with 3064 BHBs. Assuming that
our criteria presented at the beginning of Section 2 did not remove
BHB stars in a proportion higher than that of BSs, then we can place
a conservative estimate on the number of BS contaminants in the
Xue et al. (2011) catalogue based on our BS targeting cuts from
this section. There are 236 stars removed by our colour–colour
space restriction, an additional 56 are removed by the colour–
Balmer line shape restriction, and 48 more are removed by the
metallicity restriction. Assuming a significant fraction of these
340 stars are actually BSs, we can estimate the contamination at
roughly 10 per cent of the data set. This is indeed a small amount
of contamination, but important to take into account when making
kinematic measurements. Based on the remaining stars with high
tangential velocity, we expect our contamination to be much less
than 1 per cent after making the restrictions described here.

2.4 Catalogue

We provide a new catalogue of the BHB stars that we use in this
study with all of the information that we have derived here. We give
files that use all of our selections to remove BS contaminants and
stars with poor spectroscopic or astrometric data, as well as a file
that additionally removes the Sgr stream, according to the criteria
described in Section 2.2.1

1https://doi.org/10.5281/zenodo.2597528

3 A NA LY SIS

We now wish to understand how the velocity ellipsoid evolves as
a function of Galactocentric radius. In order to account for the
measurement errors, we implement a Gaussian deconvolution of
the data performed in velocity space augmented by metallicity.

We take a relatively simple approach to this deconvolution by
considering only four bins in Galactocentric radius. Motivated by
the work of Belokurov et al. (2018) and Deason et al. (2018), we
place the edge of our last bin at just beyond the apocentre of the
ancient, massive, radial accretion event suggested by these works.
We choose the other bin edges so that the first three bins have
roughly the same number of stars. The edges of these four bins are
r = 4.9, 13.1, 19.2, 30, 67.93 kpc, the first and last edges being set
by the limits of the data. These bins contain 880, 895, 884, and 405
stars, respectively. Since we are using relatively large distance bins
and the BHBs have small photometric distance errors, the artificial
movement of stars between bins due to distance uncertainties should
be negligible.

We investigate two different deconvolutions of our data. The
first implements a single Gaussian, while the second implements a
version of a GMM informed by the works of Belokurov et al. (2018),
Myeong et al. (2018b), Lancaster, Belokurov & Evans (2018), and
Deason et al. (2018). In all of our fits, we define a likelihood
function (a single Gaussian in the first case, a sum of Gaussians
in the second) and sample the resulting posterior using the program
Àemcee’, which is an implementation of Goodman and Weare’s
Affine Invariant Markov Chain Monte Carlo Sampler (Goodman &
Weare 2010; Foreman-Mackey et al. 2013). For both cases, we use
200 walkers and use 2000 steps as our ‘burn-in’, followed by 2000
steps to explore the parameter space. We additionally verify the
validity of our fitting code on fake generated data.

3.1 Single Gaussian model

We fit each of the four Galactocentric distance bins with a
Gaussian distribution whose means, variances, and covariances
in all dimensions are free parameters (except for covariances
between metallicity and velocity space, which are set to zero).
We additionally include an outlier component that consists of a
single Gaussian. This outlier component is isotropic in the space of
Galactocentric tangential velocities, and the width of the Gaussian in
this space is allowed to vary as a free parameter, σ out. The properties
of the outlier in the space of radial velocity and metallicity take
fixed values, described further below. We include this component
to account for any further contamination from BSs, which will
have much larger tangential velocity dispersion than the rest of
our sample. Our fit to each bin then has 13 free parameters: the
mean velocities μvr , μvθ

, and μvφ
, the dispersions σvr , σvθ

, and σvφ
,

and the covariances (‘tilt’) in these velocities Cov(vθ , vr), Cov(vφ ,
vr), and Cov(vφ , vθ ), the mean metallicity μ[Fe/H], the dispersion
in metallicity σ [Fe/H], the dispersion in tangential velocity of the
isotropic, zero-mean outlier distribution σ out, and the fraction of
outlier contamination fout.

We do not assume alignment of the dispersion tensor in spherical
polars. In fact, the alignment of the velocity dispersion tensor is
an important diagnostic of the gravitational potential (Smith, Wyn
Evans & An 2009b; An & Evans 2016). From earlier studies based
on samples of halo stars with noisier proper motions, the covariance
of velocities in spherical polar or tilt is believed to be small (e.g.
Smith et al. 2009b; Evans et al. 2016). This seems to be true of the
RR Lyrae population in the stellar halo, which has been recently
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382 L. Lancaster et al.

Figure 3. Kinematic and spectral parameters of the BHB sample after removal of Sgr Stream contaminants. Left-hand Panel: We show the distribution of
Galactocentric tangential velocities. Stars with total tangential velocity greater than 500 kms−1 are plotted as large points in purple. The colour of the points
indicates the magnitude of their tangential velocity, with more pink being higher velocity. Middle Panel: We show the distribution of the BHB stars in the
space of the scale width, b(γ ), of the H γ line versus the line’s shape, c(γ ). The black dotted line is the dividing line used in Deason et al. (2011) to divide BSs
from BHBs (although this was in the space of b versus c for the combined parameters across the H γ , H δ, and H β lines). We see that the higher velocity stars
lie preferentially on the BS side of this dividing line. Right-hand Panel: We show the distribution of the BHBs in SDSS colour–colour space, where apparent
high-velocity stars clearly lie preferentially in one corner of the diagram. According to Deason et al. (2011), this is exactly the region of colour–colour space
where we expect BS contamination to be highest. Motivated by this, we exclude all stars within the black box from our study.

Figure 4. Evolution of the correlation coefficients between the different
Galactocentric spherical-polar velocities. The correlation between two
random variables X and Y is defined here as Corr(X, Y) = Cov(X,
Y)/

√
Var(X)Var(Y ). We illustrate these quantities instead of the tilt of the

velocity ellipsoid as these parameters remain small even when the ellipsoid
has nearly equal variance in two given directions. Note that the radial bins are
artificially offset so that the errorbars are easier to observe. These errorbars
span the 16th to the 84th percentiles of the 1D posteriors in each of these
parameters.

analysed using Gaia DR2 proper motion data by Wegg, Gerhard &
Bieth (2019). We independently see that this is the case in the BHBs.
This result is illustrated in Fig. 4, which shows the evolution of the
correlations between the different velocity components as a function
of Galactocentric radius. We see that the correlations are consistent
with zero at all radii.

The likelihood for this model, L(D|θ ), where D is the vector of
all data points, and θ is the vector of model parameters, is given by

L(D|θ ) =
∏

i

∑
j=d,o

fjLj (Di |θ ) . (4)

Here, the product index i runs over all data points and the sum
index j runs over the two different components of the model: (1)
the ‘data’ component, denoted by a subscript d, and (2) the ‘outlier’
component denoted by a subscript o. Also, fj is the fraction of
component j that makes up the total data set. We then have the
likelihoods for the components defined as

Ld(Di |θ ) = N
(
vi |μ,�d

i

)
N

(
[Fe/H]i |μ[Fe/H], σ[Fe/H],i

)
, (5)

where N denotes a normal distribution, vi is the velocity of
data point i in Galactocentric spherical polar coordinates, μ ≡
(μvφ

, μvθ
, μvr ) is the mean in velocity space of the single Gaussian.

The full covariance matrix in velocity space �d
i is a sum of the

covariance matrix from measurement error �i and the covariance
matrix of the model being fit �d. Additionally, [Fe/H]i is the
metallicity of data point i, while μ[Fe/H] and σ [Fe/H], i are the mean
and dispersion. Again, the latter quantity is a combination (in
quadrature) of the individual measurement error and the standard
deviation of the model.

The outlier component of the model is relatively rigid, its
properties being described solely by its fractional contribution and
dispersion in tangential velocity. Its likelihood is defined as

Lo(Di |θ ) = N
(
vi |0, �o

i

)
N

(
[Fe/H]i |μ[Fe/H], σ[Fe/H],i

)
, (6)

where vi is the velocity of data point i, 0 denotes that the outlier
has zero mean in the velocity space, and �o

i ≡ �i + �o is the
covariance matrix of the distribution, which is a combination of
measurement error in the velocity space �i and the width of the
outlier component �o ≡ diag

(
σ 2

out, σ
2
out, σ

2
r,out

)
, where σ r, out is the

dispersion in the radial velocity space and is set to 150 km s−1 and
σ out is the dispersion in the tangential velocity space and is allowed
to vary as a free parameter of the fit. The parameters of the outlier
component in metallicity space are also fixed throughout the fit
μ[Fe/H] = −1.75, and σ [Fe/H], i = 0.2.

We additionally note that our single Gaussian model picks out
the velocity ellipsoid to be essentially isotropic in the tangential
velocity space (i.e. σvθ

= σvφ
) at all Galactocentric radii. This can

be seen from the results in Table 1. This observation motivates the
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Table 1. Priors and posterior estimates on all parameters in the single Gaussian fit, with outlier model. All priors are uniform within the
bounds quoted; those without bounds, we place no prior on. Values quoted are 16th, 50th, and 84th percentiles of the 1D PDF in each
parameter. In the last row, we quote the likelihood values evaluated at the 1D medians in each parameter in each bin.

Parameter Priors r = 4.9–13.1 kpc r = 13.1–19.2 kpc r = 19.2–30.0 kpc r = 30.0–67.93 kpc

μvφ
(km s−1) – 0.51+3.18

−3.18 7.42+2.76
−2.77 0.88+2.79

−2.72 6.81+5.01
−4.97

μvθ
(km s−1) – 7.12+2.99

−3.03 9.23+2.68
−2.72 3.91+2.44

−2.42 15.28+5.38
−5.35

μvr (km s−1) – −10.89+4.52
−4.76 −0.09+4.10

−4.25 −5.03+3.48
−3.50 −5.69+4.89

−4.88

σvφ
(km s−1) [0,400] 95.01+2.33

−2.28 81.07+2.03
−1.94 79.38+2.16

−2.03 79.81+4.59
−4.37

σvθ
(km s−1) [0,400] 87.84+2.11

−2.07 81.64+2.01
−1.94 69.62+1.92

−1.81 85.82+4.68
−4.47

σvr (km s−1) [0,400] 140.09+3.39
−3.28 123.90+2.99

−2.91 104.94+2.54
−2.47 96.57+3.54

−3.44

Corr(vφ , vθ ) [−0.5,0.5] 0.05+0.03
−0.03 −0.01+0.03

−0.04 0.02+0.04
−0.04 −0.10+0.08

−0.08

Corr(vφ , vr) [−0.5,0.5] 0.09+0.03
−0.03 0.05+0.03

−0.03 0.07+0.03
−0.03 0.00+0.06

−0.06

Corr(vr, vθ ) [−0.5,0.5] 0.01+0.03
−0.03 0.07+0.03

−0.03 0.04+0.03
−0.03 0.04+0.06

−0.06

μ[Fe/H] (dex) [−3,0] −1.72+0.01
−0.01 −1.75+0.01

−0.01 −1.75+0.01
−0.01 −1.84+0.02

−0.02

σ [Fe/H] (dex) [0,4] 0.19+0.01
−0.01 0.20+0.01

−0.01 0.20+0.01
−0.01 0.22+0.02

−0.02

σ out (km s−1) [500,3000] 1601.65+943.50
−834.21 1594.84+953.75

−847.71 1263.46+1115.13
−638.11 1315.08+1069.54

−666.18

fout [0,0.01] 0.0009+0.0015
−0.0007 0.0010+0.0016

−0.0007 0.0012+0.0021
−0.0009 0.0025+0.0034

−0.0018
lnLmed – −16 260.83 −16 279.96 −15 865.73 −7556.01

simplification of the description of the space of tangential velocities
in our next model.

3.2 Gaussian mixture model

Our second model is a GMM (Press et al. 2007) that is motivated
by the results of several recent works that have suggested that
the stellar halo could be largely dominated by a single, ancient,
extremely radial merger (Belokurov et al. 2018; Deason et al. 2018;
Helmi et al. 2018; Kruijssen et al. 2018; Myeong et al. 2018a,b).
Our mixture model consists of two components, one representing
the more metal-poor, largely isotropic stellar halo, and the other
representing the more metal-rich, radially anisotropic stars from the
putative massive, accretion event (the ‘Sausage’). This dichotomy
is clearly seen in the plots of the stellar halo in action space at
different metallicities presented in, e.g. Belokurov et al. (2018)
and Myeong et al. (2018b). In the mixture model, anticipating the
insights gained from the results of our single Gaussian fit, we do
not include any outliers, nor do we allow any tilt in the velocity
ellipsoid. These assumptions significantly reduce the complexity
of the model, speeding our calculations and helping avoid possible
degeneracies that could arise from a large number of parameters.

The first of our two components is a single Gaussian, meant
to represent the large isotropic portion of the halo, with zero
mean in all velocity components and whose velocity tensor in the
tangential direction is enforced to be isotropic (σt,h ≡ σvφ

= σvθ
).

We additionally allow the mean metallicity μ[Fe/H], h, metallicity
dispersion σ [Fe/H], h, and fractional contribution of this component,
fh, to vary. This then leaves five free parameters describing this
component {σt,h, σvr,h, μ[Fe/H],h, σ[Fe/H],h, fh}.

The second – or the ‘Sausage’ – component is built from two
Gaussians with equal mixing fraction, which are identical except
for their mean radial velocities. They are set as μvr,1 = +δ and
μvr,2 = −δ, where the radial velocity separation δ is treated as a
free parameter in the fit. This heuristic model mimics the behaviour
found in the local sample of SDSS–Gaia stars from Belokurov et al.
(2018), in which, after subtracting a zero-mean GMM, there are
distinct ‘lobes’ at high positive and high negative radial velocity. Our
parametrization has a simple physical explanation. If a component

of the stellar halo is well mixed and highly radially anisotropic,
then the velocity distribution of the stars can still be Gaussian to a
good approximation at any spot (e.g. Osipkov 1979; Merritt 1985;
Evans & An 2006). However, if the component comes from a single
accretion event, then a sample restricted to a small volume lying
between the apocentres and pericentres of stars from the accretion
event will be missing the stars ‘turning around’ on their orbits.
Thus, we will only observe stars at large negative (incoming) or
positive (outgoing) radial velocity. The two ‘lobes’ are expected to
be overlapping near the peri and the apo of the debris and move
further apart in between the turning points. Given the fact that the
orbital velocities increase towards the Galactic Centre, combined
with the action of the apsidal precession, the maximal separation
between the lobes is likely attained at small Galactocentric radii.

For this Sausage component, in addition to δ, we then have the
following free parameters representing the shape of each of the
two Gaussians: the radial velocity dispersion σvr,r, the tangential
velocity dispersion, σt,r ≡ σvφ

= σvθ
, the mean metallicity μ[Fe/H], r,

and metallicity dispersion σ [Fe/H], r. We also allow for mean rotation
μvφ,r in this component, motivated by the findings of Belokurov
et al. (2018), Helmi et al. (2018), and Myeong et al. (2018b), giving
us six free parameters.

We then have the likelihood for this GMM defined similarly to
equation (4) as

L(D|θ ) =
∏

i

∑
j=r,h

fjLj (Di |θ ) , (7)

where i is again a product over the data points, and j is a sum over
the different components of the model (r for the radially anisotropic
component and h for the isotropic halo component), while fj denotes
the fractional contribution from component j.

The likelihood of the isotropic halo component is given by

Lh (Di |θ ) = N
(
vi |0, �h

i

)
N

(
[Fe/H]i |μ[Fe/H],h, σ[Fe/H],i

)
, (8)

where the velocities are normally distributed about zero mean with
a covariance matrix �h

i , which is a combination of measurement
error and the intrinsic dispersions.
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Table 2. Priors and posterior estimates on all parameters in the GMM fit. All priors are uniform within the bounds quoted; those without
bounds, we place no prior on. Values quoted are 16th, 50th, and 84th percentiles of the 1D PDF in each parameter. In the last row, we quote
the likelihood values evaluated at the 1D medians in each parameter in each bin.

Parameter Priors r = 4.9–13.1 kpc r = 13.1–19.2 kpc r = 19.2–30.0 kpc r = 30.0–67.93 kpc

μvφ,r (km s−1) – −4.49+4.55
−4.41 11.54+2.25

−2.26 14.13+2.31
−2.30 −27.39+56.40

−73.68

μ[Fe/H], h (dex) [−3,0] −1.82+0.03
−0.02 −1.88+0.01

−0.01 −1.85+0.02
−0.02 −1.86+0.02

−0.02

μ[Fe/H], r (dex) [−3,0] −1.62+0.02
−0.02 −1.60+0.02

−0.02 −1.62+0.02
−0.02 −1.29+0.10

−0.13

σ [Fe/H], h (dex) [0,4] 0.10+0.04
−0.05 0.09+0.03

−0.04 0.15+0.02
−0.02 0.17+0.04

−0.06

σ [Fe/H], r (dex) [0,4] 0.21+0.02
−0.02 0.18+0.02

−0.02 0.17+0.02
−0.02 0.12+0.20

−0.09

σvr,h (km s−1) [0,400] 129.24+5.69
−5.46 122.03+4.38

−4.25 113.62+4.09
−3.83 95.21+3.56

−3.72

σ t, h (km s−1) [0,400] 114.27+4.58
−4.32 105.41+3.00

−2.76 96.72+3.03
−3.00 79.33+3.57

−3.44

σvr,r (km s−1) [0,400] 109.93+11.91
−7.91 78.21+5.13

−4.43 62.91+7.50
−5.13 176.36+87.76

−53.12

σ t, r (km s−1) [0,400] 58.18+3.78
−4.57 34.02+1.78

−1.71 29.14+2.04
−1.86 145.69+47.78

−30.27

δout (km s−1) [0,500] 104.16+11.84
−16.81 98.60+5.25

−5.64 67.75+5.28
−6.82 82.87+57.31

−54.80

fh [0.01,0.99] 0.52+0.07
−0.06 0.55+0.03

−0.03 0.55+0.03
−0.03 0.96+0.02

−0.04
lnLmed – −16 205.77 −16 084.97 −15 714.09 −7552.66

The likelihood of the radially anisotropic or Sausage component
is a bit more complicated. It is given by

Lr (Di |θ ) = [
1
2N

(
vi |μ1,�

r
i

) + 1
2N

(
vi |μ2,�

r
i

)]

×N
(
[Fe/H]i |μ[Fe/H],r, σ[Fe/H],i

)
, (9)

where the means are μ1 ≡ (
μvφ

, 0, δ
)
, μ2 ≡ (

μvφ
, 0,−δ

)
, and the

covariance of the Gaussian �r
i is a combination of the measurement

error �i and the intrinsic dispersions �r ≡ diag
(
σ 2

vφ
, σ 2

vφ
, σ 2

vr

)
.

We then fit each Galactocentric distance bin individually using the
above likelihood. We do not require the Sausage component to have
a larger radial velocity dispersion than the isotropic component, nor
do we impose any requirement that it is of higher metallicity. We
adopt very conservative (uniform) priors for each parameter in our
fit and allow for each of these characteristics to arise from the fit.

For the single-Gaussian component fit to the data, there are a
total of 52 free parameters (13 for each of the four distance bins),
while for the two-component model there are 44 free parameters
(11 for each of the four distance bins). Therefore, due to restrictions
imposed on the two-component model, it actually has fewer degrees
of freedom than the single Gaussian model, making it a priori less
susceptible to overfitting.

4 R ESULTS

After sampling the model parameters using ÀEMCEE’, we obtain
their posterior distribution functions (PDFs), which have only a
single mode and have shapes very close to Gaussian. In Tables 1
and 2, we show the parameter estimates from our fits, quoted as
the 16th, 50th, and 84th percentiles of the 1D posteriors in each
parameter. For each model parameter, we use the median (50th
percentile) of the 1D PDF as a parameter estimate. To assess the
performance of the model against the data, we use these estimated
best-fitting parameters to sample the model and convolve each
sampled point with a Gaussian error sampled randomly from the
data set. The resulting predictive distributions can be compared to
the data in Figs 5, 6, and 7.

Upon inspection of Fig. 5, it is clear that the distribution of the
data is not well explained by a single Gaussian component. This is
most evident in the distributions of tangential velocities. Especially

in the inner three radial bins, the central regions of the distribution
exhibit strong deviations from the best-fitting model.

Fig. 6 clearly shows that the two-component mixture model is
a much better fit to the shape of the velocity ellipsoid, especially
in the inner halo r < 30 kpc. More quantitatively, one can tell that
the two-component mixture model provides a better fit to the data
from parameters provided in the bottom row of Tables 1 and 2: the
difference of the sum of the likelihoods over all distance bins is
ln
(
Lmed,GMM

) − ln
(
Lmed,single

) = 405 despite the smaller number
of parameters in the mixture model. We enforce no constraint that
requires the Sausage component to be dynamically colder in the
tangential velocities: this comes out naturally from the fit. Similarly,
the Sausage is naturally chosen to be more metal-rich by our fit. This
is despite the fact that BHBs are naturally more metal-poor objects,
making our measurement biased against the Sausage component
that is metal-rich (Belokurov et al. 2018). At the moment, the best
unbiased estimates of the metallicity distribution of the Sausage
are those using main-sequence stars such as Necib, Lisanti &
Belokurov (2018) and Belokurov et al. (2018), which suggest mean
metallicities of about [Fe/H] ≈ −1.4, but also indicate that the
distribution is broad and extends well into the metallicities probed
in this study. So, though it is likely that our use of a metal-poor
tracer will bias our estimate of the fractional contribution to the
Sausage to the stellar halo, we can still clearly demonstrate that the
Sausage makes up a large fraction of our sample.

In Fig. 7, we show the residuals of our two models in the plane
of Galactocentric radial velocity versus Galactocentric azimuthal
velocity in the third Galactocentric distance bin (rgc = 19.2–
30 kpc). This comparison further illustrates the failings of the single
Gaussian model as well as the reason why the ‘sausage’ component
is picked out to be the tangentially cold component in our GMM fit.

Another indication that this model makes good physical sense
is the behaviour of the parameters of the fit as a function of
radius, as shown in Fig. 8. The fractional contribution of the
Sausage falls sharply at distances beyond 20 kpc, as the isotropic
component becomes dominant. This corresponds to the proposed
apocentric pile-up of stars connected with the ancient, radial
accretion event (e.g. Deason et al. 2018). The velocity separation
of the lobes also decreases with increasing radius. This is expected
from the physical interpretation of the lobes as the infalling and
outgoing parts of a highly eccentric merger event. The lobes attain
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The halo’s progenitor with BHB stars 385

Figure 5. The single Gaussian fit to the velocity distributions. We show the results of independently fitting each of our four distance bins, allowing for
variation in all parameters of the distribution save for covariance between the velocity components and metallicity. These bins contain 880, 895, 884, and
405 stars, respectively. We compare our model to the data by sampling from our best-fitting model (specified by 1D posterior medians) and convolving each
sampled point with a randomly selected error from the data. This should provide a fair way of comparing the model with the data and takes into account the
uncertainties. It is clear from the tangential velocity distributions that the data distribution is not well fitted by a single Gaussian. Note that since the outlier
model has a negligible contribution, we do not show it here.

the furthest separation close to the Galactic Centre, when the
stars are moving the fastest. They then approach each other on
moving outwards, essentially totally overlapping with one another
in the third distance bin. According to this interpretation, we would
expect the isotropic component to become completely dominant
beyond the apocentre radius ∼20–30 kpc and the δ parameter to
therefore become largely unconstrained, which is exactly what we
see.

In Fig. 9, we summarize the kinematic properties of the Milky
Way’s stellar halo inferred from the fits. We display how the
velocity dispersions in the radial and tangential directions evolve
for our four different distance bins. In light blue, the quantities
predicted are calculated by computing the standard deviation in
each velocity component directly from the data (and subtracting the
mean velocity error in quadrature, cf. Bird et al. 2019). Note that
to do this measurement we also perform ‘sigma clipping’ whereby
we recursively remove any star that lies outside of 4σ according
to the calculated standard deviation. This helps to beat down the
contamination by outliers such as BSs. We then show the quantities
inferred by our single Gaussian model (in pink), along with each

component of the GMM (isotropic in light green and radial in
dark blue). Finally, the orange curve gives the combination of both
components in the GMM model, which is derived from sampling
the parameters of the GMM model.

There are two main points to be made. The first comes from
a comparison of the dispersion calculated directly from the data
(when mean error is subtracted in quadrature), and that inferred
from deconvolution. The lesson to be learned here is that taking
measurement error into account (in a rigorous way) when perform-
ing calculations such as these is important and can lead to different
answers, especially when the errors are large or when the data set
contains a mixture of points with a wide range of uncertainties. In
fact, testing this method on fake data, generated to have similar
errors to those found in our last Galactocentric distance bin, we
found that simple dispersion-based method underestimated β by
about 0.4. The second point here is, surprisingly, that changing the
underlying model being fit to the data does not result in drastically
different estimates of the second moments of the velocity ellipsoid.
While our GMM model is clearly a much better fit to the data,
it predicts generally the same velocity dispersions as the single
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386 L. Lancaster et al.

Figure 6. The GMM fit. We show the results of independently fitting each of our four distance bins, allowing for variation in all parameters of the model.
These bins contain 880, 895, 884, and 405 stars, respectively. Similarly to Fig. 5, in order to compare data to model, we sample from our best-fitting model
and convolve each sampled point with a randomly selected error from the data set.

Figure 7. Comparison of fit residuals in plane of velocities. We show residuals in the plane of radial velocity versus azimuthal velocity for our two models
when fit to the data in our third Galactocentric distance bin (rgc = 19.2–30 kpc), where the differences are most clear. The ‘Data’ histogram was constructed
using 884 stars, and the histogram has 30 bins on each side, meaning that a uniform distribution would correspond to ∼1 star per bin. Bright yellow corresponds
to the model underpredicting the number of stars in the bin by five stars, while dark blue corresponds to the model overpredicting the number of stars in that
bin by five. Left-hand Panel: Histogram of the data. Middle Panel: The residuals of the single Gaussian model, which clearly underpredicts the density at low
|vφ |. Right-hand Panel: The residuals of the GMM fit.
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The halo’s progenitor with BHB stars 387

Figure 8. The behaviour of the components in the GMM fit with Galacto-
centric distance. Values shown are 1D medians of the given parameter over
the posterior, the errors are based on the 16th and 84th percentiles of the 1D
posterior distribution. Top panel: We show the evolution of the fractional
contribution of the two components. Note that the radially anisotropic or
Sausage component falls off dramatically beyond ∼20 kpc. Bottom panel:
We show how the separation of the lobes in Galactocentric radial velocity
of the Sausage changes.

Gaussian fit. This is most likely due to the fact that the contribution
of the two components of our GMM is either nearly equal (inner
halo) or completely dominated by one component (outer halo),
meaning that a single Gaussian fit would try to fit equally between
the two components, resulting in a similar velocity dispersion.

5 C O N C L U S I O N S

We have assembled a high-purity set of BHB stars with spectro-
scopic data from the SDSS and astrometric data courtesy of the
Gaia satellite. The sample of 3064 BHBS has seven-dimensional
phase space information (positions, velocities, and metallicities).
This enables the kinematic properties of the BHBs in the Milky
Way halo to be studied out to ∼40 kpc.

Traditionally, the stellar halo has often been represented by a
single distribution function (e.g. Posti et al. 2015; Williams & Evans
2015). The underlying assumption is that the stars are well mixed
and relaxed in a steady potential. However, it has perhaps never
been entirely clear that stellar haloes satisfy such requirements. The
time taken for stars in the outer parts of galaxies to exchange angular
momenta with each other is longer than a Hubble time, so unrelaxed
structures are expected to be abundant.

None the less, if the velocity distributions of the BHB stars are
fitted with a single Gaussian with spatially varying dispersions, then
some interesting conclusions can be obtained. First, the tilt angles
or covariances are small. The velocity dispersion tensor is closely
aligned with the spherical polar coordinate system. This result has
been seen before with poorer quality proper motion data (Smith
et al. 2009b; Evans et al. 2016) and has recently been confirmed in
the inner halo by Wegg et al. (2019) for a large sample of 15 651 RR
Lyrae with accurate proper motions from Gaia DR2. The only non-

Figure 9. Radial evolution of the kinematic properties of the halo. The
light green lines represent the isotropic component of the GMM, while the
dark blue represents the Sausage component. The orange lines represent
the measurement from the combination of two components. The pink lines
represent the results for the single Gaussian model. Finally, the light blue
lines are used for quantities calculated directly from standard deviations
of the data, including sigma clipping, and compensating for measurement
error in quadrature. Values shown are 1D medians of the given parameter
over the posterior; the errors are based on the 16th and 84th percentiles
of the 1D posterior distribution. Top Panel: Radial velocity dispersion with
Galactocentric radius. Middle Panel: Tangential velocity dispersions. For the
‘Data’ and the ‘Single Gaussian’ models, there is a difference between the
dispersion in the polar velocity σvθ

and the azimuthal velocity σvφ
; these are

shown separately as the dash–dotted and dotted lines, respectively. Bottom
Panel: We show the evolution of the radial anisotropy parameter, defined by
equation (1).

MNRAS 486, 378–389 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/1/378/5420447 by U
niversity of D

urham
 user on 11 April 2019



388 L. Lancaster et al.

singular potential for which spherical alignment occurs everywhere
is spherically symmetric (Smith et al. 2009b; An & Evans 2016).
Secondly, the best single Gaussian fit confirms that the stellar halo
is radially anisotropic. Although the dispersions evolve with radius,
the anisotropy parameter is constant at β ≈ 0.6 in the inner halo,
dropping to values of 0.3 beyond the proposed apocentre of the Gaia
Sausage. The radial velocity dispersion σ 2

vr
is largest. Although σ 2

vφ

and σ 2
vθ

can be different, the best fit usually has the two angular
dispersions the same within 1σ . This also suggests that the potential
is close to spherical.

The data however exhibit significant deviations from a single
Gaussian velocity distribution. The central regions of the angular
velocity distributions, especially in the inner halo, are not well
matched. This contributes to the emerging picture of the Milky
Way’s stellar halo as possessing multiple unrelaxed components
and motivated us to seek a new model. We devised a GMM of
an unusual form, using the insights supplied by Myeong et al.
(2018b), Deason et al. (2018), and Belokurov et al. (2018) in
their studies of the halo in action space, orbital elements space,
and velocity space, respectively. The first component of the GMM
is an isotropic Gaussian with dispersions aligned in spherical
polar coordinates. Although we make no assumptions about its
metallicity, our choice is inspired by the largely isotropic metal-
poor halo (e.g. Myeong et al. 2018b). The second component is
built from a sum of two Gaussians, each one of which mimics
the lobes of the velocity distribution of the ‘Gaia Sausage’ seen
by Belokurov et al. (2018). The Gaussians are radially anisotropic
and have means in Galactocentric radial velocity separated by δ to
represent the incoming and outgoing parts of an unrelaxed structure
created by the remote infall of a dwarf galaxy. Note that a very
similar modelling approach has been recently applied to the local
halo data by Necib et al. (2018).

The GMM provides a better match to the data. In particular,
the Sausage component is dynamically colder in the tangential
velocities than the isotropic component. Similarly, the Sausage
component is more metal-rich than the isotropic component. These
properties emerge naturally from the fit, but are in good agreement
with previous attempts to characterize this ancient accretion event.
The behaviour of the velocity offset between two lobes in the model
also makes good physical sense. It is largest (δ ≈ 100 kms−1) in
the inner Galaxy, where we expect the stars to be moving fastest
but having not reached pericentre yet, and it drops dramatically at
distances of ≈20 kpc. This is believed to mark the apocentres of
the stars that once belonged to the Sausage Galaxy (Deason et al.
2018). This interpretation is further confirmed by the contribution
of the Sausage component dropping dramatically beyond ∼30 kpc,
consistent with the results of Deason et al. (2011). Here, for the first
time, we directly track the change in the stellar halo composition
over a large range of radii. Our results strongly argue that the
stellar halo of the Milky Way is in large part unrelaxed, even in
its innermost parts.

Our model fit provides further evidence for the inner 30 kpc of
the stellar halo of the Milky Way being in large part dominated by
an ancient, massive, radial merger event. According to our models,
this massive event contributed a significant fraction of the stellar
halo’s mass. Its fractional contribution to the stellar halo varying as
a function of radius, but it makes up ∼50 per cent of the metal-poor
stellar halo in the inner 30 kpc. As our sample is biased towards
metal-poor stars, and thus against the metal-rich Gaia Sausage (see
Belokurov et al. 2018), this should really be viewed as a lower
bound on the fractional contribution of this merger event to the

overall halo contents. The prospect of larger data sets with seven-
dimensional phase space information suggests elaborations of our
work here will shortly be possible. In particular, it is unclear whether
the Gaia Sausage is the residue of a single very radial infall, or two or
more infalls, one prograde and one retrograde (cf. Kruijssen et al.
2018). The methodology of this paper applied to the kinematics
and chemistry of still larger samples of halo stars may enable
further clues to be deduced about the remote history of our Galactic
home.
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