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Abstract: We prove distance bounds for graphs possessing positive Bakry-Émery curvature apart from an
exceptional set, where the curvature is allowed to be non-positive. If the set of non-positively curved vertices
is �nite, then the graph admits an explicit upper bound for the diameter. Otherwise, the graph is a subset
of the tubular neighborhood with an explicit radius around the non-positively curved vertices. Those results
seem to be the �rst assuming non-constant Bakry-Émery curvature assumptions on graphs.
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1 Introduction
In Riemannian geometry, diameter bounds for complete connected Riemannian manifolds are well estab-
lished under several curvature assumptions. The well known Bonnet-Myers theorem states that if the Ricci
curvature of a manifold is larger than a positive threshold, the diameter of the manifold is �nite, and, there-
fore, the manifold itself compact, see [24, 35] and the references therein. In particular, the classical Jacobi
�eld technique used there provides also a sharp upper estimate for the diameter. Later on, this result was
generalized in [36]. There, the authors assumed that the amount of the Ricci curvature of the manifoldM be-
low a positive level is locally uniformly Lp-small for some p > dimM/2, and obtain indeed a diameter bound
depending on this kind of smallness of the curvature.
The concept of Ricci curvature was transferred into various settings. Let us provide a brief summary of the
history. Already in 1985, Bakry and Émery introduced Ricci curvature on di�usion semigroups via the highly
generalizable Γ-calculus [2] derived from the Bochner formula. This approach has �rst been applied to a dis-
crete setting in [8] anddiverselyused in [4, 7, 15, 17, 20, 21, 28, 30, 32, 33, 37]. The theoryof localmetricmeasure
spaces has also bene�tted from the Bakry-Émery approach. For more information about Ricci-curvature on
metric measure spaces, see [1, 10, 29, 38]. A concept of Ricci curvature on graphs via optimal transport has
been introduced by Ollivier [34] and applied in [5, 23, 27, 30]. Recently, Erbar, Maas and Mielke introduced
a Ricci curvature on graphs via convexity of the entropy [9, 11, 12, 31]. In a highly celebrated paper, Erbar,
Kuwada and Sturm proved that on metric measure spaces, the concepts of Ricci curvature via Γ-calculus
(Bakry-Émery) and optimal transport and entropy (Lott-Sturm-Villani) coincide [10]. On the other hand, in
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the setting of graphs, Bakry-Émery Ricci curvature and Ollivier Ricci curvature are often quite di�erent and
there are many open questions about the relations between these curvature notions.

It is now natural to ask for analogues and generalizations of the diameter bounds for manifolds above
to contexts in which concepts of Ricci curvature exist. For metric measure spaces, there have been attempts
to generalize the Bonnet-Myers theorem to variable Ricci curvature bounds in an integral sense, see [25] and
the references therein. For connected graphs G = (V , E), the authors of [28] show a sharp diameter bound
assuming positive Bakry-Émery curvature in the CD(K, N)-setting for N ∈ (0,∞], notions of curvaturewewill
introduce below. For convenience, we recall the result for further reference.

Theorem 1.1 ([28]). Let G = (V , w,m) be a graph.

1. Assume that CD(K, ∞) holds for K > 0 and the graph admits an upper boundDegmax for theweighted vertex
degree. Then, we have

diamd(G) ≤
2Degmax

K ,

where diamd is the diameter of G with respect to the combinatorial distance.
2. Assume that CD(K, N) holds for K, N > 0. Suppose that G is complete in the sense of [20] and satis�es

infx∈V m(x) > 0. Then, we have

diamσ(G) ≤ π
√
N
K ,

where σ is the resistance metric de�ned below.

In this article, we generalize the above discrete Bonnet-Myers theorem to the situation where the graph
is positively curved except on a vertex set V0, where the curvature is allowed to be non-positive. The main
result below states that a graph is always covered by the tubular neighborhood around the negatively curved
vertices of an explicit radius depending on local curvature dimension assumptions, which are given point-
wise by the Bochner formula shown below. This description of the curvature involves the Laplacian of the
space considered. The idea is to compare the di�erent curvature values on the sets V0 and V \ V0 via the
semigroups associated to di�erent Laplacians. On one hand, we have a graph of constant positive curvature,
the lower curvature bound of V \V0, and a graph of constant negative curvature, the lower curvature bound of
V0. Those lead to di�erent Laplacians and therefore to di�erent semigroups, which have to be controlled in a
manner such that the diameter of thewhole graph can be bounded above. After we introduced the neccessary
framework and themain result in the section below, we show several preparatory estimates of the semigroup
depending on the set of negatively curved vertices and re�ne the analysis of the techniques developed in [28].

2 Setting and main result
Let G = (V , w,m) be a weighted, connected, locally �nite graph. That is, on the vertex set V ≠ ∅, we introduce
a symmetric map

w : V × V → [0,∞), (x, y) 7→ wxy = wyx

and
m : V → (0,∞), x 7→ mx .

If x, y are two vertices with wxy > 0, we say they are neighbors, or they are connected by an edge, and write
x ∼ y. We say G is locally �nite if each vertex has �nitely many neighbors. The maps w and m introduced
above represent the edge measure and the vertex measure of G, respectively.

For any two vertices of a connected graph, there is a path connecting them. The graphdistance d : V×V →
[0,∞] is given by the number of edges in a shortest path between two vertices. The diameter diam(V ′) of a
set V ′ ⊂ V is the maximum graph distance between any two vertices in V ′. By Tr(V ′) we denote the tubular
neighborhood of V ′ ⊂ V of radius r > 0. If V ′ = {x} for some x ∈ V, then Br(x) := Tr(V ′), the ball around x
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with radius r > 0. As usual, the weighted degree of a vertex x ∈ V is given by

Deg(x) = 1
m(x)

∑
y∈V

wxy .

We say that G has bounded vertex degree if there exists Degmax < ∞ with Deg(x) ≤ Degmax for all vertices
x ∈ V. Denote by Cc(V) the set of �nitely supported functions on V and ‖ · ‖∞ the maximum norm. The
Laplacian on functions f ∈ Cc(V) is de�ned by

∆f (x) = 1
m(x)

∑
y∈V

wxy(f (y) − f (x)), x ∈ V .

Remark 2.1. If m(x) =
∑

y∈V wxy for any x ∈ V, the associated Laplacian is called the normalized Laplacian.
If m(x) = 1 for any x ∈ V, the Laplacian is called combinatorial or physical.

The de�nition of the Laplacian leads to the so-called carré du champ operator Γ: for all f , g ∈ Cc(V),
x ∈ V:

Γ(f , g)(x) = 1
2(∆(fg) − f∆g − g∆f )(x)

= 1
2m(x)

∑
y∈V

ωxy(f (y) − f (x))(g(y) − g(x)).

For simplicity, we always write Γ(f ) := Γ(f , f ). Iterating Γ, we can de�ne another form Γ2, which is given by

Γ2(f , g)(x) =
1
2(∆Γ(f , g) − Γ(f , ∆g) − Γ(g, ∆f ))(x), x ∈ V , f , g ∈ Cc(V).

We abbreviate Γ2(f ) = Γ2(f , f ).
Asmentioned before, the graph distance is de�ned by shortest paths between two points. In contrast, we can
de�ne another kind of metric coming from the operator Γ.

De�nition 2.2 (Intrinsic/resistance metric). Let G = (V , w,m) be a graph.

(i) A metric ρ on V is called intrinsic if for all x ∈ V,∥∥Γρ(x, ·)∥∥∞ ≤ 1. (2.1)

(ii) For an intrinsic metric ρ, the jump size of ρ is given by

Rρ := sup{ρ(x, y) | x ∼ y}.

(iii) The resistance metric σ on V is given by

σ : V × V → [0.∞], (x, y) 7→ sup{f (y) − f (x) | ‖Γf‖∞ ≤ 1}.

As in the case of the graph distance, if r is an intrinsic or the resistance metric, we de�ne diamr(V ′) for
a subset V ′ ⊂ V to be the diameter of V ′ with respect to r, and TrR(V ′) denotes the tubular neighborhood of
V ′ of radius R with respect to r, etc. Intrinsic metrics have already been used to solve various problems on
graphs, see, e.g., [3, 6, 13, 14, 16, 18, 19].

Example 2.3. A natural intrinsic metric on a graph was introduced in [22, De�nition 1.6.4] (see also [20, Ex-
ample 2.9]):

ρ(x, y) = inf
γ

n−1∑
i=0

(Deg(xi) ∨ Deg(xi+1))−1/2, x, y ∈ V ,

where γ is a path x = x0 ∼ x1 ∼ . . . ∼ xn−1 ∼ xn = y, and a ∨ b := max{a, b} for a, b ∈ R.

Remark 2.4. (i) All metrics smaller than an intrinsic metric are intrinsic, too. In general, the resistance met-
ric σ is not intrinsic, but is greater than all intrinsic metrics.
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(ii) The properties of the resistance metric rely on the properties of the underlying Laplacian. It is shown in
Proposition 2.6 that if Deg(x) ≤ Degmax < ∞ for all x ∈ V, we have that ρ is intrinsic with

ρ(x, y) :=
√

2
Degmax

d(x, y).

(iii) If ρ is intrinsic and all ρ-balls are �nite, then G is complete [20, Theorem 2.8]. For the reader’s conve-
nience, we recall that a graph G = (V , w,m) is complete in the sense of [20] if there exists a nondecreas-
ing sequence of �nitely supported functions {ηk}∞k=1 such that limk→∞ ηk = 1V and Γ(ηk) ≤ 1/k, where
1V is the constant function 1 on V.

The operator Γ not only leads to a de�nition of a metric, but also to the curvature conditions in the sense
of Bakry-Émery.

De�nition 2.5. Let K ∈ R and N ∈ (0,∞].

(i) De�ne the pointwise curvature dimension condition CD(K, N, x) for x ∈ V by

Γ2(f )(x) ≥ KΓ(f )(x) +
1
N (∆f )

2(x), for any f : V → R.

(ii) The curvature dimension condition CD(K, N) holds i� CD(K, N, x) holds for any x ∈ V.
(iii) For any x ∈ V, we de�ne

KG,x(N) := sup{K ∈ R | CD(K, N, x)}.

We will need di�erent assumptions to guarantee the semigroup characterization of Bakry-Émery curva-
ture (see [17, 20]). These assumptions are satis�ed whenever the vertex measure m is non-degenerate, that
is,

inf
x∈V

m(x) > 0,

andall ballswith respect to an intrinsicmetric are �nite. In the case of boundedvertexdegreeDeg(x) ≤ Degmax
for all x ∈ V, the non-degenerate vertex measure condition can usually be dropped.

In case of bounded vertex degree, the combinatorial distance is intrinsic up to a constant. Furthermore,
we have a uniform control of the dimension in terms of the curvature.

Proposition 2.6. Let G = (V , w,m) be a graph with bounded degree Deg(x) ≤ Degmax. Then, ρ := d
√

2
Degmax

is

an intrinsic metric. Furthermore if G satis�es CD(K, ∞), it also satis�es CD(K − s, 2 Degmax
s ) for all s > 0.

Proof. Let x, x0 ∈ V and let g := ρ(x0, ·) We have

Γg(x) = 1
2m(x)

∑
y
w(x, y)(g(x) − g(y))2

≤ 1
2m(x)

∑
y
w(x, y)

√
2

Degmax

2

≤ 2
Degmax

· Degmax
2

= 1

which shows that ρ is an intrinsic metric. Furthermore, CD(K, ∞) implies for all f ,

Γ2f ≥ (K − s)Γf + sΓf ≥ (K − s)Γf +
s

2Degmax
(∆f )2

where the latter inequality follows from Cauchy-Schwarz. Hence, G satis�es the condition CD(K − s, 2 Degmax
s )

as claimed.

The main theorem stated below extends Theorem 1.1 to the case of negatively curved vertices.
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Theorem 2.7. Let G = (V , w,m) be a weighted, complete graph with non-degenerate vertex measure m, let
N ∈ (0,∞], and ρ an intrinsic metric on G. De�ne

V0 := {x ∈ V | KG,x(N) ≤ 0}.

(i) If N = ∞, V0 = ∅, Deg(x) ≤ Degmax < ∞ for any x ∈ V, and CD(K0, N) for K0 > 0, then

diamρ(G) ≤
2
√
2Degmax
K0

.

(ii) If N < ∞, V0 = ∅, and CD(K0, N) for K0 > 0, then

diamρ(G) ≤ π
√
N
K0

.

(iii) If N = ∞, V0 ≠ ∅, Deg(x) ≤ Degmax < ∞ for all x ∈ V, and assuming, for K, K0 > 0,

CD(−K0, N, x) ∀ x ∈ V and CD(K, N, x) ∀ x ∈ V \ V0,

then
V ⊂ TR(V0), R := 1 + 18.2

√
2 e4K0/K Degmax√

KK0
.

1. If N < ∞, V0 ≠ ∅, and assuming, for K, K0 > 0,

CD(−K0, N, x) ∀ x ∈ V and CD(K, N, x) ∀ x ∈ V \ V0,

then
V ⊂ TρR(V0), R := Rρ + 18.2e2K0/K

√
N

K + K0
.

Note that (i) and (ii) in the above theorem are included in [28] since every intrinsic metric is dominated
by the resistance metric and, therefore,

diamρ(G) ≤ diamσ(G).

We also point out that any locally �nite graph with Degmax < ∞ is complete by Proposition 2.6 and Remark
2.4 (iii).

3 CD conditions and semigroups
By the spectral calculus, we can associate to ∆ the heat semigroup (Pt)t≥0. Using a standard argument, we
derive a commutation formula for the semigroup and the gradient depending on the set of negatively curved
vertices.

Proposition 3.1. Let G = (V , w,m) be aweighted, complete graph with non-degenerate vertexmeasure m, and
N ∈ (0,∞]. De�ne

V0 := {x ∈ V | KG,x(N) ≤ 0}.

Let K > 0, K0 ≥ 0 such that

CD(−K0, N, x) ∀ x ∈ V and CD(K, N, x) ∀ x ∈ V \ V0.

Then for any bounded function f : V → R with bounded Γf ,

Γ(PT f )(x) ≤ e−2KTPT(Γf )(x) −
1 − e−2KT
KN (∆PT f )2(x) + 2(K0 + K)‖Γf‖∞e2K0T

T∫
0

e−2(K+K0)sPs1V0 (x)ds. (3.1)
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Remark 3.2. Let G = (V , w,m) be a weighted, complete graph with non-degenerate vertex measure m. If
G satis�es CD(K, N), K ∈ R, N ∈ (0,∞], it was shown in [28, Lemma 2.3] that for any bounded function
f : V → R with bounded Γf ,

ΓPt f (x) ≤ e−2KtPtΓf (x) −
1 − e−2Kt
KN (∆Pt f )2(x). (3.2)

So the estimate (3.1) is a re�nement of (3.2) in the setting of Proposition 3.1.

Proof. As in the classical Ledoux-ansatz, for a bounded function f : V → R and T > 0, let

F(s) = e−2KsPsΓPT−s f (x)

and compute

F′(s) = e−2Ks
(
−2KPsΓPT−s f (x) + ∆PsΓPT−s f (x) + 2PsΓ(PT−s f , −∆PT−s f )(x)

)
= e−2KsPs

(
−2KΓPT−s f + ∆ΓPT−s f − 2Γ(PT−s f , ∆PT−s f )

)
(x)

= e−2KsPs
(
2Γ2(PT−s f ) − 2KΓ(PT−s f )

)
(x).

It is well known that the heat semigroup is generated by a smooth integral kernel, which is called the heat
kernel. In particular, it can be proved that there is a pointwiseminimal version, called p : (0,∞)×V ×V → R,
obtained via an exhaustion procedure by Dirichlet heat kernels on compact (= �nite) subsets of V (see, e.g.,
[26, 39]).Therefore, we get

F′(s) = 2e−2Ks
∑
y∈V

p(s, x, y)
[
Γ2(PT−s f )(y) − KΓ(PT−s f )(y)

]

= 2e−2Ks
 ∑
y∈V\V0

p(s, x, y)
[
Γ2(PT−s f )(y) − KΓ(PT−s f )(y)

]

+
∑
y∈V0

p(s, x, y)
[
Γ2(PT−s f )(y) + K0Γ(PT−s f )(y)

]
−(K + K0)

∑
y∈V0

p(s, x, y)Γ(PT−s f )(y)

 .
Applying (3.2) to the last term above and applying the pointwise curvature dimension conditions to the �rst
two terms, we have

F′(s) ≥ 2e−2Ks
[
1
N Ps(∆PT−s f )

2(x)

−(K0 + K)
∑
y∈V0

p(s, x, y)
(
e2K0(T−s)PT−sΓf (y) +

1 − e2K0(T−s)
K0N

(∆PT−s f )2(y)
)

= −2(K + K0)e2K0T−2(K+K0)s
∑
y∈V0

PT−s(Γf )(y)p(s, x, y)

+ 2e−2Ks
N

Ps(∆PT−s f )2(x) + (K + K0)
∑
y∈V0

p(s, x, y) e
2K0(T−s) − 1

K0
(∆PT−s f )2(y)

 .

Jensen’s inequality gives
Ps(∆PT−s f )2(x) ≥ (Ps∆PT−s f )2(x) = (∆PT f )2(x).

Hence we have

F′(s) ≥ −2(K + K0)e2K0T−2(K+K0)s
∑
y∈V0

PT−s(Γf )(y)p(s, x, y) +
2e−2Ks
N (∆PT f )2(x)

≥ −2(K + K0)e2K0T−2(K+K0)s‖Γf‖∞Ps1V0 (x) +
2e−2Ks
N (∆PT f )2(x).
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Therefore, we have

F(T) − F(0) = e−2KTPT(Γf )(x) − Γ(PT f )(x)

=
T∫

0

F′(s)ds

≥ −2(K + K0)e2K0T‖Γf‖∞
T∫

0

e−2(K+K0)sPs1V0 (x)ds +
T∫

0

2e−2Ks
N ds(∆PT f )2(x).

Rearranging yields the claim.

To control the distance to the negatively curved part V0, we need to estimate Pt1V0 (x) in terms of ρ(x, V0).
This is given by the following theorem.

Theorem 3.3. Let G = (V , w,m) be a weighted, complete graph with non-degenerate vertexmeasure satisfying
CD(−K0, N) for some K0 ≥ 0 and some N > 0, let ρ be an intrinsic metric, x ∈ V, and W ⊂ V with ρ(x,W) ≥ R.
Then,

Pt1W (x) ≤
√
N
R

(
t
√
K0 +

√
2t
)
. (3.3)

Proof. From (3.2), we have for any bounded function g with bounded Γg,

e2K0s − 1
K0N

(∆Psg)2 ≤ e2K0sPsΓg.

Hence,

|∆Psg| ≤
√

K0N
1 − e−2K0s

√
PsΓg ≤

√
K0N

1 − 1
1+2K0s

√
PsΓg =

√
K0 +

1
2s
√
NPsΓg

≤
(√

K0 +
1√
2s

)√
NPsΓg. (3.4)

Let g :=
(
1 − ρ(x,·)

R

)
+
. Then, Γg ≤ 1/R2 and g + 1W ≤ 1 and thus by (3.4),

Pt1W (x) ≤ 1 − Ptg(x) ≤
t∫

0

|∆Psg(x)|ds

≤
t∫

0

(√
K0 +

1√
2s

)√
NPsΓg(x)ds

≤
√
N
R

(
t
√
K0 +

√
2t
)
.

This �nishes the proof.

We show that a Bonnet-Myers type diameter bound still holds if one allows some negative curvature.
In contrast to Bonnet-Myers, we will bound the distance to the negatively curved part V0 of the graph from
above, which proves part (iv) of Theorem 2.7.

Theorem 3.4. Let G = (V , w,m) be a connected graph with non-degenerate vertex measure m, K, K0 > 0. Let
∅ ≠ V0 ⊂ V. Suppose G satis�es

CD(K, N, x) ∀ x ∈ V \ V0 and CD(−K0, N, x) ∀ x ∈ V0.

Let ρ be an intrinsic metric with �nite jump size Rρ > 0. Suppose G is complete. Then for all x0 ∈ V, one has

ρ(x0, V0) ≤ Rρ + 18.2e2K0/K
√

N
K0 + K

.
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Remark 3.5. In case of bounded vertex degree, we can drop the non-degeneracy assumption of m.

Proof. By Theorem 3.3, we have Ps1V0 ≤
√
N

ρ(V0 ,·)

(
s
√
K0 +

√
2s
)
. Thus, Proposition 3.1 implies that we have for

any bounded function f : V → R with bounded Γf ,

e−2KTPTΓf − ΓPT f ≥ (∆PT f )2
1 − e−2KT
KN −

√
N

ρ(V0, ·)
H(K, K0, T)‖Γf‖∞ (3.5)

with

H(K, K0, T) := 2(K0 + K)e2K0T
T∫

0

e−2(K0+K)s
(
s
√
K0 +

√
2s
)
ds.

On V \ TρR(V0), we have ρ(V0, ·) ≥ R. Activating (3.5) towards |∆PT f | = |∂TPT f | and throwing away the
nonnegative term ΓPT f yields

|∂TPT f | ≤

√(
e−2KT +

√
N
R H(K, K0, T)

)
‖Γf‖∞

√
KN

1 − e−2KT (3.6)

on V \ TρR(V0). On the other hand, activating (3.5) towards ΓPT f and throwing away the nonnegative term
(∆PT f )2 1−e

−2KT

Kn yields

ΓPT f ≤
(
e−2KT +

√
N
R H(K, K0, T)

)
‖Γf‖∞ (3.7)

on V \ TρR(V0).
This gives good control on the time derivative and gradient of the semigroup.
We estimate

H(K, K0, T) ≤ 2(K0 + K)e2K0T
∞∫
0

e−2(K0+K)s
(
s
√
K0 +

√
2s
)
ds

= 2(K0 + K)e2K0T ·
1
4

( √
K0

(K0 + K)2
+

√
π

(K0 + K)3/2

)

= e2K0T · 12

( √
K0

K0 + K
+
√

π
K0 + K

)
. (3.8)

Moreover, for t < T, one has

H(K, K0, t) ≤ 2(K0 + K)e2K0 t
T∫

0

e−2(K0+K)s
(
s
√
K0 +

√
2s
)
ds

= e2K0(t−T)H(K, K0, T). (3.9)

By assumption, one has ρ(x, y) ≤ Rρ whenever x ∼ y.
We �x T, R, r > 0 and x0 ∈ V. We suppose ρ(x0, V0) = R + Rρ + r. Our aim is to show that

ρ(V0, x0) ≤ Rρ + 18.2e2K0/K
√

N
K0 + K

.

Let us explain the strategy of the remaining proof �rst.Wewill consider functions f with Γf ≤ 1 and being
constant outside of Br(x0). We need the additional distance R to have reasonable estimates for ∂Pt f and ΓPt f
for all vertices in Br+Rρ (x0). The Rρ is needed to separate Br(x0) and TρR(V0), i.e., to guarantee that there are
no edges connecting two vertices from the two sets respectively.

The distance Rwill be chosen later to ensure that the term
√
N
R H(K, K0, T) is small enough to obtain good

estimates for r.
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Let us denote

F := {f ∈ C(V) : f (x0) = 0 and Γf ≤ 1 and f (y) = sup f < ∞, ∀ y ∈ V \ Br(x0)}.

We write Cmax := sup{f (y) : f ∈ F, y ∈ V} < ∞ due to connectedness.
The idea is to take f ∈ F such that sup f is (close to be) maximal. Then, we take Pt f and cut it o� ap-

propriately such that its cut-o� version h belongs to F. By the estimate (3.6) for |∂tPt f |, we can upper bound
|Pt f − f | outside the tube TρR(V0). On the other hand for y0 ∉ Br(x0), we can upper bound |Pt f (x0) − Pt f (y0)|
by the estimate (3.7) for ΓPt f . By triangle inequality, we can thus upper bound (the cut-o� version of)

|f (y0) − Pt f (y0) + Pt f (y0) − Pt f (x0) + Pt f (x0) − f (x0)| = |f (y0) − f (x0)|.

Notice that |f (y0)−f (x0)| ≈ Cmax ≥ r, this leads to anupper estimate for rwhenchoosingR and T appropriately.
The reason,whywe take Cmax as a substitute for the distance ρ, is thatweneed to forth- and back estimate

between the distance and the gradient. The problem is that for ρ, we do not always have f (x) − f (y) ≤ ρ(x, y)
when only assuming Γf ≤ 1. To avoid this problem, we take a certain resistance metric between x0 and
V \ Br(x0) given by Cmax.

We now give the details. Let ε > 0. We choose f ∈ F such that C := sup f ≥ Cmax − ε. W.l.o.g., we can
assume that f ≥ 0. We have Cmax ≥ r since the function f̃ := min(ρ(x0, ·), r) ∈ F and sup f̃ = r .

Now, we set gmax := inf{PT f (y) : y ∈ Br+Rρ (x0) \ Br(x0)} and

g(x) :=
{
PT f (x) ∧ gmax : x ∈ Br(x0)
gmax : else

,

where a ∧ b := min{a, b} for a, b ∈ R. We remark that Br+Rρ (x0) \ Br(x0) ≠ ∅ due to the Rρ assumption (that
is, ρ(x, y) ≤ Rρ for x ∼ y) and since V0 ≠ ∅ and since there is a path from x0 to V0 due to connectedness.
The reason why we take the in�mum over Br+Rρ (x0) \ Br(x0) and not over V \ Br(x0) is that we want to control
|PT f (y0)− f (y0)| at y0 where the in�mumof PT f (·) is almost attained. But this only works if y0 is far away from
the negatively curved set V0.

In fact, we have
(g(y) − g(z))2 ≤ (PT f (y) − PT f (z))2, for all y, z ∈ V . (3.10)

We can check (3.10) as follows. When y, z ∈ Br(x0), we have

(g(y) − g(z))2 = (PT f (y) ∧ gmax − PT f (z) ∧ gmax)2 ≤ (PT f (y) − PT f (z))2.

When one of the two vertices y and z lies in Br(x0) and the other one lies outside Br(x0), say y ∈ Br(x0) and
z ∈ V \ Br(x0), we have

(g(y) − g(z))2 = (PT f (y) ∧ gmax − gmax)2.

In case that PT f (y) ≤ gmax, we have by the de�nition of gmax that

(PT f (y) ∧ gmax − gmax)2 = (PT f (y) − gmax)2 ≤ (PT f (y) − PT f (z))2.

Otherwise when PT f (y) > gmax, we have

(PT f (y) ∧ gmax − gmax)2 = 0 ≤ (PT f (y) − PT f (z))2.

When y, z ∈ V \ Br(x0), we have

(g(y) − g(z))2 = (gmax − gmax)2 = 0 ≤ (PT f (y) − PT f (z))2.

This �nishes the veri�cation of (3.10).
We obtain directly from (3.10) that

Γg ≤ ΓPT f .
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We observe that for all y ∈ V \ Br+Rρ (x0), there is no neighbor of y in Br(x0) due to the Rρ assumption. Since
g is constant on V \ Br(x0), we obtain Γg = 0 on V \ Br+Rρ (x0).

Using (3.7), we derive further that

Γg ≤ e−2KT +
√
N
R H(K, K0, T),

where we used the property Γf ≤ 1. We will later choose T and R such that this bound of Γg is signi�cantly
smaller than one.

Setting the function h : V → R to be

h := g
/√

e−2KT +
√
N
R H(K, K0, T),

we have Γh ≤ 1. Therefore h − h(x0) ∈ F and thus, sup h − h(x0) ≤ Cmax. Hence,

gmax − g(x0) ≤ Cmax

√
e−2KT +

√
N
R H(K, K0, T). (3.11)

Let y0 be a vertex in Br+Rρ (x0) \ Br(x0) such that PT f (y0) − g(y0) < ε. We obtain by (3.6)

|f (y0) − g(y0)| ≤ |f (y0) − PT f (y0)| + ε ≤ ε +
T∫

0

|∂tPt f (y0)|dt

≤ ε +
T∫

0

√
e−2Kt +

√
N
R H(K, K0, t)

√
KN

1 − e−2Kt dt. (3.12)

Analogously, we have

|g(x0) − f (x0)| ≤
T∫

0

√
e−2Kt +

√
N
R H(K, K0, t)

√
KN

1 − e−2Kt dt. (3.13)

Noticing that f (y0) = sup f = C and putting together (3.11), (3.12) and (3.13) yield

Cmax − ε ≤ C = f (y0) − f (x0)
≤ |f (y0) − g(y0)| + |g(y0) − g(x0)| + |g(x0) − f (x0)|

≤ ε + 2
T∫

0

√
e−2Kt +

√
N
R H(K, K0, t)

√
KN

1 − e−2Kt dt + Cmax

√
e−2KT +

√
N
R H(K, K0, T).

Letting ε tend to zero yields

r ≤ Cmax ≤
2
∫ T
0

√
e−2Kt +

√
N
R H(K, K0, t)

√
KN

1−e−2Kt dt

1 −
√
e−2KT +

√
N
R H(K, K0, T)

(3.14)

whenever the denominator is positive.
We set T := 1/K and R := 4

√
NH(K, K0, 1/K). Then the denominator of the RHS of (3.14) is 1 −√

e−2 + 1/4 > 0. Observe that (3.8) implies

R ≤ 2
√
Ne2K0/K

( √
K0

K0 + K
+
√

π
K0 + K

)
. (3.15)

Next, we estimate the numerator. By (3.9), we have for t ≤ T = 1/K that
√
N
R H(K, K0, t) =

H(K, K0, t)
4H(K, K0, T)

≤ 14 exp
[
−2K0

(
1
K − t

)]
≤ 14 . (3.16)
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Therefore, we obtain

T∫
0

√
e−2Kt +

√
N
R H(K, K0, t)

√
KN

1 − e−2Kt dt ≤
T∫

0

[√
e−2Kt +

√√
N
R H(K, K0, t)

]√
KN

1 − e−2Kt dt

≤
∞∫
0

√
e−2Kt

√
KN

1 − e−2Kt dt +
T∫

0

1
2

√
KN

1 − e−2Kt dt

=π2

√
N
K +

T∫
0

1
2

√
KN

1 − e−2Kt dt

=π2

√
N
K + 1

2

√
N
K

1∫
0

dτ√
1 − e−2τ

≤π + arctanh(
√
1 − e−2)

2

√
N
K .

Thus, (3.14) implies that

r ≤ (π + arctanh(
√
1 − e−2))

1 −
√
e−2 + 1

4

√
N
K .

Using this and (3.15) yields

ρ(x0, V0) = r + Rρ + R

≤ (π + arctanh(
√
1 − e−2))

1 −
√
e−2 + 1

4

√
N
K + Rρ + 2

√
Ne2K0/K

( √
K0

K0 + K
+
√

π
K0 + K

)
. (3.17)

It is left to show that e2K0/K
√

N
K0+K is the dominating term in the sum and to give the corresponding

coe�cient.
We start with comparing the addends in the brackets of (3.17): we have√

K0
K0 + K

≤ 1√
K0 + K

,

and, hence,

R ≤ 2(1 +
√
π)e2K0/K

√
N

K0 + K
.

Notice that one has for s ≥ 0,
e2s ≥

√
1 + s.

Thus via s := K0/K, we obtain

e2K0/K
√

N
K0 + K

=
√
N
K · e

2K0/K
√

1
1 + K0/K

≥
√
N
K .

Hence,

r ≤ (π + arctanh(
√
1 − e−2))

1 −
√
e−2 + 1

4

e2K0/K
√

N
K0 + K

.

We infer that
ρ(x0, V0) ≤ Rρ + r + R ≤ Rρ + 18.2e2K0/K

√
N

K0 + K
.

This �nishes the proof.
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Combining Theorem 3.4 and Proposition 2.6, we obtain a distance bound for bounded vertex degree and
in�nite dimension, what proves part (iii) of Theorem 2.7.

Corollary 3.6. Let G = (V , w,m) be a graph with �nite maximal vertex degree Degmax, and let K, K0 > 0. Let
∅ ≠ V0 ⊂ V and suppose that G satis�es

CD(K, ∞, x) ∀ x ∈ V \ V0 and CD(−K0, ∞, x) ∀ x ∈ V0.

Then, for all x ∈ V, one has

d(x, V0) ≤ 1 + 26e4K0/K
Degmax√
KK0

.

Proof. Proposition 2.6 yields CD(−K̃0, N) on V0 and CD(K̃, N) on V \ V0 with

K̃0 = K0 + s,

K̃ = K − s,

N = 2Degmax
s .

Applying Theorem 3.4 with ρ := d
√

2
Degmax

which is intrinsic due to Proposition 2.6 yields

ρ(x, V0) ≤ Rρ + 18.2e2(K0+s)/(K−s)
√

2Degmax
(K0 + K)s

with Rρ =
√

2
Degmax

.
By choosing s := KK0

2(K+K0) , we see

K0 + s
K − s = 2K0(K + K0) + KK0

2K(K + K0) − KK0
≤ 2K0(2K + K0)

K(2K + K0)
= 2K0

K

and √
2Degmax
(K0 + K)s

= 2
√

Degmax
KK0

.

Therefore,

ρ(x, V0) ≤ Rρ + 36.4e4K0/K
√

Degmax
KK0

which implies

d(x, V0) ≤ ρ(x, V0)
√

Degmax
2 ≤ 1 + 18.2

√
2e4K0/K Degmax√

KK0
≤ 1 + 26e4K0/K Degmax√

KK0
.

This �nishes the proof.
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