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Abstract: 

Additive manufacturing (AM) help in delivering spare parts within short lead times and thus avoid 

maintaining huge inventories. Companies exploring opportunities to produce spare parts using AM 

face challenges in identifying suitable the spare parts. Moreover, a single method may not be 

applicable for all companies. An idiosyncratic approach needs to be adopted by considering the 

characteristics of parts in the portfolio. This study follows a design science approach to address an 

evident research gap by developing a process to identify spare parts suitable for AM. The case data 

was analyzed using multi-criteria decision-making and cluster analysis techniques. The research 

contributes by developing and demonstrating a methodology to identify spare parts suitable for AM 

from a portfolio of a large number of spare parts, where adequate discrimination was not obtained by 

ranking all parts together. The study develops generic guidelines for spare parts selection for AM and 

outline the generalizability of the proposed methodology beyond the domain of part selection for AM.   

Keywords: Additive manufacturing, Spare parts selection, Multi-criteria decision-making, Cluster 

analysis, Design science 

 

1. Introduction 

Managing spare parts can be challenging due to intermittent demand patterns that makes forecasting 

a difficult task (Van der Auweraer and Boute, 2019). Furthermore, the high service level requirements 

needed to avoid the high cost of downtime for customers makes spare parts planning even more 

complex. Therefore, companies tend to keep high levels of inventories of spare parts in different 

locations in order to meet service level requirements (Ghadge et al., 2018). Additive manufacturing 

(AM) can help firms cope with this complexity by overcoming some of the above challenges (Khajavi 

et al., 2014; Li et al., 2017; Frandsen et al., 2019). AM is promising as a technology for spare parts 

production as it can handle the challenges of high variability, long lead times, low demand, and high 

stock-out costs associated with traditional manufacturing of spare parts. 

Prior research has outlined the benefits of AM for producing spare parts. For instance, Li et 



 

al. (2017) show that producing low volume spare parts using traditional manufacturing, as compared 

to using AM, results in higher supply chain costs and higher carbon emissions. Thus, AM allows 

companies to move low volume products away from the traditional manufacturing setting. By 

removing low volume and disruptive parts from regular production methods, AM can increase service 

levels via the timely availability of spare parts (Sasson and Johnson, 2016; Ghadge et al., 2019).  

Other benefits of using AM include reduction in safety stock due to on-demand use of direct 

manufacturing (Liu et al., 2014; Tziantopoulos et al., 2019) and reduction in unit costs due to lower 

transportation costs, as AM allows for production at distributed locations which are closer to the locus 

of demand (Li et al. 2017; Khajavi et al., 2014). Use of AM for spare parts production also helps in 

supporting the maintenance process of capital goods throughout their lifecycles, which often spans 

across several decades (Knofius et al., 2016). Using the F-18 Super Hornet’s service supply chain as 

an example, Holmström and Partanen (2014) report that hybrid solutions, which combine 

conventional logistics, digital manufacturing and user operations, provide direct benefits of extending 

the life cycle and increasing availability of spare parts to serve challenging locations. Using system 

dynamics simulations, Li et al. (2017) show that spare part supply chains using AM were, indeed, 

superior to traditional manufacturing supply chains with respect to sustainability performance. 

Similarly, Ghadge et al. (2018) show that AM can help balance inventory levels and increase 

responsiveness, while decreasing disruptions and carbon emissions in the spare parts supply network. 

From the above-mentioned literature, it is apparent that adopting AM for spare parts 

production and designing a suitable AM spare parts supply chain could have multiple potential 

benefits including reduction in costs, improved availability, and lower carbon emissions. However, 

there are multiple challenges associated with the adoption of AM for spare parts production, which 

include limited size of possible components, inadequate quality, and variable quality across AM 

equipments. In addition, there is variance in quality of AM materials which makes it difficult to 

produce 3D Printed components. Also, violation of intellectual property rights (Chekurov et al., 2018) 

and post-processing requirements (Kretzschmar et al., 2018) are additional examples of obstacles that 

prevent widespread use of AM.   

Many industrial manufacturers, including the case company considered in this research, face 

challenges of ensuring availability of spares at the right time, while reducing the inventory holding 

costs and costs associated with low volume production. Such companies have considered using AM 

as an opportunity for spare parts production. Nevertheless, for companies which are willing to explore 

AM for spare parts production, a major challenge is selecting the appropriate spare parts which can 



 

be produced using AM. It is an imperative that a systematic approach be followed to facilitate the 

selection of spare parts that are suitable for AM by considering both technical and supply chain 

aspects (Lindemann et al., 2015).  

There has been limited research that offers a comprehensive approach for selecting spare parts 

that are suitable for AM (Frandsen et al., 2019). Notable exceptions include the works of Lindeman 

et al. (2015) and Knofius et al. (2016). Lindeman et al. (2015) provide an approach for parts selection 

which also includes exploring redesign options. Their approach relied on feedback from experts in a 

focused workshop setting. However, the proposed approach could only be applied to a limited number 

of parts. Knofius et al. (2016) apply the Analytic Hierarchy Process (AHP) to select the most suitable 

spare part candidates among a large portfolio of spare parts. Both Lindemann et al. (2015) and 

Knofius et al. (2016) make valuable contributions to the body of knowledge on parts selection for 

AM; however, the spare parts portfolio of a large manufacturing company can be quite diverse and 

following the approach suggested by Knofius et al. (2016) may not result in adequate discrimination 

amongst parts. By omitting to analyze the characteristics of this diverse set of parts, it may not be 

feasible to distinguish among the parts adequately. Hence, many companies with a large portfolio of 

spare parts with widely varying characteristics may need a different approach, combining the 

strengths of both the approaches while considering different characteristics of the parts in the portfolio 

to screen and score the parts. Hence, developing an approach for spare parts selection for AM by 

combining both a data-driven ‘top-down’ and expert opinion-driven ‘bottom-up’ approach is needed. 

Such an approach, with demonstrated utility in real-life application settings and particularly where 

limited discrimination is obtained by ranking all the parts together, is lacking in the current literature. 

To address this gap, the study raises a research question: How to select spare parts from a large 

portfolio of diverse spare parts for AM? 

 The rest of the paper is structured as follows. Section 2 discusses literature on the use of AM 

for spare parts, and part selection for AM. Section 3 discusses the approach followed for collecting 

and analyzing data from the selected case company. A brief background on the choice of a Multi 

Criteria Decision Making (MCDM) and clustering approach is also provided. A systematic process 

for selecting parts suitable for AM by following a design science approach applied to a case company 

is discussed in section 4. The generalizability of the proposed methodology, development of a 

generalized framework and implications for practice are discussed in Section 5. The key contributions 

of this research, limitations and future research opportunities are discussed in section 6. 



 

2. Literature review 

2.1 Use of AM for spare parts production  

AM has a promising potential for manufacturing low-volume components at low cost. However, not 

all manufacturing techniques can be substituted with AM (Lindemann et al., 2015). In many cases, 

characteristics such as surface quality, dimensions, tolerances, and types of materials can pose 

constraints for the use of AM. AM should be seen more as a learning process, as opposed to the ‘Plug 

and Play’ solution that many companies expect to have for ‘ready-to-build’ parts to work seamlessly 

from the beginning (Lindemann et al., 2015). 

2.1.1 Advantages of producing parts using AM 

AM could be effective in reducing inventories (Holmström et al., 2010; 2014; Liu et al., 2014; Durach 

et al., 2017; Ghadge et al., 2018) because spare parts can be produced as and when needed within a 

short lead time. Also, AM has been shown to reduce lead time (Oettmeir and Hofmann, 2016; Muir 

and Haddud, 2017), partly due to avoiding the physical order generation process in which orders are 

generated by sharing digital files (Oettmeir and Hofmann, 2016). Other reasons are due to changing 

the locus of the decoupling point closer to the customer (Durach et al., 2017), or by reducing the 

number of steps in manufacturing. Similarly, AM can also help in reducing supply risk for spare parts, 

where low demand parts can be printed if a supplier for a traditionally manufactured part is not able 

to deliver in such low quantities (Knofius et al., 2016). AM can also result in decreased energy costs 

and improved sustainability (Gebler et al., 2014; Holmström et al., 2017).   

Parts produced using AM can also have superior quality in comparison with conventional 

manufacturing because of better functionality, and an optimal strength-to-weight ratio (Stansburya 

and Idacavage, 2016; Eyers and Potter, 2017). Adopting AM can also result in lower manufacturing 

costs for mixed builds at full capacity (Baumers et al., 2017), lower transportation costs (Wagner and 

Walton, 2016), and overall lower operating costs because the distributed spare parts production uses 

smaller and more automated equipment (Khajavi et al., 2014), and can enable mass customization 

(Shukla et al., 2018). Spare parts produced by AM can also be easily replaced as production and 

delivery lead times can be shortened. Furthermore, AM can be used to repair portions of damaged 

parts instead of replacing entire parts as demonstrated successfully by Siemens Gas Turbine for 

repairing burner tips (Varley, 2019) and by Deutsche Bahn for fuel tank caps and other parts 



 

(Brickwede, 2017). This will reduce both cost and lead time for spare parts replacement.  

2.1.2 Technical parameters for spare part selection for AM 

It is important to identify the relevant criteria while selecting parts suitable for AM (Knofius et al., 

2016). Parameters considered for screening and scoring parts suitable for AM can be size of parts and 

build volume (Lindemann et al. 2015 and Knofius et al., 2016) as parts exceeding build volume of 

AM equipment cannot be produced. The choice of appropriate materials which can be used for AM 

and which help meet the products’ performance requirements is also an important consideration 

(Stansburya and Idacavage, 2016; Wang et. al., 2017; Lee et. al., 2017; uz-Zaman et al., 2018). Since 

only a limited number of materials can be used for AM, material characteristics must be considered 

while determining which parts can be produced using this method.  Other technical characteristics 

which need to be considered include water resistance, temperature resistance, post-production 

shrinkage (Lee et al., 2017), strength-to-weight ratio, stiffness-to-weight ratio (uz-Zaman et al., 

2018), and dimensional accuracy (Wang et al., 2017). As the intended spare parts are supposed to 

work under certain conditions, and must have the dimensional accuracy as specified, the above 

requirements have to be fulfilled irrespective of the manufacturing method being considered. Other 

technical parameters which affect the quality and productivity of the AM process are build-speed, 

layer thickness (Mancanares et al., 2015), support materials, machine cost, as well as the requirements 

for post-processing (uz- Zaman et al., 2018).  

2.1.3 Supply chain, maintenance and financial parameters relevant for spare parts selection for 

AM 

As spare parts tend to have diverse supply chain, maintenance and financial characteristics, these 

need to be classified according to those characteristics for any decision pertaining to spare parts 

planning, including assessing the suitability for AM. There is also a large body of literature available 

concerning the classification of spare parts. Supply chain related parameters to classify spare parts 

include lead time, availability of suppliers, demand pattern (Huiskonen, 2001; Molenaers et al., 2012; 

Lolli et al., 2014 and Sarmah and Moharana, 2015), and obsolescence and lifecycle stage (Roda et 

al., 2014).   Typical maintenance related criteria include criticality with respect to downtime costs, 

time to respond to failure, predictability of failure and maintenance type (Huiskonen, 2001; 

Molenaers et al., 2012). Financial characteristics which are commonly used to classify spare parts are 

average unit cost (Hadi-Vencheh, 2010; Lolli et al., 2014) and annual consumption value (Hadi-

Vencheh, 2010; 2011; Lolli et al., 2014; Sarmah and Moharana, 2015). Chekurov et al. (2018) include 



 

size, criticality, demand pattern, complexity, value, delivery time predictability, specificity and 

lifecycle stage as properties affecting viability of digital spare parts. Frandsen et al. (2019) have found 

from their review that the most commonly used criteria to classify spare parts are lead-time, unit cost, 

criticality, annual dollar usage, and demand. From this review it is evident that a classification scheme 

based on multiple supply chain, maintenance, and financial considerations is necessary for selecting 

spare parts that are suitable for AM. A summary of the literature summarizing these parameters is 

shown in table 1. 

 

Table 1: Summary of literature on factors used for spare parts selection for AM 

Technical parameters References 

Size of parts Lindemann et al., 2015; Knofius et al., 2016; Chekurov et 

al., 2018 

Build volume Lindemann et al., 2015; Knofius et al., 2016 

Appropriate material Stansburya and Idacavage, 2016; Wang et. al., 2017; Lee 

et. al., 2017; uz-Zaman et al., 2018 

Water and temperature resistance Lee et al., 2017 

Post-production shrinkage Lee et al., 2017 

Strength to weight ratio and stiffness 

to weight ratio  

uz-Zaman et al., 2018 

Required dimensional accuracy Wang et al., 2017 

Build speed and layer thickness Mancanares et al., 2015 

Support materials and post 

processing 

uz- Zaman et al., 2018 

Supply chain, maintenance and 

financial parameters  

References 

Lead time, demand pattern and 

availability of suppliers 

Huiskonen, 2001; Molenaers et al., 2012; Lolli et al., 

2014 and Sarmah and Moharana, 2015; Chekurov et al., 

2018; Frandsen et al., 2019 

Obsolescence and lifecycle stage  Roda et al., 2014 

Downtime costs, time to respond to 

failure, predictability of failure and 

maintenance type 

Huiskonen, 2001; Molenaers et al., 2012 

Annual consumption value Hadi-Vencheh, 2010; 2011; Lolli et al., 2014; Sarmah 

and Moharana, 2015; Chekurov et al., 2018; Frandsen et 

al., 2019 

 

2.2 Approaches for selecting spare parts suitable for AM 

The extant research reports multiple approaches or techniques for classification of spare parts. In 

particular, data-driven as well as expert-driven approaches have been suggested in this literature. The 



 

data driven approach brings objectivity to the selection process but requires the availability of data. 

The need for an expert-driven approach arises because many companies may not have the requisite 

data pertaining to the different characteristics to conduct the assessment. The data that are available 

reside in various software systems and cannot be accessed at the same time. In other instances, for 

example, the drawings of the parts may not be available in a digital form. Different spare parts 

classification criteria need to be considered while taking into account the specific application context 

before finalizing the most appropriate method for selecting spare parts most suitable for AM 

(Frandsen et al., 2019). Therefore, the choice of approach to be used will depend on the objectives 

from the exercise, and availability of data.   

2.2.1 Expert driven bottom-up approach for spare part selection for AM 

When evaluating eligibility of parts for AM, it is important to take all the interfaces and functionalities 

of each component into account, as well as consider redesign opportunities, if necessary (Lindemann 

et al., 2015). In this regard, Lindemann et al. (2015) propose a methodology in which the selection of 

parts is divided into three phases: Information, Assessment and Decisions. 

The methodology proposed by Lindemann et al. (2015) can be described as a bottom-up 

workshop approach for evaluating AM. In this approach, with the help of input from 

practitioner/experts, an assessment of the benefits and feasibility to print the part using AM can be 

made based on the characteristics of the part. However, this assessment approach only considers a 

limited number of parts and factors. Therefore, some potentially eligible parts may be overlooked. 

Also, this method does not take into account factors such as supply lead-time, safety stock, holding 

costs and obsolescence risks.   

2.2.2 Data driven approach for spare parts selection for AM  

The challenges associated with the bottom-up approach can be avoided by using an alternative top-

down approach (Knofius et al., 2016). In this approach, parts are evaluated based on potential 

economic benefits, thereby minimizing the risk of disregarding promising parts. This alternative 

approach is less dependent on the expertise of managers, which reduces the risk of underestimating 

logistical improvements and capturing full life-cycle costs. This approach incorporates three steps: 

● Determining the spare part assortment 

● Obtaining the weights attached to attributes of spare parts 

● Calculating the overall score of a spare part 



 

This method increases the transparency in the decision-making process of deciding which spare parts 

could benefit from additive manufacturing (Knofius et al., 2016). In particular, this approach can be 

used to simplify the identification and prioritization of promising spare parts. 

For a data-driven approach of spare parts selection for AM, it is necessary to classify the spare 

parts. From the traditional single-criterion ABC-classification based on annual dollar usage (average 

unit price x annual demand volume) to the advanced multi-criteria methods, a wide range of 

classification schemes have been proposed in the spare parts literature (e.g., Bhattacharya et al., 2007; 

Chen, 2012). Such methods can also be used to classify spare parts, that are suitable for AM.  

2.3 Summary of literature review  

Although a large body of literature exists on spare parts classification, clearly, there is limited 

literature on the topic of selecting spare parts that are suitable for AM. There is a need to identify the 

appropriate technical and supply chain related factors which can be used to classify and identify the 

spare parts that are suitable for AM. More importantly, there is a need to develop suitable approaches 

which can help a company analyze their large portfolio of spare parts, and determine the most suitable 

parts which can be produced by AM. Without such an approach, companies face challenges in 

adopting AM for spare parts manufacturing. The bottom-up approach, as suggested by Lindemann et 

al. (2015), can only consider a limited number of parts for evaluation while the method proposed by 

Knofius et al. 2016 may not guarantee adequate discrimination of parts for the spare parts portfolio 

of all companies.  

This study attempts to address the need of industry, as well as gaps in the academic literature 

on this topic by identifying a suitable approach to select spare parts that are suitable for AM, from a 

large portfolio of parts, where suitable discrimination cannot be obtained by scoring all parts 

together.    

3.0 Methodology and data collection 

3.1 Design Science as an overarching approach to address the problem 

Design science allows researchers to be actively engaged in problem solving, while still developing 

scientific contributions. The basic idea of design science research is that new generic designs will 

have significant practical relevance. Knowledge accumulation may be easier to crystallize and realize 

using a design science approach, with its focus on improving the extant generic designs (van Aken et 

al., 2016). While both action research and design science involve active problem solving by the 



 

researchers, action research does not explicitly result in an ‘artifact’ as compared to a design science  

approach (Holmstrom et al., 2009). Design science follows the following four phases: 1) solution 

incubation; 2) solution refinement; 3) explanation through substantive theory; and, 4) explanation 

through formal theory. Solution incubation starts with understanding the problem and developing the 

first solution design, which is detailed enough to be implemented but may be incomplete. Solution 

refinement includes refinement of the initial solution design through iterations and to verify what 

works and what does not and, thus, includes design improvements, implementation and evaluation. 

This phase may also involve addressing unintended consequences. To proceed beyond problem 

solving, the researcher tries to evaluate the developed artifact from a theoretical point of view and 

focuses on development of a substantive theory which is a context dependent theory developed for a 

narrowly defined context and empirical application. The final phase involves development of a formal 

theory, if possible, which is aimed at broader generalizability (Holmstrom et al., 2009). As the 

objective of this research is to solve a problem faced by the company by developing a process or an 

artifact and to generalize the findings for a theoretical contribution, we adopted a design science 

approach.    

3.2 Selection of multi-criteria decision making methods 

While classifying and ranking spare parts suitable for AM, several factors have to be considered, for 

which multi-criteria decision making (MCDM) approaches are found to be suitable. Several MCDM 

methods such as AHP (Saaty, 1990), Analytic Network Process (ANP), TOPSIS (Yoon, 1987), 

VIKOR (Duckstein and Opricovic,1980), ELECTRE (Roy, 1990), and Preference Ranking 

Organization Methods for Enrichment Evaluation –PROMETHEE (Brans and Vincke, 1985) can be 

used to classify and select spare parts that are suitable for AM. MCDM methods like AHP, TOPSIS, 

VIKOR, PROMETHEE and ELECTRE III work under the condition that input criteria can be scored 

independently against objectives, without considering the configuration of other criteria. Therefore, 

the above methods are not applicable when there are interdependencies amongst the criteria. To 

manage interdependencies, ANP can be used. This method requires pairwise comparisons.   

TOPSIS is a method of compensatory aggregation which compares alternatives based on 

weights for each criterion, which then are normalized in order to calculate the geometric distance 

between each alternative relative to the ideal alternative and farthest from the negative ideal 

alternative. TOPSIS selects the alternative which is farthest from the negative ideal alternative and 

closest to the ideal alternative (Yoon, 1987). However, TOPSIS does not rank the criterion in a 

hierarchy and thereby needs less input from decision-makers.  



 

The VIKOR method focuses on ranking and selecting from a set of alternatives in the presence 

of conflicting criteria. It determines a compromise solution that could be accepted by the decision 

makers because it provides a maximum group utility for the ‘‘majority’’ and a minimum of individual 

regret for the ‘opponent’’. In comparison, the TOPSIS method introduces two reference points, using 

vector normalization, but it does not consider the relative importance of the distances from these 

points. Ranking using the PROMETHEE method, with a linear preference function, gives the same 

results as ranking using the VIKOR method. Ranking results using the ELECTRE II method, with 

linear ‘‘surrogate’’ criterion functions, are relatively similar to the results using the VIKOR method 

(Opricovic and Tzeng, 2007).   

To decide on which method to apply, conceptual and operational validation of the application 

of a method to real world problems is needed. Researchers should choose the method that is both 

theoretically well founded and practically operational to solve actual real world problems (Opricovic 

and Tzeng, 2007).  AHP can be used on small criterion sets and TOPSIS can be used on large criterion 

sets (Özcan et al., 2011). However, Zanakis et al. (1998) show that TOPSIS has performed better than 

AHP for small criterions sets as well.  

Pairwise comparison of a large number of parts on multiple factors was considered infeasible 

for the AM part selection problem, thus ruling out AHP, ANP, ELECTRE and PROMETHEE for 

ranking of spare parts. As no single part can be considered ideal with respect to all factors needed for 

assessing suitability with respect to AM, distance from the most ideal part and the least ideal part as 

used in TOPSIS was found to be the most suitable approach. 

3.3 Choice of clustering method 

A large dataset may have spare parts with different characteristics and trying to rank all of those 

together may not result in ‘like-to-like’ comparisons. Clustering the spare parts can help in classifying 

them, and hence the clusters, and parts within those clusters that are most suitable for AM can be 

identified. Mooi and Sarstedt (2011) present three clustering methods, which are used for different 

scenarios: 

1. Hierarchical clustering: If the data set is < 500 data points 

2. k-means clustering: If the data set is > 500 data points 

3. Two-step clustering: If the data set is > 500 data points and the clustering variables are 

measured on different scale levels 



 

The hierarchical clustering method generates a series of models with cluster solutions from 

one cluster to n clusters. Hierarchical clustering is only used for small data sets, as the computing 

power required is of the order of O(n3) (cubic time), compared to, for example, for k-means the 

computing power required is of the order of O(n2) (quadratic time) (Mooi and Sarstedt, 2011). The 

k-means clustering method can effectively cluster complex data sets. The number of clusters are 

decided in advance, and the algorithm works iteratively to assign each data point to one of the clusters 

based on similarities of the features. Two-step cluster analysis (TSCA) is able to handle large data 

sets with mixed variables, that are on different scales (Mooi and Sarstedt, 2011; Tkaczynski, 2017). 

TSCA is based on two steps:  

1. Pre-clustering: An algorithm closely related to k-means clustering is used to create pre-

clusters called ‘dense regions’ 

2. Modified hierarchical agglomerative clustering: Where it combines the pre-clusters 

sequentially to form homogeneous clusters 

 

3.4 Data collection 

The primary source of data used in this research was accessed via semi-structured interviews 

conducted as part of meetings with senior managers at the case company and a focused workshop. 

The interviews were with two key informants in the company, who were responsible for global 

procurement of materials and components (Senior Managers, Global Category Management). In total, 

seven meetings with company representatives were held. These meetings had a duration of two to 

three hours, over a three-month time period. Five of the authors participated in all interviews. 

Interviews with the contact persons was necessary in order to ‘scope out’ the project, to 

provide status updates, obtain feedback and validate the results. Interviews were held at the case 

company. The interviews were part of regular status update meetings with the company, and questions 

were asked to clarify any issues that the research team had as they progressed with their research. 

These issues pertained to: 1) setting up screening criteria and justification for those criteria; 2) sharing 

the results of the screening process; 3) sharing results of initial scoring and obtaining feedback; 4) 

explaining the need for conducting the cluster analysis; 5) sharing results of cluster analysis and 

obtaining feedback; 6) sharing ranking of parts within clusters and ranking of clusters and validating 

them, which was followed by requesting drawings and obtaining clarification on doubts, if any; and 

7) sharing of the framework.  



 

The workshop was used to define and prioritize the objectives. The workshop participants 

were the two key informants in the company, two other employees working in spare parts planning 

within the case company, and five co-authors. It is important to emphasize that the research team was 

in constant dialogue with the key informants in the case company. Our research team had a series of 

meetings with company representatives as described above during the entire research. Our research 

was conducted in an ‘action research’ mode, with the research team addressing all problems 

pertaining to selection of parts suitable for AM with the case company.   

4.0 Selection of spare parts suitable for AM in the case company 

The case company manufactures floor care products, high pressure washers, vacuum cleaners, and 

spare parts for the above products. The company guarantees availability of spare parts for maintaining 

the products that they sell. The duration of these service guarantees is usually more than 10 years. 

The company faces key challenges in guaranteeing availability of spare parts due to unsatisfactory 

service levels and high cost of low volume spare parts. The company is exploring the possibility of 

using AM for spare parts to overcome these challenges. Examples of parts used by the OEM in its 

products include valves, filters, hoses, gaskets, brackets, sensors, rubber blades, bushes, plugs, caps, 

seal holders, joints, supports, roller guides, and mufflers. The majority of these parts were polymer 

parts. We followed a design science approach and proposed an “artifact” i.e., a part selection process 

as a “means to an end” to address the problem (Holmstrom et al., 2009).  

The steps followed in selecting the spare parts, which are most suitable for AM are shown in 

figure 1. The first step of the proposed method is to inform the case company about the benefits and 

limitations of AM. In the second step, the objectives of implementing AM and their relative 

importance (expressed as weights) are defined by the case company using pair wise comparison. In 

the third step, spare parts are screened based on whether those parts can be produced using AM based 

on technical characteristics. The technological characteristics considered as relevant by the case 

company were material, dimensions, weight, and tolerance. As details about materials, weight and 

tolerance were not available for the entire spare parts portfolio within the same IT system, or in an 

easily accessible format, initial screening was done only based on the characteristic of dimensions. 

We ranked all spare parts together after initial screening as part of a solution incubation step within 

a design science approach. However, we faced the unintended consequence of limited discrimination 

of parts. Hence, we went ahead with the solution refinement stage and in the fourth step of the design 

science approach, the spare parts were assessed based on demand, lead time, and overhead costs 



 

(inventory and transportation cost) by clustering the spare parts based on the above dimensions.  In 

the fifth step, clusters were ranked and a sample of parts to be drawn from each cluster was determined 

because  availability of technical drawings of all parts were limited. In the sixth step of the design 

science approach, parts within each cluster were ranked. Finally, spare parts that were screened and 

selected for further analysis based on previous steps, were assessed based on materials, weight and 

tolerance using technical drawings. A summary of the different steps in the design science approach 

is shown below in Figure 1. 

 

 

 

Figure 1: Steps followed in selecting the spare parts, suitable for AM 

 

4.1 Information sharing and clarifying objectives 

The first step is sharing information regarding AM. In this step, the case company was informed about 

the advantages and limitations of AM. The possibilities of using AM and how it might be a suitable 

manufacturing alternative for manufacturing spare parts at the case company was discussed. 

Furthermore, reports from the Port of Rotterdam (2016) and Salmi et al. (2018) were presented to the 

case company, as these reports depicted how AM was used for spare parts by other companies. These 

reports portray the technology behind AM, and how they can influence the service and cost trade-off. 

This was done in order to create the best possible foundation for defining objectives of implementing 

AM for spare parts. 
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Figure 1: Steps followed and their reasoning for selecting the spare parts, suitable for AM
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The next step was to define the case company’s objectives for implementing AM. An 

important aspect when defining objectives was to secure clarity and coherence between the 

capabilities of AM and the defined objectives of implementation. The objectives were finalized 

through a focused workshop involving the two key informants in the company, two other employees 

working in spare parts planning within the case company, and five co-authors. Thus, the agenda of 

the workshop was to identify the objectives of the company with respect to delivery of spare parts 

and to prioritize those objectives. 

In the context of spare parts for the case company, service was defined in terms of quality, 

availability, and lead time. Therefore, spare parts were required to be produced to the customer’s 

quality and lead time requirements, along with making parts available in the right quantities. Cost 

comprised different important elements including unit cost, inventory cost, and obsolescence. Other 

objectives comprised obtaining knowledge within AM as well as developing a new business model 

to mitigate supplier risk. The three objectives were then compared pair-wise in order to obtain relative 

weights using AHP. The results of the analysis are visualized in Figure 2. 

 

Figure 2. Weight of objectives 

Results from AHP showed that service is weighted at 72%, while cost is weighted at 22% and 

other areas at 6%. Within service, availability is weighted at 51%, quality at 42%, and lead time at 

8%. Within cost, unit cost is weighted at 56%, location cost at 26%, inventory cost at 12%, and 

obsolescence at 6%.  

4.2 Screening of spare parts 

The next step was to screen the spare parts using the parameters considered relevant for the case 

company and which were validated by the key informants from the company. 

• Material: The specific material that the item is made of 



 

• Dimensions: The height, width and depth of the spare part 

• Weight: The weight of the component without packaging 

• Tolerances: If the spare part can be produced to specifications 

Since three of the technical parameters were not available from the case company in the same 

database, in the initial screening, sorting was done solely on the basis of the dimensions of the spare 

parts. The non-availability of spare part material, weight, and tolerances means that several non-

printable spare parts were not removed from the data set in this step. In order to address this problem, 

technical drawings of spare parts were examined in step five. The technical drawings specified the 

material and tolerances of the sorted spare parts. 

The AM materials which were considered were: PLA (Polylactic Acid), and ABS 

(Acrylonitrile Butadiene Styrene), PVC (PolyVinyl Chloride), and SAE 1110-1215 steel. The 

selected parts could be processed using fused deposition modeling (FDM), selective laser sintering 

(SLS), stereolithography (SLA), and polyjet. A printer database with multiple materials and AM 

processes was compiled by visiting the websites of all major AM equipment suppliers. This list is 

shown in Appendix 1. The limits set, based on the printer database and by considering the size of the 

case company’s parts, were: Height: 1000 millimeters, Width: 1000 millimeters, Depth: 1000 

millimeters. This information was obtained in consultation with the key informants in the company. 

By setting these limits, the total number of spare parts was reduced from 64,921 to 14,252.  

After screening parts based on dimensions, the parts were further screened based on ‘time to 

stock-out’ and price of the parts. ‘Time to stock-out’ describes the number of years’-worth of 

inventory that the company currently has in order to satisfy demand for each spare part. This is 

calculated by dividing inventory by demand (in years). Since the company has a service guarantee of 

10 years and an assumption was made that if the inventory is big enough to cover the annual demand 

for next 10 years, then the spare part is not suitable to be considered for AM since the whole service 

guarantee will be covered in this time horizon using available inventory. Thus, all spare parts with a 

‘time to stock-out’ above 10 years were removed from further consideration. In this process, 271 

spare parts were removed. The average ‘time to stock-out’ for the removed products was 38.1 years.  

Spare parts were then screened based on the overhead cost. The calculated overhead costs 

covered all costs relating to transport, inventory holding, and other relevant overhead costs distributed 

among a set of products. An assumption was made that products with an overhead cost of over 100% 

of the cost of the product were outliers. In this screening phase, 4,101 spare parts were removed. We 

acknowledge that removing the parts with overhead costs above 100% of the cost of the part is another 



 

simplifying assumption. The research team specifically analyzed those parts and discussed them with 

the key informants. Again, the key informants reached the conclusion that the majority of those parts 

have data quality issues and data entry errors, while some may, indeed, have high inventory and hence 

high overhead costs. We fully agree that such parts with high inventory could, indeed, be feasible 

candidates for AM but, as it was not possible to segregate which parts have correct overhead cost 

data and which had data errors, the simplifying assumption was made. The logic applied by the key 

informants was that since these parts already had enough inventory, there will be no benefit in 

producing those by AM. This also stems from the fact that this research is done from the current 

perspective and the company’s motivation to produce the first parts using AM and demonstrate their 

feasibility.  

The next screening phase related to removing all the spare parts which were classified as 

‘obsolete’ in the dataset. This screening removed all spare parts which are no longer sold by the 

company; in this process phase a total of 1,464 spare parts were removed. Fourth screening was 

performed by setting the standard cost price to a maximum of 1,000 Danish Kroner (DKK). Through 

inspection of the data and in collaboration with the key informant in the company, it was noted that 

the spare parts with high standard cost price were, primarily, electronics items.  

This is the first time that the company was trying to explore potential applications of AM for 

spare parts production. Hence, the company was interested in identifying a few feasible parts, which 

they could try out at first, build positive business cases so that they can gain experience and 

demonstrate benefits before they try out AM for other parts. Although electronic circuits can be 

printed, early adopting companies experimenting AM for building confidence will not go for printed 

electronic circuits as such an experiment could be very risky. Instead, as communicated by the key 

informants, the company preferred to print parts which can be successfully produced along with the 

desired quality without much difficulty. This was the reasoning behind excluding high valued 

electronic parts. It was therefore agreed, in consultation with the key informants in the company, that 

a standard cost price of over 1,000 DKK would be the threshold for non-printable materials. Through 

this screening phase, 528 spare parts were removed. In the entire screening process across all the 

phases, a total of 6,364 spare parts were removed. The four screening steps are summarized in Table 

2. 



 

Table 2: Spare part screening 

 

4.3 Solution incubation: Initial ranking of spare parts 

The spare parts need to be ranked in order to determine their feasibility for AM. Initially, TOPSIS 

was used as a MCDM method.  The criteria used for the ranking of the spare parts included lead time, 

demand and overhead cost.  

The steps of the TOPSIS method are shown below: 

The first step is to create the normalized decision matrix:  

 

Where: 

• rij = Normalized score 

• xij = Score of option i in respect to criterion j 

• m = number of options = 7888 

• n = number of criterion = 3   

The second step is to create the weighted normalized decision matrix: 

vij = wij j * rij 

Where: 

• vij = The weighted normalized score 

• wij = The weight of each criteria 

The third step is to create the ideal and negative ideal solutions:  

Ideal solution:  

 



 

Negative ideal solution: 

 

Where: 

• J = The set of benefit criteria 

• J’ = The set of negative criteria 

 

The fourth step is to create the separation measures for each alternative:  

Separation from the ideal alternative:  

 

Separation from the negative ideal alternative:  

 

Where: 

• Si * = Closeness to the ideal solution 

• S’i
 = Closeness to the negative ideal solution  

The fifth step is to create the relative closeness to the ideal solution: 

 

 

The option which is closest to one will be the "best" according to the ideal solution, while the 

option closest to zero will be the worst. 

Table 3 shows the top performing spare parts, as ranked using the TOPSIS approach. The 

ideal parameters in the TOPSIS calculation are as follows; demand is one unit, overhead cost is 520 

DKK and lead time is 144 days. The data show that the top 99% or 7,811 spare parts from the data 

set are only 10.06 % from the ideal situation mentioned above. Table 3 shows that the number one 

ranked spare part is 2.8% from the ideal, while the number 100 ranking spare part is 5% from the 

ideal. Thus, there was very little difference between the top 100 ranked spare parts. This indicated 

that ranking all parts together resulted in little discrimination amongst them. Thus, there could be 

different clusters of parts in the data set and ranking them together may not help in distinguishing 

those most suitable. Hence, it was decided to cluster the dataset and then rank the clusters as well as 

spare parts within the clusters.  



 

Table 3: Results from ranking all spare parts using TOPSIS 

 

 

 

 

 

 

4.4 Solution refinement:  

4.4.1 Cluster analysis to identify patterns amongst spare parts 

Cluster analysis was conducted to understand how the spare parts were positioned according to the 

three criteria of: overhead cost (which includes inventory and transportation cost), lead time, and 

demand. K-means clustering is a method of effectively clustering complex data sets. The clustering 

algorithm was run by incrementally changing the number of clusters (k), until no centroid clusters 

changed positions. However, due to the complexity and size of the data set, no clear cluster was 

obtained using the k-means method. Due to the inconclusive k-means cluster analysis, Two Step 

Cluster Analysis (TSCA) with manual increase of cluster sizes was chosen. As stated by Mooi and 

Sarstedt (2011), TSCA is suitable "if there are many observations in your dataset and the clustering 

variables are measured on different scale levels". This is the case for the spare parts data set provided 

by the case company. Using this method, clusters of nodes were identified by first making a pre-

clustering, and then using hierarchical methods. The method suits the data set well because TSCA 

can manage large data sets (Tkaczynski, 2017) and allows for manual predetermination of the number 

of clusters. The cluster quality (silhouette measure of cohesion and separation) was calculated for 

each step as the number of clusters were incremented manually. The silhouette measure of cohesion 

(closeness) and separation (detachment) is a measure of the overall goodness-of-fit for the clustering 

solution (Mooi and Sarstedt, 2011). This measure is based on the average distances between the nodes 

and can vary between minus one and plus one. When using this measure, a silhouette measure of 

cohesion and separation below 0.20 is a poor solution quality, between 0.20 and 0.50 is a fair solution, 

and a measure above 0.50 indicates a good solution (Mooi and Sarstedt, 2011). The results of this 

analysis can be seen in figure 6. 

As seen in figure 3, a solution with two clusters results in the best cluster quality - with a local 



 

spike in cluster quality at eight clusters. Increasing the number of clusters beyond eight results in a 

steady decrease in cluster quality. When investigating the composition and cluster sizes of the most 

optimum cluster (two) it can be seen that 92% of the nodes (7,254 spare parts) are in a single cluster. 

"Segments should exhibit high degrees of within-segment homogeneity and between-segment 

heterogeneity." and should be "familiar and relevant" (Mooi and Sarstedt, 2011). The solution of two 

clusters is therefore not considered adequate for further analysis, due to the significantly large cluster 

size and a low number of clusters. The spike at eight clusters was then investigated. 

 

Figure 3: Cluster quality analysis - Silhouette measure of cohesion and separation 

When using an eight cluster solution, the clusters featured a high level of within-segment 

homogeneity and between-segment heterogeneity. The spare parts were also more evenly distributed 

amongst the clusters as shown in Figure 4. The largest cluster (cluster 8) featured 2,470 spare parts 

(31.3% of the data set) and the smallest cluster consisted of 117 spare parts (1.5% of the data set) in 

Figure 4. The size distribution in the clusters was good, since no clusters featured the majority of the 

spare parts, while conducting the analysis with two clusters. 



 

 

Figure 4: Cluster sizes for the eight-cluster solution 

Figure 5: Cluster characteristics 

The disadvantage of TSCA is that the results can depend on the order of data in the data set. 

To overcome this limitation, the data was randomized and tested an additional five times. The results 

from this analysis showed that every time the clustering algorithm was run, the cluster quality 

remained over 0.5. The average largest cluster size and average smallest cluster size was 33% and 

1% respectively. Figure 5 shows the size (i.e., the number of parts), input distribution, and input mean 

of the different clusters. 



 

The input mean shows the average input within each specific cluster. For example, when 

inspecting cluster eight, it can be seen that most of the input data are located in the leftmost portion 

of the overall data distribution, with an average overhead cost of 8.64 DKK, a lead time of 5.83 days 

and demand of 558.66 units per year. Using this data, it was possible to create a ranking of each 

cluster followed by ranking of the spare parts within each cluster.  

4.4.2 Ranking of clusters and sample size determination for further analysis 

As the case company was evaluating the feasibility of AM for spare parts production for the first 

time, they were interested in identifying some feasible spare parts and not all the spare parts, which 

could be produced by AM. Thus, it was decided to generate a sample of spare parts, which could then 

be evaluated further.   

The selection of appropriate spare parts was completed through a three-step process: 

1. Ranking of clusters and determination of spare part sample size based on cluster rankings 

2. Ranking of the spare parts within the cluster 

3. Manual inspection of technical drawings for selected sample of spare parts 

Having created the clusters, an assumption was made that some clusters can be potentially 

more suitable for AM than others. In order to find these clusters and to determine a sample within 

each cluster for further analysis, the clusters were ranked. For this analysis step, the two MCDM 

methods - AHP and TOPSIS - were used, with the previously mentioned weights of the factors to 

prioritize the clusters. The results of this ranking can be seen in table 4.  

Table 4:  Cluster rankings and sample size allocation across clusters using AHP and TOPSIS 

 AHP  TOPSIS  

Cluster No. Rank Sample size Rank  Sample size 

1 1 29 2 17 

2 2 24 1 18 

3 3 16 4 14 

4 8 2 8 1 

5 5 10 5 14 

6 6 7 6 13 

7 4 13 3 14 

8 7 4 7 12 

 

As can be seen in table 4, clusters are ranked very similar to using AHP and TOPSIS. The 



 

difference between the two approaches lies within the first four cluster rankings, where cluster one 

and two appeared to have switched places, as well as three and seven. Since the difference between 

the two methods was not significant, and there was no tangible advantage in understanding deviation 

from the ideal cluster, AHP was the method used to rank the clusters. The proportional allocation 

from the AHP score determines the sample size from each cluster. In table 3, a sample size of 100 

was distributed amongst the clusters based on the AHP scores of the clusters. Following the ranking 

of clusters and determination of sample sizes within each cluster, the selected spare parts within each 

cluster were analyzed to identify those most suitable. 

4.4.3 Ranking of spare parts within clusters using TOPSIS 

Spare parts within each cluster were ranked to choose the most eligible spare parts, which were 

suitable for AM. TOPSIS was deemed to be the most suitable, as the method compares each spare 

part to the ideal and negative ideals, within each cluster. In table 6, the positive and negative ideals 

for each of the eight clusters are depicted. After calculating the positive and negative ideals, the spare 

parts were scored based on the distance from the ideal solutions and the weights of the parameters. 

Combining this ranking with the sample size gives a list of the most eligible spare parts within each 

cluster. 

Table 5: Results from weight changes in cluster 1 & 2 

 



 

Table 6: TOPSIS positive and negative ideal within each cluster 

 

4.4.4 Sensitivity analysis of ranking of spare parts within clusters by TOPSIS 

In order to investigate the robustness of the TOPSIS method, used to rank the spare parts within 

clusters, sensitivity analysis was conducted. The analysis showed that changing the weight of the 

parameters affected the sample sizes for each cluster. In table 6, the two most affected clusters, 1 and 

2, are shown. The column "Parts removed" shows the number of parts from the specific cluster that 

were removed as a consequence of change of weight of factors. For example, by changing the weight 

of the lead time by +5% , the sample size for cluster 1 decreased from 29 to 28. The "Parts removed 

%" showed the percentage of the parts removed from the cluster compared to the original allocation. 

In table 7, weight changes and effects for clusters 1 and 2 can be seen.  

For example, for cluster 1, reduction in weight of lead time by 10% removed 14 parts 

equivalent to 48% of the parts from the original sample, while increasing the weight of overhead cost 

by 10%, removed nine parts, which is equivalent to 31% of the sample that were removed from the 

original sample. Thus, for cluster 1, a reduction in weight for lead time and an increase in weight for 

 

 

 

Table 7: Results from weight changes in cluster 1 & 2 



 

overhead cost will induce the largest change in the cluster composition. For cluster 2, it can be 

observed that increasing the weight of lead time by 5% removes only one part from the original 

sample but increasing it by an additional 5% to a total of 10% will move 10 parts. Decreasing the 

weight of overhead cost by 10% has the effect of removing 67% of the parts from the original sample 

size allocation. Hence, cluster 2 is more sensitive to overhead cost. Thus, from the sensitivity 

analyses, we can conclude that demand had little to no impact on cluster composition. Nonetheless, 

cluster composition, and hence final selection of spare parts for AM, will change if the weights of 

lead time and overhead costs are changed significantly.  

Table 7: Results from weight changes in cluster 1 & 2 

 

4.4.5 Final selection of spare parts through technical evaluation of drawings and expert validation  

The technical drawings for all 100 selected spare parts were requested from the case company; 

however, only a total of 54 technical drawings could be obtained. This was because some of the 

drawings were not provided by the third party suppliers to the case company or because for older 

spare parts, technical drawings were not created or documented. The files provided included CAD 

drawings and technical specification sheets in PDF format.  



 

Using the 2D or 3D drawings, the material and tolerances were inspected to determine if the 

product was eligible for AM. This step should have been completed during the technological attribute 

screening; however, it was postponed due to lack of data. After this step, 45 spare parts were 

discarded. The reason for this was that the spare parts included complex subassemblies, had high 

tolerance requirements or featured electronic components or other unprintable materials as 

determined by examining the printer database. Complex assemblies were not considered in this 

research. However, assemblies featuring simple components were included and separated into 

subcomponents. An example of an assembly deemed suitable for AM is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Typical subassembly considered in the study   

 

From this analysis, nine spare parts were chosen to be suitable for AM. The results of the 

spare part selection exercise were presented to three managers from the spare parts and procurement 

functions. The managers validated these findings and agreed that the nine selected parts could be 

taken up for a detailed business case development for using AM. A brief description of the parts is 

shown in Table 8 below: 
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Table 8: Spare parts found suitable to be produced by AM 

ID Description 
Height 

(MM) 

Length 

(MM) 

Width 

(MM) 

Lead Time 

(days) 

Demand 

(12 months) 

1 TOOL-LH SIDE SQUEEGEE  70 765 120 26 1 

2 PLATE SKIRT LH 53 104 472 43 2 

3 SCREEN RECOVERY TANK 36 251 237 10 5 

4 SHAFT STEERING 96 18 17 57 1 

5 CONSOLE ASSEMBLY  258 574 484 22 1 

6 BRACKET T 14 130 49 50 1 

7 COUPLER  56 78 56 24 4 

8 BRACKET ROTATING SUPPORT CYL.D 50 165 175 23 20 

9 TANK RECOVERY 12L  249 493 225 31 2 

 

5.0 Discussion 

Developing a methodology for selecting spare parts that are suitable for AM for the case company 

highlighted multiple challenges associated with data collection and evaluation.  The outcome of using 

our proposed approach shows that the choice of the specific method and the process followed will 

depend on specific characteristics of the dataset, the extent of discrimination amongst parts obtained 

using the method, and extent of availability of data. Our results show that for a company with a large 

portfolio of spare parts with very different characteristics, trying to rank the parts will not help in 

distinguishing the parts suitably from the point of view of suitability for AM. Conducting cluster 

analysis will help in understanding the part characteristics better, the clusters and parts within the 

clusters can then be ranked.   

5.1 Generalizability of the proposed methodology 

Following the substantive theory development phase of design science research, we discuss the 

generalizability of the proposed approach. The proposed approach is particularly suitable where a 

scoring method to rank all parts in a spare parts portfolio fails to achieve sufficient discrimination. 

The suitability of the proposed approach is not simply restricted to a part selection problem for AM, 

but can also be used for other applications such as selecting suitable materials and process selection 

for AM. In such contexts, materials characteristics and AM technology characteristics need to be 

matched along with parts characteristics and requirements. Understanding parts characteristics, 

grouping similar parts together, and identifying which are suitable for which type of materials and 

which specific AM technology should be used, can also be attempted using our proposed approach. 

The suitability of our approach will be high when adequate discrimination is not obtained when 

ranking and matching parts to different materials and technologies. The approach also underscores 



 

the importance of combining both the ‘data-driven’ and ‘expert driven’ approaches to address the 

problem, which should also be used to solve similar problems in the industry. 

5.2 Development of a generalized framework for spare parts selection for AM 

It is important to take a pragmatic approach while conducting such an exercise by taking into account 

the company’s specific needs. For example, the expert-driven bottom-up approach as demonstrated 

in Lindemann et al. (2015) is useful, especially in contexts where sufficient data are not available.  

Thus, there is a need to develop a systematic process for conducting the parts selection exercise, 

considering the context of the company and the availability of data. 

We outline this systematic process in Figure 7, which can serve as a guideline for companies trying 

to assess whether their spare parts portfolio is suitable for AM. This process includes specifying the 

objectives, identifying the screening criteria and their thresholds, finalizing the scoring criteria, 

understanding the relationship between the scoring criteria and the objectives and, finally, collecting 

the necessary data before scoring the parts. To conduct the above exercise, a cross-functional team 

consisting of people from the supply chain, service and R&D needs to be involved. The team needs 

to specify the company specific objectives, finalize the screening criteria, determine their thresholds 

and ensure that data are made available for validation of the findings. If it is not possible to collect 

data for all parts due to lack of data availability of the data in the digital form, the companies should 

follow a bottom-up approach to identify spare parts that are suitable for AM by holding workshops 

that involve the maintenance and service technicians. The content of these workshops should include 

an overview of the potential for AM, and identify specific questions regarding which spare parts 

create problems for maintenance and service due to lack of availability and due to sheer complexity. 

If several potential spare parts are identified through these workshops, the identified scoring criteria 

can be used to score the spare parts based on expert judgment. If only a few spare parts are identified, 

companies can identify the appropriate AM technology and equipment and then develop a business 

case by relying on total cost of ownership models. Thus, the mechanisms through which the outcomes 

of this design science exercise is obtained has both a technical dimension (i.e. choice of the 

appropriate methodology) as well as a social dimension (i.e. interaction and inputs from the cross-

functional experts and utilizing their experience at the different stages of the process).      



 

 

Figure 7: Guidelines for selecting parts suitable for AM 
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5.3 Implications for Managerial Practice 

The topic of part selection for AM is an important and emerging topic. Every manufacturing company 

that wants to adopt AM must develop an idiosyncratic methodology to select parts which are suitable 

to be produced using AM. Such a methodology must take into account the unique characteristics of 

the parts in their portfolio. Based on these unique characteristics, the company must choose the 

appropriate approach. Our research was conducted in close cooperation with two Danish companies. 

We have outlined the methodology as applied in one of the companies. Interestingly, the method we 

had to develop in another company, which is not part of this research, is significantly different from 

the one that we have demonstrated here. Thus, a single methodology may not be applicable for all 

companies. We would also like to point out that the complex nature of the problem has attracted 

specialised AM service and software providers to develop software solutions to address the part 

selection problem for AM.  Examples of such companies providing part selection or part feasibility 

analysis and other software services for AM include 3yourmind, PrintSyst, and 3DHubs, to name a 

few.  

The software solutions provided by the above service providers work on the principle of reference 

parts. From a database of thousands of parts which are already produced using AM, the software can 

try to determine similarity of parts in a portfolio of a company. Using machine learning techniques, 

the software is able to propose whether a specific part is feasible to be produced by AM. Such an 

approach is appropriate for AM service providers, as they already have a large library of reference 

parts and can provide the feasibility analysis to their customers in a short time.  Such a method would 

also work well if an individual part needs to be evaluated for its suitability for AM. However, that 

approach may not work when evaluating an entire portfolio of tens of thousands of parts.  

A manufacturing company which wants to adopt AM can surely buy such services from the software 

service providers. But before deciding to even procure such services, many companies, that the author 

team have interacted with, had expressed a desire for a customised approach from the ‘ground up’. 

Such an approach is more suitable for their portfolio as those companies would not necessarily like 

to share all their digital drawings with a third party service provider. For such companies, our 

proposed methodology as well as those suggested by Lindemann et al. (2015) and Knofius et al. 

(2016) will be useful. Their actual adoption and adaptation will depend on the characteristics of the 

spare parts portfolio, extent of data availability and level of discrimination obtained.  Once spare part 



 

selection has been conducted, the most suitable spare parts can be profiled, so that the parts selection 

process can be automated following a machine learning approach. Such an approach is applied by 

commercial service providers who provide part identification as a service. For the selected spare parts, 

the most suitable AM technology and equipment have to be assessed primarily based on build volume, 

materials which can be processed, surface finish, and tolerances which can be achieved, including 

post-processing requirements. In the future, along with better availability of data, such technical 

feasibility could be considered as part of the selection process rather than after selecting the parts.     

      6.0 Conclusion, limitations and opportunities for future research 

This paper focused on identifying the most suitable spare parts to be produced using AM.  TOPSIS, 

MCDM approach, and cluster analysis were used to identify suitable spare parts. Sensitivity analyses 

were conducted to check the robustness of the results. The identified parts were validated using 

experts from within the case company.  

The contributions of this paper are two-fold. First, we develop a comprehensive approach 

combining both data-driven analysis, and expert judgment to identify spare parts that are most 

suitable for AM. In particular, we highlighted the fact that there are contexts wherein attempts to rank 

all parts in a spare parts portfolio could fail to achieve sufficient discrimination. In such cases, the 

approach we have carried out makes it possible to adopt and adapt in other manufacturing companies 

as well. Second, we followed the steps of a systematic design science intervention (see Holmstrom et 

al., 2009; van Aken et al., 2016) with a focus on developing an ‘artifact’ which is a step-by-step 

process to address the part selection problem for AM. This artifact in turn leads to generalizability of 

the approach beyond the application context in the case company to be valid in other related 

companies as well.  

The research has certain limitations. Due to data limitations, it was not possible to screen the 

initial population of spare parts based on materials, weight, and tolerances. Some simplifying 

assumptions were made regarding the exclusion of parts with more than 100% of overhead costs and 

exclusion of high value items, which were assumed to be primarily electronics. These assumptions 

were made while focusing on the current situation in the company, leading to the exclusion of parts 

which may have high inventory and, hence, do not need to be produced using AM in the current 

situation or in situations where there is no willingness to print electronics items to start with. Ideally, 

such screening would reduce the number of feasible spare parts significantly, which can then be 



 

thoroughly assessed. Also, the selection of spare parts using the above process was not exhaustive 

but, instead, a sample of 100 parts was selected, out of which only 54 parts could be evaluated. Thus, 

the company can potentially evaluate many other parts. As companies identify more spare parts, 

which can be manufactured using AM, the analysis of characteristics of those parts and identifying 

patterns using different machine learning techniques can ensure that the entire spare parts selection 

process for AM need not be repeated when new products are developed, and when new parts are 

added to the spare parts population. In survey research, it is a common practice to check for missing 

data and use suitable imputation techniques (Tsikriktsis, 2005). Future research should also explore 

the best approaches to check for data quality, missing data, and impute those using the most suitable 

approach in the context of the parts selection problem for AM.      

Currently, no clear guidelines are available in the literature in terms of choosing the 

appropriate methodology for such parts selection problems. Future research should be directed 

towards developing guidelines concerning the choice of the most appropriate method depending on 

the context. Thus, there is a need to compare the results following different MCDM methods and 

further validating them.  The outlined process also assumes no change in the design of the parts. For 

spare parts which are not the most suitable for AM using existing designs, the need for additional 

design changes has to be explored by considering a change of materials or optimal geometries. There 

is a need for developing an integrated decision support system for parts selection, AM technology 

and equipment selection and assessment of design change alternatives. These issues can be explored 

in future research. 
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