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Abstract

The isogeometric boundary element method (IGABEM) is a technique that

employs non-uniform rational B-splines (NURBS) as basis functions to discretise

the solution variables as well as the problem geometry in a boundary element

formulation. IGABEM has shown improved convergence properties over the

conventional boundary element method (BEM) algorithms. However, in acous-

tics, IGABEM has only been applied to problems with simple smooth boundary

conditions. In most real-world engineering design and analysis acoustic prob-

lems, geometric corners and discontinuities in boundary conditions can give rise

to more complexity in the solution field that may be more efficiently modelled

using a discontinuous approach.

In the current work we develop a discontinuous IGABEM formulation based

on discontinuous elements and a suitable collocation scheme. Continuous and

discontinuous formulations are compared. In this paper, a three dimensional

model with different sets of boundary conditions is presented to explore the

conditions under which a discontinuous formulation outperforms the continuous

IGABEM. A simple car passenger compartment model characterised by panels
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with piecewise continuous impedance boundaries is presented to illustrate the

potential of the proposed method for integrated engineering design and analysis.

Keywords: NURBS, discontinuous IGABEM, car passenger compartment,

interior acoustic problem

1. INTRODUCTION

The noise, vibration and harshness (NVH) performance is one of the most

important indicators in evaluating the quality of a vehicle. The driver’s fatigue,

vehicle riding comfort and the durability of components will be influenced by

any interior noise and vibration [1, 2]. These factors have led vehicle engineers5

to develop more accurate and effective methods to reduce the noise and vibra-

tion inside the passenger compartment. The development of these methods is

underpinned by advanced computational modelling. Many Computer Aided En-

gineering (CAE) techniques are available for acoustic analysis, among them the

Finite Element Method (FEM) [3, 4] and Boundary Element Method (BEM)10

[5–9] are the most widely used of the deterministic methods. We note that for

asymptotically high frequency problems, the methods based on optics, e.g. the

ray tracing method [10, 11] and the Geometrical Theory of Diffraction [12, 13],

are popular, but our focus is the lower frequency range within automobile pas-

senger compartments. The BEM is popular with engineers for acoustic solutions15

because of its accuracy and the ease of considering infinite domains for problem

involving radiation or scattering bodies. The BEM involves the problem dis-

cretisation and solution on the boundary of the domain [14–16], which reduces

the complexity of mesh generation and the size of the problem.

Although these tools have led to shorter design cycles, their practical ap-20

plication still involves some complications in producing an analysis-ready CAE

model from NURBS-based CAD data. As a result, the geometry preparation

and mesh generation remain time-consuming, especially for industrially relevant

problems where mesh generation and refinement can take up to 80% of the total

analysis time [17]. In the automotive industry, the gap between CAD and CAE25
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presents a considerable obstacle that extends the product design cycle, since

many analysis runs are commonly required in an optimisation process.

The idea of Isogeometric Analysis (IGA), based on the use of non-uniform

rational B-splines (NURBS) as the FEM approximation space, was first put for-

ward by Hughes et al. [17] and has since received considerable attention. The30

concept is to use the splines typically employed in CAD geometry to capture

the exact geometry for analysis directly. NURBS are the standard geometry

representations in CAD and have been widely used in IGA [18–22]. Certain

geometries that can only be approximated by polynomial functions can be rep-

resented exactly using NURBS, such as cylinders and spheres. Hence, the gap35

between CAD and CAE is bridged, and more accurate engineering simulations

enabled on exact geometric representations. Most importantly, use of NURBS

as an approximation space in both FEM and BEM has been shown to improve

convergence properties over the use of classical Lagrange polynomials.

The isogeometric boundary element method (IGABEM) combines both the40

IGA and BEM. Thus the discretisation is based on a CAD construction in-

stead of the piecewise polynomials used in the conventional BEM. By taking

NURBS as the basis for the numerical approximation of the acoustic field, mesh

generation and refinement are greatly simplified. The IGABEM has developed

rapidly in recent years [23–28] and has been applied successfully to various fields,45

e.g. potential problems [23, 25, 29–31], elasticity [26, 32–34], electromagnetics

[35, 36] and shape optimisation [37–40]. Particularly, in the area of acoustic ap-

plications, Simpson et al. [41] employed IGABEM based on T-splines to solve

both interior and exterior acoustic problems. Further, Peake et al. proposed an

extended isogeometric boundary element method (XIBEM) for two-dimensional50

Helmholtz problems in the mid-high frequency range [23] and then extended it

to three dimensions [29]. It should be noted that these analyses have been

performed only for smooth boundary conditions while in acoustic problems of

relevance to the automobile industry, the boundary conditions are mostly dis-

continuous, the sound absorption properties of lining materials and windows55

being markedly different.
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The BEM is usually presented as a mixed formulation in which one solves

a system containing both the primary variable and its derivative as unknowns.

For example, in elasticity problems, the primary unknown is displacement. The

second unknown, traction, is related through Hooke’s law to the derivative of60

the primary unknown. For Laplace and Helmholtz problems, the unknowns

are the potential and its normal derivative. Since the normal is discontinuous

across edges and at corners, one cannot use a continuous description of the

derivative unknown (unless as in, for example, the acoustic probe example in

[41] a homogeneous Neumann boundary is used throughout), and BEM formula-65

tions generally need to accommodate this discontinuity. The literature contains

descriptions of IGABEM formulations in which the derivative unknown is ex-

panded in a discontinuous form; for example, Scott et al. [25] and Marussig et

al. [42] both study elasticity problems and use a discontinuous representation

of traction. However, these authors maintain a continuous description of the70

primary variable, i.e. the displacement. Nevertheless, the BEM admits a fully

discontinuous approach, in which both the primary unknown and its normal

derivative are expressed using a discontinuous form. Thus, for example, the

displacement can be discontinuous in elasticity analysis, as can be the potential

in Laplace and Helmholtz problems. While discontinuity of the primary vari-75

able violates a physical constraint, a fully discontinuous discretisation can allow

a more efficient numerical approximation in certain circumstances, particularly

where the primary variable exhibits large gradients and/or weak discontinuities.

The use of such fully discontinuous elements in conventional BEM is a mature

technique, going back to some of the earliest works by Brebbia on the newly80

named Boundary Element Method [43] and later studied in more detail by Xu

and Brebbia [44] and Parreira [45]. In this paper we apply the approach for

the first time in IGABEM. This is in the context of Helmholtz problems. We

mention that the discontinuous approach gives rise to additional degrees of free-

dom where the nodes containing the unknowns are no longer shared between85

elements, which will be discussed in Section 5.1. This requires more equations

to be included to arrive at a square system, so a strategy for collocation point lo-
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cation is required. Traditionally this is achieved by collocating internally within

elements rather than at the element perimeter. We present a strategy for lo-

cating collocation points in a later section, but note that Wang and Benson90

[46] consider a similar problem in collocation for their nonsingular IGABEM

formulation.

In this paper, comparisons are made between discontinuous IGABEM and

continuous IGABEM formulations. All models are characterised by panels with

piecewise continuous impedance boundaries [47–50].95

The remainder of the text is structured as follows. First, an introduction to

B-splines and NURBS is given in Section 2. Section 3 and Section 4 present the

conventional Boundary Element Method (BEM) and implementation of IGA-

BEM, respectively. The formulation of the discontinuous IGABEM, including

the collocation scheme, is introduced in Section 5. Then, several numerical ex-100

amples are given in Section 6 to verify the accuracy of the proposed scheme,

including a simplified car passenger compartment subjected to realistic bound-

ary conditions. Finally, we draw some conclusions in Section 7.

2. B-SPLINES AND NURBS

In this section we describe the mathematical preliminaries relating to B-105

splines and NURBS that are required as a precursor to the later sections of the

paper. The interested reader is directed to [51, 52] for a full description.

2.1. B-SPLINES

The definition of B-Spline basis functions starts with the concept of the

knot vector. A knot vector is constructed from a sequence of non-decreasing110

real numbers:

Ξ = {ξ1, ξ2, ..., ξn+p+1} , ξi ∈ R (1)

where ξi is the i-th knot in the parameter space representing the parametric

coordinates of the curve, i = 1, 2, ..., n + p + 1, n is the number of the basis

functions which construct the B-splines, p is the curve degree. The half-open

5



interval [ξi, ξi+1) is called a knot span which can have zero length since the knots

may be repeated. The interval [ξ1, ξn+p+1) is called a patch. The B-spline basis

functions can be built recursively by using the Cox-de Boor recurrence formula

[53, 54] based on the knot vector:

p = 0 : Ni,0(ξ) =





1 ξi ≤ ξ < ξi+1

0 otherwise
(2)

p > 0 : Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (3)

B-spline curves are constructed from a linear combination of B-spline basis

functions. A p-th degree piecewise polynomial B-spline curve Cb(ξ) is given by

Cb(ξ) =
n∑

i=1

Ni,p(ξ)Ai (4)

where Ai are the control points, which are position vectors determining the

shape of the spline curve, and Ni,p(ξ) denotes the i-th basis function from Eq.115

(3). It should be noted that the concepts of control points and basis functions

are similar to nodal coordinates and shape functions in BEM, respectively, but

a key difference is that control points may lie off the physical boundary.

A B-spline surface Sb(ξ, η) is a tensor product surface of two B-splines. Given

a net of control points Ai,j(i = 1, 2, ..., n; j = 1, 2, ...,m), polynomial degrees p120

and q, two knot vectors Ξ = [ξ1, ξ2, ..., ξn+p+1] and Θ = [η1, η2, ..., ηm+q+1], a

B-spline surface is defined as

Sb(ξ, η) =

n∑

i=1

m∑

j=1

Ni,p(ξ)Mj,q(η)Ai,j (5)

whereNi,p(ξ) andMj,q(η) represent univariate B-spline basis functions of degree

p and q, associated with knot vectors Ξ and Θ, respectively.

2.2. KNOT REFINEMENT125

In this work, h-refinement is adopted as the refinement method. In an iso-

geometric context this can be accomplished by knot insertion. Given a knot

vector Λ = {ξ1, ξ2, ..., ξn+p+1} , ξi ∈ R, a knot ξ̄ ∈ [ξt, ξt+1] can be inserted into
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Λ, potentially multiple times. If ξ̄ is to be inserted 3 times, for example, the

new knot vector will be =
{
ξ1, ξ2, ..., ξt, ξ̄, ξ̄, ξ̄, ξt+1, ..., ξn+p+1

}
. Associated with130

this is a change in the control points, the original set {Q1, Q2, ..., Qn, } being

expanded and changed to
{
Q̄1, Q̄2, .., Q̄n+3

}
through the following procedure:

Q̄i = αiQi + (1− αi)Qi−1, (6)

where

αi =






1, 1 ≤ i ≤ t− p

ξ̄−ξi
ξi+p−ξi

, t− p+ 1 ≤ i ≤ t

0, t+ 1 ≤ i ≤ n+ p+ 2

(7)

It should be noted that knot insertion just changes the vector space basis as

well as the basis functions, while the geometry is not changed.135

2.3. NURBS

NURBS are developed from B-splines but the introduction of weights gives

more flexibility and enables the exact representation of geometric entities like

circular arcs and spheres [51]. By defining a positive weight ωi to each basis

function, the NURBS basis functions Ri,p(ξ) can be expressed as140

Ri,p(ξ) =
Ni,p(ξ)wi

W (ξ)
(8)

with

W (ξ) =
n∑

j=1

Nj,p(ξ)wj (9)

If all the weights are equal to 1, then Ri,p(ξ) = Ni,p(ξ), and the NURBS degen-

erate into B-splines. A p-th degree NURBS curve is obtained by

C(ξ) =
n∑

i=1

Ri,p(ξ)Ai (10)

The definition of a NURBS surface S(ξ, η) is then completely analogous to a

B-spline surface, given as145

S(ξ, η) =

n∑

i=1

m∑

j=1

Ri,j,p,q(ξ, η)Ai,j (11)
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with

Ri,j,p,q(ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

î=1

∑m

ĵ=1 Nî,p(ξ)Mĵ,q(η)wî,ĵ

(12)

These same NURBS basis functions are also used to represent the field variables.

It should be noted that the basis functions of NURBS have some important

properties:150

1. Non-negativity: Ri,j(ξ, η) ≥ 0 for all i,j,ξ and η.

2. Partition of unity:
∑n

i=1

∑m

j=1 Ri,j(ξ, η) = 1 for all (ξ, η);

3. Local support: if (ξ, η) is outside the knot span [ξi, ξi+p+1) × [ηj , ηj+p+1),

Ri,j(ξ, η) = 0;

4. Continuity: if (ξ, η) is inside the knot span [ξi, ξi+p+1) × [ηj , ηj+p+1), all155

partial derivatives of Ri,j(ξ, η) exist. At a ξ knot (η knot) it is p − k (q − k)

times differentiable in the ξ (η) direction, where k is the multiplicity of the knot.

3. Boundary Element Method (BEM)

Time-harmonic acoustic waves within the domain Ω ∈ R3 with boundary Γ

are governed by the well-known Helmholtz equation [55]:160

∇2φ(x) + k2φ(x) = 0, x ∈ Ω (13)

where ∇2 is the Laplacian operator, φ(x) ∈ C is the acoustic potential at the

point x, λ is the wavelength, and k = 2π/λ is the wave number. We assume

e−iwt time dependence.

We seek the solution to (13) subject to boundary conditions that may take

the following forms in acoustic problems:165

• Dirichlet condition: the acoustic potential is known over the boundary:

φ(x) = φ(x), x ∈ Γ (14)

• Neumann condition: the derivative of the acoustic potential is known over

the boundary:
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∂φ(x)

∂n
= q, x ∈ Γ (15)

• Robin condition: the derivative of the potential is presented as a linear

function of the potential:170

α
∂φ(x)

∂n
= βφ(x) + γ, x ∈ Γ (16)

Particularly, in the context of an acoustic problem with absorbing boundaries

it is often desirable to express the Robin condition in the form

∂φ(x)

∂n
= −iρ0ω

φ(x)

Z
(17)

where ρ0 is the material density, ω is the frequency and Z is the boundary

impedance, given by the acoustic pressure divided by the velocity of the fluid

relative to that of the structure [56]. We note the frequency dependence of the175

impedance properties.

Using standard techniques, Eq. (13) can be reformulated as a boundary

integral equation (BIE):

C(s) +

∫

Γ

∂G(s,x)

∂n
φ(x)dΓ(x) =

∫

Γ

G(s,x)
∂φ(x)

∂n
dΓ(x) (18)

where s ∈ Γ represents the source point, n is the unit outward pointing normal,

C(s) is a jump-term depending on the geometry at the source point. If the180

source point lies on a smooth surface, the jump term C(s)=1/2. φ(x) and ∂φ(x)
∂n

are the acoustic potential and its derivative, respectively.

By substituting Eq. (17) into Eq. (18), the BIE with the impedance bound-

ary condition applied can be obtained as follows:

C(s) +

∫

Γ

(
∂G(s,x)

∂n
+ iρ0ω

G(s,x)

Z

)
φ(x)dΓ(x) = 0 (19)

This will guide the following work of the acoustic problem of a passenger com-185

partment in Section 6.2.

For 3D problems, G(s,x) is the Green’s function given by:

G(s,x) =
eikr

4πr
(20)
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∂G(s,x)/∂n is the corresponding derivative expressed as:

∂G(s,x)

∂n
=

eikr

4πr2
(ikr − 1)

∂r

∂n
(21)

and

r = |x− s| (22)

The integrals in Eq. (18) contain a weak singularity and any of the standard190

techniques in the BEM literature may be used to evaluate them [57–59].

In the conventional BEM, the boundary Γ is discretised into E non-overlapping

boundary elements, which can be expressed as:

Γ =

E⋃

e=1

Γe (23)

The elements represent the geometry through the mapping:195

Γe = Fe(ξ̄, η̄), ξ̄, η̄ ∈ [−1, 1] (24)

then Eq. (19) can be written as a discretised form:

C(s) +

E∑

e=1

M∑

m=1

Pem(s)φem =

E∑

e=1

M∑

m=1

Qem(s)
∂φem

∂n
(25)

where

Pem =

∫ 1

−1

∫ 1

−1

∂G(ξ̄, η̄)

∂n
Nem(ξ̄, η̄)Je(ξ̄, η̄)dξ̄dη̄ (26)

Qem =

∫ 1

−1

∫ 1

−1

G(ξ̄, η̄)Nem(ξ̄, η̄)Je(ξ̄, η̄)dξ̄dη̄ (27)

where M is the number of nodes on the element, Nem are the corresponding

shape functions, and Je is the Jacobian from the mapping in Eq. (24).

Taking the point s to lie at each node in turn, the collocation form of the

BIE yields a set of equations relating all potential and velocity coefficients as200

follows:

Hu = Gq (28)

where u, q are vectors containing nodal values of φ, ∂φ
∂n

. The fully populated

matrix H contains all integrals of the left-hand side terms of Eq. (25), and
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matrix G is assembled by integrals of the right-hand side terms of Eq. (25).

φ and ∂φ/∂n are vectors containing acoustic potential and normal derivative205

coefficients, respectively.

By reordering all the unknowns and related coefficients to the left-hand side

and all the knowns and related coefficients to the right-hand side, we obtain a

linear system:

Ax = b (29)

where A is an unsymmetrical and fully populated square matrix, the vector x210

contains all unknown potential and derivative coefficients while the vector b is

calculated from all known coefficient and their associated terms. Eq. (29) is a

linear system which can be solved directly.

The BIE can be applied to both bounded and unbounded (infinite) domains.

However, for the case of unbounded domains, it is well known to result in a215

singular system at wave numbers corresponding to the eigenfrequencies of the

interior problem formed on the boundary Γ. The present work is entirely aimed

at bounded domains modelling automotive passenger compartments, so there

is no consideration of the strategies (CHIEF[60], Burton-Miller[61]) that are

widely used to overcome this system degeneracy.220

4. IGABEM for Acoustics

Instead of polynomial shape functions, NURBS basis functions are employed

to represent φ, ∂φ/∂n as well as the geometry in the IGABEM. The boundary

is divided into E non-overlapping isogeometric patches Γe, analogously to the

conventional BEM in Eq. (23). A local coordinate mapping is defined on each225

patch Γe as follows:

Γe = Fe(u, v), u, v ∈ [0, 1] (30)

It should be noted that the integration is calculated knot span by knot span,

e.g. [ξi, ξi+1]× [ηj , ηj+1] (see Figure 1(a)), while in the integration using Gauss-

Legendre quadrature, the parametric system Y = (ξ̄, η̄) is defined in [−1, 1]×

[−1, 1]. Figure 1 shows the coordinate transformation in the IGABEM. This230
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requires that an additional transformation be defined to map from the local

coordinates to the parametric space.

ξi ξi+1

ηj

ηj+1

u

v

a knot span

(a) Patch

(-1,-1)

(1,1)

ξ̄

η̄

(b) Knot span in parametric

space Y

Figure 1: Coordinate transformation in IGABEM.

The total Jacobian can be expressed as:

JY =

∣∣∣∣
∂x

∂F

∂F

∂Y

∣∣∣∣ (31)

where the first component is the Jacobian mapping from the global to local

coordinates on each patch, and the second term is the Jacobian mapping from235

local coordinates to the parametric space.

The acoustic potential and the normal derivative can be discretised in terms

of a NURBS expansion, respectively:

φ(x) =

n∑

i=1

m∑

j=1

Ri,j,p,q(u(x), v(x))φ̃j,p (32)

∂φ(x)

∂n
=

n∑

i=1

m∑

j=1

Ri,j,p,q(u(x), v(x))q̃j,p (33)

where n and m are the number of control points, p and q are the curve degrees240

in the u and v direction, respectively. φ̃j,p and q̃j,p are the coefficients for

potentials and derivatives associated with the control points. It is important

to note that φ̃j,p and q̃j,p are no longer the nodal potentials and derivatives,
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but are simply coefficients from which these quantities can be recovered using

(32) and (33); indeed, since the control points may not lie on the geometry it245

would be meaningless to assign a potential or potential derivative to them. The

final isogeometric boundary integral equation can be written by substituting

Eq. (32) and Eq. (33) into Eq. (25):

C(s) +

E∑

e=1

n∑

i=1

m∑

j=1

Peij(s)φeij =

E∑

e=1

n∑

i=1

m∑

j=1

Qeij(s)
∂φeij

∂n
(34)

with

Peij =

∫ 1

−1

∫ 1

−1

∂G(ξ̄, η̄)

∂n
Reij(ξ̄, η̄)JYeij

(ξ̄, η̄)dξ̄dη̄ (35)

Qeij =

∫ 1

−1

∫ 1

−1

G(ξ̄, η̄)Reij(ξ̄, η̄)JYeij
(ξ̄, η̄)dξ̄dη̄ (36)

where Reij are the corresponding NURBS basis functions, and JYeij
is the Ja-

cobian from the mapping in Eq. (31). Here two indices i, j are used to refer to250

the control points and associated basis functions in an element, as a B-spline

surface is obtained by taking a bidirectional net of control points, requiring two

knot vectors such as (5).

In general, the control points are no longer able to be taken as the collocation

points in IGABEM, since they may not lie on the geometry boundary (except255

in flat patches). Alternatively, the Greville abscissae [62, 63] may be used to

define the position of collocation points in the parameter space as:

ξ′g =
ξg+1 + ξg+2 + ...+ ξg+p

p
, g = 1, 2, ..., N (37)

where N denotes the number of control points, and p is the degree of the

NURBS.

After defining the collocation points, the boundary integral equations defined260

in Eq. (34) can be assembled in matrix form analogously to conventional BEM.

5. Discontinuous Isogeometric Boundary Element Method

5.1. Discontinuous Isogeometric Boundary Patch

Discontinuous elements have been used in conventional BEM for many years,

with the nodes located away from the element edges. This allows for greater265
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flexibility in mesh grading, and also lends itself to parallel implementations since

every term in the influence matrices H and G has only a single contribution

from a single integral over an element. Here we make use of a discontinuous

formulation to improve accuracy in the presence of discontinuous boundary

conditions. In IGABEM, we are constrained by the definition of NURBS to270

have control points on the edges of the patch, requiring some adaptation in the

way discontinuous elements are implemented. In order to obtain a square system

(Eq. (29)), the number of collocation points must be equal to the number of

unknowns. In a discontinuous model, there are multiple control points in the

same location, each having membership of a different patch. This evokes the idea275

of double nodes in early BEM literature. In order to ensure a suitable number of

collocation points, the simplest scheme is to locate them internally in each patch

as shown in Figure 2. The discontinuous IGABEM patches allow the potential

fields to become discontinuous at the interfaces between patches. Although

the true solution will have a continuous potential field, the discontinuity in280

boundary conditions can give rise to large potential derivatives that may be more

efficiently approximated if both the potential and derivative are approximated

in a discontinuous basis.

(a) Continuous (b) Discontinuous

Figure 2: Isogeometric patches in 3D.
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5.2. Collocation

With discontinuous elements, a collocation strategy is needed because some285

control points will be coincident, but collocation at coincident points will lead

to identical equations giving a rank-deficient system. In the IGABEM schemes

introduced in the current work, collocation points are separated from the control

points that are associated with the concept of a node in the conventional BEM.

Marburg [64] studied a long duct and a vehicle cabin to investigate the loca-290

tion of nodal points in discontinuous Lagrangian boundary elements, and found

for low-order elements that discontinuous elements gave smaller errors than

continuous ones if the nodal points were located at the zeroes of the Legendre

polynomials. It should be noted that this was observed only for a pure Neumann

problem. Additionally, it was observed that the optimal locations of collocation295

points were different when the frequency changed, which is likely to be due to

the boundary conditions. In this paper, we make a preliminary study of collo-

cation point locations for discontinuous elements in the IGABEM framework.

We make no attempt to determine a mathematically optimal distribution, but

compare three candidate collocation schemes, as follows, to determine a suitable300

scheme to take forward in the remainder of this paper:

1. Uniform collocation: where the collocation points are uniformly distributed

in the parameter domain.

2. Legendre polynomials : where the collocation points are generated at the

roots of Legendre polynomials in the parameter domain.305

3. Modified-Greville abscissae: where the parameters correspond to colloca-

tion points defined by a Modified-Greville abscissae definition studied in

[46], moving the first and the last collocation points away from the edges of

the patches. Initially, the collocation points are generated as the Greville

abscissae along each direction in the parameter space as310

ξ′i =
1

p
(ξi+1 + ξi+2 + ...+ ξi+p) i = 1, 2, ..., N, (38)
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where p is the degree of the NURBS, and N is the number of control points in

the ξ direction.

Then, a coefficient β is brought in to move the first and the last collocation

points of Eq. (38) inside the patch as

ξ′1 = ξ′1 + β(ξ′2 − ξ′1) (39)

ξ′n = ξ′n + β(ξ′n − ξ′n−1) (40)

where the coefficient β = 0.5 has been proved to be the optimal value [46].

Figure 3 shows the different locations of collocation points in parametric space

according to the three schemes. In this case, in both parametric directions we315

have knot vector Υ = {0, 0, 0, 1, 1, 1}, p = 2 and N = 3.

 

 
Legendre
Uniform
Greville

Figure 3: Collocation methods in parametric domain.

It should be noticed that DOF that are normally shared between adjacent

elements are no longer shared so that the total number of DOF increases com-

pared to a continuous element model having the same number of elements. This

can mean that a smaller number of elements is required to achieve the same ac-320

curacy, so it is not obvious whether a continuous or discontinuous approach is

16



preferred. In this work, the comparison between the different collocation meth-

ods is based on meshes with the same number of DOF instead of with the same

number of elements.

We study the convergence for a simple problem using the three collocation325

schemes to decide which strategy to use in this work. First we consider the

acoustic field inside a cubic cavity lying in (x, y, z) ∈ [0, 3]3, with dimensions

in metres. We analyse the case of a plane wave, of wavelength λ = 5 m,

propagating through the cube in the x-direction. This is a rather low frequency

case, a choice driven by the conditions in the application example we focus on330

in automotive engineering.

The Dirichlet boundary condition φ̄ = 1 is applied on the patch lying in

x = 0, and the Neumann condition with

q̄ = −k sin 3k + ik cos 3k (41)

is applied on the patch lying in x = 3, as it is the analytical solution of the

derivative on the corresponding patch. A Neumann condition with q̄ = 0 is335

applied on all other patches.

The L2 norm of the potential was calculated over the entire boundary as:

‖ φ ‖L2(Γ)=

√∫

Γ

|φ|
2
dΓ (42)

We define an error metric ǫ evaluated as

ǫ =
‖ φ− φref ‖L2(Γ)

‖ φref ‖L2(Γ)
(43)

where φref is the reference solution obtained from the converged result of a

conventional BEM analysis using quadratic shape functions.340

Figure 4 shows the convergence of the error norm ǫ with respect to the

number of the degree of freedom, Nd, and suggests that, in the case of quadratic

uniform knot vectors, uniformly distributed collocation points give rise to faster

convergence and provide a more accurate result compared to the other two

strategies.345
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Figure 4: Comparison between collocation methods based on a cube model.

Another example using the geometry of a quarter cylinder is analysed to

reinforce the conclusion drawn above. The cylinder geometry is shown in Figure

5. The rear surface of the cylinder lies in z = 0 while the forward facing surface

lies in z = 3 of the Cartesian space, with dimensions in metres. We consider a

spherical wave of wavelength λ = 5 m , emanating from a point source located350

at [0, 0, 6], passing through the domain.

X

Y

Z

L=3

R2
=
3

R

Figure 5: A quarter cylinder.
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The Neumann condition with

q̄ = 3(ikr − 1)eikr/2πr3 (44)

is applied on the patch lying in z = 0, and a Neumann condition with

q̄ = 3(1− ikr)eikr/4πr3 (45)

is applied on the patch lying in z = 3, where r is the distance from the source

points. In addition, the Dirichlet boundary condition φ̄ = eikr/4πr is applied355

on all remaining patches. Figure 6 shows the calculation result of this problem,

from which we can also see that the uniform collocation method gives rise to

faster convergence and higher accuracy compared to the other two collocation

strategies. This agrees with the conclusion we draw from the cube problem.

Thus from the two sets of results we proceed to the remaining analyses using360

uniformly distributed collocation points.
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Figure 6: Comparison between collocation methods based on a quarter cylinder model.
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6. NUMERICAL EXAMPLES

6.1. Cube

This section presents a numerical example to investigate the accuracy of the

proposed discontinuous IGABEM and evaluate the performance between the365

IGABEM and BEM, considering both continuous and discontinuous approaches.

The problem is depicted in Figure 7. The cubic domain is constructed by 10

piecewise continuous impedance patches on which different boundary conditions

are applied. The cubic cavity lies in (x, y, z) ∈ [0, 3]3, with dimensions in metres.

We define patch 1 as the small square patch {(y, z) ∈ [1, 2]2, x = 3} and patch 2370

as the patch lying in the plane x = 0. The wavelength is λ = 5 m in this case.

Z

X

Y

Figure 7: A 3D cubic model with piecewise continuous impedance boundaries.

In this example, two sets of boundary conditions are applied. These are

chosen to give the problem the character of a glass panel surrounded by an

absorbing material.

(1) A Neumann condition with q̄ = 0, q̄ = 1 is applied on patch 1 and patch375

2, respectively, and a Robin condition with α = 1, β = −2, γ = 1 + i is applied

on the remaining patches.

Figure 8 shows the comparison for the accuracy and convergence between the

proposed method and the discontinuous BEM as well as a comparison between

continuous BEM and IGABEM; it is clear that IGABEM offers a significant380
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Figure 8: Comparison between BEM and IGABEM (continuous and discontinuous) for first

set of boundary conditions.

advantage over BEM in accuracy for any given problem size. Also, the dis-

continuous IGABEM converges faster than discontinuous BEM. However, dis-

continuous IGABEM did not show any improvement compared to continuous

IGABEM for this set of boundary conditions.

(2) A Neumann condition with q̄ = 0, q̄ = 1 is applied on patch 1 and patch385

2, respectively. A Robin condition with α = 1, β = 10, γ = 1+i is applied on the

rest of the patches. The results are evaluated in the same way as in the previous

example. Figure 9 shows the error comparison between different methods, and

this shows contrary behaviour from the first set of boundary condition. In this

example, the discontinuous IGABEM outperforms the continuous IGABEM.390

It is clear that the two sets of boundary conditions give two different re-

sults for continuous and discontinuous IGABEM. Next we study different sets

of boundary conditions also based on the cube model to determine the condi-

tions for the discontinuous IGABEM outperforming the continuous IGABEM.

All the boundary conditions are fixed except for the value of
∣∣∣ βα

∣∣∣, which we vary395

21



2.6 2.8 3 3.2 3.4 3.6 3.8 4
-3

-2.5

-2

-1.5
Continuous BEM
Discontinuous IGABEM
Continuous IGABEM
Discontinuous BEM


��


����

����

����

L
og
ǫ

LogNd

Figure 9: Comparison between BEM and IGABEM (continuous and discontinuous) for the

second set of boundary conditions.

from 1 to 20. Table 1 shows the comparison between conventional IGABEM

and discontinuous IGABEM using the error as defined in Eq. (42), where C de-

notes the continuous IGABEM, D denotes the discontinuous IGABEM, ‘coarse’

describes a model in which 4 × 4 control points are used on each patch, while

‘refined’ means that 12 × 12 control points are used. The last column of the400

Table represents the recommendation for continuous or discontinuous depend-

ing on the value of
∣∣∣ βα

∣∣∣. One can conclude that the discontinuous IGABEM

outperforms the continuous IGABEM when the value of
∣∣∣ βα

∣∣∣ is greater than 5.

6.2. Simplified vehicle model

In this section, a simplified interior acoustic problem of a vehicle passenger405

compartment is presented. The acoustic potential at a certain interior point is

studied based on several sets of boundary conditions.

The interior sound field can be simulated in the acoustic cavity subject to

three different boundary conditions:
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Table 1: A set of Robin boundary conditions studied.

|β/α|
Error

C or D
C coarse C refined D coarse D refined

1 0.0359 0.0053 0.0681 0.0152 C

2 0.0361 0.0051 0.0672 0.0149 C

3 0.0378 0.0052 0.0641 0.0125 C

4 0.0382 0.0042 0.0585 0.0085 C

5 0.0397 0.0051 0.0394 0.0048 D

6 0.0428 0.0051 0.0322 0.0039 D

7 0.0424 0.0052 0.0342 0.0036 D

8 0.0435 0.0055 0.0328 0.0032 D

9 0.0452 0.0056 0.0319 0.0033 D

10 0.0398 0.0056 0.0263 0.0039 D

15 0.0465 0.0053 0.0306 0.0037 D

20 0.0452 0.0061 0.0291 0.0031 D

410

(1) If a boundary surface is oscillating, e.g. the vehicle dashboard, the

boundary condition can be expressed in a Neumann condition form:

∂φ(x)

∂n
= −iρ0ωv (46)

where ρ0 = 1.29 kg/m3 is the air density, ω = 2πC/λ is the circular frequency

of the acoustic source, C = 340.29 m/s is the sound speed, λ = 5 m is the wave415

length and v is the amplitude of the normal component of the velocity on the

surface. In this study we take v to be 1.452 mm/s following Zhu [65].

(2) If the boundary surface is fully reflective, e.g. the window glass, the

boundary condition on the surface can be expressed as a homogeneous Neumann

condition form:420

∂φ(x)

∂n
= 0 (47)

(3) For absorbing boundaries, e.g. the interior lining material for the auto-

mobile, the boundary condition can be expressed as a Robin condition form:
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∂φ(x)

∂n
= −iρ0ω

φ(x)

Z
(48)

taking ρ0 = 1.29 kg/m3 as the air density, frequency ω = 712 rad/s and wave-425

length λ = 3 m. We follow the approach of Marburg [56] to determine the

acoustic impedance; here, an average admittance Yz was obtained experimen-

tally as

Yz =
f

2800
(49)

where f denotes the frequency in Hz. The impedance, Z, is the reciprocal of Yz .

In the current work we are considering the acoustics of a vehicle compartment430

at a frequency of 113 Hz. The BIE with the impedance boundary condition

applied can be found in Eq. (19).

The passenger compartment model is characterised by 22 piecewise continu-

ous impedance patches as shown in Fig. 10. The sub-wavelength details of the

compartment are omitted as they do not contribute significantly to the solution.435

The first Neumann boundary condition is applied on the blue panels as they

represent the vehicle dashboard. The second Neumann boundary condition is

applied on the grey panels as they represent the windows of the vehicle. A

Robin condition is applied on the remaining panels which represent the vehicle

inner lining materials.440

Figure 10: A simplified car model.
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In this example, the converged result of a conventional BEM analysis using

quadratic shape functions is taken as the reference solution. Figure 11 presents

the result comparison between the three different BEM schemes, from which we

can conclude that discontinuous IGABEM outperforms the conventional BEM

and continuous IGABEM in this approximation to a real vehicle problem. In445

this case using realistic material properties, the value of β/α in the Robin con-

dition is 37, so that these results agree with the conclusion of the analysis in

Section 6.1 that the discontinuous IGABEM can provide a more accurate result

than IGABEM when β/α > 5. In addition, the acoustic potential at a certain

point inside the model representing the position near the driver’s ear has also450

been studied, shown in Figure 12. This result converges faster with the dis-

continuous IGABEM formulation and shows that the discontinuous IGABEM

scheme is a promising method for simulating passenger compartment acoustics

in the automotive sector.
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Figure 11: Comparison between BEM and IGABEM (continuous and discontinuous) of the

vehicle model.
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Figure 12: The interior potential near the driver’s ear.

7. Conclusions455

A fully discontinuous IGABEM for acoustic problems has been presented for

the first time in this work. The discontinuous boundary patch has the ability to

more efficiently approximate acoustic fields that exhibit large derivatives in the

presence of discontinuous boundary conditions. The evaluation of discontinuity

in IGABEM modelling of 3D acoustic problems with different sets of boundary460

conditions has been presented and compared to the conventional IGABEM ap-

proach as well as to the conventional BEM in its continuous and discontinuous

forms. It has been shown that for certain absorbing materials, the continuous

IGABEM presents lower errors and converges faster than the same problem with

discontinuous IGABEM, while in other situations, the result is reversed. A sim-465

plified vehicle model subjected to realistic boundary conditions commonly found

in automotive applications has also been presented. The result shows that in

this vehicle application, the discontinuous IGABEM performs better than the

continuous form. The proposed method has shown the ability to predict the
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interior noise level in passenger compartments effectively and reduce the vehicle470

design cycle, and we expect this result to have implications on software methods

used in industry in the future.
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