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Abstract Accurate Monte Carlo simulations for high-
energy events at CERN’s Large Hadron Collider, are very
expensive, both from the computing and storage points of
view. We describe a method that allows to consistently re-
use parton-level samples accurate up to NLO in QCD under
different theoretical hypotheses. We implement it in Mad-
Graph5_aMC@NLO and show its validation by applying it
to several cases of practical interest for the search of new
physics at the LHC.

1 Introduction

The search of new physics is one of the main priorities of the
LHC. The recent observation of an anomaly in the di-photon
spectra [1,2] gives hope that we might have a first evidence
of Beyond Standard Model (BSM) physics very soon. In that
case, we would only be at the beginning of a long program of
investigations of what the underlying physics is. In any case,
searches of new particles or modifications of the interactions
among the SM particles will continue as well as progress
associated to our ability to provide precise predictions to be
compared with data.

In the recent years, efforts have focussed on providing
accurate theoretical predictions for a large number of BSM
models at Leading Order (LO), in the form of event genera-
tors. First, various programs such as FeynRules [3], LanHep
[4] or Sarah [5] have automated the extraction of the Feyn-
man rules from a given Lagrangian. Secondly several matrix
element based generators like MadGraph5_aMC@NLO [6]
(referred to as MG5_aMC later on), Sherpa [7] or Whizard
[8] have extended the class of BSM model they support with
extensions in various directions: high spins, high color rep-
resentations and any kind of Lorentz structure [9–11]. More
recently, automated Next-to-Leading Order (NLO) predic-
tion (in QCD) for BSM models are available thanks to the
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NLOCT [12] package of FeynRules which adds in the model
the additional elements (R2 and UV counter-terms) required
by loop computations.

It is now possible to generate Monte Carlo sample for a
large class of BSM theories at LO and for an increasing num-
ber at NLO accuracy. Even though technically possible, pro-
ducing samples for many models and benchmark points down
to full detector level at the high luminosity expected at the
LHC would require an unmanageable number of computing
and storage resources. However, the stages of a simulation
(parton-level generation, parton-shower and hadronisation,
detector simulation, and reconstruction) are independent and
factorise. Therefore changes in local probabilities happen-
ing at very short distance, i.e. from BSM physics, decouple
from the rest of the simulation stages. This is particularly
interesting since the slowest part of the simulation is the full
simulation of the detector.

A logical possibility therefore arises: one can generate
large samples under a SM or basic BSM hypothesis and then
continuously and locally deform the probability functions
associated to the distributions of parton-level events in the
phase space by changing the “weight” of each event in a sam-
ple to account for an alternative theory or benchmark point.
Under a not-too-restrictive set of hypotheses which are easy
to list, such an event-by-event re-weighting can be shown to
be exactly equivalent (at least in the infinite statistic limit)
to a direct generation in the BSM. Note that such an event-
by-event re-weighting is conceptually different from the very
common yet very crude method where events are re-weighted
using a pivotal one-dimensional distribution. Event-by-event
re-weighting is a common practice in MC simulations, yet
currently it has been only publicly available at LO [13,14]
or available at NLO for very specific cases (e.g. [15]) or in
methods where NLO accuracy is far from ensured [16,17]. It
is the aim of this work to show that a consistent (and practical)
re-weighting of events can also be done at NLO accuracy.
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The plan of this paper is as follows. Before introducing
the NLO re-weighting method, we will focus on the LO case
in order to explain the intrinsic limitations of such types of
methods (Sect. 2). In Sect. 3, we present three types of NLO
re-weighting, two of them correspond to methods already
introduced in the literature [14,18]. The third one is the NLO
accurate re-weighting method introduced here for the first
time. In Sect. 4, we present some validation plots performed
with MG5_aMC. We then present our conclusions in Sect. 5.

2 Re-weighting at the leading order

As stated in the introduction, the re-weighting method con-
sists in attaching a new weight to every parton-level event
as corresponding to a different scenario. The new weights
allow to predict accurately (up to statistical precision) all the
LO differential distributions at the parton level, leading also
to the possibility of performing a single shower and detec-
tor simulation for all the models under consideration. At LO
accuracy the new weight (Wnew) can be easily obtained from
the original one (Worig) by simply multiplying it by the ratio
of the matrix-elements estimated on that event for both mod-
els (noted respectively |Morig|2 and |Mnew|2) [13,14]:

Wnew = |Mnew|2
|Morig|2 Worig. (1)

In practice, in a weighted Monte Carlo generation, the
weights are simply given by1

Worig = f1(x1, μF ) f2(x2, μF )|Morig|2�PS , (2)

where fi (xi , μF ) is the parton-distribution function esti-
mated on the Bjorken fraction xi at the factorization scale
μF . �PS is the phase-space measure of the phase-space vol-
ume associated to the events.2 From this equation it is clear
that Eq. 1 is the correct procedure since the weight is exactly
multiplicative. This property is preserved by the unweighting
procedure making Eq. 1 to hold for both weighted and un-
weighted samples (an actual proof is presented in Appendix).

A few remarks are in order regarding the range of validity
of this method. First, even if the method returns the cor-
rect weight, it requires that the event sampling related to
Worig covers appropriately the phase-space for the new the-
ory. In particular,Worig must be non-zero in all regions where
Wnew is non-vanishing. Though obvious, this requirement is
in fact the most important and critical one. In other words,

1 For the simplicity of the discussion, we will always consider that the
sum of the weights is equal to the total cross-section of the sample.
2 The normalisation choice implies that the phase-space factor �PS is
proportional to N−1 where N is the number of phase-space points used
to probe the phase space.

the phase-space where the new theoretical hypothesis con-
tributes should be a subset of the original one. For exam-
ple, re-weighing can not be used for scanning over different
mass values of the final state particles3, yet it is typically
well-suited for probing different types of spin and/or cou-
pling structures. More in detail, when the new theory has
large contribution in a region of the phase-space where the
original sample has only few events – since the original is
sub-dominant in that part of the phase-space –, the statis-
tical uncertainty of the re-weighted sample becomes very
large and the resulting predictions unreliable. To appreciate
quantitatively such an effect, we can use a naive estimator
assuming a gaussian behavior. In that case one can write the
estimated uncertainty as

�Onew = w̄�Oorig + Std(w)Oorig, (3)

where w̄ and Std(w) are respectively the mean and the stan-
dard deviation of the ratio of the weights and O•, �O• are
an observable and the associated statistical uncertainty. As a
consequence, the relative uncertainty can be enhanced if the
weights have a large variance. In Appendix, we introduce, as
a proof of principle, a second method on how to estimate the
statistical uncertainty from the distribution of the weights.

Second, the parton-level configuration feeder to parton-
shower programs not only depends of the four-momenta but
also of additional information, which is commonly encoded
in the LesHouches Event File (LHEF) [19,20]. Consequently,
re-weighting by an hypothesis that does not preserve such
additional information is not accurate. In general, such infor-
mations are related to:

• Helicity The helicity state of the external states of a
parton-level event is optional in the LHEF convention, yet
some programs (e.g. [21]) use this information to decay
the heavy state with an approximated spin-correlation
matrix. In this case it is easy to modify Eq. 1 to correctly
take into account the helicity information by using the
following re-weighting:

Wnew = |Mh
new|2

|Mh
orig|2

Worig, (4)

where |Mh
new|2 and |Mh

orig|2 are the matrix elements asso-
ciated to the event for a given helicity h – the one writ-
ten in the LHEF – and for the corresponding theoretical
hypothesis. This re-weighting is allowed since the total
cross-section is equal to the sum of the individual polar-
ized cross-sections.

3 For intermediate particle a small variation of the mass – order of the
width – is reasonable.
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• Color-flow A second piece of information presented in
the LHEF is the color assignment in the large Nc limit.
This information is used as the starting point for the dipole
emission of the parton shower and therefore determines
the result of the QCD evolution and hadronisation. Such
information is untouched by the re-weigthing limiting
the validity of the method. For example, it is not possible
to re-weight events with a Higgs boson, with a process
where the Higgs boson is replaced by a colored parti-
cle. One could think that, as for the helicity case, one
could amend the re-weighting formula to be able to han-
dle modifications in the relative importance between var-
ious flows. While possible in principle, in practice such
re-weighting would require to store additional informa-
tion (the relative probabilities of all color flows in the
old model) in the LHEF, something that does not seem
practical.

• Internal resonances In presence of on-shell propagators,
the associated internal particle is written in the LHEF.
This is used by the parton-shower program to guaran-
tee that the associated invariant mass is preserved dur-
ing the re-shuffling procedure intrinsic to the shower-
ing process. Consequently, modifying the mass/width of
internal propagator should be done with caution since
it can impact the parton-shower behaviour. This infor-
mation can not be corrected via a re-weighting formula,
as it links in a non-trivial way short-distance with long-
distance physics.

Selected results obtained with this re-weighting are pre-
sented in Sect. 4.

3 Next to leading order re-weighting

In this section, we will present three re-weighting methods for
NLO samples. First we will present a LO type of re-weighting
that we dubbed “Naive LO-like” re-weighting introduced in
VBFNLO (i.e. REPOLO [17]) and MadSpin [22,23]. As it
will become clear later, this method is not NLO accurate
and should be used only if the difference between the two
theories factorizes from the QCD production. The second
method that we propose is original and consists in a fully
accurate and general NLO re-weighting. Finally, we present
the “loop-improved” re-weighting method [18] to perform
approximate NLO computation for loop-induced processes
when the associated two-loop computations are not available.

3.1 Naive LO-like re-weighting

Following the MC@NLO method [24,25], the cross-section
can be decomposed in two parts, each of which can be used to
generate events associated to a given final state multiplicity:

dσ (H) = dσ R − dσ MC ,

dσ (S) = dσ MC +
∑

α=S,C,SC

dσα, (5)

where R, S,C, SC, MC correspond respectively to the con-
tributions of the fully-resolved configuration (the real), of
its soft (including the Born matrix-element), collinear, soft-
collinear limits (the counter-events) and the Monte Carlo
(MC) counter-term. The (S) (for standard) part corresponds
to events generated with the Born configuration (N particles
in the final state), while the (H) (for hard) part corresponds to
events generated with the real configuration (N+1 particles
in the final state). The MC counter-term (shower dependent)
assures the coherent treatment with the parton-shower (no
double counting) while preserving the NLO accuracy of the
computation.

The Naive LO-like re-weighting computes the weights
based on the multiplicity of the events before parton shower.
i.e.,

W (S)
new = Bnew

Borig
W S

orig, (6)

W (H)
new = Rnew

Rorig
WH

orig. (7)

W (S)• , W (H)• are respectively the weights for Born/real topol-
ogy events for the hyppothesis • (where • is either the orig or
new label). B• is the Born matrix element squared ( |M•

n |2)
while R• is the real matrix element squared (|M•

n+1|2).
As this method does not consider the dependence of the

virtual contributions, it fails to be NLO accurate. To ensure
NLO accuracy, it requires that the effect of the new theory
factorises out, i.e., when

Bnew

Borig
= Vnew

Vorig
= Rnew

Rorig
= Cst (8)

where V• is the finite piece of the virtual contribution (the
interference term between the Born and the loop amplitude).
Such relation should hold over the full phase-space with a
universal constant since the MC counter terms connect the
born and the real in a non local way. Nevertheless, as we will
see later, the effect of the MC counter terms are quite mild, as
expected since their contribution to the total cross-section are
exactly zero by construction. This allows the Naive LO-like
method to nicely approximate the NLO differential cross-
section for many processes/theories where the last equation
needs to be valid only phase-space point by phase-space point
(i.e. when the ratio of the real matches the ratio of the Born
and of the virtual in the soft and/or collinear limit).

3.2 NLO re-weighting

In order to have an accurate NLO re-weighting method, one
should explicitly factorise out the dependence in the (various)
matrix elements (i.e. in the Born squared matrix element –
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B – , the real squared matrix element – R – and in the finite
piece of the virtual – V – ). We use the decomposition of the
differential described in [25]4 introduced in the context of
the evaluation of the systematics uncertainties:

dσα = f1(x1, μF ) f2(x2, μF )
[
Wα

0 + Wα
F log (μF/Q)2

+ Wα
R log (μR/Q)2

]
dχα, (9)

where the α index is either R, S,C, SC, MC (see previous
section). Q is the Ellis-Sexton scale and dχα is the phase-
space measure.

The expression of the Wα
0 , Wα

F , Wα
R are given in the

appendix of [25] and are not repeated here. All those expres-
sions have linear dependencies in the Born, the virtual, the
real, the color connected Born BCC (this term is defined Eq.
(3.28) of [26]) and the reduced matrix element BRM (Eq.
(D.1) of [26]). This allows us to decompose the correspond-
ing expressions as:5

Wα
β = B Cα

β,B + BCC Cα
β,BCC + BRM Cα

β,BRM

+V Cα
β,V + RCα

β,R (10)

where the β index is either 0, R or F . TheCα
β,• are expressions

which do not depend of either the PDF/scale or the matrix-
element. From this expression we define the following three
terms:6

Wα
β,B ≡ B Cα

β,B + BCC Cα
β,BCC + BRM Cα

β,BRM
, (11)

Wα
β,V ≡ V Cα

β,V , (12)

Wα
β,R ≡ RCα

β,R . (13)

By keeping track of the Wα
β,• at the generation time and

writing it in the final event, one can perform an NLO re-
weighting by:

Wα,new
β,B = Bnew

Bold
Wα,old

β,B ,

Wα,new
β,V = Vnew

Vold
Wα,old

β,V ,

Wα,new
β,R = Rnew

Rold
Wα,old

β,R .

(14)

The final weight associated to the event can then be calcu-
lated by combining those various pieces as it is done for the
estimation of the systematics uncertainty (see Appendix of
[25]). One can notice that both the color-connected Born and
the reduced matrix-element are simply re-weighted by the
ratio of the Born which can lead to a breaking of the NLO

4 We also use the same (MC) counter terms as described in that paper.
5 Due to the presence of multiple couter terms, the kinematic configura-
tion on which the matrix-element is evaluated is not unique: an implicit
sum over such kinematical configurations is assumed here and in the
rest of the paper.
6 One can notice that Wα

β,V = Wα
β,R = 0 for β = R, F due to the use

of the Ellis-Sexton scale [6].

accuracy of the method. In the case of the color-connected
Born, this does not consist in an additional limitation of the
method since the re-weighting factors should differ only if the
two theories present a difference in the relative importance
of the various color-flows (a case already not handled at LO
accuracy). The case of the reduced matrix-element is actually
different since the contribution related to this matrix-element
vanishes after integration over the azimutal angle [26]. The
infra-red observables are therefore not sensitive to such con-
tribution and consequently neither on the re-weighting used
for such contribution.

More generally, the possible drawbacks and limitations
on the statistical precision of the method are the same as for
the LO case. However, for NLO calculations in MG5_aMC
we face one additional source of statistical uncertainty due
to the method used to integrate the virtual contribution. This
method reduces the number of computations of the virtual
by using an approximate of the virtual contribution based
on the Born amplitudes times a fitted parameter κ . It per-
forms a separate phase-space integration to get the difference
between the virtual and its approximation (full description of
the method is presented in Section 2.4.3 of [6]). Schemati-
cally it can be written as:
∫

(B + V) =
∫

(B + κB) +
∫

(V − κB). (15)

If it exists a value of κ such that κB ≈ V , the second inte-
gral is approximately zero and does not need to be probed
as often as the first integral (thanks to importance sampling
[27]), reducing the amount of time used in the evaluation
of the loop-diagrams. However the re-weighting proposed in
Eq. 14 will highly enhance the contribution of the second
integral since each term of the integral will be re-weighted
by a different factor, having a direct impact on the statistical
uncertainty.

To reduce this effect, we propose to use a slightly more
advanced re-weighting technique. We split the contribution
proportional to the Born (Wα

β,B) in two parts: Wα
β,BC and

Wα
β,BB . Wα

β,BC is the part, proportional to the Born, related
to the one of the counterterms, while Wα

β,BB includes all of
the other contributions (the Born itself and the approximate
virtual). We then apply the following re-weighting:

Wα,new
β,BB = (Bnew + Vnew)

(Bold + Vold)
Wα,old

β,BB ,

Wα,new
β,BC = Bnew

Bold
Wα,old

β,BC ,

Wα,new
β,V = (Bnew + Vnew)

(Bold + Vold)
Wα,old

β,V ,

Wα,new
β,R = Rnew

Rold
Wβ,R

α,old .

(16)

Both the virtual and the approximate virtual are re-weighted
by the same pre-factor which should allow to limit the
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enhancement of the second integral. The demonstration that
such re-weighting is NLO accurate is presented in Appendix.
It can be intuitively understood considering (B+V) as a sin-
gle block which is re-weighted accordingly.

3.3 Loop improved re-weighting

A third type of re-weighting was originally introduced in the
context of multiple Higgs production [18,28–30], which we
now briefly describe. In this case the idea is to perform the
NLO computation in the infinite top-mass limit and then re-
introduce the finite top-mass effects via re-weighting. Equa-
tion 16 is directly applicable if the exact finite virtual part is
known. If not, one can still use an approximate method:

Wα,new
β,B = Bnew

Bold
Wα,old

β,B ,

Wα,new
β,V = Bnew

Bold
Wα,old

β,V ,

Wα,new
β,R = Rnew

Rold
Wα,old

β,R . (17)

Both this method and the Naive LO-like method are not NLO
accurate. However one can expect that the loop improved
method has a better accuracy than the other one due to the
correct treatment of the various counter terms.

4 Implementation and validation

The various methods of re-weighting discussed in the pre-
vious section have been implemented in MG5_aMC and are
publicly available starting from version 2.4.0. At the LO, the
default re-weighting mode is based on the helicity informa-
tion present in the event (Eq. 4), while for NLO samples, the
default re-weighting mode is the NLO accurate one (Eq. 16).
Fixed-order NLO generation can not be re-weighted since no
event generation is performed in this mode. A manual of the
code is available online at the following address: https://cp3.
irmp.ucl.ac.be/projects/madgraph/wiki/Reweight.

In this section, we will present four validation examples
covering the various types of re-weighting introduced in the
previous section. Since the purpose of this section is mainly
to validate our method, the details of the simulation used
(cuts, type of scale, ...) are kept to a minimum. Unless other-
wise stated, the settings used correspond to the default value
of MG5_aMC (version 2.4.0). In particular the minimal trans-
verse momentum on jet is of 20 GeV at LO and of 10 GeV
at NLO.

4.1 ZW associated production in the effective field theory
at the LO

For the first validation, we will use the effective field theory
(EFT) in the Electro-Weak sector [31]. We will focus on the

associated production of theW and Z boson for the following
dimension six operator:

O3W = Tr
[
WμνW

νρWρ
μ
]
, (18)

with

Wμν = i

2
gW τ I (∂μW

I
ν − ∂νW

I
μ + gW εI J KW

J
μWK

ν ) (19)

and gW is the weak gauge coupling, τ I are the pauli matrices
and W I

μ is the gauge Field of SU (2).
In Fig. 1 we present the differential distributions for the

transverse momenta of the Z boson at LO accuracy. Starting
from a sample of Standard Model events (black solid curve),
we have re-weighted our sample to get the SM plus the inter-
ference term with the dimension six operator for two values
of the associated coupling: c = 50 TeV−2 (dashed blue) and
c = 500 TeV−2 (dashed green). This second value is clearly
outside the validity region for the EFT approach as the dif-
ferential distributions turns to be negative at low transverse
momentum. Nevertheless, having such large effects is inter-
esting for the validation of the re-weighting method. The
same differential distributions are generated with MG5_aMC
(solid green and blue) and validates the re-weighting method.

The ratios between the differential curves obtained with
each method are presented in the second inset. This inset
contains also the statistical uncertainty (yellow band) for the
ratio of two independent SM samples. The compatibility of
those two ratio plots with the expected statistical fluctuation
validates our approach/code implementation. The first inset
presents the ratio between the EFT and SM predictions. It
shows that the method works correctly for quite small and
quite large modifications of the differential distributions.

One can note that in the context of EFTs, the weight is
linear in the dim-6 coupling7 therefore it is trivial to predict
the weight from any value of the coupling as soon as the
weights for two different values of the coupling are known.
This property can be used to further speed up the computation
of the weight.

4.2 ZH associated production in the effective field theory
at NLO

For our first NLO validation, we consider the associated pro-
duction of a Z and H boson in the EFT as implemented in
the Higgs Characterisation framework/model [33]. We use
two of the benchmarks introduced in [34]: HD and HDder.
In more details, the effective Lagrangian relevant for this
example is

LHD = −1

4

1

�
κHWW Zμν Z

μνH (20)

7 There would also be quadratic contribution if we include the squared
matrix element associated to the dimension six operator.
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Fig. 1 Differential cross-section for pp → ZW+ at 13 TeV LHC. This
correspond to the Standard model plus the operator O3W for two dif-
ferent couplings value. Only the SM contribution plus the interference
term is kept on this plot. See text for details

LHDder = − 1

�
κH∂Z Zν∂μZ

μνH

+
(

− 1

�
κH∂WW+

ν ∂μW
−μνH + h.c.

)
, (21)

where � is the high energy scale (set to 1TeV), κHWW ,
κH∂Z , κH∂W are dimensionless couplings (set to one). H
is the Higgs doublet field and Vμν = ∂μVν − ∂νVμ; V =
Z ,W−,W+.

In Fig. 2 we present the differential cross-section for the
transverse momentum of the Higgs and for its rapidity. In
both cases, we present the curve for the SM, HD and HDder
benchmarks. For the transverse momentum, we start from
an HDder sample of events and perform the re-weighting to
the other scenarios. While for the rapidity we present the plot
where the original sample is the HD theory. Each re-weighted
curve is then compared with a dedicated generation and the
associated ratio plot is displayed below with the statistical
uncertainty expected for the generation of two independent
samples. The agreement between the two is excellent for
both the NLO accurate re-weighting and the Naive LO-like
re-weighting. In this case the NLO QCD effects factorise
from the BSM ones and therefore the NLO accuracy of the
Naive LO-like approach can only be spoiled by MC counter
terms – which are as expected quite mild – .

From the comparison of the two methods for the HD
curve in the plot of the transverse momenta (top plot), we
can observe that the statistical fluctuations are more pro-
nounced for the curve obtained by re-weighting. This is an
example of enhancement of statistical uncertainty due to the
re-weighting as discussed around Eq. 3 since in the high pT
region, the HDder is suppressed compare to the other theories
under consideration (HD and SM).

Fig. 2 Differential cross-section for pp → ZH at 13 TeV LHC featur-
ing both LO and NLO re-weighting methods. Events have been show-
ered with Herwig6 [32]. See text for details

4.3 Effective field theory (t t̄ Z ) at NLO

In this second NLO example, we will use the EFT frame-
work in the context of the top-quark [35] and focus on the
chromomagnetic operator:

Otg = yt gs(Q̄σμνT At)ϕ̃GA
μν, (22)

where Q is the third generation left-handed quark doublet, ϕ
and t are respectively the Higgs and top quark fields, gs is the
SM strong coupling constant, yt is the top-Yukawa coupling
and T A is the SU (3) generator.

In Fig. 3, we present the transverse momentum of the
Z boson in the associated production of this boson with a
top/anti-top quark pair. We present the result for both the full
matrix element squared (labelled σ (2)) and for the SM con-
tribution plus the interference with the dimension 6 operator
only (labelled σ (1)).
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Fig. 3 Differential cross-section for pp → Zt t̄ at 13 TeV LHC fea-
turing both LO and NLO re-weighting methods. The shower have been
performed with Herwig6 [32]. See text for details

As in the previous section, we present our prediction both
via the Naive LO-like re-weighting method (RWGT-LO) and
via the NLO accurate one (RWGT-NLO), The ratio to the SM
curves are presented in the first inset while the ratio between
our prediction and the direct computation in MG5_aMC for
σ (2) is presented in the second inset. The green band rep-
resents the expected statistical uncertainty for the ratio of
two MG5_aMC samples. It is not possible to extract in auto-
matic way the contribution of σ (1) fromMG5_aMC and there-
fore we do not provide any comparison for this curve. As
before, we observe a case where the statistical uncertainties
are enhanced by the re-weighting approach and where both
the Naive LO-like and the NLO re-weighting provides sim-
ilar results. In this case the theory do not factorise and the
ratio of the virtual and of the Born are not expected to match.
The nice agreement is explained by the small contribution
of the virtual and, once again, by the mild effect of the MC
counter terms.

4.4 Higgs plus one jet production at LO and NLO order

In this last example, we will present results for the associated
production of a SM Higgs with one jet. In Fig. 4, we present
the transverse momentum of the Higgs at both LO and NLO
accuracy. For the LO case, we present three curves. The first
one is the curved obtained within the heft model [36] featur-
ing the dimension five operator obtained by integrating out
the top quark (HEFT LO). The second line (SM LO/RWGT)
is the one obtained by re-weighting the previous curve by the
full one loop matrix element squared which contain the com-
plete top-quark mass dependence. The last LO curve is the
one obtained via direct integration of the one-loop amplitude
squared by MG5_aMC [37] (SM LO). At NLO accuracy, we
have the curve in the infinite top mass limit (HEFT NLO)

Fig. 4 Differential cross-section of the Higgs transverse momentum
in the heavy top mass limit (both LO and NLO) re-weighted to include
the finite top mass effect. This is compare to the loop-induced processes
(LO). The shower have been performed with Herwig6 [32]. See text
for details

using the Higgs characterization model [34]. This sample is
then re-weighted by the full-loop (Loop Improved) following
the loop-improved method presented in the previous section.
It is so far not possible to compute the NLO contribution
directly in order to compare the accuracy of such method.

The first inset presents the ratio at LO and NLO of the
infinite top mass limit over the full theory. For the NLO
case, the full theory is approximated by the loop-improved
method. The two ratios are very similar showing that the
loop-improved method re-introduces the top-mass effects in
a sensible way. The second inset presents the ratio between
the re-weighting and the direct approach in the LO case, the
statistical uncertainty of the ratio of two independent SM
sample is presented by the yellow band. Its bumpy shape
is due to the use of multiple samples with different cuts to
decrease the statistical uncertainty. This ratio plot fully vali-
dates the re-weighting in the case of the LO curves.

5 Conclusion

We have presented the implementation of several methods
that can be used for re-weighting LO and NLO samples and
discuss the associated intrinsic limitations. We have released
a new version of MG5_aMC that allows the users to employe
the various re-weighting methods presented in this paper in a
fully automatic and user-friendly way. In particular we have
introduced for the first time an NLO accurate re-weighting
method and compared it with the approximate methods avail-
able in the literature. Other re-weighting methods like the
Naive LO-like and the loop-improved are for the first time
available in a public code.
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The comparison between the various methods shows that
the approximate method (the Naive LO-like re-weighting)
performs a satisfactory job. This indicates that the non local-
ity of the MC counter terms is often more a theoretical
problem than a contribution spoiling the NLO accuracy of
the Naive LO-like re-weighting. Therefore the Naive LO-
like re-weighting should be a good approximation in a quite
large class of model/observable either when the virtual con-
tribution is sub-dominant and/or when the effect of the BSM
physics factorises. Consequently, we recommend phenome-
nologist to first test the Naive LO-like re-weighting and in
case of loss of accuracy move forward to the slower NLO
method. On the other hand for mass production at the LHC,
where the samples are often used for more than one study,
we recommend to always use the NLO accurate method.

The framework introduced here is flexible enough to
accommodate different types of re-weighting approaches. In
the near future we plan to capitalise on this to allow dif-
ferent type of functionalities. First we plan to implement a
standard systematics uncertainty computation module as it is
done in [16,25,38–42]. Compared to the existing module of
MG5_aMC [25], this new module will allow to perform this
determination independently of the event generation which
will be extremely useful to evaluate the effect of a new PDF
set/test a new scale scheme on existing samples. In a second
stage, we plan to be able to compute the systematics uncer-
tainty for the re-weighted BSM sample at the time of the
re-weighting.
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Appendix A: Theoretical proof

A.1: Unweighting

In order to have a formal proof that the unweighting pro-
cedure can commute with the re-weighting, we first have to

formalize the procedure. Following the convention adopted
in the previous sections, a standard Monte Carlo integration
is:

σorig =
N∑

i=1

f1(x
i
1, μF ) f2(x

i
2, μF )|Mi

orig|2d�i (23)

≡
N∑

i=1

Wi
orig, (24)

To get an unweighted sample, we first need to multiply
and divide this expression by maxi (Wi

orig):

σorig = max
i

(Wi
orig)

N∑

i=1

Wi
orig

maxi (Wi
orig)

, (25)

Finally, the term
Wi

orig

maxi (Wi
orig)

can be re-interpretted as a prob-

ability to accept/reject the phase-space point.8

By randomly selecting a sub-sample of phase-space points
with that probability, we reduce significantly the sample size.
Additionally, all the remaining events have the same weight
(maxi (Wi

orig)) and the associated distribution of events fol-
lows the physical distributions.

σorig ≈ max
i

(Wi
orig)

N∑

i=1

Acci = max
i

(Wi
orig) Nacc. (26)

where Acci is either 0 or 1 depending on whether the event

was kept or rejected following the
Wi

orig

maxi (Wi
orig)

probability dis-

tribution.
Let’s now proof that the re-weighting works on a

unweighted sample, by doing the same for a second theory.
But instead of multiplying and dividing by maxi (Wi

new) we
will use the maximum weight of the original theory:

σnew =
N∑

i=1

Wi
new, (27)

= max
i

(Wi
orig)

N∑

i=1

Wi
new

maxi (Wi
orig)

. (28)

Since Wi
new = |Mi

new |2
|Mi

old |2 W
i
old (See Eq. 23), this is equal to

σnew = max
i

(Wi
orig)

N∑

i=1

Wi
new

Wi
orig

W i
orig

maxi (Wi
orig)

. (29)

We recover in that equation the same ratio which was used
to unweight the original theory. We can therefore select the
same sub-sample of events and just re-weight them by the
ratio of the matrix element squared.

8 For non definite positive quantity the same idea holds by using
maxi (|Wi

orig |).
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A.2: Statistical uncertainty from an un-weighted sample

One can notice that the estimated uncertainty can not be
obtained via re-weighting for an unweighted sample due to
the non linear dependence in the matrix element squared.

We will show in this section what needs to be done in
order to build an estimator of the variance from a re-weighted
sample. Following the idea of the unweighting procedure, we
can rewrite the standard estimator of the variance by:

�σ 2
orig

N
=

N∑

i=1

Wi
orig

2 − 1

N

(
N∑

i=1

Wi
orig

)2

(30)

= max
i

(Wi
orig)

2

⎡

⎣
N∑

i=1

Wi
orig

maxi (Wi
orig)

Wi
orig

maxi (Wi
orig)

− 1

N

(
N∑

i=1

Wi
orig

maxi (Wi
orig)

)2⎤

⎦ , (31)

As for the unweighting case, we can re-interpret the ratio
Wi

orig

maxi (Wi
orig)

≡ Porig
acc,i as the probability to keep the event

during the unweighting procedure. Therefore after the event
unweighting the equation can be read as:

�σ 2
orig

N
≈ max

i
(Wi

orig)
2

[Nacc∑

i=1

Wi
orig

maxi (Wi
orig)

− N 2
acc

N

]
(32)

In this case, a dependence remains in the unweighting prob-
ability as well as in the number of generated and accepted
events. If those informations were kept during the unweight-
ing procedure it would be possible to construct the above
estimator of the variance. The re-weighting of such informa-
tion is then possible and one can construct such an estimator
for any re-weighted sample:

�σ 2
new

N
≈ max

i
(Wi

orig)
2

⎡

⎣
Nacc∑

i=1

Porig
acc,i

( |Mnew|2
|Morig|2

)2

− 1

N

(Nacc∑

i=1

|Mnew|2
|Morig|2

)2⎤

⎦ . (33)

Note that in presence of multi-channel integration such infor-
mation need to be provided for each channel individually.

This method is currently not implemented in MG5_aMC
but we plan to include it in a near future and study the accu-
racy of such an estimator.

A.3: NLO-reweighting

In order to proof that the re-weighting proposed in Eq. 16 is
correct we first need to formalise the loop integration method.
We will use in this section a simplified notation such that

σ
so f t
orig =

N∑

i=1

(Bi
orig + V i

orig + Ci
orig) (34)

≡ σ
so f t,B
orig +

N∑

i=1

Ci
orig. (35)

Where B, V , C represents respectively the Born, the virtual
and the counter terms contribution. Since the counter terms
do not play any role in this optimisation procedure (and have
a natural re-weighting) we will focus on the σ

so f t,B
orig pieces:

In this simplified formalism the phase-space optimisation
method can be written has (see Eq. 15):

σ
so f t,B
orig =

N∑

i=1

(Bi
orig + V i

orig) (36)

=
N∑

i=1

(Bi
orig + κorig B

i
orig))

+
N∑

i=1

(V i
orig − κorig B

i
orig) (37)

�
N∑

i=1

(Bi
orig + κorig B

i
orig))

+
N/k∑

j=1

k (V j
orig − κorig B

j
orig). (38)

In those equations, we first (Eq. 38) add and subtract the
approximant of the virtual: κorig Bi

orig , while in the second
equation we integrate on different statistics the two pieces of
the sum. We run k times less phase-space point in the second
and therefore have to multiply it by the factor k.

If we want to use the re-weighting on the sample generated
via this method, we have to apply the same method with the
same value of κorig

σ
so f t,B
new =

N∑

i=1

(Bi
new + κorig B

i
new)

+ k ∗
N/k∑

i=1

(V i
new − κorig B

i
new). (39)

Inspired by Eq. 16, we will multiply all those terms by the

identity factor 1 = Bi
orig+V i

orig

Bi
orig+V i

orig
:

σ
so f t,B
new =

N∑

i=1

(Bi
new + κorig B

i
new)

Bi
orig + V i

orig

Bi
orig + V i

orig

+ k ∗
N/k∑

i=1

(V i
new − κorig B

i
new)

Bi
orig + V i

orig

Bi
orig + V i

orig

.

(40)
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We can rewrite the expression as the expected re-
weighting formula plus some rest-over

σ
so f t,B
new =

N∑

i=1

Bi
new + V i

new

Bi
orig + V i

orig

(Bi
orig + κorig B

i
orig)

−
N∑

i=1

(1 + κorig)

Bi
orig + V i

orig

(V i
orig B

i
new − V i

newBi
orig)

− k
N/k∑

i=1

(1 + κorig)

Bi
orig + V i

orig

(V i
newBi

orig − V i
orig B

i
new)

+ k
N/k∑

i=1

Bi
new + V i

new

Bi
orig + V i

orig

(V i
orig − κorig B

i
orig). (41)

If the same phase-space sampling is used for both parts
(k = 1) then the second and third lines cancel. The remain-
ing lines correspond to the re-weighting of Eq. 16. If both
integral are sampled in a different way (k �= 1), then the can-
cellation is not exact but should still occur for large enough
samples. Therefore this optimization method introduces a
new contribution to the statistical uncertainty.
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