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Abstract We present a fully automated framework as part
of the Sherpa event generator for the computation of tree-
level cross sections in Beyond Standard Model scenarios,
making use of model information given in the Universal
FeynRules Output format. Elementary vertices are imple-
mented into C++ code automatically and provided to the
matrix-element generator Comix at runtime. Widths and
branching ratios for unstable particles are computed from the
same building blocks. The corresponding decays are simu-
lated with spin correlations. Parton showers, QED radiation
and hadronization are added by Sherpa, providing a full sim-
ulation of arbitrary BSM processes at the hadron level.

1 Introduction

The quest for new-physics signals in collider data requires
their detailed simulation. Comprehensive analyses of mea-
surement sensitivities, exclusion limits or possibly anomalies
often consider a variety of Beyond Standard Model (BSM)
scenarios. For each hypothesis, production cross sections
need to be evaluated, and particle decay widths and branch-
ing ratios have to be computed. Realistic simulations further
include spin correlations between production and decay. For
simulations at the particle level, parton-shower effects and
non-perturbative corrections must also be considered.

Given the vast number of new-physics models, the
automation of such calculations is mandatory. In fact, in
the past years enormous efforts were made not only to
automate leading-order calculations, but next-to-leading-
order calculations as well. A variety of related tools have
been constructed, ranging from Feynman rule generators
like FeynRules [1,2] over spectrum-generator generators
like Sarah [3,4] to matrix-element generators like Mad-
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Graph [5], MadGolem [6,7], MadLoop [8,9], Whizard [10]
and Amegic [11] and particle-level event generators [12],
such as Herwig [13,14], Pythia [15,16] and Sherpa [17,18].
Each of them deals with particular aspects of the simula-
tion. Specific protocols have been developed to guarantee
consistent parameter and event passing between the various
tools [19–21].

In this paper we present the status and new develop-
ments regarding the simulation of new-physics signals with
the event generator sherpa [17,18]. Former versions of
sherpa already supported quite a number of new-physics
models. They were either built in as for example the
MSSM [22], the ADD model [23] and several others [24–
26], or invoked through a dedicated interface to Feyn-
Rules [27]. This interface was limited to vertices with color-
and Lorentz-structures supported by the matrix-element gen-
erator Amegic [11]. In the work presented here we lift these
restrictions by extending the capabilities of sherpa’s second
built-in matrix-element generator Comix [28] to account for
almost arbitrary BSM scenarios. We generalize the recursive
amplitude generation formalism to arbitrary n-point vertices,
and we automate the implementation of Lorentz calculators
based on the model representation in the Universal Feyn-
Rules Output (UFO) [29]. Part of our new generator is thus
equivalent to Aloha [30]. At present we constrain ourselves
to particles of spin-0, spin-1/2 and spin-1. A generalization
to spin-3/2 and spin-2 states is straight-forward and foreseen
for the near future. Similarly, we restrict ourselves to color
structures involving singlets, (anti-)triplets, and octets. (Anti-
)sextet representations will be included in the near future. We
also discuss the implementation of an algorithm to preserve
spin correlations between factorized production and decay
processes [31].

This paper is organized as follows. In Sect. 2 we discuss
the techniques used for amplitude generation focusing on
the newly developed methods for the automatic implemen-
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tation of Lorentz structures. We also present the results of
an extensive validation. In Sect. 3 we introduce and discuss
our treatment of particle decays, including spin-correlation
effects. After a discussion of other event generation aspects
in Sect. 4 the conclusions and an outlook are given in Sect. 5.

2 Cross-section calculations at tree-level

This section briefly describes the algorithms implemented in
the matrix-element generator Comix to compute tree-level
amplitudes. Identical methods are used to obtain tree-level
like objects for next-to-leading order calculations, i.e. the
color-correlated Born amplitudes entering dipole-subtraction
terms in the Catani–Seymour method [32,33] or the FKS
method [34]. The implementation of dipole-subtraction in
Comix will be described elsewhere [35].

A recursive algorithm for the computation of color-
ordered multi-parton amplitudes was proposed long ago [36,
37]. Its extension to colorful amplitudes [38] leads to a recur-
sion that resembles the Dyson–Schwinger equations [39–41].
In this publication we extend the implementation of the algo-
rithm in the matrix-element generator Comix [28] such that it
can handle n-point vertices at tree level, where n is – in prin-
ciple – unbounded. The automatic implementation of related
Lorentz structures is described in Sect. 2.2.

Schematically the algorithm to compute tree-level ampli-
tudes based on the Berends–Giele type recursive relations
is depicted in Fig. 1. Consider an unordered N -particle cur-
rent, Jρ

α , where ρ denotes the set of N particles, and α is a
multi-index that labels both Lorentz and color indices of the
current. This current is computed from all Feynman graphs
having as external particles the on-shell particles in the set ρ,
and the (potentially off-shell) particle described by Jρ

α . Spe-
cial currents are given by the external-particle currents. They
correspond to the helicity Eigenvectors of wave functions for
the external particles, as described in [28]. Assuming that up
to n + 1-point vertices exist, off-shell currents can be com-
puted as

Jρ
α = P ρ

α

n∑

m=2

∑

{ρ1,..., ρm }
∈ OPm (ρ)

∑

V
α1 ... αm

α

S(ρ1, . . . , ρm)

× V α1... αm
α Jρ1

α1
. . . Jρm

αm
. (2.1)

Here Pρ
α denotes a propagator term depending on the particle

type α and the set of particles ρ. The sum over V extends
over all elementary vertices of the theory that have as external
states the particles described by the currents Jρ1

α1 . . . Jρm
αm . For

some assignment of currents no such vertex may exist. The
final sum extends over all ordered partitions of the set of
indices in ρ. S is the symmetry factor associated with the
decomposition of ρ into subsets, see [28].

An N -particle scattering amplitude is given in terms of
the above current as

A(1, . . . , N ) = J {N }
α

1

P{1,...,N−1}
α

J {1,...,N−1}
α . (2.2)

Note that the amputation of the final propagator term is
schematic. In practice, one does not multiply with this term
in the first place.

In order to implement Eqs. (2.1) and (2.2) we employ
the spinor basis introduced in Ref. [42]. The γ -matrices are
taken in the Weyl representation, which has the advantage
that massless spinors are described by only two nonzero com-
ponents. Polarization vectors for external vector bosons are
constructed according to Ref. [43].

Majorana fermions are treated in the formalism of [44,45].
Their external wave functions can be constructed either as if
they represent fermions, or as if they represent anti-fermions.
This is left optional in Comix, and it can be used to check
the consistency of the calculation.

Comix allows to specify coupling orders for the calcula-
tion. This permits, for example, to compute only strongly
interacting parts of pp → j j amplitudes, or exclusively
electroweak contributions. In the UFO format, not only the
QCD and electroweak order of a coupling can be specified.

Fig. 1 Sketch of the Berends–Giele type recursive relation as imple-
mented in Comix. The current Jρ

α is computed as a sum over sub-
currents joined by elementary vertices. This formulation is inherently
recursive. The sums on the right-hand side extend over all ordered par-

titions of the set of particles, ρ, on the left hand side. The multi-indices
α denote both Lorentz and color indices of the currents. Displayed are
vertices with up to n + 1 external particles
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Instead, arbitrary orders can be defined and the coupling con-
stants are classified accordingly. This feature is fully sup-
ported and by default no restrictions with respect to coupling
orders are applied. If instead the user specifies a coupling
constraint, Comix applies this constraint at the amplitude-
squared level. It is therefore also possible to compute pure
interference terms. While these terms are not observable in
practice, computing them is often instructive to study directly
the difference between coherent and incoherent sums of sig-
nal and background contributions.

2.1 Treatment of color

Comix samples external colors and performs the color alge-
bra in the color-flow decomposition at the vertex level. The
color-flow decomposition, formally introduced in [46], was
advertised in the context of collider physics in [47]. It was
shown to be superior for high-multiplicity QCD calculations
in [38].

In the color-flow decomposition, each particle in the
adjoint representation is replaced by a bi-fundamental, while
keeping track of the active degrees of freedom by applying
projection operators. This amounts to cutting adjoint propa-
gators by inserting the identity δab = T a

i j T
b
ji and identifying

i and j as the propagator indices. In practice one contracts
adjoints with generators at vertices, while inserting projec-
tors of the form T a

i j T
a
kl in each propagator.

We have implemented the relevant color structures for the
standard model, the MSSM, and a range of BSM theories.
This includes the trivial identities, group generators, struc-
ture constants as well as simple products of those. Color
(anti-)sextets can be accomodated, but our code does not
include them at present. The implementation of Standard
Model color structures has been detailed in [38]. It is straight-
forward to implement higher-point functions, and the corre-
sponding objects can be supplied to Comix at runtime using
a dynamically linked library. So far we have not automated
the generation of color calculators, but there is no obstacle
to do so.

2.2 Automatic implementation of Lorentz calculators

Within the Dyson-Schwinger formalism discussed above,
any off-shell current corresponds to a particle and there-
fore one specific quantum field and its representation of
the Lorentz group. Although the implementation in Comix
is currently limited to spin-0, spin-1/2, and spin-1 particles
(including the spin-2 pseudoparticle described in [38]), our
automatic implementation of numerical routines for evalu-
ating the Lorentz structures of vertices is generic. It only
requires, that currents be represented by multi-component
complex objects and that the recursive relations, Eq. (2.1),
are used. For each model, routines must be provided that eval-

uate expressions of the form �
α1... αn
α0 Jα1 . . . Jαn , which cor-

respond to the space-time structure of the vertices in Eq. (2.1).
Pictorially, one can represent such terms as shown in Fig. 2.

The Universal FeynRules Output (UFO) [29] is a for-
mat for exchanging information on interaction vertices in
terms of a basic set of color and Lorentz structures and sym-
bolic algebraic operations on those. We have constructed a
Python module that implements explicit representations of
the Lorentz structures as they are used in Comix and maps
them onto the definitions in the UFO. This module is capa-
ble of performing all algebraic operations on these building
blocks to generate C++ source code to be used by Comix for
the corresponding Lorentz calculators.

With the UFO expression for an n + 1-particle ver-
tex at hand, the Python module sets up external currents
Jα1 , . . . , Jαn with symbolic components and then performs
the multiplications and implicit sums over indices, leaving
only the “outgoing” index, α0, uncontracted. This yields an
explicit expression for all components of the current Jα0 that
is stored in the form of C++ code. Note that this procedure
needs to be performed for all cyclic permutations of indices
{0, . . . , n}, each one corresponding to a different “outgoing”
index. Pictorially, this corresponds to a counter-clockwise
rotation of the vertex, as shown in Fig. 2.

As an example, consider the gauge coupling of a vector
field Aμ to a fermion, ψγμAμψ . Taking α0 to be the vec-
tor, and α1 and α2 to be the Dirac antiparticle and particle,
respectively, the Lorentz calculator schematically depicted
in Fig. 2 would correspond to

(2.3)

Analogous expressions must be provided for the other two
cyclic permutations of the indices {0, 1, 2}.

2.3 Implementation of model parameters

The C++ routines generated in this manner are compiled
and linked along with the information on the particle con-
tent of the model and the model parameters. The dynamic
library containing Lorentz calculators and model informa-
tion is loaded by sherpa at program startup. The entire pro-
cess is automated to a high level, such that the user needs
to run just a single command to make the entire UFO model
available for event generation.

The parameters of the model are set to the default values
given in the UFO. They can be overwritten at runtime using
a file which largely follows the SLHA [19–21]. Note that at
this level it is not possible anymore to change parameters
which would lead to the appearance of additional vertices
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Fig. 2 Pictorial representation
of the possible rotations of
Lorentz calculators
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Fig. 3 Deviation between results from Amegic and Comix for the 86
e+e− → 6 f processes listed in Ref. [48], using the parameters given
ibidem. The red curve represents a normal distribution and should be
considered the reference

in the model, like changing the Yukawa mass of a bottom
quark from zero to a nonzero value. The set of model param-
eters is available throughout the whole sherpa framework,
which guarantees the consistent use of couplings and particle
masses at all stages of event generation.

2.4 Illustrative examples

In order to validate our new generator we compared numer-
ous results obtained with Comix for a variety of models
against Amegic [11] and MadGraph5 [5].

Figure 3 shows the deviation of leading-order cross sec-
tions computed both with Amegic and Comix for the 86 e+e−
to six-fermion processes listed in Ref. [48], where each result
is computed to better than 5 0/00 Monte-Carlo uncertainty. It
can be seen that the deviation between the two generators is
of purely statistical nature. This confirms the correct imple-
mentation of the Standard Model in the extended version of
Comix, and it validates the recursive phase-space generator
described in [28].

Table 1 presents a comparison of tree-level matrix ele-
ments between Comix and MadGraph5. In all tests we have
considered 1000 individual phase-space points per process.

Table 1 Maximal relative deviations between tree-level matrix ele-
ments computed with Comix and MadGraph5. For each model we quote
the largest observed deviation among all processes, where we tested
1000 random phase-space points per process

Model Number of
processes
tested

Max. rel.
deviation
Comix ↔
MadGraph5

Standard Model 60 2.3 × 10−10

Higgs Effective Field Theory 13 4.3 × 10−13

MSSM 401 1.0 × 10−10

Minimal Universal Extra Dimensions 51 2.8 × 10−12

Anomalous Quartic Gauge Couplings 16 5.9 × 10−12

For each model we quote only the maximal deviation found
when comparing matrix elements from MadGraph5 and
Comix. We considered the processes and parameters listed
in [27] for the Minimal Universal Extra Dimensions Model.
In case of the MSSM, we tested the more comprehensive
set of processes considered in [22] and the set of processes
considered in [27] for the Standard Model was also supple-
mented by further 2 → 2, 2 → 3, and 2 → 4 processes.

We have also compared the results from Comix against
those from MadGraph5 for two effective theories. The first
is based on the Standard Model including couplings of a
scalar and a hypothetical pseudoscalar Higgs boson to glu-
ons via a top-quark loop [49–52]. This theory involves up
to five-point vertices. In order to test our algorithms in the
context of more complicated Lorentz structures and high-
multiplicity vertices, we considered anomalous quartic gauge
couplings [53–55]. Specifically, we used a model implement-
ing the interaction terms (A7)–(A10), as described in [56].
They give rise to up to eight-particle vertices extending the
gauge sector of the Standard Model. We tested 2 → 2 as
well as 2 → 4 processes that are sensitive to complicated
Lorentz structures of up to 6-particle vertices which cannot
be mapped to Standard-Model like interactions. The num-
ber of processes compared and the maximal relative devi-
ation observed are again listed in Table 1. This successful
validation proves that effective operators can efficiently be
implemented in Comix via FeynRules and UFO.
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3 Decay simulation including spin correlations

It is often not feasible to simulate new-physics signals at the
level of stable final-state particles. The possibility of many
intermediate resonances leads to a large number of different
final states. Even if matrix-element calculation and phase-
space integration for each of those final states are in prin-
ciple feasible, the management of all possible states within
a matrix-element generator becomes computationally chal-
lenging and practically useless. It is more convenient to sim-
ulate only the production of certain new-physics resonances,
and possibly the accompanying hard QCD and/or QED radi-
ation, while treating the cascade decay of heavy unstable
new-physics objects in a different manner.

Here we describe a module of the sherpa event generator
which implements such a decay cascade. It performs two
main tasks which will be described in the next subsections:
the construction of the cascade itself, and the preservation of
spin correlations which are neglected during the independent
calculation of production and decay in the cascade.

3.1 Construction of the decay cascade

To construct a decay cascade one recursively simulates single
decay processes until only stable particles are left. For the
simulation of each single decay process several ingredients
are necessary.

The first step is the choice of a decay channel according
to its branching ratio. The basic information for determining
possible decay modes of a given unstable particle P are the
vertices, V , of Eq. (2.1), which contain P among their n
external lines. Using these vertices as a starting point, an
initial (direct) decay table is built up for potential P → n−1
decay modes.

Each decay mode can then be revisited to decide whether
it is accepted as final or whether it should be replaced by
including further iterative decays.1 The simplest option for
this decision is the mass threshold criterion: if the mass of
the outgoing system is larger than the decayer mass, then the
direct decay mode is discarded and replaced by all possible
combinations where one final-state particle has been replaced
by its own decay products. When a decay mode is replaced,
only diagrams with the given propagator structure should
be included in the matrix elements for the new decay chan-
nels. For cases where the threshold criterion is too simple an
alternative option is implemented where the decision is trig-
gered by a comparison of the partial widths calculated from
the direct vs. the converted decay modes. If more sophisti-
cated threshold behavior is necessary the user of sherpa can
implement a dedicated trigger criterion involving e.g. addi-

1 This implies that the decay tables are initialized in the order of the
unstable particle masses.

tional phase-space weights. This conversion of decay modes
could be iterated. In our implementation we allow for one
step, which should be sufficient for most practical applica-
tions. Assuming e.g. only 3-point vertices for simplicity this
allows for a conversion from 1 → 2 modes to 1 → 3 modes.
Depending on the complexity of the model it can take a few
minutes to construct the decay table. Considering for exam-
ple the MSSM model with the SPS1a benchmark point [57],
we find that the construction of the decay table takes 150
seconds using one core of an Intel Xeon E5-2670 CPU at 2.6
GHz and requires 0.7 GB of main memory. To facilitate a
quick initialization for the case of more complex models it is
possible to write the decay table to disk and read it back in.

For each final decay channel the corresponding matrix
element is constructed using the building blocks described
in Sect. 2. This implies that the full BSM capabilities stem-
ming from the UFO implementation are available also in the
decay module. We consider tree-level amplitudes only, using
the exact same model parameters as for the hard-scattering
process, cf. Sect. 2.3. Integrating a decay matrix element over
phase space one obtains the partial width of that channel and
correspondingly its selection probability in the decay table.

These matrix elements are also used to go beyond an
isotropic distribution of the decay kinematics. For simple
two-body decays, the phase space is generated using the
Rambo algorithm [58]. For decays to three and more parti-
cles we employ importance-sampling based on information
about propagators [59]. If applicable several channels are
combined into a multi-channel integrator [60]. The matrix
elements are then used in an unweighting step to provide the
final decay kinematics.

The full amplitude-level information including the helic-
ity dependence is also made available to allow for the imple-
mentation of spin correlations, as will be described in the
following section.

As an additional option to improve the modeling of decay
cascades we implement a crude estimation of off-shell effects
by adjusting the decay kinematics a posteriori to yield a
Breit–Wigner distribution of the decayer momentum. This
is at the present based on a constant-width approach and can
in the future be improved with dedicated line-shape modeling
in selected cases.

3.2 Spin-correlation algorithm

The factorization into production and decay matrix elements
is based on the replacement of intermediate particle propa-
gators by a helicity sum, using completeness relations. For
example, a full matrix element containing a massive vector-
boson propagator can be factorized as:
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M ∼ jμ1

[
gμν − pμ pν

p2

]
jν2 =

∑

λ

jμ1 ε∗
μ(λ)

︸ ︷︷ ︸
Mprod(λ)

εν(λ) jν2︸ ︷︷ ︸
Mdec(λ)

.

(3.1)

Similar equations hold for all particle types. If spin cor-
relations were neglected, the common sum over helicities
λ would be replaced by individual sums for production
and decay. While for some applications this is a reason-
able approximation, in other cases it will lead to a sig-
nificant mis-modeling, e.g. of angular correlations between
decay products. To remedy this situation we employ a spin-
correlation algorithm originally introduced for QCD parton
showers [61–63] and generalized to arbitrary decay cascades
in [31].

In this algorithm, the helicity summation or averaging in a
matrix element is replaced at each step by a contraction with
the spin-density matrices ρλλ′ of the incoming particles and
the decay matrices Dλλ′ of unstable outgoing particles:

d�(0 → 1 . . . n)

d�
= ρλ0λ′

0
Mλ0;λ1,...λnM∗

λ′
0;λ′

1,...λ′
n

∏

i=1,n

Di
λiλ

′
i
.

(3.2)

These are not fully known at all stages of the decay cascade
though, and [31] describes the algorithm with which they
can be continually updated and implemented as they become
available.

We obtain the full helicity structure of the amplitudes
Mλ0;λ1,...λn from our decay matrix-element generator
described in Sect. 3.1. We use the same building blocks and
gauge conventions in the production and decay matrix ele-
ments, therefore the algorithm will directly recover the spin
correlations in the decay cascade.

To demonstrate these features, we are presenting one
example in the Standard Model, namely top-quark pair pro-
duction, and one in the MSSM, namely the production of a
squark pair with subsequent decay cascades.

3.2.1 Top-quark pair production in the SM

For our simulation of top-quark production at the LHC we
consider exclusively the decay t → Wb, while the resulting
W -boson pair decays into an electron and muon final state
according to W+ → e+νe and W− → μ−ν̄μ. We present
results for three different approaches to simulate this final
state:

Full ME The full pp → e+νeμ
−ν̄μbb̄ final state is simu-

lated in the Comix matrix-element generator, with a restric-
tion to doubly-resonant diagrams and onshell intermediate
top quarks and W bosons. This automatically includes all

Fig. 4 Spin-correlation effects in top-quark pair production in the SM.
The three simulation setups are described in the text. The ratio plot
displays the relative difference in terms of the standard deviation and
allows to judge the statistical compatibility between the full ME and
correlated decay simulation

helicity correlations by construction and is thus used as a
reference.
Correlated decays Only the pp → t t̄ process is generated
as hard scattering with the Comix generator. The decays are
simulated in a factorized manner and spin correlations are
implemented as described above.
Uncorrelated decays As above, but without implementing
spin-correlations.

In Fig. 4 we present the comparison of the three differ-
ent approaches for the azimuthal separation of the muon and
positron. It can already be seen in this simple example that
the simulation without spin correlations fails to reproduce the
correct shape of spin-sensitive observables. With the imple-
mentation of the correlation algorithm the decay simulation
becomes consistent with the full (resonant) matrix element.

3.2.2 Squark pair production in the MSSM

To study spin correlations in a longer decay chain we now
turn to the example of squark pair production in the MSSM.
We consider scalar up-quark production at the LHC, i.e.
pp → ũũ∗, with subsequent decays featuring intermediate
neutralino and chargino states, i.e.

• ũ → d χ+
1

[→ χ0
1 W+ [→ μ+ νμ

]]
,

• ũ∗ → ū χ0
2

[→ e+ ẽ−
R

[→ e− χ0
1

]]
.

The full final state studied thus reads pp → ũũ∗ →
d χ0

1 μ+ νμ ū e+ e− χ0
1 . The relevant correlations are in par-
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Fig. 5 Spin-correlation effects in the decay cascade following squark
pair production in the MSSM. The three simulation setups are described
in the main text. The ratio plot displays the relative difference in terms of

the standard deviation and allows to judge the statistical compatibility
between the full ME and correlated decay simulation

ticular the ones along the neutralino and chargino propaga-
tors. We again compare the three different types of simulation
described in Sect. 3.2.1. For our rather technical comparison
we consider the MSSM spectrum for the SPS1a benchmark
point [57].

Figure 5 shows three different observables which are sen-
sitive to spin correlations. The left panel displays the invariant
mass of muon and down quark, an observable which tests cor-
relations within the ũ decay chain. The middle figure shows a
similar observable for the ũ∗ decay chain. The invariant mass
of muon and electron displayed in the right panel demon-
strates the impact of spin correlations in each decay chain on
an observable that correlates both.

4 Other aspects of event generation

Any simulation of new physics at the parton level must be
embedded into the full event generation at particle level in
order to provide realistic final-state information that is suit-
able for passing to a detector simulation and experimental
analysis.

The combination of hard matrix elements with parton
showers has been described in some detail in [64,65]. In the
context of new-physics simulations it is often necessary to
amend the merging of matrix elements and parton showers
with the requirement that no new resonances be present at
higher multiplicity. This can be achieved in sherpa using a
diagram filter, corresponding to the diagram-removal method
described in [66,67].

Our simulation also includes parton-shower effects in the
decay cascade. To account for the fact that in such a case both
external and intermediate particles can radiate QCD quanta
we use truncated showers [64,68] on the intermediate states.
The input configuration for such a shower simulation is a
branching history starting with the hard 2 → n process with
resummation scale μQ . For each decay process new “layers”
are added to this configuration, encoding the 2 → n + 1,

2 → n + 2, …final states, each with a corresponding new
resummation scale for the parton shower, that is given by the
mass of the particle setting the kink in the color flow. In the
case of t → Wb decays, this would be the W -boson mass,
for example.

Note that we implement parton showers in production
only, not in decay. This means that for each decaying par-
ticle the parton shower is performed from the resummation
scale in its production process to the particle width. The
same particle does not radiate again during its own decay,
which would in principle be required [69]. The mismatch
resulting from this approximation is typically small, and we
plan to include the missing effects in the near future. Earlier
versions of Sherpa, which were based on a different par-
ton shower [70], did indeed include the corresponding algo-
rithm [18,71].

In addition to the QCD parton shower, sherpa also sim-
ulates QED emissions using the YFS algorithm, as detailed
in [72]. This is done before the parton shower is implemented.

Ultimately, sherpa invokes a cluster hadronization model
[73] to account for the fragmentation of partons into hadrons.
However, our hadronization routines can only handle colored
Standard-Model partons so far. Other long-lived or even sta-
ble colored particles that hadronize, as for example present
in various supersymmetric models [74,75], cannot be dealt
with at present.

5 Summary and outlook

In this publication we described the methods used to imple-
ment arbitrary new-physics models into the event genera-
tor sherpa. We provide an automatic generator for Lorentz
calculators, which allows to implement interaction vertices
which are not present in either the Standard Model or simple
extensions thereof. We also extend the matrix-element gen-
erator Comix, such that arbitrary higher-point functions can
be used for amplitude generation. The new generator sup-
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ports the Universal FeynRules Output, which is provided by
programs like FeynRules and Sarah.

The new and extended version of Comix described
here, together with the newly constructed decay module of
sherpa, allows to compute the production and decay of new-
physics particles, with spin correlations and off-shell effects
in the decay taken into account. The simulation is embed-
ded in the larger event generation framework of sherpa
to also include QCD radiative corrections by means of the
parton shower, QED radiative corrections by means of the
YFS approach, and non-perturbative effects through clus-
ter hadronization and hadron decays. Overall, we provide a
complete framework to address many new-physics simula-
tions in a fully automated way. Currently our implementation
is restricted to spin-0, spin-1/2 and spin-1 particles, but the
addition of higher-spin states is foreseen for the near future.

Acknowledgments This work was supported by the US Department
of Energy under contract DE–AC02–76SF00515. Frank Siegert’s work
was supported by the German Research Foundation (DFG) under Grant
No. SI 2009/1-1. Silvan Kuttimalai would like to thank the theory group
at SLAC National Accelerator Laboratory for hospitality. His work
was supported by the European Union as part of the FP7 Marie Curie
Initial Training Network MCnetITN (PITN-GA-2012-315877). Steffen
Schumann acknowledges financial support from BMBF under contract
05H12MG5. Stefan Höche thanks the Center for Future High Energy
Physics at IHEP for hospitality while this work was finalized.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. N.D. Christensen, C. Duhr, FeynRules—Feynman rules made
easy. Comput. Phys. Commun. 180, 1614–1641 (2009).
arXiv:0806.4194 [hep-ph]

2. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B.
Fuks, FeynRules 2.0—a complete toolbox for tree-level phe-
nomenology. Comput. Phys. Commun. 185, 2250–2300 (2014).
arXiv:1310.1921 [hep-ph]

3. F. Staub, From superpotential to model files for FeynArts and
CalcHep/CompHep. Comput. Phys. Commun. 181, 1077–1086
(2010). arXiv:0909.2863 [hep-ph]

4. F. Staub, SARAH 4: a tool for (not only SUSY) model
builders. Comput. Phys. Commun. 185, 1773–1790 (2014).
arXiv:1309.7223 [hep-ph]

5. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, Mad-
Graph 5: going beyond. JHEP 06, 128 (2011). arXiv:1106.0522
[hep-ph]

6. T. Binoth, D. Goncalves Netto, D. Lopez-Val, K. Mawatari,
T. Plehn, I. Wigmore, Automized squark–neutralino produc-
tion to next-to-leading order. Phys. Rev. D 84, 075005 (2011).
arXiv:1108.1250 [hep-ph]

7. D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn, I. Wig-
more, Automated squark and gluino production to next-to-leading
order. Phys. Rev. D 87, 014002 (2013). arXiv:1211.0286 [hep-ph]

8. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni, R.
Pittau, Automation of one-loop QCD corrections. JHEP 05, 044
(2011). arXiv:1103.0621 [hep-ph]

9. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mat-
telaer, H.-S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated
computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations.
JHEP 1407, 079 (2014). arXiv:1405.0301 [hep-ph]

10. W. Kilian, T. Ohl, J. Reuter, WHIZARD: simulating multi-particle
processes at LHC and ILC. Eur. Phys. J. C 71, 1742 (2007).
arXiv:0708.4233 [hep-ph]

11. F. Krauss, R. Kuhn, G. Soff, AMEGIC++ 1.0: a matrix element
generator in C++. JHEP 02, 044 (2002). arXiv:hep-ph/0109036

12. A. Buckley et al., General-purpose event generators for LHC
physics. Phys. Rept. 504, 145–233 (2011). arXiv:1101.2599 [hep-
ph]

13. G. Corcella et al., HERWIG 6: an event generator for hadron emis-
sion reactions with interfering gluons (including supersymmetric
processes). JHEP 01, 010 (2001). hep-ph/0011363

14. M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58,
639–707 (2008). arXiv:0803.0883 [hep-ph]

15. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and man-
ual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175

16. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten,
S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduc-
tion to PYTHIA 8.2. arXiv:1410.3012 [hep-ph]

17. T. Gleisberg, S. Höche, F. Krauss, A. Schälicke, S. Schumann,
J. Winter, sherpa 1.α, a proof-of-concept version. JHEP 02, 056
(2004). arXiv:hep-ph/0311263

18. T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F.
Siegert, J. Winter, Event generation with sherpa 1.1. JHEP 02,
007 (2009). arXiv:0811.4622 [hep-ph]

19. P. Skands et al., SUSY Les Houches accord: interfacing SUSY
spectrum calculators, decay packages, and event generators. JHEP
07, 036 (2004). arXiv:hep-ph/0311123

20. J. Alwall et al., A Les Houches interface for BSM generators.
arXiv:0712.3311 [hep-ph]

21. B. Allanach et al., SUSY Les Houches accord 2. Comput. Phys.
Commun. 180, 8–25 (2009). arXiv:0801.0045 [hep-ph]

22. K. Hagiwara et al., Supersymmetry simulations with off-shell
effects for the CERN LHC and an ILC. Phys. Rev. D 73, 055005
(2006). arXiv:hep-ph/0512260

23. T. Gleisberg, F. Krauss, K.T. Matchev, A. Schälicke, S. Schumann,
G. Soff, Helicity formalism for spin-2 particles. JHEP 09, 001
(2003). arXiv:hep-ph/0306182

24. A. Dedes, T. Figy, S. Höche, F. Krauss, T.E.J. Underwood, Search-
ing for Nambu–Goldstone bosons at the LHC. JHEP 11, 036
(2008). arXiv:0807.4666 [hep-ph]

25. C. Kilic, S. Schumann, M. Son, Searching for multijet resonances
at the LHC. JHEP 04, 128 (2009). arXiv:0810.5542 [hep-ph]

26. S. Schumann, A. Renaud, D. Zerwas, Hadronically decaying color-
adjoint scalars at the LHC. JHEP 09, 074 (2011). arXiv:1108.2957
[hep-ph]

27. N.D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks,
M. Herquet, F. Maltoni, S. Schumann, A comprehensive approach
to new physics simulations. Eur. Phys. J. C 71, 1541 (2011).
arXiv:0906.2474 [hep-ph]

28. T. Gleisberg, S. Höche, Comix, a new matrix element generator.
JHEP 12, 039 (2008). arXiv:0808.3674 [hep-ph]

29. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer,
T. Reiter, UFO—the universal FeynRules output. Comput. Phys.
Commun. 183, 1201–1214 (2012). arXiv:1108.2040 [hep-ph]

30. P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, T. Stelzer,
ALOHA: automatic libraries of helicity amplitudes for feynman
diagram computations. Comput. Phys. Commun. 183, 2254–2263
(2012). arXiv:1108.2041 [hep-ph]

123

http://arxiv.org/abs/0806.4194
http://arxiv.org/abs/1310.1921
http://arxiv.org/abs/0909.2863
http://arxiv.org/abs/1309.7223
http://arxiv.org/abs/1106.0522
http://arxiv.org/abs/1108.1250
http://arxiv.org/abs/1211.0286
http://arxiv.org/abs/1103.0621
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/0708.4233
http://arxiv.org/abs/hep-ph/0109036
http://arxiv.org/abs/1101.2599
http://arxiv.org/abs/hep-ph/0011363
http://arxiv.org/abs/0803.0883
http://arxiv.org/abs/hep-ph/0603175
http://arxiv.org/abs/1410.3012
http://arxiv.org/abs/hep-ph/0311263
http://arxiv.org/abs/0811.4622
http://arxiv.org/abs/hep-ph/0311123
http://arxiv.org/abs/0712.3311
http://arxiv.org/abs/0801.0045
http://arxiv.org/abs/hep-ph/0512260
http://arxiv.org/abs/hep-ph/0306182
http://arxiv.org/abs/0807.4666
http://arxiv.org/abs/0810.5542
http://arxiv.org/abs/1108.2957
http://arxiv.org/abs/0906.2474
http://arxiv.org/abs/0808.3674
http://arxiv.org/abs/1108.2040
http://arxiv.org/abs/1108.2041


Eur. Phys. J. C (2015) 75 :135 Page 9 of 9 135

31. P. Richardson, Spin correlations in Monte Carlo simulations. JHEP
11, 029 (2001). arXiv:hep-ph/0110108

32. S. Catani, M.H. Seymour, A general algorithm for calculating jet
cross sections in NLO QCD. Nucl. Phys. B 485, 291–419 (1997).
arXiv:hep-ph/9605323

33. S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, The
dipole formalism for next-to-leading order QCD calculations
with massive partons. Nucl. Phys. B 627, 189–265 (2002).
arXiv:hep-ph/0201036

34. S. Frixione, Z. Kunszt, A. Signer, Three-jet cross-sections to
next-to-leading order. Nucl. Phys. B 467, 399–442 (1996).
arXiv:hep-ph/9512328

35. S. Höche, Efficient dipole subtraction with Comix
36. F.A. Berends, W. Giele, The six-gluon process as an example of

Weyl–van der Waerden spinor calculus. Nucl. Phys. B 294, 700
(1987)

37. F.A. Berends, W.T. Giele, Recursive calculations for processes with
n gluons. Nucl. Phys. B 306, 759 (1988)

38. C. Duhr, S. Höche, F. Maltoni, Color-dressed recursive rela-
tions for multi-parton amplitudes. JHEP 08, 062 (2006).
arXiv:hep-ph/0607057

39. F. Dyson, The S matrix in quantum electrodynamics. Phys. Rev.
75, 1736–1755 (1949)

40. J.S. Schwinger, On the Green’s functions of quantized fields. 1.
Proc. Natl. Acad. Sci. 37, 452–455 (1951)

41. J.S. Schwinger, On the Green’s functions of quantized fields. 2.
Proc. Natl. Acad. Sci. 37, 455–459 (1951)

42. K. Hagiwara, D. Zeppenfeld, Helicity amplitudes for heavy lepton
production in e+e− annihilation. Nucl. Phys. B 274, 1 (1986)

43. S. Dittmaier, Weyl–van der Waerden formalism for helicity ampli-
tudes of massive particles. Phys. Rev. D 59, 016007 (1999).
arXiv:hep-ph/9805445

44. A. Denner, H. Eck, O. Hahn, J. Küblbeck, Feynman rules for
fermion number violating interactions. Nucl. Phys. B 387, 467–
484 (1992)

45. A. Denner, H. Eck, O. Hahn, J. Küblbeck, Compact Feynman rules
for Majorana fermions. Phys. Lett. B 291, 278–280 (1992)

46. G. ’t Hooft, A planar diagram theory for strong interactions. Nucl.
Phys. B 72, 461 (1974)

47. F. Maltoni, K. Paul, T. Stelzer, S. Willenbrock, Color-flow decom-
position of QCD amplitudes. Phys. Rev. D 67, 014026 (2003).
arXiv:hep-ph/0209271

48. T. Gleisberg, F. Krauss, C.G. Papadopoulos, A. Schälicke, S. Schu-
mann, Cross sections for multi-particle final states at a linear col-
lider. Eur. Phys. J. C 34, 173–180 (2004). arXiv:hep-ph/0311273

49. J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, A phenomenological
profile of the Higgs boson. Nucl. Phys. B 106, 292 (1976)

50. F. Wilczek, Decays of heavy vector mesons into Higgs particles.
Phys. Rev. Lett. 39, 1304 (1977)

51. M.A. Shifman, A. Vainshtein, M. Voloshin, V.I. Zakharov, Low-
energy theorems for Higgs boson couplings to photons. Sov. J.
Nucl. Phys. 30, 711–716 (1979)

52. J.R. Ellis, M. Gaillard, D.V. Nanopoulos, C.T. Sachrajda, Is the
mass of the Higgs boson about 10-GeV? Phys. Lett. B 83, 339
(1979)

53. A. Belyaev, O.J. Eboli, M. Gonzalez-Garcia, J. Mizukoshi, S.
Novaes, I. Zacharov, Strongly interacting vector bosons at the
CERN LHC: quartic anomalous couplings. Phys. Rev. D 59,
015022 (1999). arXiv:hep-ph/9805229 [hep-ph]

54. O.J. Eboli, M. Gonzalez-Garcia, S. Lietti, S. Novaes, Anomalous
quartic gauge boson couplings at hadron colliders. Phys. Rev. D
63, 075008 (2001). arXiv:hep-ph/0009262 [hep-ph]

55. O. Eboli, M. Gonzalez-Garcia, S. Lietti, Bosonic quartic cou-
plings at CERN LHC. Phys. Rev. D 69, 095005 (2004).
arXiv:hep-ph/0310141 [hep-ph]

56. O. Eboli, M. Gonzalez-Garcia, J. Mizukoshi, pp → j je±μ±νν

and j je±μ∓νν at O(α6
em) and O(α4

emα2
s ) for the study of the quar-

tic electroweak gauge boson vertex at CERN LHC. Phys. Rev. D
74, 073005 (2006). arXiv:hep-ph/0606118

57. J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis:
SPA convention and project. Eur. Phys. J. C 46, 43–60 (2006).
arXiv:hep-ph/0511344 [hep-ph]

58. R. Kleiss, W.J. Stirling, S.D. Ellis, A new Monte Carlo treatment
of multiparticle phase space at high energies. Comput. Phys. Com-
mun. 40, 359 (1986)

59. E. Byckling, K. Kajantie, N-particle phase space in terms of invari-
ant momentum transfers. Nucl. Phys. B 9, 568–576 (1969)

60. R. Kleiss, R. Pittau, Weight optimization in multichannel Monte
Carlo. Comput. Phys. Commun. 83, 141–146 (1994). [hep-
ph/9405257]

61. J.C. Collins, Spin correlations in Monte Carlo event generators.
Nucl. Phys. B 304, 794 (1988)

62. I. Knowles, Angular correlations in QCD. Nucl. Phys. B 304, 767
(1988)

63. I. Knowles, Spin correlations in parton–parton scattering. Nucl.
Phys. B 310, 571 (1988)

64. S. Höche, F. Krauss, S. Schumann, F. Siegert, QCD matrix elements
and truncated showers. JHEP 05, 053 (2009). arXiv:0903.1219
[hep-ph]

65. S. Höche, S. Schumann, F. Siegert, Hard photon production and
matrix-element parton-shower merging. Phys. Rev. D 81, 034026
(2010). arXiv:0912.3501 [hep-ph]

66. T.M. Tait, The tW− mode of single top production. Phys. Rev. D
61, 034001 (2000). arXiv:hep-ph/9909352 [hep-ph]

67. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White,
Single-top hadroproduction in association with a W boson. JHEP
07, 029 (2008). arXiv:0805.3067 [hep-ph]

68. S. Schumann, F. Krauss, A parton shower algorithm based
on Catani–Seymour dipole factorisation. JHEP 03, 038 (2008).
arXiv:0709.1027 [hep-ph]

69. K. Hamilton, P. Richardson, A simulation of QCD radiation in top
quark decays. JHEP 02, 069 (2007). arXiv:hep-ph/0612236

70. F. Krauss, A. Schälicke, G. Soff, APACIC++ 2.0: a parton cas-
cade in C++. Comput. Phys. Commun. 174, 876–902 (2006).
arXiv:hep-ph/0503087

71. S. Höche, Perturbative QCD in event generation. PhD thesis
72. M. Schönherr, F. Krauss, Soft photon radiation in particle decays

in sherpa. JHEP 12, 018 (2008). arXiv:0810.5071 [hep-ph]
73. J.-C. Winter, F. Krauss, G. Soff, A modified cluster-hadronisation

model. Eur. Phys. J. C 36, 381–395 (2004). hep-ph/0311085
74. W. Kilian, T. Plehn, P. Richardson, E. Schmidt, Split super-

symmetry at colliders. Eur. Phys. J. C 39, 229–243 (2005).
arXiv:hep-ph/0408088 [hep-ph]

75. R. Barbier et al., R-parity violating supersymmetry. Phys. Rept.
420, 1–202 (2005). arXiv:hep-ph/0406039 [hep-ph]

123

http://arxiv.org/abs/hep-ph/0110108
http://arxiv.org/abs/hep-ph/9605323
http://arxiv.org/abs/hep-ph/0201036
http://arxiv.org/abs/hep-ph/9512328
http://arxiv.org/abs/hep-ph/0607057
http://arxiv.org/abs/hep-ph/9805445
http://arxiv.org/abs/hep-ph/0209271
http://arxiv.org/abs/hep-ph/0311273
http://arxiv.org/abs/hep-ph/9805229
http://arxiv.org/abs/hep-ph/0009262
http://arxiv.org/abs/hep-ph/0310141
http://arxiv.org/abs/hep-ph/0606118
http://arxiv.org/abs/hep-ph/0511344
http://arxiv.org/abs/0903.1219
http://arxiv.org/abs/0912.3501
http://arxiv.org/abs/hep-ph/9909352
http://arxiv.org/abs/0805.3067
http://arxiv.org/abs/0709.1027
http://arxiv.org/abs/hep-ph/0612236
http://arxiv.org/abs/hep-ph/0503087
http://arxiv.org/abs/0810.5071
http://arxiv.org/abs/hep-ph/0311085
http://arxiv.org/abs/hep-ph/0408088
http://arxiv.org/abs/hep-ph/0406039

	Beyond standard model calculations with Sherpa
	Abstract 
	1 Introduction
	2 Cross-section calculations at tree-level
	2.1 Treatment of color
	2.2 Automatic implementation of Lorentz calculators
	2.3 Implementation of model parameters
	2.4 Illustrative examples

	3 Decay simulation including spin correlations
	3.1 Construction of the decay cascade
	3.2 Spin-correlation algorithm
	3.2.1 Top-quark pair production in the SM
	3.2.2 Squark pair production in the MSSM


	4 Other aspects of event generation
	5 Summary and outlook
	Acknowledgments
	References




