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A B S T R A C T

Accelerating global shifts in climate and land use change are altering natural habitats and species assemblages,
making management interventions crucial to halt the biodiversity crisis. Management decisions must be in-
formed by accurate biodiversity assessments. However, such assessments are often time consuming, expensive,
and require specialist knowledge. Monitoring environmental sound may offer a novel method for rapid biodi-
versity assessment. Changes in species assemblages at a given location are reflected in the site’s acoustic energy,
termed the soundscape. Soundscapes can be readily described using acoustic indices; metrics based on objective
features of recordings such as pitch and amplitude. Changes in acoustic indices values may therefore reflect
changes in species assemblages, alerting land managers to shifts in wildlife populations. However, thus far,
evidence supporting the use of acoustic indices in biodiversity monitoring has been equivocal. Here, we test the
practical application of acoustic indices for biodiversity monitoring while solving methodological issues and
providing conceptual clarity.

Using 84 h of audio recordings covering 315 dawns from 43 sites, coupled with bird assemblage and vege-
tation data collected in the field, we demonstrate strong relationships between acoustic indices and avian species
richness and abundance. In contrast with many previous studies, we found that sites with high bird species-
richness and abundance had less even soundscapes (i.e. acoustic energy was less evenly distributed among
frequencies) compared with sites with low species richness and abundance. Crucially, these patterns were co-
herent across multiple acoustic indices, and across habitat types, emphasising their utility for monitoring.
Acoustic indices sensitive to the frequencies at which birds sing are most useful for monitoring avian commu-
nities; the Acoustic Evenness Index, Biophony Index, and the biophony component of the Normalised Difference
Soundscape Index exhibited the strongest relationship with species richness. Land managers can use acoustic
indices for biodiversity monitoring, complementing other, more established, assessment methods.

1. Introduction

Biodiversity assessment is an increasingly urgent task in the face of
global environmental change (Pereira et al., 2013). Ecoacoustics, the
study of environmental sound, may offer a more rapid and economical
means of terrestrial biodiversity appraisal than traditional approaches
(Burivalova et al. 2019a). Cheap, open-source audio recorders that can
be deployed in the field for weeks or months at a time have made it
relatively straightforward to collect tens of thousands of hours of sound
recordings (Sueur and Farina 2015; Bradfer-Lawrence et al. 2019).
Acoustic indices can be calculated from audio recordings, rather than
manually categorising species composition, which is prohibitively time-
consuming (Pijanowski et al. 2011). Acoustic indices are derived from

features of the recordings such as amplitude and frequency, with in-
dividual indices typically describing different characteristics of the
soundscape (Sueur et al. 2014). The soundscape is comprised of the
acoustic energy at a given location and has three components:
biophony, sounds produced by animals; anthrophony, sounds produced
by humans or machinery; and geophony, sounds from natural processes
such as wind or rain (Pijanowski et al 2011).

Any changes to a habitat and its fauna are likely to be mirrored in
the local soundscape (Krause and Farina, 2016; Burivalova et al. 2018;
Gómez et al. 2018; Bradfer‐Lawrence et al. 2019; Furumo and Aide,
2019). In turn, these will be echoed in changing acoustic indices values
reflecting differences in biophony and geophony. If acoustic indices
values change in consistent and predictable ways as a response to
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shifting vegetation structure and species assemblages, indices could be
used as proxies for tracking such alterations and hence represent an
economical means of monitoring biodiversity change across both space
and time at large scales (Bradfer-Lawrence et al. 2019; Laiolo 2010;
Ribeiro et al. 2017).

To illustrate how acoustic patterns can reflect biodiversity, Fig. 1
shows three sonograms of tropical dawn recordings with contrasting
soundscapes. Patterns in acoustic energy vary in two ways: among
frequencies and over time. One recording was collected in regenerating
scrub habitat with low avian species richness (Fig. 1a). There are few
calling birds and low acoustic energy, and hence minimal variation
across frequencies or time. In contrast, Fig. 1b shows a recording from a
large area of forest with a more complex vegetation structure and high
avian species richness, features that are echoed in a highly uneven
soundscape typified by rapid temporal irregularity and variation in
acoustic energy among frequencies. Here, the dawn chorus contains
numerous individuals of many species vocalising simultaneously be-
tween 1 and 10 kHz, but with few sounds outside this range. Fig. 1c
shows a recording collected during a rainstorm, a soundscape with high
levels of acoustic energy and high temporal variation, but with the
same minimal variation among frequency bands found in the scrub
recording. Acoustic indices will reflect these differences, with a distinct
combination of values for each soundscape, and values for the forest
recording (Fig. 1b) indicating a soundscape with less even distribution

of energy among frequency bands compared to the other two record-
ings.

Realising the potential of acoustic indices for monitoring biodi-
versity change relies on significant and coherent relationships between
acoustic indices and widely used biodiversity metrics such as species
richness. However, there are currently disagreements as to the strength
and direction of such relationships. For example, the Acoustic
Complexity Index (ACI) has been correlated positively with both avian
species richness (Hilje et al. 2017) and peaks in avian vocalisations
(Farina et al. 2011; Pieretti et al. 2011; Fuller et al. 2015; Gage et al.
2017). In contrast, other studies have found no relationship between
ACI and avian species richness (Fuller et al., 2015; Buxton et al., 2016,
2018a,b). Similarly, while a strong positive correlation between the
Biophony index (Bio) and avian abundance has been found by some
(Boelman et al. 2007; Fuller et al. 2015), others report the reverse
(Gage et al. 2017). Some of these disagreements may have arisen from a
failure to consider the influence of vegetation. Vegetation might in-
fluence acoustic indices values directly, by affecting sound transmission
(Darras et al., 2016), or indirectly by shaping the animal populations
present in an area (Burivalova et al 2018). Vegetation effects on the
soundscape can be strong; simplified vegetation structure is associated
with lower soundscape saturation and lower Bio values indicating
greater evenness among frequencies (Rankin and Axel, 2017;
Burivalova et al., 2019b, Burivalova et al., 2018).

Fig. 1. Soundscape changes with increasing acoustic energy. At top, a hypothetical graph showing changes in soundscape evenness for frequency (solid line) and time
(dotted line), and below, example sonograms from three recordings collected in central Panama in March 2017 at around 06:30 am. Panel (a) shows a sonogram from
a scrub recording, with only two bird calls and low levels of insect noise. There are low levels of acoustic energy and the soundscape is very even, with little temporal
or frequency variation. Panel (b) shows a sonogram from a forest recording, bird calls dominate frequencies between 1 and 6kHz, and insects between 6 and 8 kHz.
Above 9 kHz there are few sounds, so that acoustic energy is unevenly distributed among frequency bands, reflecting the complex faunal communities present in this
habitat. Panel (c) shows a sonogram from a rainstorm, there are high levels of acoustic energy and high temporal variation in the soundscape, but little differentiation
among frequency bands. Thus soundscapes with low or high amounts of acoustic energy (panels a and c) may be different temporally, but generally have low
variation among frequencies. At intermediate levels of energy (panel b), there is considerable temporal and frequency variation in the sonogram, so that the
soundscape is uneven. Each recording will have a unique combination of indices values, reflecting soundscape variation. Excepts from these and other example
recordings are available in the supplementary information.
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The inconsistent patterns between species metrics and acoustic in-
dices raise questions regarding the efficacy of indices for biodiversity
assessment (Servick 2014; Merchant et al. 2015; Eldridge et al. 2016;
Browning et al. 2017; Gibb et al. 2018). This is likely limiting uptake of
these new technologies by land managers. We suggest there are several
conceptual and methodological issues that underlie the reported in-
consistencies, and these may be obscuring relationships between
soundscapes, landscapes and biodiversity. Key amongst these limita-
tions is the use of acoustic indices without a solid a priori understanding
of the likely relationships between indices values and biodiversity.
Apparent relationships have been reported because they were statisti-
cally significant, without the trends necessarily making ecological sense
or inter-index patterns being complimentary. For example, some studies
suggest that greater avian species richness is associated with higher
evenness among frequencies (Fuller et al. 2015; Mammides et al. 2017),
but this is unlikely unless all frequencies are occupied equally (Fig. 1,
and Eldridge et al 2018).

Conceptual weaknesses have been compounded by inconsistent or
inappropriate methodologies. For example, while the bird assemblage
contributes to the overall soundscape, there is likely to be considerable
short-term variation. Calls are irregular within and among bird species,
and affected by the animal’s distance from the microphone, by habitat
structure, and by other sources of biophony and geophony (Lellouch
et al 2014). With so much soundscape variability a direct relationship
between bird assemblages and acoustic indices is unlikely, hence at-
tempts to link acoustic indices with concurrent avian counts have met
with limited success (Lellouch et al. 2014; Mammides et al. 2017;
Buxton et al. 2018b; Eldridge et al. 2018; Jorge et al. 2018; Zhao et al.
2019). Clearer trends might be apparent if acoustic indices were treated
as site metrics more akin to net primary productivity. Furthermore,
analysis techniques have frequently been limited to linear regressions
or non-parametric statistics (Boelman et al. 2007; Tucker et al. 2014;
Duarte et al. 2015; Mammides et al. 2017). Yet index values are often
highly skewed, exhibiting non-normal error distributions, thus a more
nuanced approach to analyses is probably required (Fairbrass et al
2017).

The principal question we address is: can acoustic indices be used as
effective biodiversity monitoring tools, reflecting species richness and
abundance? We hypothesise that greater avian species richness, avian
abundance, and vegetation structural complexity will be reflected in
acoustic indices values indicating greater soundscape complexity. We
designed our study to avoid many of the issues that have limited earlier
studies, treating indices as site characteristics and employing advanced
analytical techniques. We consider a suite of well-established acoustic
indices from week-long recordings collected from 43 sites with a range
of vegetation types and varied avifaunas, and couple these recordings
with over 126 h of avian point count observations from the same sites.

2. Materials and methods

This study was conducted in the Emparador landscape in the
Republic of Panama. This human-modified landscape lies to the south
and west of the Panama Canal, covering 700 km2. Whilst there are still
extensive tracts of forest, large areas have been converted to a matrix of
cattle pasture and teak plantation, with remnant forest fragments and
riparian forest. The climate is strongly seasonal, with very low rainfall
between mid-December and mid-April, while the wet season generally
peaks in October and November (Windsor 1990).

2.1. Data collection and preparation

Data were collected in 2017 from 43 sites representing the six main
habitats present in the Emparador landscape; continuous forest, frag-
mented forest, riparian forest, teak plantations, regenerating scrub and
cattle pasture (Fig. 2). Sites were of uniform habitat, a minimum of 1 ha
in size, and at least 500 m from sites in other habitats and 1000 m from

sites of the same habitat. Habitats followed a hypothesised gradient of
decreasing structural complexity from continuous forest to cattle pas-
ture.

2.2. Audio recordings

Audio recordings were collected using open-source “Solo” recorders
with omnidirectional microphones (Whytock and Christie, 2017). We
opted for a sampling rate of 32,000 Hz as a balance between capturing
the majority of human-audible sound and the memory capacity of the
recorders (Bradfer-Lawrence et al. 2019). Collection was limited to the
dry season (early February to early May), when bird song makes a re-
latively greater contribution to the soundscape. Recorders were de-
ployed for approximately one week at each site (range 6 – 11 days),
deployment length was determined by how long the recorder battery
retained power. This gave a total of 315 deployment days, from which
we extracted data for the minute of sunrise and the following 15 min for
each morning (sunrise times from timeanddate.com). This corre-
sponded to the period with the greatest level of birdsong, and gave a
total of 5040 min of analysis (between 96 and 176 min of recording per
site). We did not screen recordings for high levels of geophony (wind
and rain). Pre-processing was limited to a 500 Hz low-stop filter to
reduce microphone self-noise. This filter likely removed some genuine
environmental sound, but the self-noise represented a potential source
of bias in the indices that needed to be controlled for (Appendix A).

For each minute of recording we calculated the following acoustic
indices; Acoustic Complexity Index (ACI), Acoustic Diversity Index
(ADI), Acoustic Evenness Index (AEve), Biophony Index (Bio), Acoustic
Entropy Index (H), Amplitude (M), Normalised Difference Soundscape
Index (NDSI), and the latter’s two constituents reflecting anthrophony
and biophony (given the potential for diverging patterns in the two
elements of NDSI, they were considered separately). Details of index
calculation and the general patterns they reflect can be found in
Appendix B. Over 60 acoustic indices have been proposed (Buxton
et al., 2018a), but we focused on these nine indices because they are the
most commonly used in the acoustic indices literature, and they capture
a range of soundscape characteristics. All indices were calculated in R,
using the packages ‘seewave’ (ver 2.1.0; Sueur et al., 2008) and
‘soundecology’ (ver 1.3.3; Villanueva-Rivera and Pijanowski, 2018).
The default values of each R function were used, with the exception of
NDSI which was modified to match the original formulation of Kasten
et al (2012). In the original form, this index contrasts the power spectral
density of the 1 kHz anthrophony bin (i.e. 1 – 2 kHz), against the power
spectral density of the largest 1 kHz biophony bin (i.e. in the range 2 –
11 kHz). However, both the ‘seewave::NDSI’ and ‘soundecology::ndsi’
functions use an alternative method where the biophony bins are
summed prior to this calculation. This tends to obscure differences
among recordings; for a full discussion see Appendix C.

2.3. Bird assemblages

Bird assemblages at each site were assessed in the field using 10-
min, unlimited radius point counts (Bibby et al. 2000). We conducted
four visits to each of the 43 sites, giving a total of 172 counts. Counts
were undertaken between 30 min after morning nautical twilight and
4 h post-dawn. Revisits to sites were a minimum of 12 days apart. All
counts were undertaken by TBL and NG. Double counting of individuals
during surveys was highly unlikely given the minimum distance be-
tween sites. We recorded all birds seen or heard with the exception of
vultures, hirundines and swifts; these three taxa are predominantly
aerial in behaviour, so their presence may not reflect usage of the ha-
bitat being surveyed. We did not modify our counts based on detect-
ability; hence, our data reflect relative site features rather than absolute
measures of bird abundance (Anderson 2009). For each site we calcu-
lated mean bird species richness and mean number of individuals de-
tected based upon sightings and vocalisations. We used the latter as our
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proxy for avian abundance. These two metrics were used as predictors
in the modelling (see below).

2.4. Vegetation data

Woody vegetation at each site was assessed with a 20 m × 20 m
plot. We recorded: canopy height at nine points, number of stems over
1.3 m tall, and Diameter at Breast Height (DBH) of stems over 1.3 m tall
and 5 cm DBH. From these we determined: mean canopy height, ratio of
stems over 1.3 m to stems over 5 cm DBH, mean DBH, and basal area.
These four values were combined using Principal Components Analysis
(PCA) with the package ‘vegan’ (ver 2.5.2; Oksanen et al. 2018), and
the first two axes were used as metrics of vegetation structure in the
modelling (Farina and Pieretti, 2014).

2.5. Modelling

Acoustic indices values cover widely different numeric ranges, and
are frequently skewed. To permit comparison among indices, values
were scaled by dividing by the maximum value of each index to give
relative proportions. The NDSI is on a scale of −1 to + 1, so not
amenable to this approach, therefore we used (NDSI + 1)/2 (Fairbrass
et al. 2017). Normalised values were used as the response variable in a
generalised mixed model framework with a beta distribution, con-
ducted using the ‘glmmTMB’ package (ver 0.2.3; Brooks et al. 2017).
The beta distribution is continuous between 0 and 1, but has no prior
expectations related to the distribution within that range so can cope
with asymmetric and heteroskedastic data (Ferrari and Cribari-Neto,
2004). Model predictors were mean bird species richness or mean
abundance per site, and the first two PCA axes reflecting vegetation

Fig. 2. Map of 43 study sites in the Emparador landscape, central Republic of Panama, showing the six habitat types.

T. Bradfer-Lawrence, et al. Ecological Indicators 115 (2020) 106400

4



structure. To account for potential autocorrelation, models included
random effects for site, and day of deployment. The two avian metrics
of species richness and abundance were co-linear so could not be in-
cluded in a single model. Thus, we built two separate sets of models
using either species richness or abundance, and then compared them
using AIC to determine which was preferred (Burnham and Anderson,
2002).

3. Results

3.1. Bird and vegetation surveys

During point count surveys we detected a total of 4017 individual
birds from 188 species. Mean bird species richness per site was 16.2
(range 5.5–25), and mean abundance per site was 23.4 (range
7.2–39.5). Vegetation structure differed among sites; forest habitats had
taller canopies and greater basal area than scrub and pasture habitats
(Appendix D). Axis 1 of the vegetation structure PCA accounted for
60.6% of the inter-site variance and reflected vegetation complexity;
higher scores were associated with greater canopy height, basal area
and mean DBH. Axis 2 accounted for 24.9% of the variance, and higher
scores reflected a greater stem ratio; this was particularly marked in the
plantation sites where intensive management reduces size variation
among stems, with almost all stems part of the mature timber crop.

3.2. Soundscape, species richness and detections

Higher mean avian species richness and abundance from point
count surveys were strongly associated with significantly higher values
of ACI, AEve, Bio, NDSI and NDSI-Bio, and with significantly lower
values of H and NDSI-Anthro (Fig. 3, Appendix E). Higher species
richness was also significantly associated with lower ADI values, and
higher abundance with greater values of M (Appendix E). AIC selection
showed the mean species richness model was preferred for Bio, H, M,
and the NDSI indices (Table E.3). For ACI, ADI and AEve there was no
preference between mean species richness and mean abundance
models, with delta AIC values of less than two.

Higher vegetation complexity scores on the first PCA axis were
significantly associated with lower ACI values when added to both the
species richness and abundance models, and with lower NDSI and
higher NDSI-Anthro in the species richness model only (Tables E.1 and
E.2). Axis 2 from the PCA, driven by changes in stem ratio, had a po-
sitive association with ACI in the species richness model.

4. Discussion

4.1. Relationships between biodiversity metrics and acoustic indices

Higher avian species richness and abundance were associated with
higher values of ACI, AEve, Bio, NDSI and NDSI-Bio, and lower values
of H, and NDSI-Anthro. Despite the correlation between richness and
abundance, our models suggested that, overall, acoustic indices were
more strongly related to species richness. In line with our hypotheses,
sites with higher avian species richness and greater abundance have
soundscapes with acoustic energy unevenly distributed among fre-
quency bands. These patterns are evidenced by low ADI values and high
Bio and NDSI-Bio values, which all indicate uneven distribution of
acoustic energy among frequencies (Table B1). This is consistent with a
greater number of birds emitting more calls that span a wider range of
frequencies with greater temporal variation (Fig. 1b). Species-poor sites
had impoverished soundscapes, with lower acoustic energy distributed
more evenly across frequency bands (Fig. 1a). Critically, these patterns
were coherent across the different indices, and across sites and habitats,
emphasising the potential of acoustic indices for monitoring.

Some existing studies concur with our findings. A recent comparison
of temperate and tropical recordings found correlations between

species richness and the same indices we considered, emphasising that
soundscape evenness declines with greater richness (Eldridge et al
2018). Similarly, Moreno-Gomez et al (2019) report similar associa-
tions between avian species richness and ADI and AEve. Although the
direction of these correlations match our findings, both studies report
only weak relationships in their tropical recordings, perhaps because
the sparse recording schedules used meant there were insufficient data
to demonstrate clear patterns (Bradfer-Lawrence et al. 2019). A strong
positive association between the Bio index and bird abundance was
found in Hawaii (Boelman et al. 2007), and in Papua New Guinea, less
disturbed sites had soundscapes with greater acoustic saturation, due to
either higher species richness or greater faunal abundance (Burivalova
et al. 2018).

Our findings contrast with studies that suggest greater avian species
richness, better “ecological condition” and lower disturbance are all
associated with more even soundscapes (Sueur et al., 2008; Fuller et al
2015; Mammides et al 2017). We argue that methodological limitations
may be responsible for variable findings in previous research, as they
are counterintuitive given the soundscape patterns that underlie parti-
cular index values (Fig. 1). Habitats with rich faunal communities are
likely to produce many different sounds at varied frequencies and
timing intervals, leading to uneven soundscapes (Fig. 1b). In contrast,
species poor sites are, on average, likely to have fewer vocalisations,
and hence the soundscape will be more even (Fig. 1a).

Vegetation complexity significantly influenced ACI in both species
richness and abundance models, and NDSI and NDSI-Anthro values in
the species richness model only. Increasing vegetation complexity had
the opposite effect to greater avian species richness and abundance on
these indices values. The initially counter-intuitive relationship be-
tween ACI and vegetation complexity stems from the high ACI values in
many of the pasture sites. High levels of tree cover (as remnant trees
and living fences) in many Panamanian agricultural landscapes support
a species-rich avifauna, and this is apparent in both the avian metrics
and the acoustic indices. However, at the 20 m × 20 m vegetation plot
scale, structural complexity is very low, leading to the apparent nega-
tive influence of vegetation complexity. The NDSI results may stem
from more complex habitats having greater acoustic energy, irrespec-
tive of avian species richness or abundance. In more complex habitats
there is a likely to be more biophony from birds and other fauna in the 1
– 2 kHz range that determines NDSI-Anthro values (Eldridge et al
2018). In turn, higher NDSI-Anthro values will reduce the ratio with
NDSI-Bio, and thus cause lower overall NDSI.

Previous work has demonstrated further links between vegetation
structure and acoustic indices. For example, in Costa Rica, ACI was
correlated with liana abundance (Hilje et al 2017), and ADI with total
vegetation complexity measured via LiDAR (Pekin et al., 2012). Higher
levels of canopy cover have also been positively linked to Bio in Ma-
dagascar (Rankin and Axel, 2017). We ascribe the relatively low im-
portance of vegetation in our findings to temporal factors. For example,
over a time scale of 24 h, habitat type and vegetation structure are
likely to define the potential range of acoustic indices values (Brad-
fer‐Lawrence et al. 2019). However, when restricted to a 15-minute
dawn chorus, indices values during an individual minute are more
likely driven by vocalising fauna. This supports the use of acoustic in-
dices for biodiversity monitoring, suggesting that by targeted sampling
during the period of the day when the focal taxon is most vocal, indices
values will be determined by the faunal assemblage rather than just
reflecting broader habitat structure.

4.2. Using acoustic indices for biodiversity monitoring

Audio recordings can be collected at much greater spatial and
temporal scales than most field data, and acoustic indices provide ready
means of analysing these data, offering managers an additional method
for monitoring biodiversity. For example, ACI has been used to time the
arrival of migrant song birds on their breeding grounds (Buxton et al.
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2016). A large array of recorders across a region could be employed to
track species arrival and relative abundance more readily than tradi-
tional survey methods, strengthening the evidence base for manage-
ment decisions (Blumstein et al. 2011; Sugai et al. 2019). Similarly, the

impacts of habitat fragmentation or restoration on animal species could
be tracked across entire landscapes. Such a monitoring program could
potentially highlight shifts in habitats and species at the landscape scale
more rapidly than would be detected using field surveys, and so

Fig. 3. Effect of mean avian species richness on normalised acoustic indices values, with median raw data as points, and predicted values and standard errors from
generalised linear mixed models. Asterisks indicate significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Note raw data are highly skewed, and hence
median points do not lie close to the predicted model fits for ADI and AEve; the long tail of the distributions are key to patterns in these indices.
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facilitate management interventions (Gibbs and Breisch, 2001; Krause
and Farina, 2016; Wood et al., 2019).

There are several important factors land managers should consider
when using acoustic indices to monitor biodiversity. Successful use of
acoustic indices must be grounded in a thorough understanding of
which soundscape characteristics are reflected in changing values.
Some acoustic indices are sensitive to geophony and anthrophony, and
managers should be aware of potential influences on values, the options
for pre-processing of recordings to minimise these influences, and the
effects this processing might have on acoustic indices values. We de-
monstrated that greater avian species richness and abundance is asso-
ciated with more uneven and complex soundscapes. Although we would
expect similar soundscape patterns in other systems and with different
taxa, land managers and conservationists would need to verify this
anticipated link via ground-truth surveys (or manual checking of audio
recordings) to establish faunal presence (Gibb et al 2018). With bird
monitoring we recommend using mean avian metrics as site features
rather than seeking to directly link acoustic indices values and bird
surveys. High variability in calling rates and song types limits inference
using the latter approach. Again, this pattern might apply with other
taxa as well. If using formal statistical tests, we strongly encourage use
of analysis techniques appropriate for skewed and bounded data.

Indices with the greatest range among sites were AEve, Bio and
NDSI-Bio, suggesting these are potentially most sensitive to detecting
spatio-temporal differences in faunal communities and so of greatest
utility for monitoring. However, it is still valuable to include other in-
dices that reflect different soundscape elements, as multiple indices
offer insight into competing explanations. For example, high AEve va-
lues indicate a soundscape with energy unevenly distributed among
frequency bands, which could reflect high levels of bird activity or
complete dominance by insects such as cicadas. However, if ACI values
are also high, this suggests rapid temporal variation lending support to
the former interpretation (Pieretti et al. 2011; Bradfer‐Lawrence et al.
2019). Some indices are also more robust to non-target noise; for ex-
ample, ACI has been linked to biotic diversity even when there is
substantial anthrophony (Duarte et al. 2015; Fairbrass et al. 2017).

New time- and cost-effective biodiversity monitoring methods are
critically needed to provide evidence supporting robust policy deci-
sions, habitat protection and conservation action (Eldridge et al 2018;
Burivalova et al 2019a). Earlier failures to demonstrate consistent re-
lationships between acoustic indices and other biodiversity metrics
have meant practitioners are understandably reluctant to rely on these
new monitoring tools (Browning et al 2017). Here we demonstrated
that sites with higher avian species richness and abundance had con-
sistently less even soundscapes, suggesting that acoustic indices can be
used as effective conservation monitoring tools.
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