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In most classical approaches of computational geophysics for seismic wave propagation 
problems, complex surface topography is either accounted for by boundary-fitted unstruc-
tured meshes, or, where possible, by mapping the complex computational domain from 
physical space to a topologically simple domain in a reference coordinate system. How-
ever, all these conventional approaches face problems if the geometry of the problem 
becomes sufficiently complex. They either need a mesh generator to create unstructured 
boundary-fitted grids, which can become quite difficult and may require a lot of man-
ual user interactions in order to obtain a high quality mesh, or they need the explicit 
computation of an appropriate mapping function from physical to reference coordinates. 
For sufficiently complex geometries such mappings may either not exist or their Jacobian 
could become close to singular. Furthermore, in both conventional approaches low quality 
grids will always lead to very small time steps due to the Courant-Friedrichs-Lewy (CFL) 
condition for explicit schemes. In this paper, we propose a completely different strategy 
that follows the ideas of the successful family of high resolution shock-capturing schemes, 
where discontinuities can actually be resolved anywhere on the grid, without having to 
fit them exactly. We address the problem of geometrically complex free surface boundary 
conditions for seismic wave propagation problems with a novel diffuse interface method 
(DIM) on adaptive Cartesian meshes (AMR) that consists in the introduction of a char-
acteristic function 0 ≤ α ≤ 1 which identifies the location of the solid medium and the 
surrounding air (or vacuum) and thus implicitly defines the location of the free surface 
boundary. Physically, α represents the volume fraction of the solid medium present in a 
control volume. Our new approach completely avoids the problem of mesh generation, since 
all that is needed for the definition of the complex surface topography is to set a scalar 
color function to unity inside the regions covered by the solid and to zero outside. The 
governing equations are derived from ideas typically used in the mathematical descrip-
tion of compressible multiphase flows. An analysis of the eigenvalues of the PDE system 
shows that the complexity of the geometry has no influence on the admissible time step 
size due to the CFL condition. The model reduces to the classical linear elasticity equations 
inside the solid medium where the gradients of α are zero, while in the diffuse interface 
zone at the free surface boundary the governing PDE system becomes nonlinear. We can 
prove that the solution of the Riemann problem with arbitrary data and a jump in α from 
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unity to zero yields a Godunov-state at the interface that satisfies the free-surface bound-
ary condition exactly, i.e. the normal stress components vanish. In the general case of an 
interface that is not aligned with the grid and which is not infinitely thin, a systematic 
study on the distribution of the volume fraction function inside the interface and the sen-
sitivity with respect to the thickness of the diffuse interface layer has been carried out. 
In order to reduce numerical dissipation, we use high order discontinuous Galerkin (DG) 
finite element schemes on adaptive AMR grids together with a second order accurate high 
resolution shock capturing subcell finite volume (FV) limiter in the diffuse interface region. 
We furthermore employ a little dissipative HLLEM Riemann solver, which is able to resolve 
the steady contact discontinuity associated with the volume fraction function and the spa-
tially variable material parameters exactly. While the method is locally high order accurate 
in the regions without limiter, the global order of accuracy of the scheme is at most two if 
the limiter is activated. It is locally of order one inside the diffuse interface region, which 
is typical for shock-capturing schemes at shocks and contact discontinuities. We show a 
large set of computational results in two and three space dimensions involving complex 
geometries where the physical interface is not aligned with the grid or where it is even 
moving. For all test cases we provide a quantitative comparison with classical approaches 
based on boundary-fitted unstructured meshes.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The numerical solution of linear elastic wave propagation is still a challenging task, especially when complex three-
dimensional geometries are involved. In the past, a large number of numerical schemes has been proposed for the simulation 
of seismic wave propagation. Madariaga [1] and Virieux [2,3] introduced finite difference schemes for the simulation of pres-
sure (P) and shear (SV and SH) wave propagation. These schemes were then extended to higher order, see [4], three space 
dimensions [5,6] and to anisotropic material [7,8]. For finite difference-like methods on unstructured meshes we refer to the 
work of Magnier et al. [9] and Käser & Igel [10,11]. There are also several applications in the context of finite volume (FV) 
schemes [12–17], which, however, were all limited to second order of accuracy in space and time. The first arbitrary high 
order ADER finite volume scheme for seismic wave propagation was introduced in [18]. For real applications it is crucial 
that a numerical scheme is able to properly capture complex signals over long distances and times. In contrast to classical 
low order schemes, high order methods in space and time are able to better reproduce the time evolution of the solution. 
A quantitative accuracy analysis of high order numerical schemes for linear elasticity, based on the misfit criteria developed 
in [19,20], can be found in [21,22]. Spectral finite element methods [23] were successfully applied to linear elastic wave 
propagation in a well-known series of paper of Komatitsch and collaborators [24–28]. For Chebyshev spectral methods for 
wave propagation we refer to the work of Tessmer et al. [29,8] and Igel [30]. For alternative developments in the framework 
of stabilized continuous finite elements applied to elastic and acoustic wave propagation we refer to [31–33]. Apart from 
wave propagation in the medium, also the proper representation of complex surface topography is a challenging task. For 
this purpose, several high order numerical schemes on unstructured meshes were introduced in the past. A series of explicit 
high order discontinuous Galerkin (DG) schemes for elastic wave propagation on unstructured meshes was proposed in 
[34–39], while the concept of space-time discontinuous Galerkin schemes, originally introduced and analyzed in [40–46] for 
computational fluid dynamics (CFD), was later also extended to linear elasticity in [47–49]. The space-time DG method used 
in [49] is based on the novel concept of staggered discontinuous Galerkin finite element schemes, which was introduced 
for CFD problems in [50–56]. In any case, all previous methods require a boundary-fitted mesh that properly represents 
the geometry of the physical problem to be solved. The generation of this mesh is in general a highly non-trivial task and 
usually requires the use of external mesh generation tools. Moreover, the mesh generation process in highly complex geom-
etry can lead to very small elements with bad aspect ratio, so-called sliver elements [57–59]. This well known problem can 
often be avoided, but not always, see e.g. [60,61]. For explicit time discretization, sliver elements can only be treated at the 
aid of local time stepping (LTS), see, for example, [36,62–64], but currently only very few schemes used in production codes 
employed in computational seismology support time-accurate local time stepping. Alternatively, implicit schemes like [49]
require the introduction of a proper preconditioner in order to limit the number of iterations needed to solve the associated 
linear algebraic system.

The key idea of this paper is therefore to completely avoid the mesh generation problem associated with classical 
approaches used in computational seismology. This is achieved by extending the linear elastic wave equations via a char-
acteristic (color) function α, which is nothing else than the volume fraction of the solid medium, and which determines 
if a point x is located inside the solid material (α(x) = 1) or outside (α(x) = 0). In this way the scalar parameter α sim-
ply determines the physical boundary through a diffuse interface zone, instead of requiring a boundary-fitted structured or 
unstructured mesh. With this new approach, even very complex geometries can be easily represented on regular adaptive 
Cartesian meshes, i.e. via the use of adaptive mesh refinement (AMR). Furthermore, the introduction of the new parameter 
α does not change the eigenvalues of the PDE system and therefore does not influence the time step restriction imposed by 
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the CFL condition. To be more precise: the admissible time step size of the new approach presented in this paper depends 
of course on the chosen mesh spacing of the regular AMR grid and on the signal speeds in the PDE system, but it does not
explicitly depend on the mesh quality and the geometric complexity of the computational domain, as it is the case for many 
other approaches in computational seismology.

In the context of finite difference schemes for seismic wave propagation, immersed boundary methods for the treatment 
of complex free surface topologies can be found, for example, in [65–68] and references therein. However, the underlying 
mathematical models used there are different from the one proposed in this paper, which is based on a diffuse interface 
approach that is used for the description of compressible multi-phase flows in computational fluid dynamics.

Our new method is inspired by the work concerning the modeling and simulation of compressible multiphase flows, 
see [69] and [70–73]. It can also be interpreted as a special case of the more general symmetric hyperbolic and thermo-
dynamically compatible model of nonlinear hyperelasticity of Godunov & Romenski and collaborators [74–80]. A diffuse 
interface approach, similar to the one used in this paper, has already been successfully applied to nonlinear compressible 
fluid-structure interaction problems in a series of papers [81–83], but the employed numerical methods were only low order 
accurate in space and time and therefore not suitable for seismic wave propagation problems. Other applications of diffuse 
interface methods for compressible multi-phase flows can be found in [84–86], but, to the best of our knowledge, this is 
the first time that a diffuse interface approach is derived and validated for linear seismic wave propagation in complex ge-
ometries. Within the present paper, we use high order accurate ADER-DG schemes on Cartesian meshes with adaptive mesh 
refinement (AMR). The numerical method has already successfully been applied to other hyperbolic PDE systems [87,78]. 
The use of adaptive mesh refinement allows to increase the resolution locally where needed, especially close to the free 
surface or at internal material boundaries. To avoid spurious oscillations and to enforce nonlinear stability, we use a simple 
but very robust a posteriori subcell finite volume (FV) limiter [88]. Here, a second order total variation diminishing (TVD) 
finite volume scheme is adopted in the limited DG cells. In order to maintain accuracy, the subgrid of the limiter is by a 
factor of 2N + 1 times finer compared to the grid of an unlimited DG scheme with polynomial approximation degree N . 
The idea of using an a posteriori approach to limit high order schemes was first proposed by Clain, Diot and Loubère within 
the so-called Multi-dimensional Optimal Order Detection (MOOD) paradigm in the context of finite volume schemes, see 
[89,90] for more details. Finally, in our numerical scheme we make use of the HLLEM Riemann solver introduced in [91,92], 
which is able to resolve the steady contact discontinuities associated with the spatially variable material parameters λ and 
μ (the Lamé constants), the mass density ρ and the volume fraction α. The numerical results presented later in this paper 
show that the proposed methodology seems to be a valid alternative to existing approaches in computational seismology 
that are based on boundary-fitted structured or unstructured meshes. At this point we would like to stress that the use of 
a second order shock capturing TVD finite volume scheme inside the diffuse interface region at the free surface boundary 
limits the global order of accuracy of the scheme to at most two. Numerical experiments further show that the method 
is locally first order accurate inside the diffuse interface region, which is well-known from shock capturing finite volume 
schemes in CFD, which also reduce to first order of accuracy at shocks and contact discontinuities that are not exactly re-
solved on the grid, see [93]. Nevertheless, the unlimited ADER-DG scheme that is used inside the solid medium and far from 
the free surface boundary is locally high order accurate and thus beneficial concerning phase and amplitude errors for wave 
propagation over long distances and times inside the solid medium. Note that the manifold describing the free surface is of 
one dimension less than the computational domain, hence most cells can actually use the high order accurate unlimited DG 
scheme and only very few cells require the use of the second order accurate subcell finite volume limiter. In order to reduce 
the numerical errors in the diffuse interface region as far as possible, we propose to use adaptive mesh refinement (AMR) 
with time-accurate local time stepping (LTS) combined with a subcell FV limiter, where the subgrid is by a factor of 2N + 1
times finer than the grid of the unlimited ADER-DG scheme with polynomial approximation degree N . However, we would 
like to emphasize that the mathematical model proposed in this paper is not strictly linked to the numerical schemes that 
are used in this paper for its solution (ADER-DG with AMR coupled with subcell finite volume limiter). Any standard finite 
difference scheme inside the solid together with a nonlinear ENO/WENO scheme at the free surface where ∇α �= 0 could 
have been applied equally well.

The rest of the paper is organized as follows: in Section 2 we introduce the governing PDE of the new diffuse interface 
approach for linear elasticity. We also show the compatibility of our model with the free surface boundary condition in the 
case where α jumps from 1 to 0. In Section 3 we briefly summarize the high order ADER-DG schemes used in this paper. 
In Section 4 we show numerical results for a large set of test problems in two and three space dimensions, also including a 
realistic 3D scenario with complex geometry given by real DTM data. Finally, in Section 5 we give some concluding remarks 
and an outlook on future work, which will concern nonlinear large-strain elasto-plasticity and dynamic rupture processes 
in moving media based on the theory of nonlinear hyperelasticity of Godunov and Romenski [74,94,77].

2. Mathematical model

The equations of linear elasticity [95] can be written as

∂
σxx − (λ + 2μ)

∂
u − λ

∂
v − λ

∂
w = Sxx,
∂t ∂x ∂ y ∂z
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∂

∂t
σyy − λ

∂

∂x
u − (λ + 2μ)

∂

∂ y
v − λ

∂

∂z
w = S yy,

∂

∂t
σzz − λ

∂

∂x
u − λ

∂

∂ y
v − (λ + 2μ)

∂

∂z
w = Szz,

∂

∂t
σxy − μ

(
∂

∂x
v + ∂

∂ y
u

)
= Sxy,

∂

∂t
σyz − μ

(
∂

∂z
v + ∂

∂ y
w

)
= S yz,

∂

∂t
σxz − μ

(
∂

∂z
u + ∂

∂x
w

)
= Sxz,

∂

∂t
(ρu) − ∂

∂x
σxx − ∂

∂ y
σxy − ∂

∂z
σxz = ρSu,

∂

∂t
(ρv) − ∂

∂x
σxy − ∂

∂ y
σyy − ∂

∂z
σyz = ρS v ,

∂

∂t
(ρw) − ∂

∂x
σxz − ∂

∂ y
σyz − ∂

∂z
σzz = ρS w , (1)

where λ and μ are the so called Lamé constants and ρ is the mass density. In more compact form the above system reads

∂σ

∂t
− E(λ,μ) · ∇v = Sσ , (2)

∂ρv

∂t
− ∇ · σ = ρ S v , (3)

where v = (u, v, w) is the velocity field, ρ is the material density, Sρ and Sσ are volume or point sources, σ is the sym-
metric stress tensor, and E(λ, μ) is the stiffness tensor that connects the strain tensor εkl to the stress tensor σ according 
to the Hooke law σ = Eε . The stress tensor σ is given by

σ =
⎛
⎝ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠ (4)

with the symmetry σi j = σ ji . The normal stress components are σxx, σyy and σzz , while the shear stress is repre-
sented by σxy, σyz and σxz . The stress tensor σ can thus be written in terms of its six independent components 
(σxx, σyy, σzz, σxy, σyz, σxz). In the following we propose a new model that follows the ideas used in the simulation of 
compressible multiphase flows [69–71,73]. In order to derive the model we start from a Baer-Nunziato-type system for the 
description of compressible multi-phase flows, where for the solid phase (index s) the pressure term has been appropriately 
replaced by the stress tensor σ s , and where the usual pressure and velocity relaxation source terms have been dropped:

∂

∂t
(αsρs) + ∇ · (αsρsvs) = 0,

∂

∂t
(αsρsvs) + ∇ · (αsρsvs ⊗ vs + αsσ s) − σ I∇αs = αsρsSv,s,

∂

∂t
(αsρs Es) + ∇ · (αsρs Esvs + αsσ svs) − σ I∇αs · vI = αsρsSv,s · vs,

∂

∂t

(
αgρg

) + ∇ · (αgρgvg
) = 0,

∂

∂t

(
αgρgvg

) + ∇ · (αgρgvg ⊗ vg + αgσ g
) − σ g∇αg = αgρgSv,g,

∂

∂t

(
αgρg E g

) + ∇ · (αgρg E gvg + αgσ gvg
) − σ I∇αg · vI = αgρgSv,g · vg,

∂

∂t
αs + vI∇αs = 0. (5)

Here index s refers to the solid phase and index g refers to the gas phase surrounding the solid; ρk is the mass density and 
Ek is the specific total energy of phase k, vk is the phase velocity, vI is the so-called interface velocity and σ I is the stress 
tensor at the interface, which is a generalization of the interface pressure used in standard BN models. We now make the 
following simplifying assumptions:
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(i) The interface between the solid and the gas is moving only at a negligible speed, hence we can assume vI = 0.
(ii) Compared to the original Baer-Nunziato model [69,96,86], all pressure and velocity relaxation source terms are ne-

glected.
(iii) The mass density of the gas phase is much smaller than the one of the solid phase (ρg � ρs), hence the time evolution 

of the gas phase is not relevant for our purposes. Therefore, all evolution equations related to the gas phase can be 
neglected in the following, similar to the approach used in [97–99] in the context of non-hydrostatic free surface flow 
simulations based on a diffuse interface approach. To ease notation, the remaining index s for the solid phase can be 
dropped.

(iv) We assume the density ρs of the solid phase to be constant in time, so the related mass conservation equation can be 
neglected.

(v) The stress tensor of the solid can be directly calculated via Hooke’s law (2), so it is not necessary to evolve the total 
energy conservation law for the solid.

(vi) The nonlinear convective term αsρsvs ⊗ vs , which is quadratic in the solid velocity, can be neglected, since the solid 
velocity is assumed to be small in the linear elasticity limit.

(vii) Last but not least, the free surface boundary condition at the interface between solid and surrounding gas leads to 
σ I · ∇αs = 0.

As a result of these simplifying assumptions, the reduced governing PDE system of the new diffuse interface approach for 
linear elasticity in complex geometry reads:

∂σ

∂t
− E(λ,μ) · ∇v = Sσ , (6)

∂αρv

∂t
− ∇ · (ασ ) = αρ S v , (7)

∂α

∂t
= 0. (8)

Since ∂tρ = 0, the previous equations are then rewritten as

∂σ

∂t
− E(λ,μ) · 1

α
∇(αv) + 1

α
E(λ,μ) · v ⊗ ∇α = Sσ , (9)

∂αv

∂t
− α

ρ
∇ · σ − 1

ρ
σ · ∇α = S v , (10)

∂α

∂t
= 0. (11)

Furthermore the following equations for the material parameters are added to the system:

∂λ

∂t
= 0,

∂μ

∂t
= 0,

∂ρ

∂t
= 0. (12)

The material parameters λ, μ and ρ are assumed to be constant in time but not in space, i.e. λ = λ(x), μ = μ(x) and 
ρ = ρ(x), for which we will use a high order polynomial representation as for the other variables of the PDE system. The 
same diffuse interface model (6)-(8) can also be obtained by combining the nonlinear hyperelasticity equations of Godunov 
and Romenski [74,94,100] with the compressible multi-phase model of Romenski et al. [75,101], assuming linear material 
behavior and neglecting nonlinear convective terms. System (9)-(12) is then rewritten in the following form:

∂Q

∂t
+ B1(Q)

∂Q

∂x
+ B2(Q)

∂Q

∂ y
+ B3(Q)

∂Q

∂z
= S(x, t), (13)

where the three matrices B1, B2 and B3 are specified in Eqs. (15)-(17). The vector Q is given by

Q = (
σxx,σyy,σzz,σxy,σyz,σxz,αu,αv,αw, λ,μ,ρ,α

)�
, (14)

while the matrices B1, B2 and B3 read
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B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 − 1
α (λ + 2μ) 0 0 0 0 0 1

α (λ + 2μ)u
0 0 0 0 0 0 − 1

α λ 0 0 0 0 0 1
α λu

0 0 0 0 0 0 − 1
α λ 0 0 0 0 0 1

α λu
0 0 0 0 0 0 0 − 1

αμ 0 0 0 0 1
αμv

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1

αμ 0 0 0 1
αμw

−α
ρ 0 0 0 0 0 0 0 0 0 0 0 − 1

ρ σxx

0 0 0 −α
ρ 0 0 0 0 0 0 0 0 − 1

ρ σxy

0 0 0 0 0 −α
ρ 0 0 0 0 0 0 − 1

ρ σxz

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 − 1
α λ 0 0 0 0 1

α λv
0 0 0 0 0 0 0 − 1

α (λ + 2μ) 0 0 0 0 1
α (λ + 2μ)v

0 0 0 0 0 0 0 − 1
α λ 0 0 0 0 1

α λv
0 0 0 0 0 0 − 1

αμ 0 0 0 0 0 1
αμu

0 0 0 0 0 0 0 0 − 1
αμ 0 0 0 1

αμw
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −α

ρ 0 0 0 0 0 0 0 0 − 1
ρ σxy

0 −α
ρ 0 0 0 0 0 0 0 0 0 0 − 1

ρ σyy

0 0 0 0 −α
ρ 0 0 0 0 0 0 0 − 1

ρ σyz

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 − 1
α λ 0 0 0 1

α λw
0 0 0 0 0 0 0 0 − 1

α λ 0 0 0 1
α λw

0 0 0 0 0 0 0 0 − 1
α (λ + 2μ) 0 0 0 1

α (λ + 2μ)w
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1

αμ 0 0 0 0 1
αμv

0 0 0 0 0 0 − 1
αμ 0 0 0 0 0 1

αμu
0 0 0 0 0 −α

ρ 0 0 0 0 0 0 − 1
ρ σxz

0 0 0 0 −α
ρ 0 0 0 0 0 0 0 − 1

ρ σyz

0 0 −α
ρ 0 0 0 0 0 0 0 0 0 − 1

ρ σzz

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

The eigenvalues associated with the matrix B1 are

λ1 = −cp, λ2,3 = −cs, λ4,5,6,7,8,9,10 = 0, λ11,12 = +cs, λ13 = +cp, (18)

where

cp =
√

λ + 2μ

ρ
and cs =

√
μ

ρ
(19)

are the p− and s− wave velocities, respectively. The matrix of right eigenvectors of the matrix B1 as defined in (15) is 
given by
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R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρc2
p 0 0 0 0 0 0 0 0 −σxx 0 0 ρc2

p
ρ(c2

p − 2c2
s ) 0 0 1 0 0 0 0 0 0 0 0 ρ(c2

p − 2c2
s )

ρ(c2
p − 2c2

s ) 0 0 0 1 0 0 0 0 0 0 0 ρ(c2
p − 2c2

s )

0 ρc2
s 0 0 0 0 0 0 0 −σxy 0 ρc2

s 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 ρc2

s 0 0 0 0 0 0 −σxz ρc2
s 0 0

cp 0 0 0 0 0 0 0 0 αu 0 0 −cp

0 cs 0 0 0 0 0 0 0 αv 0 −cs 0
0 0 cs 0 0 0 0 0 0 αw −cs 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 α 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

The expressions for the eigenvalues and eigenvectors of B2 and B3 are very similar and can be obtained from those of 
B1, since the PDE system is rotationally invariant. For this reason, we do not give their explicit expressions here. We now 
want to show that the proposed model satisfies the free surface boundary condition σ · n = 0 exactly when considering a 
Riemann problem that includes a jump of α from αL = 1 to αR = 0.

For this, consider the left and right state of a Riemann problem in the x-direction given by

QL = (σ L
xx,σ

L
yy,σ

L
zz,σ

L
xy,σ

L
yz,σ

L
xz, uL, v L, w L, λ,μ,ρ,1), (21)

QR = (σ R
xx,σ

R
yy,σ

R
zz,σ

R
xy,σ

R
yz,σ

R
xz,0,0,0, λ,μ,ρ,0). (22)

By using a simple straight line segment path

ψ(s) = QL + s (QR − QL) , (23)

we can define a generalized Roe-averaged matrix B̃1 in x direction according to [102–104] as follows:

B̃1 =
1∫

0

B1(ψ(s))ds. (24)

The exact solution of the linearized Riemann problem based on the Roe-averaged matrix B̃1 = R̃�̃R̃−1 above and the simi-
larity coordinate ξ = x/t reads

QRP(ξ) = 1

2
R̃

(
I − sign(ξ I − �̃)

)
R̃−1 · QL + 1

2
R̃

(
I + sign(ξ I − �̃)

)
R̃−1 · QR , (25)

with I being the identity matrix. From QRP(ξ) we can obtain the following Godunov state QGod = QRP(0) at the interface 
(ξ = 0)

QGod =
(

0,
σ L

xxc2
p + 2σ L

xxc2
s + σyyc2

p

c2
p

,
σ L

xxc2
p + 2σ L

xxc2
s + σzzc2

p

c2
p

,0,σ L
yz,0,

cpρuL − σ L
xx

cpρ
,

csρv L − σ L
xy

csρ
,

csρw L − σ L
xz

csρ
,λ,μ,ρ,1

)
,

from which it is clear that all the components of the normal stress in x-direction (σxx, σxy and σxz) are zero, which means 
that the free surface boundary condition σ · n = 0 is indeed respected by merely imposing a jump in the volume fraction 
function from α = 1 to α = 0.

As one can note, the model (9)-(11) involves divisions by α that can be a source of instabilities at the interface, since the 
color function α is ideally set to zero, or at least close to zero, outside the solid medium. In order to address this problem, 
we introduce a simple transformation that avoids the divisions by zeros. In particular, we substitute all multiplications by 
α−1 = 1/α, with

α−1 ∼= α

α2 + ε(α)
, (26)

where ε = ε(α) has to satisfy ε(1) = 0 and ε(0) = ε0 > 0 in order to be consistent with the linear elasticity equations. In 
our case we take a simple linear function ε = ε0(1 − α) with ε0 = 10−3. The introduction of this new parameter with this 
method is mandatory to obtain a stable solution. The new eigenvalues are λ̃ = f λ, where f = α√

α2+ε0(1−α)
that for α ∈ [0, 1]

satisfies f ∈ [0, 1] and f = 1 for α = 1.
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As soon as we use a non-trivial geometry we choose a diffuse interface of finite width I D for the transition between the 
solid medium α = 1 and the surrounding gas / vacuum (α = 0). For a relatively large width I D of the diffuse interface, 
there are some questions that arise naturally concerning the distribution of the characteristic function α inside the diffuse 
interface and the resulting effective position of the free surface boundary. In general, it is important to set up the diffuse 
interface shape such that ∇α is oriented as the normal vector to the physical surface, i.e. ∇α ≈ n. A simple way to do this 
is to represent the transition region by a piecewise polynomial. Let r = r(x) be the signed distance between the real physical 
interface location and a generic point x under consideration. We then define the shape of the diffuse interface as function 
of a finite interface thickness I D ≥ 0, a shifting parameter η and the auxiliary function:

ξ(r) =
⎧⎨
⎩

1 if r > (1 + η)I D ,

0 if r < −(1 − η)I D ,
r+(1−η)I D

2I D
if r ∈ [−(1 − η)I D , (1 + η)I D ].

(27)

We finally define the solid volume fraction as

α(r) = (1 − ξ(r))p, (28)

where p > 0 is an exponent that determines the shape of the diffuse interface. The width of the interface I D should be 
related to the local size h of the computational mesh, i.e. one would typically choose I D ∼ h. In order to reduce I D as much 
as possible, we will make use of adaptive mesh refinement (AMR) in combination with a subcell finite volume limiter, as 
discussed in the next section.

3. Numerical scheme

The numerical method that we use in order to solve the PDE system introduced in the previous Section 2 is an explicit 
ADER-DG scheme of arbitrary high order of accuracy in space and time on adaptive Cartesian grids (AMR). The numerical 
method was presented for different PDE systems in [88,87,78], hence in the following we only give a brief summary. The 
PDE system (9)-(11) can be written in compact matrix-vector notation as

∂Q

∂t
+ B(Q) · ∇Q = S(x, t), (29)

where Q is the state vector, B(Q) · ∇Q is a non conservative product (see [105,102,103]) and S(x, t) is a known source 
term. In regions where α = 1 and thus ∇α = 0, the PDE system (29) reduces to the classical linear elastic wave equations 
(1), while for ∇α �= 0 the system becomes locally nonlinear and therefore requires a very robust numerical scheme as 
well as high resolution to be properly solved. Within this paper we use the simple and very robust subcell finite-volume 
limiter approach in combination with adaptive mesh refinement (AMR). A detailed description of the limiter can be found 
in [88,87]. As suggested in [88], we employ Ns = (2N + 1)d subgrid cells for the finite volume limiter, where d is the 
number of space dimensions of the problem and N is the polynomial approximation degree used in the high order ADER-DG 
scheme. Note that the use of such a fine subgrid within the subcell finite volume limiter does not reduce the time step of 
the overall scheme, since finite volume schemes are stable up to CFL = 1, while DG schemes require CFL < 1/(2N + 1). 
The d-dimensional computational domain � is discretized with an adaptive Cartesian grid composed of Cartesian control 
volumes Ti in space as

� =
Ne⋃

i=1

Ti, (30)

where Ne is the total number of elements. Since we are interested in a high order scheme, we first define a piecewise 
polynomial nodal basis {φk}k=1...(N+1)d as the set of Lagrange polynomials passing through the Gauss-Legendre quadrature 
points on a reference unit element Tref for a given polynomial degree N ≥ 0 and dimension d. A weak formulation of the 
PDE system is obtained after multiplying Eq. (29) by a test function φk for k = 1 . . . (N + 1)d and then integrating over a 
space-time control volume Ti × [tn, tn+1]:

tn+1∫
tn

∫
Ti

φk

(
∂Q

∂t
+ B(Q) · ∇Q

)
dx dt =

tn+1∫
tn

∫
Ti

φkS(x, t)dx dt. (31)

We restrict the discrete solution to the space of piecewise polynomials of degree N , i.e. the numerical solution uh is written 
inside each element Ti in terms of the polynomial basis as

uh(x, tn)
∣∣

Ti
=

(N+1)d∑
φk(x)ûn

k,i := φk(x)ûn
k,i, (32)
k=1
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for x ∈ Ti and i = 1 . . . Ne . The vector of degrees of freedom of uh(x, tn) is denoted by ûn
i . Throughout the paper we use the 

Einstein summation convention over repeated indices. Using the definition (32) in the weak formulation given by Eq. (31)
we obtain (see also [106,107])⎛

⎜⎝∫
Ti

φkφldx

⎞
⎟⎠(

ûn+1
l,i − ûn

l,i

)
+

tn+1∫
tn

∫
∂Ti

φkD−(q−
h ,q+

h ) · n dS dt +
tn+1∫
tn

∫
T ◦

i

φkB(qh) · ∇qh dx dt =
tn+1∫
tn

∫
Ti

φkS(x, t)dx dt,

(33)

where we have introduced the jump contribution D−(q−
h , q+

h ) · n on the element boundaries and the space-time predictor 
solution qh(x, t). More details concerning the computation of qh(x, t) will be reported later. For the approximation of the 
jump term D− we use a path-conservative scheme as introduced by Parés in [103] and Castro et al. in [102]. We introduce 
a Lipschitz continuous path function ψ(q−

h , q+
h , s) defined for s ∈ [0, 1] such that ψ(q−

h , q+
h , 0) = q−

h and ψ(q−
h , q+

h , 1) = q+
h , 

where q−
h denotes the boundary-extrapolated state from within the element Ti and q+

h the boundary-extrapolated state 
from the neighbor element. The simplest possible choice for ψ , which we use in this paper, is the linear segment path 
between the two states q−

h and q+
h :

ψ(q−
h ,q+

h , s) = q−
h + s

(
q+

h − q−
h

)
. (34)

Following [105,103,102] we now define the jump contribution D−(q−
h , q+

h ) · n so that it satisfies the generalized Rankine-
Hugoniot conditions

D−(q−
h ,q+

h ) · n +D+(q−
h ,q+

h ) · n =
1∫

0

B(ψ(q−
h ,q+

h , s)) · n
∂ψ

∂s
ds. (35)

The previous path integral can simply be evaluated numerically using a sufficient number of Gaussian quadrature points. As 
Riemann solver we use the new HLLEM-type Riemann solver for non-conservative systems recently described in [92], since 
we want to exactly preserve the contact discontinuities of the material parameters and of the volume fraction function that 
appear in the PDE system. At this point we would like to emphasize that in this paper we deliberately use finite volume and 
discontinuous Galerkin finite element schemes that employ a piecewise polynomial approximation space, which explicitly 
permits jumps in the discrete solution at element interfaces. In this context the path-conservative schemes can properly 
deal with jumps in α if they are exactly resolved at an element interface, thus naturally allowing to discretize problems 
also with I D = 0, see also [102,103] for a discussion in the context of shallow water equations with discontinuous bottom 
topography. In the case of I D = 0, our method becomes again a sharp interface method if the jumps are exactly resolved on 
the grid, but this is actually not the main objective of the present paper.

Regarding the space-time predictor, we need to introduce a new polynomial basis of degree N in space and time 
{θk}k=1...(N+1)d+1 where now θk(x, t) contains also the time. We represent qh(x, t) in terms of this new space-time basis 
as

qh(x, t) =
(N+1)d+1∑

k=1

θk(x, t)q̂n
k . (36)

Let T ◦
i = Ti − ∂Ti denote the interior of Ti and T st

i = T ◦
i × [tn, tn+1] denote the new space-time control volume. The space-

time predictor is then computed as an element-local solution of the following weak formulation of the PDE system (29):∫
T st

i

θk
∂qh

∂t
dx dt +

∫
T st

i

θkB(qh) · ∇qhdx dt =
∫

T st
i

θkS(x, t)dx dt, (37)

for k = 1 . . . (N + 1)d+1. Using integration by parts in the first term of Eq. (37) we obtain two spatial contributions on Ti at 
tn+1 and tn and an internal one since θk = θk(x, t) contains explicitly the time. For the spatial contribution at time tn we 
use the numerical solution from the previous time step. Notice that this corresponds to upwinding in the time direction 
due to the causality principle. One thus obtains the following weak formulation of the PDE in the small [108]:∫

Ti

θk(x, tn+1)qh(x, tn+1)dx−
∫
Ti

θk(x, tn)uh(x, tn)dx−
∫

T st
i

∂θk

∂t
qh(x, t)dx dt +

∫
T st

i

θkB(qh) · ∇qhdx dt =
∫

T st
i

θkS(x, t)dx dt.

(38)
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Since Eq. (38) is element-local it can be solved using a simple and efficient Picard method without any communication with 
the neighbor elements, see e.g. Dumbser et al. [109].

The numerical scheme is constrained by a local CFL-type stability condition, see [109,110,87], that is given by

�t <
CFL

d

h

2N + 1

1

|λmax| , (39)

where h is the local mesh size, λmax is the maximum eigenvalue of the PDE system, and CFL< 1 is the Courant number, 
which should be chosen according to [109] in order to have linear stability. Concerning the adaptive mesh refinement 
(AMR) we rely on the ExaHyPE engine http://exahype .eu, which is built upon the space-tree implementation Peano [111,
112] realizing cell-by-cell refinement [113]. For further details about AMR in combination with high order finite volume 
and DG schemes with time-accurate local time stepping (LTS) used in this work, see [110,114–116]. Throughout this paper, 
we use adaptive meshes with a refinement factor of r = 3 between two adjacent levels of refinement. In order to illustrate 
the useful combination of AMR with the subcell finite volume limiter, we provide the following example: with two levels 
of mesh refinement and for a DG scheme with polynomial approximation degree N = 3, the finite volume subgrid on the 
finest AMR level will be by a factor of r2 · (2N + 1) = 32 · (2 · 3 + 1) = 63 finer than the grid used for the DG scheme on 
the coarsest grid level. This corresponds to a mesh refinement of almost two orders of magnitude. However, this has no 
negative impact at all on the time step size used on the coarsest grid level, thanks to the use of time-accurate local time 
stepping (LTS), which is straightforward for ADER discontinuous Galerkin and ADER finite volume schemes, see [36,110,87]. 
The combination of AMR with the fine subgrid used for the finite volume limiter is necessary to alleviate the loss of formal 
order of accuracy inside the limited cells and in order to allow a small interface width I D ∼ h.

In order to decide where to refine, we introduce a simple refinement indicator function named ϕ = ϕ(x, t) that defines 
the observed variable for the refinement/recoarsening process and a so called real-valued estimator function χ = χ [ϕ], see 
again [110] for more details. After defining the indicator function, we define the cell-averages of ϕ as

ϕ̂i = 1

|Ti |
∫
Ti

ϕ(x, t)dx ∀i = 1 . . . Ne, (40)

and then we compute the estimator function as

χi[ϕ] = max
c∈Vi

(∣∣ϕ̂c − ϕ̂i
∣∣/‖xc − xi‖

)
, (41)

where Vi contains all the Voronoi neighbor elements of Ti . Our estimator function χ is simply based on an approximation 
of the gradient of the solution in several spatial directions [110]. With these ingredients at hand, we introduce a simple 
rule for the refinement/recoarsening process based on two thresholds χ+ and χ− as follows:

(i) if χi[ϕ] > χ+ then Ti is labeled for mesh refinement;
(ii) if χ[ϕ] < χ− then Ti is labeled for mesh recoarsening.

Within this paper, we always use ϕ(x, t) = ϕ(Q ) = α, χ+ = 0.01 and χ− = 0.001. We will also use the volume fraction α to 
specify the zones where to activate the subcell finite volume limiter [88]. In particular, we activate the FV limiter whenever 
α /∈ [ε, 1 − ε], with ε = 10−3. As long as the topology of the geometry described by α is supposed to be stationary in time, 
we can consider the refinement and the limited zones also as steady and therefore they need to be identified only once in 
the mesh initialization step.

We stress again that the use of a time-accurate local time stepping strategy (LTS) is mandatory in order to avoid the 
reduction of the time step size �t in regions that are far away from the diffuse interface.

4. Numerical results

4.1. Reflected plane wave

The purpose of this first test problem is to systematically study the influence of the width I D of the diffuse interface 
layer onto the numerical results. We also show that the model indeed converges to the correct solution in the limit I D → 0. 
We take a simple plane wave impulse in a domain � = [−1, 1] × [−0.1, 0.1] initially placed at x0 = −0.25 and hitting 
a free surface boundary placed in xD = 0. The Lamé constants are chosen as λ = 2, μ = 1 and ρ = 1. We define Q0 =
(0, 0, 0, 0, 0, 0, 0, 0, 0, λ, μ, ρ, α(x)) and δ = (0.4, 0.2, 0.2, 0, 0, 0, −0.2, 0, 0, 0, 0, 0, 0) and set

Q(x, y, t = 0) = Q0 + δ · e
− (x−x0)2

ε2 ,

with the halfwidth ε = 0.05. The volume fraction function α(x) is prescribed according to (28) and (27). We use an ADER-DG 
P4 scheme and a uniform Cartesian grid with 100 × 2 elements. The mesh resolution is chosen fine enough so that the 

http://exahype.eu
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Fig. 1. Numerical results obtained with the new diffuse interface approach for a plane wave reflection problem on a free surface located in x = 0 using a 
variable interface thickness of I D = 0, I D = 0.001, I D = 0.01 and I D = 0.03. In all four cases we report the velocity component u compared with the exact 
solution of the problem (bottom) together with the spatial distribution of α (top).

numerical results are grid-independent and only depend on the choice of the interface thickness I D . Since for this test 
cp = 2, the exact solution at time t = tend = 0.25 is the reflected p-wave which is located again in the initial position. We 
consider four cases with different choices of the interface width I D , ranging from I D = 0.03 to the limit I D = 0, where the 
interface is exactly located on a cell boundary. From the results depicted in Fig. 1 we can conclude that the diffuse interface 
method is able to reproduce the exact solution of the problem for sufficiently small values of the interface thickness I D . We 
also stress that the use of a path-conservative method allows us to reduce the interface thickness exactly to I D = 0, which 
leads to a jump in α at an element interface, but which is still properly accounted for thanks to the jump terms D− used 
in the numerical scheme.

For rather large values of the finite interface thickness I D , where the actual shape of the spatial distribution of α starts to 
play a role, we have found empirically that a good choice for the parameters η and p in (27) is η = −0.6 and p = 0.5. This 
choice allows to obtain still a correct reflection of a p-wave even for very thick interfaces. However, for sufficiently small 
values of I D , the choice of η and p has only very little influence. We consider now a similar setup of a p-wave traveling in 
a heterogeneous material with periodic boundaries everywhere. The Lamé constants are specified as

(λ,μ,ρ) =
{

(4,0,1) 0 ≤ x ≤ 0.2
(2,1,1) otherwise

(42)

Note that in the area 0 ≤ x ≤ 0.2 the Poisson ratio is ν = 1/2. The ability of ADER-DG schemes to deal with fluids (μ =
0) properly has already been discussed in [34,117]. We furthermore place a reflective free surface at x f s = 0.75 only by 
using a change in the parameter α so that the exact solution at tend = 1.0 is again the reflected p-wave, located in the 
initial position. We use an ADER-DG P3 scheme on a sequence of uniform Cartesian grids in order to check the accuracy 
of the scheme. In Table 1 we report the L2-error norm in the case where no free surface boundary appears (i.e. α = 1
everywhere). In this case the wave passes through the heterogeneous material and returns to the initial state due to the 
periodic boundary. We observe high order of convergence if we use a pure DG scheme without limiter (left column), while 
we observe the expected decay of the order if we artificially activate the limiter close to x = x f s . Taking α = 0 for x ≥ x f s , 
we observe a first order of convergence, since the jump in α also represents a jump in the discrete solution, see Table 2. 
This is observed also for positive values of I D and different values of ε0, as reported in the right column of Table 2.

In principle one can keep the Lamé parameters inside the diffuse interface and outside the solid as the ones inside the 
solid. However we have empirically found out that rescaling the Lamé constants according to the local value of α improves 
the numerical convergence and allows to reach second order of accuracy, see Table 3.
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Table 1
Computed L2-error norm for the case α = 1 without the limiter (left) and 
limiting the elements that are close to x f s (right).

Elements εL2 (u)

20 × 2 4.8988e-3 −
40 × 2 7.2321e-4 2.8
80 × 2 4.1602e-5 4.1
160 × 2 2.4629e-6 4.1

Elements εL2 (u)

20 × 2 6.6547e-3 −
40 × 2 1.3748e-3 2.3
80 × 2 2.1391e-4 2.7
160 × 2 3.7588e-5 2.5

Table 2
Computed L2-error norm for the case of α aligned with the mesh (left) and for positive diffuse interface size I D (right).

Elements εL2 (u)

320 × 2 2.5851e-4 −
640 × 2 1.2104e-4 1.1
1280 × 2 4.6230e-5 1.4
2560 × 2 2.0770e-5 1.2

Elements I D εL2 (u), ε0 = 10−3 εL2 (u), ε0 = 10−4

40 × 2 0.02 3.4813e-3 − 3.2060e-3 −
80 × 2 0.01 2.0510e-3 0.8 2.0144e-3 0.7
160 × 2 0.005 1.1723e-3 0.8 1.1374e-3 0.8
320 × 2 0.0025 5.9087e-4 1.0 5.9268e-4 0.9

Table 3
Computed L2-error norm for α
aligned with the mesh and 
rescaled Lamé constants λ and μ.

Elements εL2 (u)

40 × 2 1.4512e-2 −
80 × 2 2.0014e-4 2.9
160 × 2 3.2374e-5 2.6
320 × 2 8.9161e-6 1.9

Fig. 2. Setup of the scattering test problem. AMR grid and distribution of the characteristic function α (left). Detail of the free surface location ∂C shown 
via a dashed line and α color contours (center). Limited cells highlighted in red and unlimited cells shown in blue (right). (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

4.2. Scattering of a plane wave on a circular cavity

In this test case we consider an initially planar p-wave traveling in x-direction inside a solid medium and hitting an 
empty circular cavity. The initial state is given by

Q(x,0) = (0,0,0,0,0,0,0,0,0, λ,μ,ρ,α) + 0.1 · (4,2,2,0,0,0,−2,0,0,0,0,0,0) sin(2πx), (43)

with λ = 2, μ = 1 and ρ = 1. The value of α is parameterized through the circular surface C = {(x, y) | x2 + y2 ≤ 0.252}
so that α(x) = 0 if x ∈ C and α = 1 if x /∈ C . The width parameter of the diffuse interface is set to I D = 0.01 on ∂C . The 
computational domain is � = [−3, 3]2 and the initial Cartesian grid at level � = 0 consists of 80 × 80 cells. We then use 
one further refinement level �max = 1 based on the gradient of α in order to refine the mesh close to the diffuse interface. 
Furthermore, we use a fifth order ADER-DG method based on piecewise polynomials of degree N = 4 in both space and 
time, supplemented with a second order TVD subcell finite volume limiter. The resulting AMR grid and the color contours 
of α are shown in Fig. 2, together with the region where the subcell finite volume limiter is activated. From the plot in the 
central panel of Fig. 2 one can see that the width of the interface layer is of the order of the size of one cell of the high 
order DG scheme.
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Fig. 3. 2D wave scattering problem at time t = 1. Reference solution (left) and solution obtained with the new diffuse interface approach on AMR grid 
(right) for σxx (top) and σxy (bottom).

In Fig. 3 we report the numerical results obtained with the new diffuse interface approach on adaptive Cartesian grids 
at time t = 1 and compare them with a reference solution that has been obtained with a third order ADER-DG scheme 
(N = 2) on a very fine unstructured boundary-fitted mesh [118] composed of Ne = 563, 280 triangles. Fig. 4 shows a com-
parison between the reference solution and the numerical solution obtained with the diffuse interface method via numerical 
seismograms that have been recorded in two receiver locations x1 = (0.5, 0.5) and x2 = (1.0, 0.0). A very good agreement 
between the new diffuse interface method and the reference solution is obtained for this test case.

At this point we would like to stress again that in the new diffuse interface approach, the presence of the boundary 
condition is included in the PDE system only by choosing a spatially variable value of α. The AMR grid is not at all aligned 
with the free surface boundary and remains always locally Cartesian (with h-adaptivity). Furthermore, the time step size in 
our approach is not affected by the so-called small cell problem or sliver element problem, as it would have been the case 
for Cartesian cut-cell methods or low quality unstructured meshes and which usually requires a special treatment [36,49]. 
In our diffuse interface approach, the eigenvalues of the PDE system are independent of α and also our mesh can be chosen 
independently of α and almost independently of the geometry of the problem to be solved (apart from local h adaptivity 
used in regions of strong gradients of α). Therefore, the admissible local time step size is only governed by the maximum 
wave speed cp and the local mesh size of the AMR grid, and not by the geometry of the problem to be solved. Note that in 
all our simulations on AMR grids, we use time-accurate local time stepping (LTS), see [36,110,119,87] for details.

4.3. 2D tilted Lamb problem

In this test case we to study the two dimensional tilted Lamb problem. We take the same setup as used in [25,118,49]. 
The physical domain � = {(x, y) ∈ R

2 | 0 ≤ x ≤ 4000 , 0 ≤ y ≤ 2000 + tan (θ)x} contains a free surface with a tilt angle of 
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Fig. 4. 2D wave scattering problem. Comparison between the reference solution and the numerical results obtained with the new diffuse interface method 
on AMR grid for two seismograms recorded in x1 = (0.5, 0.5) (top row) and x2 = (1.0, 0.0) (bottom row).

θ = 10◦ , so that the boundary is not grid aligned along the coordinate axes when using a Cartesian mesh. The computational 
domain used for the diffuse interface approach, however, is a simple rectangular box that fully contains �. The initial 
Cartesian grid on the coarsest level � = 0 has 96 × 90 cells and we use an ADER-DG P3 scheme with subcell finite volume 
limiter to solve this problem. The chosen p− and s−wave velocities are set to cp = 3200 m s−1 and cs = 1847.5 m s−1, 
respectively. The mass density is taken as ρ = 2200 kg m−3 so that the resulting Lamé constants are λ = 7.5096725 ·109 and 
μ = 7.50916375 · 109. The initial condition is Q(x, 0) = 0 everywhere in �. The wave propagation is driven by a directional 
point source located in xs = (1720.0, 2265.28). We place two receivers, one close to the interface but slightly below, so that 
α = 1, x2 = (2694.96, 2460.08) and the other one exactly at the physical interface in x1 = (2694.96, 2475.08). As reference 
solution we use again an ADER-DG method on boundary-fitted unstructured meshes, which has already been carefully 
validated against the exact solution of Lamb’s problem in [118]. The reference solution is computed using a polynomial 
approximation degree N = 4 in space and time and an unstructured mesh of Ne = 844, 560 triangles. The point source

S(x, t) = 1

ρ
�dδ(x − xs)S(t)

is a delta distribution in space located in x = xs and its temporal part is a Ricker wavelet given by

S(t) = a1

(
0.5 + a2(t − tD)2

)
, (44)

where tD = 0.08 s is the source delay time; a1 = −2000 kg m−2 s−2; a2 = −(π fc)
2; and fc = 14.5 Hz. Finally the vector 

�d = (− sin θ, cos θ, 0, 0, 0, 0, 0, 0, 0, 0)� determines the direction of the impulse and takes into account the tilt angle θ . For 
this test we use an interface thickness of I D = 2 m. Furthermore we compare two different resolutions at the interface 
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Fig. 5. Tilted Lamb problem. Distribution of α in the computational domain and position of the two receivers. Note that the tilted free surface is not aligned 
with the Cartesian grid. The resolution of the free surface is improved by a combination of AMR and subgrid finite volume limiter.

Fig. 6. Tilted Lamb problem. Comparison of the vertical velocity v between the new diffuse interface approach on AMR grid (left) and the reference solution 
obtained on a boundary-fitted unstructured mesh (right) at t = 0.6.

corresponding to a maximum refinement level of �max = 2 and �max = 3. Fig. 5 shows the value of the solid volume 
fraction α, as well as the positions of the seismogram recorders in x1 and x2. In Fig. 6 we compare between the numerical 
solution obtained with the new diffuse interface approach on Cartesian AMR grids and the reference solution obtained on 
a boundary-fitted unstructured mesh. We can observe a good agreement between the two solutions, which becomes also 
clear if we compare the seismograms, see Fig. 7. In this case it is also evident that the use of a higher grid resolution at the 
interface allows to approach the reference solution better.

In this last part and as an outlook towards future work on nonlinear large-strain elasto-plasticity, we increase the energy 
of the point source by setting a1 = −2 · 1011 kg m−2 s−2 and we now allow the diffuse interface to move according to the 
local velocity field, i.e. instead of solving ∂α/∂t = 0 we simply solve

∂α

∂t
+ v · ∇α = 0. (45)

The resulting numerical solution at t = 0.6 is shown in Fig. 8. Here the solution is similar in the internal part of the domain, 
however, if we zoom close to the free surface (see again Fig. 8) we can clearly see how the elastic waves deform the 
geometry of the free-surface boundary. The time history of this deformation is shown in Fig. 9, where we plot the iso-line 
α = 0.5 that shows the deformation of the solid medium via the color function α.
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Fig. 7. Lamb’s problem. Comparison of the reference solution (solid black line) and the numerical solution obtained with the new diffuse interface approach 
on adaptive Cartesian grids for 2 and 3 refinement levels in the two receivers 1 (left) and 2 (right).

4.4. Wave propagation in a complex 2D geometry

This test is very similar to the tilted Lamb problem but in a non-trivial domain with heterogeneous material. The domain 
is � f = {(x, y) | x ∈ [0, 4000] y ∈ [0, f (x)]} where f (x) = 2000 + 100 

(
sin ( 3

200 x) + sin ( 2
200 x)

)
describes the upper topogra-

phy. Free surface boundary conditions are imposed everywhere on ∂� f . The heterogeneous material consists in two layers 
whose parameters are reported in Table 4. The initial state vector is Q(x, 0) = 0 and the wave propagation is driven by a 
point source placed in x̄ = (3000, 1500.18) as described in the previous Section 4.3. Three seismometers are placed in the 
locations reported in Table 5 and graphically depicted in Fig. 10 to record the time history of the wave propagation. We 
take an extended domain � = [−50, 4050] × [−50, 2300] that fully contains � f . The initial Cartesian grid on level � = 0 is 
composed of 160 × 90 elements. Subsequently, one refinement level is added in regions with large gradients of α, i.e. we 
set �max = 1. The value of α is used to define the complex physical domain � f following our diffuse interface approach. 
The chosen smoothing parameter close to the upper surface is taken as I D = 5.0, based on the distance function from a 
point and the boundary of the domain ∂� f . We furthermore use Id = 0 on the left, right and bottom boundaries, which 
are all grid aligned. The resulting AMR grid and the spatial distribution of α in the computational domain are shown in 
Fig. 10. A direct comparison between the solution obtained with the novel diffuse interface approach using an ADER-DG P4
scheme on the AMR grid and the reference solution obtained with an ADER-DG P4 scheme on a boundary-fitted unstruc-
tured mesh composed of 20254 triangles is reported in Fig. 11. The comparison of the seismograms at the three receivers 
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Fig. 8. Lamb’s problem with moving free surface boundary. Mesh and numerical solution v (left). Profile of α = 0.5 at t = 0.6 compared with the initial 
configuration (right).

up to t = 2.0 s is shown in Figs. 12 and 13. A very good agreement is achieved for short times, and even at later times the 
agreement remains rather good, considering that at later times the signal is the result of several reflected waves on the free 
surface.

The time series of the resulting total energy up to a longer time tend = 25 and the time series of the velocity u in the 
fourth receiver are shown in Fig. 14. It is clear from Fig. 14 that, after the initial release of the energy, the numerical method 
in combination with the new mathematical model proposed in this paper dissipates energy and does not show any kind of 
instabilities, even for a long time simulation.

4.5. Scattering of a planar wave on a sphere

Here we consider the 3D extension of the test reported in Section 4.2, which consists of a planar p−wave traveling in the 
x−direction and hitting a spherical cavity on which free surface boundary conditions apply. Our computational domain is the 
simple cube � = [−3, 3]3 and the presence of the spherical obstacle is only taken into account by a spatially variable distri-
bution of the volume fraction function α. So α = 1 if α /∈ B and α = 0 if α ∈ B where B = {(x, y, z) | x2 + y2 + z2 ≤ 0.252}
is the sphere with radius R = 0.25. The chosen interface width is I D = 10−2. The computational domain is covered with a 
uniform initial mesh of 40 × 40 × 40 elements. We then add one refinement level �max = 1 based on the gradient of α. Fur-
thermore we use piecewise polynomials of degree N = 5 in space and time for this simulation. We consider three receivers 
placed in x1 = (−1, 0, 0), x2 = (0, −1, 0) and x3 = (0.5, 0.5, 0.5). As a reference solution we use again the explicit ADER-
DG scheme implemented in the SeisSol code [35,120,121] using a boundary-fitted unstructured grid with Ne = 31, 732
tetrahedral elements and piecewise polynomials of degree N = 4 in space and time. SeisSol is a mature production code 
for large-scale seismic wave propagation problems in complex 3D geometries and has been heavily optimized so that it 
achieves a sustained Petaflop performance on modern supercomputers, see [120,121] and www .seissol .org. A compar-
ison of the contour colors for the velocity component w is shown in Fig. 15 and a direct comparison of the time series 
recorded in the three receivers is presented in Fig. 16. A very good agreement between the reference solution and the novel 
diffuse interface approach can be observed also in this case. We stress that the geometry of the sphere is not aligned with 
the adaptive Cartesian mesh that was employed to carry out this simulation.

4.6. 3D Layer Over Halfspace (LOH.1)

We now apply the diffuse interface method proposed in this paper to a classical 3D benchmark problem originally 
presented and discussed by S.M. Day in the final report to the Pacific Earthquake Engineering Research Center concerning 
tests of 3D elastodynamics codes, see [122]. The setup of the test problem called Layer Over Halfspace (LOH.1) is also similar 

http://www.seissol.org
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Fig. 9. Lamb’s problem with moving free surface boundary. Displacement of the free surface (computed from the curve α = 1
2 ) and velocity component u

at times t = 0.1, t = 0.2 and t = 0.5, respectively, from top to bottom.
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Fig. 10. Wave propagation in complex 2D geometry. Computational domain and AMR grid for the diffuse interface approach, colored by the mass density.

Fig. 11. Wave propagation in complex 2D geometry. Comparison between the numerical solution obtained with the diffuse interface approach (left) and the 
reference solution (right) for σxx at t = 0.5. For the diffuse interface results, only the physically relevant part of the domain is shown.

Table 4
p- and s-wave speeds in the two layers used for the 
wave propagation problem in complex geometry.

Zone cp (m/s) cs (m/s) Location

1 3200.00 1847.50 y > 1500 − x
2

2 2262.74 1306.38 y ≤ 1500 − x
2

Table 5
Receiver locations used for the seismogram 
recordings in the wave propagation problem in 
complex geometry.

Receiver 1 2 3

x 893.80 1790.0 1000.0
y 1994.83 880.0 500.0

to the one presented on the community website sismowine.1 The heterogeneous material consists in two layers, whose 
parameters are specified in Table 6.

1 The reference solution and the computational setup are available at http://www.sismowine .org /home .html, for the detailed description see http://
www.sismowine .org /model /WP2 _LOH1.pdf (sismowine.LOH.1).

http://www.sismowine.org/home.html
http://www.sismowine.org/model/WP2_LOH1.pdf
http://www.sismowine.org/model/WP2_LOH1.pdf
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Fig. 12. Wave propagation in complex 2D geometry. Comparison of the velocity component u at the three receivers 1 − 3 from top to bottom.

In our version of the LOH.1 benchmark we use a domain � = [−10750 m, 9250 m]2 × [−7000 m, 1000 m] covered 
with a uniform Cartesian grid of 80 × 80 × 64 elements, which corresponds to a mesh spacing of �x = �y = 250 m and 
�z = 125 m. Note that in our setup the computational domain � also extends above z > 0 and the free surface boundary 
condition in z = 0 is merely imposed by setting a jump in the solid volume fraction α, i.e. we set α = 1 for all z ≤ 0
and α = 0 if z > 0. Close to the free surface in z = 0 we activate one additional level of adaptive mesh refinement with a 
refinement factor of r = 3. The wave propagation is driven by a point source placed two kilometers below the free surface 
in xs = (0 m, 0 m, −2000 m). The point source introduces a non-zero entry only on the seismic moment tensor components 
Mxy = M yx = M0. The used moment-rate history is given by

S T (t) = M0
t

T 2
e

−t
T , (46)

where T = 0.1 s and M0 = 1018 Nm. As suggested in the original report [122] and [35], the raw data from the time series 
is deconvolved and replaced with a Gaussian of spread 0.05. Figs. 17 and 18 show the time history recorded in two stations 
corresponding to station 8 and 9 of the document published in the community website sismowine.LOH.1. For each station 
we compute also the relative seismogram misfit, defined as

E =

nt∑
j=1

(
s j − sa

j

)2

nt∑
j=1

(
sa

j

)2
, (47)

where nt indicates the number of samples; s j and sa
j are respectively the numerical and analytical value of the observed 

quantity at time t j . The resulting errors are reported in Table 7 for all the three receivers and for all the velocity components.
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Fig. 13. Wave propagation in complex 2D geometry. Comparison of the velocity component v at the three receivers 1 − 3 from top to bottom.

We obtain a good match between numerical and analytical solution, confirmed also by the values of the seismic misfit 
E . In Station 7, which is placed at 693 m from the epicenter, we register a very good matching with the analytical solution. 
This means, in particular, that the time signal of the point source is properly resolved. We note that point sources can be 
naturally implemented within the DG framework, since the spatial integral of the point source can always be evaluated 
analytically, thanks to the properties of the delta distribution, see [34,35].

The time signal captured in Station 9, which is 10.39 km from the epicenter, shows a higher error, but is still close to 
the results obtained in [35].

4.7. Wave propagation in a complex 3D geometry

We finally test the potential of our new diffuse interface approach for the simulation of more realistic applications. For 
this purpose we use a free surface topology based on the real DTM data of the Mont Blanc region.2 The horizontal extent of 
the domain is 28 km in the x and y directions and ranges from 12 km below the sea level to 7 km above it in z direction. 
We use a heterogeneous material whose parameters are specified in Table 8. An initial velocity perturbation is placed in 
x0 = (0, 0, 0) for the vertical component of the velocity

w(x,0) = ae−r2/R2
, (48)

with r = ‖x‖, a = −10−2 and R = 300 m. All other variables for the velocity and the stress tensor are set to zero. The 
computational domain is covered with a uniform Cartesian grid of 80 ×80 ×80 elements and one refinement level is adopted 
close to the free surface. In order to represent the complex surface topography within our diffuse interface approach, all 

2 The DTM data have been taken from http://geodati .fmach .it /gfoss _geodata /libro _gfoss/. Our computational domain is centered with respect to the UTM 
coordinates (340000.0, 5075000.0).

http://geodati.fmach.it/gfoss_geodata/libro_gfoss/
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Fig. 14. Wave propagation in complex 2D geometry. Total energy decay (top) and long-time seismogram recording with decreasing amplitude (bottom). The 
proposed scheme is observed to be dissipative and thus energy-stable, also for long-time simulations.

Fig. 15. Scattering of a plane wave on a sphere. Velocity component w at tend = 1.0 obtained with the new diffuse interface method on AMR grid (left) and 
the unstructured reference code SeisSol (right).
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Fig. 16. Scattering of a plane wave on a sphere. Comparison of the resulting signal in the three receivers. In the first row we report the time series of the 
stress tensor components σxx , σyy and σzz for the receivers 1, 2, 3, respectively, from left to right. In the second row the velocity signal is reported for the 
same receivers.

Table 6
Material parameters for the LOH.1 test case.

Position cp(m s−1) cs(m s−1) ρ(kg m−3) λ(GPa) μ(GPa)

Medium 1 z > −1000 m 4000 2000 2600 20.8 10.4
Medium 2 z ≤ −1000 m 6000 3464 2700 32.4 32.4

that is needed is to compute the shortest distance of a point x to the free surface defined by the DTM data in order 
to set the volume fraction function α according to (28) and (27). The DTM model is given on a Cartesian raster with a 
spatial resolution of 250 m, which we can then interpolate to any point in our computational domain through bilinear 
interpolation. The smoothing parameter for the diffuse interface zone is set to I D = 50 m. The simulation with the diffuse 
interface method is run on the AMR grid with an ADER-DG scheme based on piecewise polinomials of degree N = 3 in 
space and time. In Fig. 19 we show a plot of the chosen Cartesian AMR grid with the free surface determined by α.

The reference solution is computed with an unstructured ADER-DG scheme [35] as used in the SeisSol code using 
Ne = 1, 267, 717 boundary-fitted tetrahedral elements and a polynomial approximation degree of N = 3 in space and time. 
A comparison of the numerical solution obtained with the new diffuse interface approach on adaptive Cartesian grids and 
the results obtained with the unstructured reference code is shown via contour surface maps in Fig. 20 at time t = 2.0. 
Overall, we can note a very good agreement between the two results. We also consider the time signals captured in four 
receivers, whose positions are reported in Table 9. They record data close to the free surface at 1 km, 5 km and 10 km 
distance from x0 (receivers 1 . . .3) and at 3 km below the sea level with a distance of 5 km from x0 (receiver 4). The 
resulting time history of the velocity signals recorded by the four receivers is reported in Fig. 21. A very good agreement 
between the new diffuse interface approach and the reference scheme can be observed also in this case with complex 3D 
geometry. Finally, in Fig. 22 we show the interpolation of the velocity component w at the free surface at two different 
times, where one can again observe a very good agreement between the numerical results obtained with the new diffuse 
interface method and the reference solution obtained on the boundary-fitted unstructured mesh.

It has to be pointed out that the setup of this test problem with the new diffuse interface approach is completely 
automatic, without requiring any manual user interaction. The entire setup process of the computational model starts with 
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Fig. 17. Comparison of the radial, transverse and vertical velocity component for the LOH.1 test case on station 8. The exact solution (dashed black line) is 
compared against the numerical one (thin red line).

Table 7
Relative seismogram misfit E defined in Eq. (47) for 
the seismograms recorded in stations 7 − 9 for the 
radial, transverse and vertical velocity component.

Erad Etrans E vert

Station 7 0.000290 0.000555 0.000680
Station 8 0.004527 0.001788 0.003374
Station 9 0.074911 0.025004 0.027924

Table 8
Material parameters for the wave propagation test in a complex 3D geometry.

Position cp(m s−1) cs(m s−1) ρ(kg m−3) λ(GPa) μ(GPa)

Medium 1 z > −1000 m 4000 2000 2600 20.8 10.4
Medium 2 z ≤ −1000 m 6000 3464 2700 32.4 32.4

reading the DTM data from a file according to well-established standard GIS file formats, continues by automatically setting 
the color function α according to (28) and (27) with appropriate bilinear interpolation of the DTM data to the nodal degrees 
of freedom of the ADER-DG scheme and to the subcell FV averages and closes with the automatic setup of the adaptive 
Cartesian AMR grid based on the gradient of α up to the desired level of spatial resolution. We would like to emphasize 
again that for the diffuse interface approach the time step size does not depend on the distribution of α. In contrast to 
this fully automated chain in ExaHyPE, the setup of the same test case in SeisSol still requires the generation of a 
boundary-aligned unstructured tetrahedral mesh with an external grid generation tool that needs some manual interactions 
with the end user. For very complex surface topography, even more user interaction is required to obtain a high quality 
grid, which is essential due to the CFL restriction on the time step.
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Fig. 18. Comparison of the radial, transverse and vertical velocity component for the LOH.1 test case on station 9. The exact solution (dashed black line) is 
compared against the numerical one (thin red line).

Fig. 19. Wave propagation in a realistic 3D geometry. Plot of the adaptive Cartesian mesh used for the test colored with the Lamé constant λ.
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Fig. 20. Wave propagation in complex 3D geometry. Comparison of the ADER-DG reference solution on unstructured boundary-fitted grids (left) with the 
numerical solution obtained with the new diffuse interface method (DIM) on a Cartesian AMR mesh (right) at time t = 2.0. We show the iso-surfaces 
±4 · 10−5 for the velocity components u and v colored by w . The slices are colored using the velocity component u.

Table 9
Receiver positions for the wave propagation test in complex 3D 
geometry.

Receiver x y z

1 1000.000000 0.000000 1397.723250
2 3535.533906 3535.533906 1883.989778
3 8660.254038 5000.000000 2173.363299
4 1545.084972 4755.282581 -3000.000000

5. Conclusions

In this paper a novel diffuse interface method (DIM) for the simulation of seismic wave propagation in linear isotropic 
material with complex and even moving free surface topography has been proposed. The governing PDE system can be 
derived from a Baer-Nunziato-type model of compressible multi-phase flows [69–71,73] following similar ideas as those 
employed in [97–99]. In alternative, our governing equations can also be derived by combining the equations of nonlinear 
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Fig. 21. Wave propagation in complex 3D geometry. Comparison of the time signal of the velocity field obtained with the new diffuse interface approach 
and the reference solution for the receiver 1 to 4 respectively from the top to the bottom row.
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Fig. 22. Wave propagation in complex 3D geometry. Comparison of the interpolation of the vertical velocity w on the surface computed as the iso-surface 
α = 0.95 between the diffuse interface approach (left) and the reference one (right) at time t = 2.0 and t = 3.0.

hyperelasticity in Eulerian coordinates of Godunov and Romenski [74,94,100] with the compressible multi-phase flow model 
of Romenski et al. [75,101].

In both cases, the velocity of the medium is supposed to be very small, so that the nonlinear convective terms can be 
neglected, and a linear material behavior according to Hooke’s law is assumed. We have proven that the solution of the 
Riemann problem with arbitrary data and a jump of the volume fraction function α from one to zero yields a Godunov 
state at the interface in which the normal components of the stress tensor vanish, which is exactly the required free surface 
boundary condition σ · n = 0. The free surface boundary condition on a physical domain �p of arbitrary shape can therefore 
be properly imposed by defining a spatially variable scalar function α in the computational domain �, which has to be 
large enough to contain �p , i.e. �p ⊂ �, simply by setting α = 1 for x ∈ �p and α = 0 for x /∈ �p , without having to fit the 
boundary of the computational domain ∂� to the real boundary ∂�p of the physical domain to be discretized. In practical 
simulations, the interface layer that contains the transition from α = 1 to α = 0 is slightly smoothed by a characteristic 
width I D , which is the reason why we call our approach a diffuse interface method. We have carried out a systematic study 
in which we show that for vanishing interface thickness I D → 0 the correct wave reflection at the free surface boundary is 
obtained.

The governing equations derived in the first part of the paper have been solved on adaptive Cartesian meshes (AMR) via 
high order accurate ADER-DG schemes combined with a subcell finite volume limiter [88,87]. The use of the subcell finite 
volume limiter is necessary in regions with strong gradients of α in order to avoid spurious oscillations and unphysical 
solutions that would be obtained with a pure unlimited high order DG scheme. The practical implementation of the model 
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has been carried out in the ExaHyPE code developed within the European H2020 research project An Exascale Hyperbolic 
PDE Engine, see http://exahype .eu/. We have presented a large set of two- and three-dimensional wave propagation problems 
where we have compared the results obtained with the new diffuse interface approach with classical computational methods 
based on boundary-fitted unstructured meshes. In all cases under investigation, and even in the presence of complex surface 
topography, the new diffuse interface model performs very well as shown throughout this paper.

We stress again that the key novelty introduced here consists in the representation of the geometrically complex sur-
face topography merely via the scalar solid volume fraction function α, instead of making use of complex structured or 
unstructured boundary-fitted meshes. In order to improve the spatial resolution of certain geometric features of the phys-
ical domain �p , we simply use adaptive mesh refinement (AMR) on locally Cartesian grids. This allows a fully automated 
workflow in the setup of the computational model, without requiring any external mesh generation tools or any manual 
interaction with the user. We underline again that the time step restriction in our new approach is completely independent 
of the complexity of the geometry of the domain �p to be discretized, since α has no influence on the eigenvalues of the 
governing PDE system. The admissible local time step size according to the CFL condition is therefore only given by the 
local mesh size h, the pressure wave propagation speed cp and the polynomial approximation degree N .

We emphasize again that the use of a time-accurate local time stepping strategy (LTS) is crucial in order to avoid the 
reduction of the time step size �t in regions that are far away from the diffuse interface and which can run the high order 
unlimited ADER-DG scheme on a coarse mesh.

Current work in progress is the implementation of new strategies for highly efficient small matrix-matrix multiplications 
in ADER-DG schemes on adaptive Cartesian grids (exploiting also the fact that we use a nodal tensor-product basis) in order 
to improve computational performance of the code, similar to the hardware optimizations already successfully applied in 
the context of the unstructured ADER-DG schemes used in SeisSol [120,121].

Future research will concern the extension of our new diffuse interface approach to the full equations of nonlinear 
hyperelasticity including large strains, moving solids, plastic deformations and dynamic rupture processes governed by non-
linear material rheologies. The mathematical model will be based on the Godunov-Peshkov-Romenski model presented and 
discussed in [74,94,100,76–79].
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