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Abstract We study the prompt production of the χc(1+)

and χb(1+) mesons at high energies. Unlike χ(0+, 2+) pro-
duction, χ(1+) mesons cannot be created at LO via the
fusion of two on-mass-shell gluons, that is, gg → χc,b(1+)

are not allowed. However, the available experimental data
show that the cross sections for χc(1+) and χc(2+) are
comparable. We therefore investigate four other χ(1+) pro-
duction mechanisms: namely, (i) the standard NLO process
gg → χc,b(1+) + g, (ii) via gluon virtuality, (iii) via gluon
reggeisation and, finally, (iv) the possibility to form χc,b(1+)

by the fusion of three gluons, where one extra gluon comes
from another parton cascade, as in the Double Parton Scat-
tering processes.

1 Introduction

It is well known that according to the generalised Landau–
Yang selection rule a spin-1 meson cannot be produced in the
fusion of two identical massless spin-1 particles [1,2]. There-
fore the inclusive χc(1+) cross section offers the possibility
to probe some non-trivial dynamics of the NLO interaction.

There are two ways to overcome the Landau–Yang selec-
tion rule: either to account for different virtualities of incom-
ing gluons (that is, to violate their identity) or to consider the
formation of χ(1+) by three gluons. The third gluon may be
emitted as the new secondary particle of the gg → χ(1+)+g
process, or it may occur in the initial state in the process of
g + (gg) → χ fusion. Recall that, as shown in [3], the role
of such three-gluon mechanisms of J/ψ-meson production
increases with energy1 and may even be dominant at very
high energies. Recently the three-gluon J/ψ production was
also studied in [4]. Note that, in comparison with the J/ψ ,
the dynamics of χc(1+) formation is richer since, due to its

1 Unfortunately there was a confusion in [3] – for the three-gluon mech-
anism the cross section, and not the amplitude, grows as lns. Thus the
cross section at LHC energies will be a few times smaller.

a e-mail: a.d.martin@durham.ac.uk

negative C-parity, the J/ψ meson cannot be produced in the
fusion of two gluons, even if we account for the different
virtualities of these gluons.

The available experimental data on prompt production of
χc mesons in high-energy hadronic collisions (see [5] for a
recent review) concern, as a rule, the transverse momentum
pt distribution of the χ -meson production rates or the ratios
of σ(χc,b(2+))/σ (χc,b(1+)) as a function of pt .2 The ratio
R21 = χ(2+)/χ(1+) is of the order of one and practically
does not depend on pt . It can be described by a constant,
R21, independent of pt , both for the χc and the χb processes:
in particular for χb by the value R21 = 0.85 ± 0.07 [6].3

This was not expected. The lowest-order theory predicts
the growth of this ratio for decreasing pt , since, at low pt ,
the χ(2) meson can be produced at LO, while χ(1) only
occurs at NLO (see, for example [8,9]). Moreover, in fixed-
target π–Be interactions at 515 GeV/c the pt -integrated
yields of χc(1+) (σ = 232 ± 37 ± 37 nb) and χc(2+)

(σ = 407 ± 71 ± 69) nb [10] were measured. This does
not indicate the expected strong suppression of χc(1), which
cannot be produced at LO via on-mass-shell gluon–gluon
fusion. It is worth mentioning that new important informa-
tion could come from fixed-target experiments using an LHC
beam, as advocated in [11], where lower pt values could be
reached. Thus it is topical to study theoretically the different
possible mechanisms of χ(1) production.

2 Experimentally it is easier to measure such ratios since various the-
oretical and experimental uncertainties cancel out. As far as we aware,
currently there are no high-energy data at low pt and no data on the
rapidity distribution dσ/dy or on the total cross sections for χc,b(1)

except for the relatively low-energy data in π–Be collisions. Note that
the pt of the J/ψ and not that of χc is measured, but due to the large
J/ψ mass (close to the χc mass) the pt of J/ψ is rather close to that
of χc, and qualitatively reproduces well the behaviour with respect to
the pt of χc.
3 Note that there is an indication for an increase of the ratio R21 at
low pt in the LHCb measurement of χc at 7 TeV [7]. Therefore it is
desirable that the LHCb collaboration perform a new measurement of
this ratio at low pt during run-II of the LHC.
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The inclusive cross sections were calculated at lowest
order in [12,13]. Numerical evaluations at the LHC energy
are given, for example, in [8,9]. A specific higher-order pro-
cess, the so-called ‘s-channel QQ̄-cut’ was considered in
[14–16]. For a more detailed review see, for example, [17].

In the present paper we discuss all the different possibil-
ities of colour-singlet χc(1+) and χb(1+) inclusive produc-
tion. We will not discuss here the colour-octet contribution, in
particular, since at the moment the importance of colour-octet
contributions to the χc(1, 2) production remains open; see for
instance [5,17–19]. Note that Ref. [18] presents the complete
NLO NRQCD predictions for the polarised χc(1, 2) produc-
tion at medium and high pt , which when compared to forth-
coming LHC measurements could allow a detailed probe of
the validity of NRQCD and the colour-octet mechanism.

We consider the lowest αs-order process and, moreover,
if in some kinematical domain we find that the cross section
is enhanced by a large logarithm (either of virtuality, ln q2,
or of energy, ln s), then we will focus on this leading loga-
rithm (LL) contribution. We emphasise that the aim of the
paper is not to present a precise quantitative prediction,4 but
rather to compare the role of different mechanisms of χ(1+)

production in high-energy hadron–hadron collisions.
We note that χb production has advantages over χc both

from the theoretical and experimental viewpoints. Due to the
larger mass of χb (i) the perturbative QCD approach is better
justified and (ii) it is easier to detect the more energetic decay
products.

In Sect. 2 we first consider the cross section caused by
the gg → χ(1+) + g subprocess, and second due to the
different virtualities of two incoming gluons. Then in Sect. 3
we discuss the production via three-gluon fusion where a
pair of t-channel gluons represents the reggeisation of one
incoming gluon. Next, in Sect. 4 we study a most interesting
possibility when the two gluons come from two different
parton cascades. This mechanism for χ(1+) production has
not been studied before. At asymptotically high energy this
should be the dominating contribution. An interesting fact is
that in such a case the cross section in the central region is
expected to be smaller than that near the proton fragmentation
domain. We give our conclusions in Sect. 5.

2 Lowest-order χ(1+) production

In this section we study production by the two-gluon initiated
states shown by ‘1 and 2’ in Fig. 1. We show separately
the contribution where all three gluons couple to the heavy
quark loop (Fig. 1a), and the contribution where only two
t-channel gluons couple to the heavy quark loop (Fig. 1b)
which may not vanish for χ(1+) if the virtualities of these

4 Precise results would require dedicated higher-order calculations.

two gluons are different (Fig. 1b). This contribution may be
considered separately and formally is called ‘production’ via
two-gluon fusion. However, actually this is just part of the
whole gg → χ(1+) + g cross section.

Another point is that it is natural to consider for this part
the role of t-channel gluon reggeisation, which is the sim-
plest example of χ(1+) production via three-gluon fusion
g + (gg) → χ(1+). For this reason we will describe the
contribution of Fig. 1b in more detail in Sect. 2.2, and the
reggeisation in Sect. 3.

Finally, in Fig. 1c we show the process initiated by a highly
virtual s-channel gluon.

2.1 The gg → χ(1+) + g process

The simplest possibility to overcome the Landau–Yang selec-
tion rule is to create the χ(1+) meson together with an addi-
tional gluon. The corresponding ‘hard’ cross section was cal-
culated in [12,13]

dσ̂ (gg → χ(1+) + g)

dt
= 12πα3

s R
′2

M3s2

· P
2[M2P2(M4 − 4P) + 2Q(−M8 + 5M4P + P2) − 15M2Q2]

(Q − M2P)4

(1)

where s, t, u are the Mandelstam variables for the hard sub-
process. The quantities P = st + su + ut and Q = stu; and
M is the χc(1+) or χb(1+) meson mass.

In Eq. (1) the non-relativistic wave function of the meson
is assumed. The derivative of the P-wave function at the
origin is denoted R′. In our calculations for χc(1+) we use
the values R

′2/M2 = 0.006 GeV3 (as in [12,13]) and the
QCD coupling αs = 0.335, which provide reasonable widths
of the χc(0, 1, 2) mesons calculated accounting for the αs

corrections (see e.g. [20]). For χb(1+) we take R
′2 = 1

GeV5 similar to that in [8,9], which is consistent with the
potential model results, and αs = 0.22 corresponding to the
higher scale appropriate for χb production.

In comparison with the natural parity χc(0+) and χc(2+)

mesons, which can be formed via on-mass-shell gluon–gluon
fusion with the cross section σ̂ ∝ α2

s , the cross section (1)
contains an extra power of the QCD coupling (not accompa-
nied by any large logarithm). Therefore gg → χ(1+) + g
can be considered as a NLO production process.

Expression (1) has to be convoluted with the incoming
parton distributions and integrated over t and s. Since we
are looking for the inclusive χ(1+) production we fix the
rapidity, Y , of χ(1+) meson and choose to integrate over the
variables y and pt , where pt is the transverse momentum of
the final gluon while y is the rapidity separation between this
gluon and the χ(1+) meson. It is easy to check that the corre-
sponding Jacobian J = 1 (see e.g. [21]). Thus the cross sec-
tion of χ(1+) production in proton–proton collisions reads
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(a) (b) (c)

Fig. 1 Subprocesses for χ(1+) production: a the standard gg →
χ(1+) + g process where three on-mass-shell gluons couple to the
heavy quark loop; b, c where one virtual gluon and one on-mass-shell

gluon couple to the heavy quark loop – the virtual gluon has q2 < 0 for
b and q2 > 0 for c

dσ

dY
=

∫
x1g(x1, μF )

dσ̂ (gg → χ(1+) + g)

dt

×x2g(x2, μF )dydp2
t , (2)

where g(x, μF ) is the density of gluons which carry a fraction
x of the momentum of the incoming proton (measured at
factorisation scale μF ). We have the variables

x1,2 = (mt + pte
±y)e±Y /

√
s (3)

where m2
t = M2 + p2

t . The hard cross section dσ̂ /dt is given
by (1) with

s = m2
t + p2

t + mt pt (e
y + e−y), (4)

t = −p2
t − mt pte

y, (5)

u = −p2
t − mt pte

−y . (6)

The expected cross section is shown in Table 1 where the LO
MSTW2008 [22] PDFs were used.

2.2 Production via g∗ + g → χ(1+) fusion

Here we consider the possibility of χ(1+) production via
‘virtual+real’ gluon fusion processes,5 which are shown in
Fig. 1. These processes are not forbidden thanks to the dif-
ferent mass/virtualities of the initial gluons. The correspond-
ing ‘hard’ cross section can be extracted from (1) using the
‘equivalent photon/gluon’ approximation [24,25]. Indeed, in
the limit of s � M2, |t |, the dominant contribution comes
from a diagram where first the incoming gluon with momen-
tum, say, p1 emits the final gluon p3 and then the virtual
gluon, g∗, with momentum q = p1 − p3 interacts with
another incoming (quasi-real) gluon p2 to produce the χ(1+)

meson.6

5 The production via g∗ + g fusion was discussed in detail in [23].
6 Recall that in terms of the unintegrated gluon density fg(x, qt , μF )

the value of xg(x, μF ) is given by the logarithmic integral xg(x, μF ) =∫ μF fg(x, qt , μF ) dq2
t /q2

t . That is, each function xg contains a large
logarithm. In this logarithmic integration the virtuality of the initial

Thus in the large s limit we may write the cross sec-
tion (1) as the product of the virtual gluon flux, dN =
(αs Nc/π)(dz/z)dq2/q2 times the elementary g∗ + g →
χ(1+) cross section. That is

dσ̂

dt

∣∣∣
s�M2,|t | = dN

dq2 σ̂ (g∗ + g → χc(1
+)). (7)

(The factor dz/z in dN corresponds to the integration over
the rapidity separation y and is omitted here.) In this way we
get

σ̂ (g∗ + g → χ(1+)) = 4π2α2
s R

′2

M3 |t |4M2 − 2t

m8
t

, (8)

where the virtuality, q2, of off-mass-shell gluon g∗ plays the
role of t = q2 in (1).

Since the elementary cross section (8) vanishes asq2 → 0,
we cannot consider the incoming gluon, with momentum
q, as an on-mass-shell parton. The inclusive cross section
should therefore be written in terms of the unintegrated gluon
density which is defined in such a way that

xg(x, μF ) =
∫ μ2

F
fg(x, q

2, μF )
dq2

q2 . (9)

Thus we obtain

dσ

dY
=

∫
x1g(x1, μF )σ̂ (g∗ + g → χ(1+)) fg(x2, q2, μF )

dq2

q2

+(x2 ↔ x1), (10)

with x1,2 = e±Y
√

(M2 − q2)/s.
Note that the dq2/q2 integral does not now have a loga-

rithmic structure since the ‘hard’ cross section (8) contains a

Footnote 6 continued
gluon is small, q2 ∼ q2

t 
 μ2
F . So this gluon may be considered as an

on-mass-shell particle.
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Fig. 2 χ(1+) production via the fusion of an incoming gluon with a
pair of gluons which form a Regge trajectory αG

factor t = q2. In other words Eq. (10) should be considered
as a NLO contribution (in comparison with LO χ(0+, 2+)

meson production) at the same level as the cross section (2).
Moreover, it should not be considered as a new contribution
– it is just a part of the whole cross section (2).

The value of contribution (10) shown in Table 1 is obtained
by calculating the unintegrated gluon density starting from
the MSTW2008 [22] PDFs based on the KMR/MRW last-
step prescription [26,27]. In this prescription we have used
the LO splitting functions but kept the more exact NLO kine-
matics. As it was shown in [27] this provides an accuracy
close to that given by the NLO prescription. Note that here
we have used the gluons unintegrated over the virtuality, q2,
and not over the transverse momentum squared, q2

t (see [27]
for details).

The contributions (2) and (10) were evaluated using the
MSTW2008 LO PDFs for the integrated gluons xg. For the
very low q2 < Q2

0 we assume the saturation-like behaviour
xg(x, q2) = xg(x, Q2

0)(q
2/Q2

0).

3 Production via gluon reggeisation

An attractive possibility to organise the fusion of one gluon
with the pair of incoming gluons, that is, the g + (gg) →
χ(1+) subprocess, is to consider the contribution coming
from gluon reggeisation; see Fig. 2. On one hand the gluon
trajectory is described by the diagrams where the initial t-
channel gluon is replaced by the exchange of two t-channel
gluons. On the other hand this contribution is enhanced by
large logarithms of the proton–proton energy, or to be more
precise, by a 1/ω0 factor, where ω0 denotes the shift of the
position of the BFKL vacuum singularity αBFKL = 1 + ω0.
Recall that thanks to the bootstrap condition [28–30] if we
account for the gluon trajectory then we include all the con-
tributions (of the antisymmetric colour-octet states, which
are of interest here) enhanced by the 1/ω0 factor, that is – by
the large leading logarithm of the energy.

Let us explain in more detail how the gluon trajectory
is built up. Consider the diagrams where the additional t-
channel gluon is added to the usual ladder diagram (inside
the same parton cascade). The simplest such diagram (in
Feynman gauge) is where the additional gluon is between
the χc and the nearest s-channel gluon of the ladder (that
is, between the c-quark loop and gluon 3 in Fig. 1b). The
contribution of this diagram is enhanced by two logarithms.
One logarithm, lnq2, comes from the integration over the
kt of the new t-channel gluon. The other logarithm comes
from the integration over the longitudinal component of the
new gluon’s momentum, which corresponds to the integra-
tion over the mass of the intermediate s-channel gluon which
emits the new t-channel gluon. This longitudinal logarithm
is actually equal to the rapidity separation between the χc

meson and the nearest s-channel gluon. This rapidity separa-
tion is driven by the intercept (the x-dependence) of the par-
ton cascade. In the BFKL approach this logarithm is equal to
1/ω0. Moreover, in terms of the BFKL amplitude, the coher-
ent sum of such diagrams (where the new t-channel gluon
couples to the different s-channel gluons in the ladder) is
described by the gluon trajectory

αG(q2) = αs Nc

2π
ln q2. (11)

Note that in this approach (just as in two-gluon fusion g∗+
g → χc(1+)) the corresponding contribution vanishes when
the ‘reggeised’ gluon virtuality q2 → 0. Indeed, due to gauge
invariance, the whole set of diagrams which describe gluon
reggeisation can be reduced to a one-gluon loop inserted in
the place of the original gluon propagator (see, for example
[31]). Thus the result looks like cross section (10) multiplied
by the gluon trajectory αG(q2) and by the 1/ω0 factor.

Moreover, contrary to inclusive J/ψ production (where
the gluon pair should be in a symmetric colour-octet state
and the analogous contribution is imaginary), in the case of
χ(1+) we deal with the antisymmetric colour octet – that is,
with a true gluon trajectory of negative signature. Therefore
the logarithmically enhanced contribution is real and inter-
feres with the lowest αs-order g∗ + g → χc(1+) amplitude
considered in the previous section.

Thus, finally, to lowest order in αs , the cross section (10)
should be multiplied by a ‘double logarithmic’ factor A,
where

A =
[

1 + 2
αs Nc

2πω0
ln(q2

1/q2
2 )

]
. (12)

Here the q2 logarithm comes from the integration over the
transverse momentum kt in the loop corresponding to the
gluon trajectory. In the region of k2

t 
 q2, the integral takes
the form
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∫ q2
dk2

t

k2
t

. (13)

Note that the amplitude for unnatural parity 1+ meson pro-
duction

g(q1) + g(q2) → χ(1+) (14)

is antisymmetric with respect to the permutation of the two
gluons. Therefore in the amplitude (14) we have the loga-
rithm of the ratio q2

1/q2
2 . This result solves the problem of

the infrared cutoff at low kt in the integral (13). In the pure
symmetric configuration (with q2

1 = q2
2 ) we get zero. This

fact in some sense is similar to the Landau–Yang selection
rule – a spin 1+ particle cannot decay into two identical trans-
verse gluons.7

Recall that in the case of χ(1+) production the second t-
channel gluon (whose distribution is written here in terms of
the ‘gluon reggeisation’ trajectory (11)) is not a virtual loop
correction to the main amplitude. Rather, this is a particular
new channel to produce a spin 1+ meson. For this reason it
should not be combined with the real, s-channel gluon emis-
sion. The infrared divergence in (12) is cancelled between
the diagrams with the upper (q1) and the lower (q2) gluon
insertions; and not between the virtual loop (reggeisation)
and the real gluon emission.8

The results of the numerical estimate of the corresponding
order of αs contribution9 are presented in the fourth column
of Table 1. Here we have used the value of ω0 = 1/4, which
is close to that expected for the BFKL pomeron after the
resummation of the next-to-leading log corrections [32–34].
Recall that at the lowest αs order, the ‘reggeised induced’
contribution is proportional to αs/ω0. We choose reasonable
values of ω0 and αs to indicate the possible size of the effect.

As expected, the result is negative, since at q2 < 0 the
gluon trajectory is shifted to lower values of αG(q2) < 1.
However, due to the cancellation between the q1 and q2 terms
the whole contribution is not too large in spite of the 1/ω0

enhancement.
Recall, however, that at the present stage we account for

the order of αs reggeised correction only. When the ‘cor-
rection’ becomes large the higher-order αs terms become

7 Recall that as we are looking for the leading logarithm the gluons
may be considered as quasi-real, transverse particles.
8 Just as in the case of the colourless Higgs boson production, the
infrared divergence caused by real emission is cancelled by the true
reggeisation diagram where (in Feynman gauge) the additional t-
channel gluon couples to the s-channel gluons above and below the
colourless boson.
9 The contribution of the terms ∝ ln q2

1 and ∝ ln q2
2 are calculated

separately. In the first case the gluon q1 is written in terms of the unin-
tegrated distribution, fg , while for gluon q2 we may use the integrated
gluon distribution x2g(x2, μF ), and vice versa.

Table 1 The cross section dσ/dY in μb for producing χc(1+) by the
various mechanisms at 7 (13) TeV. Note that the g∗g → χ is already
included in the gg → χ + g contribution and has only to be considered
separately to facilitate the study of the Regge contribution

Y gg → χ + g g∗g → χ G-regge DPS

0.0 9.8 (17.2) 6.3 (10.5) 0.0 (0.0) 1.1 (2.2)

1.0 9.5 (16.8) 6.2 (10.3) −1.0 (−1.3) 1.2 (2.4)

2.0 8.7 (15.6) 5.6 (9.6) −1.9 (−2.5) 1.4 (2.9)

3.0 7.4 (13.7) 4.7 (8.5) −2.5 (−3.3) 1.7 (3.6)

4.0 5.6 (11.3) 3.6 (7.1) −2.9 (−3.8) 2.1 (4.7)

5.0 3.6 (8.5) 2.1 (5.4) −2.9 (−4.1) 2.3 (5.9)

6.0 1.5 (5.1) 0.6 (2.9) −2.4 (−4.5) 1.8 (4.6)

Fig. 3 The diagram for the cross section for χ(1+) production via the
fusion of two gluons from different parton cascades, where pA and pB
are the four momenta of the incoming protons (not shown). The diagram
is for the cross section, AA∗, so the particles intersected by the dashed
line are on-mass-shell

important replacing effectively the first and negative αs con-
tribution (let us denote it as −δR) by the positive exponential
factor like exp(−δR).

4 Production via two parton cascades

Here we consider the situation when all three (quasi-real)
gluons couple to the heavy quark loop directly. The most
interesting possibility is to form the incoming (gg) pair tak-
ing the two gluons from two different parton cascades; see
Fig. 3. The probability to find the corresponding pair is given
by the product of the gluon densities, x1g(x1) × x2g(x2),
multiplied by the probability that the two cascades overlap
in transverse space. Since in the low x region (which is rele-
vant at high energies) the parton density grows as a power of
(1/x) – that is xg(x) ∝ x−λ – this contribution will dominate
asymptotically at very high energies.

In double parton scattering (DPS) the probability of cas-
cade overlap in transverse space is given by a factor 1/σDPS

eff
(see e.g. [35,36]), where
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1

σDPS
eff

=
∫

F4(q2)
d2q

4π2 . (15)

Actually this factor results from the integration (15) over the
(‘pomeron’) loop formed by the two gluon cascades. The
integral is driven by the proton form factor F(t), that is,
by the t � q2 dependence of the proton–pomeron vertex.
However, while for DPS the loop contains four form fac-
tors (leading to F4 in (15)) in our case we have only two
form factors (we need two cascades on one side of Fig. 3
only). Therefore (assuming exponential dependence) we
have

σ
χ
eff = 1

2
σDPS

eff . (16)

We emphasise that the typical value of |t | in the pomeron
loop integration simultaneously plays the role of the lower
limit for the factorisation scale, μ2

F . In terms of σDPS
eff (and

assuming the exponential t-behaviour) this limit is μ2
F >

〈|t |〉 = 4π/σDPS
eff .

Let us denote the momenta of the three gluons as ki (i =
1, 2, 3). In terms of the incoming proton’s momenta, pA and
pB , we may write

k1 � αpA + k1t , (17)

ki � βi pB + kit for i = 2, 3. (18)

To calculate the corresponding matrix element we use the
gauge invariance condition (Mμkμ = 0) and replace the pro-
ton’s momenta pA, pB transferred through the spin part (or
numerator) of the gluon’s propagators by k1t/α and kit/βi ,
respectively. Note that in order to keep the leading (DGLAP)
logarithms in the kt integrals we retain the lowest power of
kit in the matrix element.10

Thus the matrix element for ggg → χ(1+), correspond-
ing to the heavy quark loop in Fig. 3, takes a rather simple
form,

M = −i B f abc
Asg3

NcM
, (19)

where f abc is the antisymmetric colour tensor, Nc = 3 is the
number of colours, and g is the QCD coupling (αs = g2/4π ).
The basic amplitude As contains a spin part (given by the
trace around the quark loop) and a part corresponding to the
propagator poles. It is of the form

As = 16(a1z1 + a2z2) (20)

where the trace gives

10 Together with the denominators (1/k2
i ) of the gluon propagators this

will give in the cross section the logarithm
∫
k2
i t d

2kit/k4
i .

a1 = (ea · k3t ) εαβγ δ k
α
2t p

β
A pγ

B eδ
χ , (21)

a2 = (ea · k2t ) εαβγ δ k
α
3t p

β
A pγ

B eδ
χ , (22)

and the poles are

z1 = 2αβ23 s

α(2z − 1)β23s − |�k1t − �k2t |2 − M2
, (23)

z2 = 2αβ23 s

αβ23s(1 − 2z) − |�k1t − �k2t |2 − M2
, (24)

where the denominators include the contribution of the lon-
gitudinal (αβ23s(1−2z)) and transverse (−|�k1t −�k2t |2) com-
ponents of the square of the momentum. Here eχ and ea are
the χ(1+) and k1-gluon polarisation vectors. Also we have
introduced the relative momentum fraction z = β2/(β2+β3),
where

β23 = β2 + β3 = (M2 + |�k1t + �k2t |2)/αs. (25)

The value of β23 is fixed by the χ(1+) meson mass and its
rapidity. Finally, the normalisation constant B in (19) is given
by

B =
√

3R′2

πM3 . (26)

Recall that in the diagram for the cross section, Fig. 3,
we have four t-channel gluons from the proton pB side.11

These four gluons form three loops of integration. The inte-
grals over the transverse momenta components have already
been discussed: two loops give the logarithmic integrals∫
k2
i t d

2kit/k4
i corresponding to the gluon PDF given by the

parton cascade i , while the third integral (over t) is limited
by the proton form factor. The longitudinal momentum com-
ponent in the central loop is fixed by the condition that the
χ(1+) meson (and other secondary partons) should be on-
mass-shell. Finally, we have the loop integrations over the
gluon longitudinal momentum in each amplitude, A and A∗.
These integrals can be written in terms of z and can be closed
on the quark pole;12 that is, in our non-relativistic approxi-
mation (for the χ(1+) wave function) we get an intermediate

11 In general, there may be a diagram where the gluon pair (gg) goes in
the pB direction in one amplitude, A, but goes in the other, pA, direction
in the amplitude A∗. Such a contribution either corresponds to the three-
gluon singularity (in the ω plane) which has a lower intercept (ω0 ∼ 0
or even negative – this contribution is small): or, dealing with the BFKL
pomeron, we have to consider this (gg) pair as gluon reggeisation which
(in the lowest αs order) was already considered in Sect. 3.
12 In general, in our case with a L = 1 wave function, some part of the
contribution may contain poles of second order (see e.g. [37]). However,
as far as we keep just the leading logarithms in kt , that is, the lowest
power of kt , the residue of these second-order poles vanishes at z = 0
or z = 1. Therefore actually we deal only with simple first-order poles.
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state with both quarks on-mass-shell. The pole position is

z = 2(�k2t · �k3t )

M2 . (27)

So, finally, the matrix element (19) reads

M = 32πB f abc
g3(a1 + a2)

NcM
. (28)

To obtain the cross section we have to sum over the χ(1+)

polarisations, eχ , average over ea and integrate over the gluon
transverse momenta. A problem is that according to (27) the
value of z depends on these momenta and we cannot use the
usual, integrated PDFs; each value of kit corresponds to its
own z. Therefore we have to use the unintegrated distribution
in the same way as described in Sect. 2.2. Moreover, in our
calculation we have to keep only the poles with the positive
z < 1. Otherwise one of the gluons (z or 1 − z) will have
a negative energy and so must be considered as an outgoing
and not an incoming particle. Such a configuration describes
the gg → χ(1+) + g subprocess which has already been
discussed in Sect. 2.

Thus the ‘DPS’ component of the inclusive χ(1+) cross
section (which we call σDPS) reads

dσDPS

dY
= π3α3

s R
′2

σDPS
eff M9

32

9

∫ M2
dk2

2t

k2
2t

dk2
3t

k2
3t

αg(α, M2)

·
∫ 2π

0

dφ

2π
(1 + cos2 φ) fg(x2 = β23(1 − z), k2

2t )

× fg(x3 = zβ23, k
2
3t )�(z)�(1 − z)+(α ↔ β23),

(29)

where z is given by (27) and where we take the factorisation
scale μF = M . Since, within the Leading Logarithm approx-
imation, both k2

1t , k
2
2t 
 M2, we may replace in the first argu-

ment of fg(β23(1 − z), . . .) the value of (1 − z) by 1, that is,
fg(β23(1−z), . . .) becomes fg(β23, . . .). The origin of cos2φ

in the cross section comes from the convolution of a1 and a2.
The predicted ‘DPS’ part of the χ(1+) production cross

section is presented in the fifth column of Table 1. In the
numerical calculation we have used MSTW2008LO par-
tons [22] and σDPS

eff = 10 mb [38,39].

5 Discussion

As seen from Tables 1 and 2, in the central rapidity region
(Y = 0) the main contribution to χ(1+) production comes
from the most trivial gg → χ(1+) + g subprocess, even at
13 TeV. This contribution decreases with |Y |, that is, towards
the edges of the available rapidity space.

Table 2 The cross section dσ/dY in nb for producing χb(1+) by the
various mechanisms at 13 TeV. Note that the g∗g → χ is already
included in the gg → χ +g contribution, and has only to be considered
separately to facilitate the study of the Regge contribution

Y gg → χ + g g∗g → χ G-regge DPS

0.0 37 30 0 2.2

1.0 36 29 −10 2.4

2.0 31 25 −18 2.7

3.0 24 18 −22 3.1

4.0 16 11 −23 3.1

5.0 8 3 −18 2.4

The expected correction due to gluon reggeisation van-
ishes at Y = 0, in accord with the generalised Landau–Yang
selection rule, which is valid for the symmetric configuration.
Moreover, for Y �= 0 it is negative, and at large rapidity Y it
becomes quite large in comparison with the original (without
reggeisation) contribution. The absolute value of the Regge
contribution increases with |Y | (up to Y ∼ 5) making the
overall rapidity (Y ) distribution a bit narrower. We empha-
sise, however, that the results of Tables 1 and 2 are presented
just for illustration purposes, and include theO(αs) reggeised
correction only. When the ‘correction’ increases, the higher-
order αs terms become important, replacing effectively the
first and negative αs contribution (which we denote −δR) by
a positive exponential factor like exp(−δR).

The DPS contribution, which originates from the fusion
of gluons from two parton cascades, reveals quite a different
behaviour. Due to the growth of the low x gluon density this
part of cross section increases with the initial energy and/or
with |Y |. The DPS mechanism for χc(1+) production is seen
to provide about 30 % of the cross section for Y = 4 to 5. At
very high energies (asymptotically) this contribution starts
to dominate.

The values of the χb(1+) cross sections are much smaller,
but due to the larger χb mass the perturbative predictions
are better justified. Note also the strong correction caused by
gluon reggeisation, which arises since the virtuality of the
gluon is larger.
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