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1 Introduction and summary

Recently there has been significant progress in probing the structure of quantum gravity

in the context of the AdS/CFT correspondence. This has been achieved by combining the

effectiveness of the large N expansion and the power of CFT techniques. In particular the

large N expansion in N = 4 super Yang-Mills theory at large ’t Hooft coupling has been

investigated in [1–12]. Natural objects of study in this context are the four-point functions

〈Op1Op2Op3Op4〉 of half-BPS operators Op which are dual to the scattering processes of

four supergravity states of type IIB supergravity on the AdS5×S5 background.

In [3] we were able to obtain the full 1/N4 contribution to the correlator 〈O2O2O2O2〉,
i.e. the one-loop contribution to the four-point amplitude of AdS graviton supermulti-

plets.1 This was achieved by promoting the leading logarithmic discontinuity to a crossing-

invariant function. The leading logarithmic singularity itself was deduced in [2, 3] by the

consistency of the operator product expansion (OPE), after resolving the tree-level mixing

of long double-trace operators in the singlet su(4) representation [4]. In fact the leading

1/N2 corrections to the spectrum of double-trace operators can be completely solved with

surprisingly simple rational functions of the quantum numbers [8]. As observed in [8],

the spectrum exhibits a partial degeneracy which motivated the discovery of a surprising

ten-dimensional conformal symmetry governing tree-level AdS5×S5 supergravity [9]. In [7]

we were able to perform a similar analysis for the amplitude of two graviton supermulti-

plets and two Kaluza-Klein states, 〈O2O2O3O3〉. Both cases involved surprisingly simple

analytic functions based essentially on the two-loop four-dimensional ladder integral.

The approach outlined above does not make any reference to actual one-loop diagrams

of IIB supergravity on AdS5×S5, and in fact this computation in the bulk remains very

challenging. Instead, scalar theories on AdS at one-loop have been discussed in many

references, for example, see [14–19]. Our approach here uses CFT techniques to extract

data in the dual theory, N = 4 SYM, and it is complemented with an understanding of

the possible analytic structure of the one-loop correlators, as functions in position space.

Similar approaches to half-BPS correlators have been applied also in perturbation theory,

both from the point of view of particular diagrams (or integrands) e.g. [24–29] and using

the analytic structure of explicitly evaluated loop integrals [27, 30]. It is natural to ask

therefore if the large N bootstrap can be applied to arbitrary charge half-BPS operators.

In this paper we solve algorithmically the analytic bootstrap program for the four-

point one-loop amplitudes of generic single-particle Kaluza-Klein states. This computation

1Up to a single ambiguity which was fixed recently in [13].
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presents itself as a significant challenge compared to our previous constructions in [3]

and [7]. Indeed, the one-loop correlators constructed so far had at least two AdS graviton

multiplet insertions, and therefore had some built-in physical simplicity, stemming from

the fact that the OPE of two graviton multiplets runs over a special set of both protected

and long operators. In general, this simplicity is absent and we have to face a network of

complications, which we will solve in this paper.

First we recall that the 1/N expansion will naturally stratifies the four-point amplitude

in powers of logs of the cross-ratio u, and it leads to an expansion of the following form,2

〈Op1Op2Op3Op4〉 = G~p;0,0 +
1

N2

1∑
n=0

(log u)n G~p;1,n +
1

N4

2∑
n=0

(log u)n G~p;2,n + . . . (1.1)

where

~p = (p1, p2, p3, p4) (1.2)

comprises the external charges. The expansion in (1.1) goes together with an expansion in

the large ’t Hooft coupling λ = g2N . The string corrections to the above expansion have

been addressed recently in a number of papers [10, 31–33] but here we will restrict ourselves

to the terms of order λ0 corresponding to supergravity contributions. In very general terms,

the consistency of the OPE places strong constraints on the various different functions Gn,m.

We shall now explain how this abstract information, embedded in the 1/N expansion, can

be used in practice to organise our bootstrap program.

Consider the OPE of single-particle operators (Opi ×Opj ), it contains superconformal

primary operators O of twist τ , spin l and su(4) representation [aba],

Opi ×Opj =
∑
O
Cpipj (O~τ )O~τ , (1.3)

where ~τ ≡ (τ, l, [aba]) is a compact notation for the representation labels. The first general

key point is that a four-point function, 〈Op1Op2Op3Op4〉 is determined non-perturbatively

by summing over the OPE coefficients Cp1p2(O~τ )Cp3p4(O~τ ) of common exchanged operators

O~τ . The sum over operators is in principle a sum over all operators compatibly with

quantum numbers. However, the second general key point is that the 1/N expansion of

Cp1p2(O~τ ) stratifies how operators contributes in (1.1).

Of particular importance for us will be the exchanged two-particle (or double-trace)

operators, which have the schematic form,

Opq;~τ = Op�
1
2

(τ−p−q)∂lOq
∣∣∣
[aba]

. (1.4)

Such operators fall into different series according to their quantum numbers. Half-BPS

operators have l = a = 0 and τ = b = p+q. Semishort operators have τ = 2a+b+2 = p+q

2The strong coupling expansion of four-point correlators is more properly phrased in terms of inverse

powers of c = (N2 − 1)/4. In this paper, we take the freedom to re-expand the latter in 1/N2. We will

explain around (1.8)–(1.9) how to recover one expansion from the other.
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and spin l ≥ 0. In both these cases the � is necessarily absent. Long operators will

generically obey the unitarity bound τ ≥ 2a + b + 2, but long operators of the form (1.4)

actually obey τ ≥ 2a + b + 4. Notice that τ might be greater than p + q in this case.

Finally, for given ~τ the space of operators has a degeneracy which we will label according

to the pairs pq of Opq;~τ . Geometrically, it is described by a rectangle Rτ [8]. The formalism

established in [8] will be reviewed in section 3.

In a given su(4) representation [aba], we can organise semishort and long operators

Opq;~τ into a tower, whose levels are labelled by the twist. The bottom of the tower corre-

sponds to the unitarity bound. For each operator in this tower we now determine the N

counting of the three-point couplings Cpq(Op′q′;~τ ).

Three-point couplings of the form Cpq(Ors;~τ ) with p + q = r + s have a leading order

contribution in the large N expansion arising from Wick contractions in free supergravity.

For example Cpq(Opq;~τ ). In the protected sector this information will be enough to de-

termine the N counting of all three-point couplings. In the non protected sector instead,

we also have to consider that the true two-particle scaling eigenstates, i.e. the ones with

leading order quantum numbers ~τ and well defined anomalous dimension, will be mixtures

of the form

Kpq =
∑

p′q′∈Rτ

Op′q′
C

(0)
p′q′Kpq

C
(0)
p′q′Op′q′

+O(1/N2) , (1.5)

containing some contribution from every operator Ors;~τ with p + q = r + s, hence these

Kpq will have leading order three-point couplings. We conclude that Cpq(Op′q′;~τ ), where

the two-particle operators Op′q′,~τ have twist τ ≥ p+ q, is also leading order as far as the N

counting goes. That such a three point coupling is non vanishing follows from the explicit

solution of the mixing problem [4]. The reasoning we are using here implies that exchanged

two-particle operators with twist τ < p + q do not receive any contribution of the form

Ors;~τ and thus have 1/N2 suppressed three-point couplings. Summarising, a three-point

coupling Cpq(O~τ ) has the large N expansion:

Cpq(O~τ ) = C(0)
pq (O~τ ) +

1

N2
C(1)
pq (O~τ ) + . . . (1.6)

where C
(0)
pq (O~τ ) 6= 0 only for τ ≥ p+ q.

The exchange of two particle operators in the common OPE of a four point correlator,

gives a contribution of the form Cp1p2,~τ Cp3p4,~τ for different values of twists. As before, we

associate to each three-point coupling, Cp1p2,~τ and Cp3p4,~τ , an infinite tower representing

the semishort and long operators Opq;~τ in the su(4) representation [aba]. Putting together

two of these, we obtain a representation of the common OPE coefficient as in figure 1.

Referring the N counting of Cp1p2,~τ Cp3p4,~τ to figure 1, we read off the following pattern.

For τ ≥ τmax
~p ≡ max(p1+p2, p3+p4), we find exchanged operators for which both three-

point couplings are leading order, i.e. C
(0)
p1p2 and C

(0)
p3p4 are both non-zero. In particular,

τmax is the threshold twist for exchange of two-particle operators in disconnected free theory

G~p;0,0. In the window τmax > τ ≥ τmin
~p ≡ min(p1 +p2, p3 +p4), we find exchanged operators

– 3 –
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Above

Threshold

Window

Below

Window

τ=2a+b+2

τ=2a+b+4

τ=p3+p4

τ=p1+p2

τ=τmin

τ=τmax

O(N0)

O(1/N2)

Cp1p2(Oτ ) =

O(N0)

O(1/N2)

= Cp3p4(Oτ )

Figure 1. The large N structure of Cp1p2,~τ Cp3p4,~τ for two particle operators Oτ in an su(4)

representation [aba], and varying twist.

which have leading order three-point couplings with one pair of external operators, but

1/N2 suppressed three-point couplings with the other pair of external operators, e.g. we

have C
(0)
p1p2 = 0 but C

(0)
p3p4 non-zero. Finally, “below window” will denote the range of twists

2 + 2a + b < τ < τmin in which C
(0)
p1p2 = C

(0)
p3p4 = 0 and the OPE contains contributions

coming with 1/N2 suppressed three-point couplings. These contributions give rise to a

novel and genuine 1/N4 effect which enters G2,0.

For any arrangement of external charges there is always a threshold twist such that a

tower of long operators is exchanged. The window itself might be empty if τmin = τmax.

The location of the unitarity bound in figure 1 depends on the external charges. Gener-

ically, the unitarity bound τ = 2a+b+2 is below window, but there are two other situations

which do occur. The unitarity bound can coincide with τmin, i.e τmin = 2a+b+2, in which

case there is no below window region. The unitarity bound can coincide with τmax, in

which case there is an empty window and τmax = τmin = 2a+ b+ 2.

The strategy followed in [3, 7] to bootstrap the order 1/N4 one-loop amplitude was

to resolve the mixing problem in the long sector from the knowledge of G0,0 and G1,1

(focusing on the su(4) representations [000] and [010]) and thereby obtain explicitly the

CFT data needed to bootstrap G2,2. The double logarithmic discontinuity can also be

obtained elegantly by using the hidden ten-dimensional conformal symmetry of [9].

To complete the double logarithmic discontinuities into full amplitudes requires addi-

tional knowledge about G2,1 and G2,0. The CFT data entering G2,1 is obtained only within

the long sector. The CFT data entering G2,0 is instead obtained from the study of both

protected semishort and long operators. In both cases, the operators we will consider are

two-particle operators.3 Extracting this information in complete generality is a central

new result of this paper. In particular, the study of the protected semishort sector at order

1/N4 has never been addressed before, except for the case of 〈O3O3O3O3〉 in [34].

Let us now project the correlator 〈Op1Op2Op3Op4〉 into an su(4) representation [aba],

and distinguish between long and protected sector. Following the logic of figure 1, we now

3Higher multi-trace operators will also contribute but only at higher orders in the 1/N expansion within

the ranges of twists we focus on here.
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highlight the main inputs of our bootstrap program. These are extensively discussed in

section 2 and 3.

The leading logarithmic discontinuity G2,2 (or more generally Gn,n for n ≥ 1) is only

induced by exchanged long two-particle operators with τ ≥ max(p1 + p2, p3 + p4). The

number of fields exchanged in infinite both in twist and spin. The CFT data entering Gn,n
for n ≥ 1 comprises the O(1) three-point couplings of these long two-particle operators

with the external operators, and their O(1/N2) anomalous dimensions to the power n.

The subleading G2,1 logarithmic discontinuity in the window is also determined only

by the long sector. However, there is only a finite number of operators exchanged in the

window. For this range of twists G2,1 is essentially given by the product of one power

of the anomalous dimension (of the exchanged operators) with the three-point couplings,

let’s say conventionally, C
(1)
p1p2,~τ

and C
(0)
p3p4,~τ

. The combination Cp1p2,~τCp3p4,~τ in the window

is O(1/N2) as indicated by the figure. The physical data in the window determines also

Gn,n−1, with n = 2 just the first non trivial case. For generic n, we simply increase the

power of the anomalous dimensions to n− 1.

The partial degeneracy of the 1/N2 anomalous dimensions found in [8] obstructs the

explicit determination of C
(0)
pq,~τ in general, and consequently of C

(1)
pq,~τ . Nevertheless, we will

show in section 3.2 that we can obtain explicit expressions for the superconformal partial

wave (SCPW) expansion of G2,2 above threshold and G2,1 in the window, from the analysis of

G0,0, G1,1 and G1,0 of many different correlators. This approach is based on the fact that for a

given twist and su(4) representation we know how many two-particle operators there are [8].

Determining G2,0 below the window is more complicated. There are again a finite

number of operators exchanged, but there are both protected and long contributions. These

are all of the form C
(1)
p1p2,~τ

C
(1)
p3p4,~τ

for given ~τ below window. We will show that in the long

sector, i.e τ ≥ 4 + 2a + b, we can obtain the contribution to G2,0 by rearranging slightly

the method used for G2,1. At the unitarity bound, τ = 2 + 2a + b, we will have to use a

different approach, which we explain in section 2.4. We will see that the 1/N4 semishort

contributions to the protected sector can also be determined by using the knowledge of

the two-particle operators and various different correlators. In particular, for a given

twist 2 + 2a + b, we will use input from O(1) SCPW coefficients for correlators with

τmin = τmax = 2 + 2a+ b, as well as input from O(1/N2) SCPW coefficients for correlators

with τmax > τmin = 2 + 2a + b. Finally, we emphasize that multiplet recombination at

O(1/N4) will be very much different from multiplet recombination at O(1/N2).

The functions G2,1 and G2,0, which we bootstrap starting from the leading logarithmic

discontinuity G2,2, should therefore be such that the first can accommodate OPE predictions

in the window, and the second can accommodate OPE predictions below window i.e. for

2 + 2a+ b ≤ τ < τmin.

Having listed all OPE predictions, we can proceed to assemble the four point corre-

lator at strong coupling. Our field theoretic approach has the partial non-renormalisation

theorem [35] as the starting point. This theorem splits the correlator into free theory and

a particular form for the dynamical contribution,

〈Op1Op2Op3Op4〉 = 〈Op1Op2Op3Op4〉free + P I(x, x̄; y, ȳ)D~p(x, x̄; y, ȳ) , (1.7)

– 5 –
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where I(x, x̄; y, ȳ) and P are kinematical factors defined later in (2.9) and (2.20). In

the above decomposition of the correlator, free theory is an input, and will be computed

by actual Wick contractions in free SU(N) N = 4 SYM, having established the precise

definition of single particle operators, already given in our previous work [8]. In this line

of reasoning, the free theory part of the correlator is obtained independently from Witten

diagrams consideration in supergravity.

We will find that the dynamical function in the strong coupling regime has extra struc-

ture, inherited from the way OPE predictions naturally organise themselves in supergravity.

We will write the result as

D~p(x, x̄; y, ȳ) = T~p +
1

N4
H(2)
~p + . . . , (1.8)

where H(2)
~p meets all the predictions from the OPE at one loop. The function T~p instead

is constructed as an exact function of N by requiring that it is tree-like, in the way we

specify below. A feature of this function is to cancel stringy states present in free theory

but absent in the supergravity spectrum, indeed at any order in N . The leading term of

T~p coincides with the tree level function of Rastelli and Zhou [1], i.e.

T =
1

N2
T (1) +

1

N4
T (2) + . . . . (1.9)

It follows from our construction that the functions G2,i are given by4

G~p;2,2 = P I(x, x̄; y, ȳ)H(2)
~p

∣∣∣
log2 u

(1.10)

G~p;2,1 = P I(x, x̄; y, ȳ)
[
T (2)
~p +H(2)

~p

]
log1 u

(1.11)

G~p;2,0 = 〈Op1Op2Op3Op4〉free

∣∣∣
1
N4

+ P I(x, x̄; y, ȳ)
[
T (2)
~p +H(2)

~p

]
log0 u

(1.12)

The function H(2)
~p is what we call the ‘minimal’ one-loop function. As we shall explain

throughout section 3 and section 4 the minimal one-loop function is the unique solution,

up to finite spin ambiguities, of our bootstrap algorithm. It matches the constraints from

the 1/N4 OPE predictions, both in the long sector, and at the unitarity bound, and it

is minimal because it can be explicitly separated from T~p. In section 4, we describe the

details of our bootstrap algorithm, we discuss a number of non-trivial examples, and we

classify the possible one-loop ambiguities.

The function T~p is studied in more detail in section 5. It is a generalisation of the

tree-level function of Rastelli and Zhou for all N , and it is defined by the property that,

together with connected free theory, it gives empty contributions to any exchanged long

operators with twist 2 + 2a + b ≤ τ < τmin. In this sense, the function T~p generalises

4Free theory and T~p can be equivalently expanded in inverse powers of c = (N2−1)/4. The spin and twist

dependence of the OPE predictions at one loop is unchanged, because these are obtained by multiplying

SCPW data at tree level, and the latter is not sensitive to a shift of the expansion parameter. The minimal

one-loop function is thus unchanged. At O(1/c2) the correlator is given by H(2)
~p plus the contributions from

free theory and T~p. The log u stratification has a form similar to that given in (1.11)–(1.12).

– 6 –
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the construction of Dolan, Nirschl and Osborn in [36] who obtained tree-level results by

precisely demanding such a cancellation of low twist operators against recombined free

theory. Because of this property, the minimal loop function H(2)
~p contains all the dynamical

information at O(1/N4).

Comparing to our previous works in [3, 7], the one-loop functions constructed there

coincide with the minimal one-loop function, and T~p does not upgrade beyond the function

of Rastelli and Zhou. This happens because free theory in those cases is exact in 1/(N2−1).

For the special class of correlators denoted as next-to-next-to-extremal we will find a similar

situation, see sections 4.6 and 5.3. However, there is no such a simplification in general,

and in fact the study of four point correlators with arbitrary external charges, which is the

main subject of this paper, requires non trivially both H(2)
~p and a novel T~p.

Finally, let us point out a very remarkable feature of H(2)
~p : the three-point couplings

Cp1p2,~τ of exchanged semishort operators, which constrain a piece of G2,0, are obtained only

within free theory, since these are not renormalized. At the same time, G2,2 and G2,1 are

determined only within the long sector. In this sense, some inputs in G2,0 are obtained

in a completely independent way. Nevertheless, H(2)
~p has to be consistent with all of the

G2,i=0,1,2, and the coherence of the whole minimal one-loop function across the various

OPE predictions is a non-trivial confirmation of the AdS/CFT correspondence within the

N = 4 bootstrap program.

2 Free theory of single-particle operators

We are interested in correlation functions of protected half-BPS operators which describe

scattering of single-particle states in AdS5×S5. The first task is thus to determine the

operators dual to single-particle states: these are not simply single-trace operators but

can have multi-trace corrections which we must take into account. In [8] we identified the

operators dual to single-particle states as those half-BPS operators which are orthogonal to

all multi-trace operators. In the strict large N limit, our definition reduces to the familiar

statement that single-particle states correspond to operators in multiplets whose supercon-

formal primaries are given by single-trace operators in the [0, p, 0] representation of su(4).

For finite N instead, our definition automatically picks the correct multi-trace admixtures

which is needed to uplift half-BPS single-trace operators to single-particle operators.5

Single-trace operators in the [0, p, 0] rep can be given as

tr(φp)(x, y) = yR1 . . . yRptr(φR1 . . . φRp)(x) (2.1)

where the fields φR are the elementary scalars of the N = 4 multiplet, and the SO(6) null

vector yR is used to project onto the symmetric traceless representation, φ(x, y) = yRφR(x).

The p = 2 case corresponds to the superconformal primary for the energy-momentum

multiplet which is dual to the graviton multiplet in AdS5. The p = 3 case is the first

Kaluza-Klein mode arising from reduction of the IIB graviton supermultiplet on S5. In

5See also previous discussions in [5, 37, 38] and more recently [39].

– 7 –



J
H
E
P
0
3
(
2
0
2
0
)
1
9
0

these two cases, the single-particle operator equals the single-trace operator, even at finite

N , since there are no multi-trace operators of charges p < 4 to mix with.

The single-particle operators we consider explicitly in this paper are:

O2 = tr(φ2)

O3 = tr(φ3)

O4 = tr(φ4)− 2N2 − 3

N(N2 + 1)
tr(φ2)2 . (2.2)

The coefficients of the higher multi-trace contributions are determined by the orthogonality

conditions, according to our definition. For example O4 is defined by the requirement that

it is orthogonal to the double-trace operator tr(φ2)2:

〈O4(x1, y1)tr(φ2)2(x2, y2)〉 = 0 . (2.3)

Notice that since all operators involved are half BPS, the two-point functions entering the

orthogonality conditions can be computed in free field theory in terms of the elementary

propagators

〈(φ)r
r̄(x1, y1)(φ)s

s̄(x2, y2)〉 =

(
δs̄rδ

r̄
s −

1

N
δr̄rδ

s̄
s

)
g12 , (2.4)

where6

g12 =
yi · yj
x2

12

. (2.5)

We will now consider four-point correlators of the single-particle half-BPS operators,

first in free theory, and then in the interacting regime described by supergravity.

2.1 Free theory four-point functions

Free field four-point functions of single-particle half-BPS operators can be computed simply

by performing Wick contractions between the elementary fields. The result is a sum over

the different allowed superpropagator structures gij accompanied by their colour factors.

Graphically, the four external operators Opi are represented as vertices each with pi legs,

and the propagator gij is represented as a line between point i and point j. We arrange

the four operators at the corners of a square, labelled clockwise from the bottom left.

So for example, for the 〈O3O3O3O3〉free correlator

〈O3O3O3O3〉free = A0
0

+A0
2 +A1

2

+A0
4 +A1

4 +A2
4

+A0
6 +A1

6 +A2
6 +A3

6 (2.6)

6This is just the superpropagator in analytic superspace [40–42] around which much of the following

formalism is implicitly based.
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where Akγ are the associated colour factors. The subscript γ is the total number of propa-

gators connecting the left half of the graph to the right half, whereas k is the number of

propagators along the top edge of the square. Of course many colour factors are equal to

each other, where the corresponding graphs are isomorphic. Indeed there are only three

independent colour factors in this example and explicit computations of the Wick contrac-

tions yields the all orders in N factors

A0
0 = A0

6 = A3
6 =

9(N2 − 4)2(N2 − 1)2

N2

A0
2 = A1

2 = A0
4 = A2

4 = A1
6 = A2

6 =
9

N2 − 1
A0

0

A1
4 =

18(N2 − 12)

(N2 − 1)(N2 − 4)
A0

0 . (2.7)

For a general free theory correlator, without loss of generality we can arrange the

external charges as p43 ≥ p21 ≥ 0. The general free theory result is then

〈Op1Op2Op3Op4〉free = P ×
min(p1+p2,p3+p4)∑

γ=p43
γ−p43 ∈ 2Z

(g13g24

g12g34

) γ−p43
2

γ−p43
2∑

k=0

Akγ

(
g14g23

g13g24

)k (2.8)

where Akγ are color factors, and we defined the prefactor

P = g
p1+p2−p43

2
12 g

p43−p21
2

14 g
p43+p21

2
24 g

p3
34 . (2.9)

Note that the r.h.s. of (2.8) is P times a function of super cross-ratios. We define

space-time cross ratios u, v (equivalently x, x̄) and internal cross-ratios σ̂, τ̂ (equivalently

y, ȳ) as follows

u = xx̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− x)(1− x̄) =
x2

14x
2
23

x2
13x

2
24

,

1

σ̂
= yȳ =

y1.y2y3.y4

y1.y3y2.y4
,

τ̂

σ̂
= (1− y)(1− ȳ) =

y1.y4y2.y3

y1.y3y2.y4
. (2.10)

Inputting the definition of the superpropagator (2.5) we find the super cross-ratios

g13g24

g12g34
=
xx̄

yȳ
= uσ̂,

g14g23

g13g24
=

(1− x)(1− x̄)

(1− y)(1− ȳ)
=

τ̂

vσ̂
, (2.11)

which we can substitute directly in (2.8)

For single-particle external operators the colour factors of extremal and next-to-

extremal correlators vanish identically. These are correlators whose charges satisfy (with

our choice of p43 ≥ p21 ≥ 0)

p4 = p1 + p2 + p3 (extremal) ,

p4 = p1 + p2 + p3 − 2 (next-to-extremal) . (2.12)
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Window

Below

Window

τmax=p1+p2

τmin=p3+p4

p4−p3

p2−p1

2κ=2p3

Window

Below

Window

τmax=p3+p4

τmin=p1+p2

p4−p3

p2−p1

2κ=p1+p2+p3−p4

Figure 2. Illustration of the possible su(4) representations exchanged in the overlap of the

(Op1 ×Op2) and (Op3 ×Op4) OPEs. The vertical axis represents the possible values of b+ 2a.

Notice that extremal and next-to-extremal correlators of half-BPS operator do not vanish

for single trace operators but they do for single-particle operators.

The first single-particle correlators that are non-vanishing are next-to-next-to-extremal,

with charges obeying

p4 = p1 + p2 + p3 − 4 . (2.13)

More generally, we define

κ~p = min

(
1

2
(p1 + p2 + p3 − p4), p3

)
= “degree of extremality” (2.14)

and we say that a correlator is a NκE, according to its degree to extremality. Next-to-next-

to-extremal correlators have degree of extremality κ~p = 2.

The degree of extremality determines the number of available su(4) representations

[aba] in the overlap of the two OPEs (Op1 × Op2) and (Op3 × Op4).7 For example, N2E

correlators have the feature that the superconformal primaries in the long sector have a

single possible su(4) representation. One can visualise the degree of extremality as shown

in figure 2. In this figure, the vertical axis represents the possible values of b + 2a in the

two OPEs. The degree of extremality κ~p then denotes the size of the overlap in either of

the two cases p1 + p2 > p3 + p4 or p1 + p2 < p3 + p4.

Note that, as will be detailed in the next section, the interacting part of the correlator

has a universal structure which reduces the range of su(4) structures by 2.

We now review the technology that allows us to perform the superconformal partial

wave expansion (SCPW) of a generic 〈Op1Op2Op3Op4〉 correlator. We follow the formalism

of [34], which is group theoretic, manifestly unitary, and has the great advantage of dealing

with all representations in a uniform way.

2.2 Review of the SCPW expansion

To address the SCPW expansion of 〈Op1Op2Op3Op4〉 we must first describe conformal

blocks for all supermultiplets that might be exchanged in the OPE of half-BPS operators.

7Notice that an su(4) rep [aba] appearing in both OPEs will have b + 2a lying in the same range of

values as γ in (2.8). We can then see that degree of extremality κ~p is equal to the number of values of γ

in (2.8), minus 1.
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Following [34] we label the superconformal primaries Oγ,λ by a number γ and a finite di-

mensional representation of SL(2|2) which we specify via a Young diagram λ ≡ [λ1, . . . , λn]

where λi is the length of the ith row.8

The Young diagrams do not have an arbitrary shape but have to fit into a ‘fat hook’

shape, which amounts to the additional constraint that the third row (and hence any

subsequent rows) cannot be longer than length two, i.e. λ3 ≤ 2. The number of rows also

satisfies n ≤ (γ − p43)/2. For example a generic such diagram has the form

← λ1 →
← λ2 →

↑
µ2

↓
↑
µ1

↓

= [λ1, λ2, 2
µ2 , 1µ1 ] (2.15)

with first row of length λ1, second row of length λ2 and then µ2 rows of length 2 (denoted

2µ2) and µ1 rows of length 1 (denoted 1µ1). Such a generic Young tableau corresponds to

a long multiplet.

Short multiplets instead have row 2 of length 1 or 0 and so have the shape of a ‘thin

hook’. The parameters γ and λ determine the usual quantum numbers of spin l, dimension

∆ (or twist τ ≡ ∆ − l) and su(4) representation, which here always takes the form [aba].

The dictionary is summarized by the following table

GL(2|2) rep λ τ = ∆−l l su(4) labels multiplet type

[∅] γ 0 [0, γ, 0] half BPS

[1µ] γ 0 [µ, γ−2µ, µ] quarter BPS

[λ, 1µ] (λ ≥ 2) γ λ−2 [µ, γ−2µ−2, µ] semi-short

[λ1, λ2, 2
µ2 , 1µ1 ] (λ2 ≥ 2) γ+2λ2−4 λ1−λ2 [µ1, γ−2µ1−2µ2−4, µ1] long

(2.16)

Note that the YT representation of a long multiplet is invariant up to the shift-symmetry,

λ1 → λ1 + 1, λ2 → λ2 + 1, µ2 → µ2 − 1, γ → γ − 2, (2.17)

under which twist τ , spin l, and su(4) rep [aba] remain fixed. On the contrary, protected

operators require both γ and the Young tableau to be fully specified.

We denote the superconformal block corresponding to the contribution of an operator

Oγ,λ to the four-point correlator 〈Op1Op2Op3Op4〉 as

superblock : S~p;γ,λ . (2.18)

8The formalism arises from analytic superspace [40–42] which has SL(2|2)×SL(2|2)×C isotropy group.

A general unitary representation of the N=4 superconformal group is thus specified via two SL(2|2) rep-

resentations and a weight γ. For four-point functions of half BPS operators, both SL(2|2) representations

coincide. Remarkably the SL(2|2) representations are always finite dimensional and the resulting analytic

field is unconstrained [43, 44].
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Long superblocks (those with λ2 = 2, 3, . . .) will occur often and we will also denote

them by L~p;~τ . They have the following factorised structure,

L~p;~τ ≡ S~p;γ,λ = P × I × L̃~p;~τ L̃~p;~τ =
B(2+ τ

2
,l)

u2+
p43
2

Υ[aba] , (2.19)

where P is given in (2.9), and I by

I(x, x̄, y, ȳ) =
(x− y)(x− ȳ)(x̄− y)(x̄− ȳ)

(yȳ)2
. (2.20)

Here B t,l and Υ[aba] are ordinary bosonic blocks for conformal and internal symmetries.

Explicitly,

B(t,l)(x, x̄) = (−1)l ut
[
xl+1Ft+l(x̄)Ft−1(x̄)− (x↔ x̄)

x− x̄

]
, (2.21)

and

Υ[aba](y, ȳ) = −Pn+1(y)Pm(ȳ)− (y ↔ ȳ)

y − ȳ
,

 n = m+ a,

m =
b− p43

2
,

(2.22)

where

Ft(x) = 2F1

(
t− p12

2
, t+

p34

2
,2t;x

)
, Pn(y) =

n!y

(n+1+p43)n
JP(p43−p21|p43+p21)

(
2

y
−1

)
(2.23)

The notation JP stands for Jacobi polynomial.

Explicit formulae for semishort, 1
4 -BPS and 1

2 -BPS superblocks were obtained in [34]

and can be found in appendix A. Especially in these cases, the superblock formalism

naturally provides manifestly unitary representations.

Since the parameters λi are defined by a Young diagram, they are a priori integer

valued. For long superblocks however in the interacting theory, the scaling dimension ∆

(or equivalently the twist τ) of an operator becomes anomalous and hence non-integer.

We can thus allow an analytic continuation of λ1 and λ2 such that the spin λ1 − λ2 = l

remains integer. In such cases we even allow for continuations such that λ2 < 2. This

means that the labels of such continued long superblocks can coincide with those of short

superblocks when λ2 → 1, µ2 = 0. To avoid this potential confusion therefore we simply

use the notation for long superblocks, L~p;~τ , on the l.h.s. of (2.19) and allow τ ≥ 2a+ b+ 2

to be non-integer valued.

When long supermultiplets sit exactly on the unitarity bound, τ = 2 + 2a + b, they

become reducible and can be expressed as a sum of short multiplets

L~p;~τ = S~p;τ,[l+2,1a] + S~p;τ+2,[l+1,1a+1] τ = 2 + 2a+ b . (2.24)

The first term on the r.h.s. of (2.24) is a semi-short superblock of spin l while the second is

a semi-short superblock of spin l− 1 or a quarter-BPS superblock (if l = 0). We will make

use of this reducibility in section 2.4.

– 12 –



J
H
E
P
0
3
(
2
0
2
0
)
1
9
0

2.3 The SCPW expansion of the free theory

The SCPW of free theory correlators naturally stratifies by the label γ = p43, p43 +

2, . . . , τmin = min(p1 + p2, p3 + p4) introduced in (2.8). As mentioned in that context,

γ counts the number of propagators connecting operators inserted at points 1 and 2 to

operators inserted at points 3 and 4. In the SCPW expansion, γ simply corresponds to

the number of fundamental fields appearing in the operator, Oγ,λ being exchanged in the

OPE. Note that this is a good quantum number only for free theory, and simply reflects

the number of Wick contractions which have occurred in the OPE:

γ = # fundamental fields defining Oγ,λ
= p1 + p2 − (# Wick contractions in Op1Op2 ∼ Oγ,λ OPE )

= p3 + p4 − (# Wick contractions in Op3Op4 ∼ Oγ,λ OPE ) (2.25)

The general free theory correlator (2.8) then decomposes as

〈Op1Op2Op3Op4〉free =

min(p1+p2,p3+p4)∑
γ=p43

γ−p43 ∈ 2Z

∑
λ

A~p;γ,λ S~p;γ,λ (2.26)

where each term in the sum over γ represents the expansion in SCPW of the analogous

terms in (2.8). Furthermore the Young tableau λ have at most (γ − p43)/2 rows. Note

also that in free theory all Young Tableau are proper, having both integer rows and correct

shape. Thus the decomposition (2.26) is unambiguous.

But we do not consider the free theory in isolation, rather we will consider it as the

limit of the interacting theory as the coupling vanishes. In the interacting theory, the

OPE of two half-BPS operators contains both operators in short supermultiplets, whose

dimensions are protected, and long operators which have anomalous dimensions. Therefore

we will split the SCPW expansion (2.26) accordingly, and we will distinguish between the

short sector which by definition remains short in the interacting theory, and a free long

sector which will then acquire an anomalous dimension in the interacting theory. For the

short sector we sum over superblocks with the specific form Sγ,[λ,1µ], and for the long sector

we sum over superblocks L~τ ,

〈Op1Op2Op3Op4〉free = 〈Op1Op2Op3Op4〉short + 〈Op1Op2Op3Op4〉free long . (2.27)

More explicitly, we introduce the SCPW coefficients Sγ,[λ,1µ] and Lf~τ as follows

〈Op1Op2Op3Op4〉short =
τmin∑
γ=p43

γ−p43∈2Z

Sγ,∅Sγ,∅ +
∞∑
λ=1

1
2

(γ−p43)−1∑
µ=0

Sγ,[λ,1µ] Sγ,[λ,1µ]


〈Op1Op2Op3Op4〉free long =

∑
a,b∈2Z

4+b+2a≤τmin

∞∑
l=0

∑
τ>2a+b
τ−b∈2Z

Lf~τ L~τ . (2.28)
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This split is non-trivial due to multiplet recombination; in the free limit a long multiplet

whose twist lies on the unitary bound is indistinguishable from the direct sum of certain

short multiplets. A consequence of this is the identity of superblocks (2.24). The challenge

then is to relate the SCPW coefficients Sγ,[λ,1µ] and Lf~τ to the original ones Aγ,λ in (2.26).

The simplest SCPW coefficients to identify are the coefficients of half BPS ops (λ = ∅)
which are unchanged. Thus

Sγ,∅ = Aγ,∅ . (2.29)

The next simplest to deal with are the long representations above the unitary bound.

Here we take into account the fact that γ ceases to be a good quantum number for long

operators. This is because long operators with different numbers of fundamental fields mix.

For example O3O3 (γ = 6) mixes with O2�O2 (γ = 4) which both have twist 6. This is

the origin of the ambiguity in the description of long operators (2.17). Thus we need to

collect together all SCPW coefficients with the same quantum numbers ~τ (but different

values of γ) using the shift symmetry (2.17). Thus

Lf~τ =

min(p1+p2,p3+p4)∑
γ=b+2a+4

A
γ,[2+ τ−γ

2
+l,2+ τ−γ

2
,2
γ−b
2 −a−2,1a]

, τ ≥ 4 + 2a+ b . (2.30)

The most difficult SCPW coefficients to identify in (2.28) are the (non half-BPS) short

coefficients S[λ,1µ] with non-zero λ or µ and the related long coefficients at the unitary

bound L~τ with τ = 2a + b + 2. This is because as we deform away from the free theory,

some semi-short blocks combine to become long (as in (2.24)), whereas others remain semi-

short. Thus, a single SCPW coefficient A for a semi-short block at the unitarity bound, can

actually contain the contribution of both short and long multiplets of the interacting theory.

Our next task will be to explain how to properly disentangle physical semishort con-

tributions from the SCPW coefficients of free theory, and find S[λ,1µ]. Let us motivate this

problem further by mentioning that separating the coefficients S from L at the unitary

bound is actually straightforward at O(1/N2). In particular we will show that apart from

the case Sγ,[λ,1µ] with γ = min(p1 + p2, p3 + p4), i.e when τ = τmin, all other the coefficients

Sγ,[λ,1µ] vanish. Thus the values of L will be trivially fixed by multiplet recombination.

This feature at O(1/N2) has lead various people to the assumption that the same would

be true for all N (see [45] for a discussion of this point). However, beyond O(1/N2) the

separation of coefficients S from L is a non-trivial problem. We will solve this problem to

O(1/N4) using knowledge about the form of the semi-short operators.

2.4 Multiplet recombination

We now show how to determine, up to order 1/N4, the genuine semishort sector of the

single particle correlators 〈Op1Op2Op3Op4〉 in the full interacting theory, purely using free

theory correlators. In particular we provide formulae for all SCPW coefficients — split

according to operators which remain short in the interacting theory and those which are

long (2.28) — in terms of the coefficients A~p,γ,λ in (2.26).
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Recall that for long blocks at the unitary bound τ = 2a+ b+ 2 we need to resolve the

ambiguity which follows from the reducibility condition (2.24), i.e. that a long SCPW is a

sum of two semishort SCPWs

L~τ = Sτ,[l+2,1a] + Sτ+2,[l+1,1a+1] τ = 2a+ b+ 2 . (2.31)

Comparing the two pieces of the SCPW expansion (2.28), and equating the coefficient of

Sτ,[l+2,1a], using (2.31), yields

Aτ,[l+2,1a] = Sτ,[l+2,1a] + Lf~τ + Lfτ−2,l+1,[a−1,b,a−1] τ = 2a+ b+ 2 . (2.32)

One of the key points allowing us to resolve the ambiguity at the unitarity bound, and

correctly distinguish CPW coefficients of long and semi-short operators, is the following

(already tacitly assumed in (2.28)): a long operator at the unitarity bound necessarily has

twist less than τmin=min(p1 + p2, p3 + p4), i.e. Lf~τ = 0 if τ = 2a + b + 2 ≥ τmin. This is

a non-perturbative statement, a non-trivial consequence of superconformal symmetry for

the corresponding three-point functions [46, 47].

This fact allows us to use equation (2.32) to determine the CPW coefficients of semi-

short operators of twist τmin = min(p1 + p2, p3 + p4) in terms of lower twist coefficients

S~p;τ,[l+2,1a] = A~p;τ,[l+2,1a] − L
f
~p;τ−2,l+1,[a−1,b,a−1] for τ = 2a+b+2 = τmin, a ≥ 1

S~p;τ,[l+2] = A~p;τ,[l+2] for τ = b+2 = τmin . (2.33)

It is useful to understand the 1/N expansion9 of S~p;τmin,[l+2,1a] first, since it will play a

role in our later formulas. Referring to figure 1, when τmin = 2+2a+b two lines coincide, i.e.

the lower dashed line sits on top of the middle dashed line, thus we find that S~p;τmin,[l+2,1a]

in (2.33) is non trivial at O(1/N2). In particular it gets a contribution from leading

order connected propagator structures. In the special case of correlators 〈OpOqOpOq〉,
τmin = τmax and free theory starts with an O(1) contribution from disconnected diagrams.

For all representations [aba] such that τmin = 2 + 2a+ b we find then that all three dashed

lines of the figure 1 coincide and S~p;τmax,[l+2,1a] indeed has an O(1) contribution from

disconnected free theory diagrams.

What about CPW coefficients of semi-short operators of twist less than τmin? Semi-

short operators generically will sit in the range of twists τ ≤ min(p1 +p2, p3 +p4), therefore

at the bottom dashed line in figure 1 below the window. It follows that the corresponding

SCPW coefficient is O(1/N4),

S~p;τ,[l+2,1a] = O(1/N4) τ = 2a+ b+ 2 < τmin . (2.34)

This is the well known statement that at O(1/N2) there are no semishort operators

in the spectrum below the window, which implies a cancellation between free theory and

the interacting part. Using this information we can solve S~p;τmin,[l+2,1a] in (2.33) and Lf~τ

9Note that here and below, ‘order 1/Nk’, really means N
1
2
(p1+p2+p3+p4)O(1/Nk) because we have not

normalised our external operators.
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in (2.32) explicitly up to order 1/N2. First we solve (2.32) recursively, thus obtaining the

long SCPW coefficients

Lf~τ =
a∑
k=0

(−1)kAτ−2k,[l+2+k,1a−k] +O(1/N4) τ = 2a+ b+ 2 < τmin . (2.35)

Then, we plug this result into (2.33) to give the genuine semi-short coefficients at threshold

S~p;τ,[l+2,1a] =

a∑
k=0

(−1)kAτ−2k,[l+2+k,1a−k] +O(1/N4) τ = 2a+ b+ 2 = τmin . (2.36)

When a = 0, we obtain correctly S~p;τ,[l+2] given above.

Now, can we determine the 1/N4 CPW coefficients of semi-short operators of twist

less than τmin? The answer is affirmative. We first need to use some non-trivial informa-

tion about the spectrum of semi-short operators, and then we can determine these CPW

coefficients unambiguously using data from many different correlators!

The key point here is that we know the explicit form of the double trace semi-short

operators — or more importantly the number of them. They are twist τ , spin l operators

in the [aba] su(4) rep of the form

Oqq̃ = Oq∂lOq̃ (2.37)

as in eq. (1.4) with τ = q + q̃ = 2a + b + 2. For fixed twist and su(4) structure we can

enumerate the independent operators as

qr = a+ 1 + r, q̃r = a+ 1 + b− r r = δa,0, . . . , µ−1 (2.38)

where

µ ≡

{⌊
b+2

2

⌋
a+ l even,⌊

b+1
2

⌋
a+ l odd.

(2.39)

Unlike the case of long operators, semishort operators receive no anomalous dimension.

The operators enumerated in (2.38) are therefore degenerate and we may freely take the

Oqq̃ themselves as our basis. The SCPW coefficients of such operators are then expressed

in terms of the products of three-point couplings as follows,

S~p;τ,[l+2,1a] =
∑
r,s

Cp1p2(Oqr q̃r)(M−1)rsCp3p4(Oqsq̃s) , (2.40)

whereM is the matrix of two-point functions (which is diagonal at leading order in large N),

Mrs = 〈Oqr q̃rOqsq̃s〉 = Yrδrs +O(1/N2) . (2.41)

We also recall the fact, discussed in section 1, that the only couplings with a leading

order contribution in the large N expansion are the ones of the form Cpq(Opq). From this

it follows that at leading order in large N we have a diagonal structure for the following

three-point couplings,

Cqr q̃r(Oqsq̃s) = δrsXr +O(1/N2) . (2.42)
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Armed with this information we can now predict the CPW coefficients of semishort

operators, S~p;τ,[l+2,1a], of twist τ < τmin in terms of SCPW coefficients of correlators with

either τ = τmin. These SCPW are known through (2.36). The formula for S~p;τ,[l+2,1a],

correct up to and including order 1/N4, is given by

S~p;τ,[l+2,1a] =

µ−1∑
r=0

Sp1p2qr q̃rSqr q̃rp3p4
Sqr q̃rqr q̃r

+O(1/N6) τ = 2a+ b+ 2 < τmin . (2.43)

For simplicity, we have suppressed labels τ and [l + 2, 1a] in the SCPW coefficients on the

r.h.s. above.

The two factors giving the numerator of (2.43) in the r.h.s. are both O(1/N2) whereas

the factor in the denominator is leading in large N , thus the r.h.s. is O(1/N4) as we stated

already in (2.34). The formula (2.43) may be proven by simply using (2.40) on both sides

and then using (2.42) and (2.41) on the r.h.s. to cancel the denominator.

Finally, with the knowledge of (2.43) to hand, we can improve Lf~τ in (2.35) and

Sτmin,[l+2,1a] in (2.36) up to order 1/N4. The results are

Lf~τ =

a∑
k=0

(−1)kAτ−2k,[l+2+k,1a−k] −
a∑
k=0

(−1)kSτ−2k,[l+2+k,1a−k] +O(1/N6)

τ = 2a+ b+ 2 < τmin , (2.44)

Sτ,[l+2,1a] =

a∑
k=0

(−1)kAτ−2k,[l+2+k,1a−k] −
a∑
k=1

(−1)kSτ−2k,[l+2+k,1a−k] +O(1/N6)

τ = 2a+ b+ 2 = τmin . (2.45)

Concluding, all SCPW coefficients of 〈Op1Op2Op3Op4〉short and 〈Op1Op2Op3Op4〉long

in (2.28) have been obtained to O(1/N4) and therefore we have successfully split the free

theory correlators into a protected contribution and an unprotected one. In general we

can not go further in 1/N since to do so would require input from triple-trace (and higher

multi-trace) operators.

We conclude this section by illustrating our formulas (2.43) and (2.45) for the sem-

ishort sectors of 〈O3O3O3O3〉, which has been already examined in detail in [34], and

〈O4O4O4O4〉, which is new.

In the case of 〈O3O3O3O3〉 we have below threshold twist 2 and 4 semishort predic-

tions. This semishort sector is special because no multi-trace mixing occurs in the large N

expansion. Therefore we can give formulas exact in N . Very explicitly we find that,

S
〈3333〉
2,[λ] = 0

S
〈3333〉
4,[l+2] =

(
S
〈2233〉
4,[λ]

)2
S
〈2222〉
4,[λ]

=
288((l + 3)!)2

(2l + 6)!((l + 3)(l + 4) + 4
(N2−1)

)

A0
0

(N2 − 1)

S
〈3333〉
4,[l+2,1] =

(
S
〈2233〉
4,[λ,1]

)2
S
〈2222〉
4,[λ,1]

=
576((l + 3)!)2

(2l + 6)!((l + 2)(l + 5)− 12
(N2−1)

)

A0
0

(N2 − 1)
(2.46)
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where A0
0 = (3(N2−1)(N2−4)/N)2. The structure of the CPW coefficients of operators at

threshold, i.e. twist 6, follow straightforwardly by applying (2.45),

S6,[λ] = A6,[λ]

S6,[λ,1] = A6,[λ,1] −A4,[λ+1] + S4,[λ+1] ,

S6,[λ,1,1] = A6,[λ,1,1] −A4,[λ+1,1] +A2,[λ+2] + S4,[λ+1,1] . (2.47)

In the case of 〈O4O4O4O4〉 we have twist 2, 4 and 6 predictions. The computations

at twist 2 and twist 4 are analogous to the case of 〈O3O3O3O3〉. We find,

S
〈4444〉
2,[λ] = 0

S
〈4444〉
4,[l+2] =

16× 1152

(l + 3)(l + 4)

((l + 3)!)2

(2l + 6)!

1 + (−)l

2

1

N4
,

S
〈4444〉
4,[l+2,1] =

6× 1600

(l + 2)(l + 5)

((l + 3)!)2

(2l + 6)!

1− (−)l

2

1

N4
(2.48)

The twist 6 results are new,

S
〈4444〉
6,[l+2] =

16× 384(29 + 3(2l + 9)2)

(l + 3)(l + 6)

(l + 4)!2

(2l + 8)!

1 + (−)l

2

1

N4

S
〈4444〉
6,[l+2,1] =

16× 72(401 + 174(2l + 9)2 + (2l + 9)4)

(l + 2)(l + 4)(l + 5)(l + 7)

(l + 4)!2

(2l + 8)!

1− (−)l

2

1

N4

S
〈4444〉
6,[l+2,1,1] =

16× 2400(l + 2)(l + 7)

(l + 3)(l + 6)

(l + 4)!2

(2l + 8)!

1 + (−)l

2

1

N4
(2.49)

We insisted on 〈O3O3O3O3〉 and 〈O4O4O4O4〉 since these two correlators capture

generic features of our discussion about the semishort sector, and furthermore because

they will be investigated in section 4, where we will construct explicitly their one-loop

completion. We will see then how crucial it is the information from the semishort sector

for our bootstrap program.

3 OPE in Ads5×S5: beyond tree-level

We now turn to the study of correlation functions of single-particle operators in the in-

teracting theory. In particular, we consider N = 4 SYM in the regime of large ’t Hooft

coupling λ ≡ g2
YMN with N � λ and λ fixed. In this interacting corner of N = 4 SYM,

the theory sits at the boundary of a classical AdS5×S5. The size of the holographic space-

time is controlled by L4/α′ 2 = 4πλ, and the action of IIB supergravity is weighted by N2.

Quantum corrections are then organised in a double expansion in 1/N2 and λ−1/2.

The partial non-renormalization theorem [35] is a non perturbative statement about

superconformal symmetry, and restricts the most general form of the four-point correlator

into the sum of free theory, and a particular form for the dynamical function,

〈Op1Op2Op3Op4〉 = 〈Op1Op2Op3Op4〉free + P I(x, x̄; y, ȳ)Dp1p2p3p4(x, x̄; y, ȳ;λ) (3.1)

where I(x, x̄; y, ȳ) is the same rational function characterizing long superblocks in (2.20),

and P is the prefactor (2.9).
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Contrary to free theory, the dynamical function depends on both N and λ. Here we

will be focussing on the order zero terms in the large λ expansion, and consequently we

will drop the λ dependence in our discussion. Stringy corrections have been considered

in [10, 11, 31–33].

In the previous section we studied the SCPW decomposition of free theory. In partic-

ular we cleanly split the free theory correlator into the piece with only (semi)-short oper-

ators in the CPW expansion and a piece with only long operators 〈Op1Op2Op3Op4〉free long

in (2.27). We will now incorporate the dynamical function, Dp1p2p3p4 and specialise to the

long sector. It will be convenient to distinguish the two 1/N expansions,

〈Op1Op2Op3Op4〉free long = 〈Op1Op2Op3Op4〉0free long+
1

N2
〈Op1Op2Op3Op4〉

(1)
free long+. . . (3.2)

D~p =
1

N2
D(1)
~p +

1

N4
D(2)
~p +. . . (3.3)

The notation we will use to refer to the SCPW expansion of the long sector of

〈Op1Op2Op3Op4〉, (i.e. the long sector of free theory together with the dynamical part)

up to order 1/N4, is

〈Op1Op2Op3Op4〉
∣∣∣
long

=

log0 u
∑
~τ

(
L

(0)
~p;~τ +

1

N2
L

(1)
~p;~τ +

1

N4
L

(2)
~p;~τ

)
L~p;~τ + . . . (3.4)

log1 u
∑
~τ

(
1

N2
M

(1)
~p;~τ +

1

N4
M

(2)
~p;~τ

)
L~p;~τ + . . . (3.5)

log2 u
∑
~τ

(
1

N4
N

(2)
~p;~τ

)
L~p;~τ (3.6)

In the above formulae we are omitting terms which are accompanied by derivatives of the

blocks with respect to τ since these are not important for our purpose here.

The logm≥1 terms receive contributions only from the dynamical function, D.

The log0 projection (3.4) is subject to non trivial interplay between free theory and

the dynamical function D, since beyond the leading order, both contribute in the 1/N

expansion,

L
(0)
~p;~τ = L

f(0)
~p;~τ (3.7)

L
(i)
~p;~τ = L

f(i)
~p;~τ + L

D(i)
~p;~τ i = 1, . . . (3.8)

In (3.4)–(3.6) we clustered together various contributions within each log strata, and

we did not specify the range of summation. In fact, understanding the range of summation

for different contributions needs extra explanations, which we make precise in sections 3.1

and 3.2. We will summarize all the relevant results in section 3.4 .
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Every SCPW coefficient in (3.4)–(3.6), is predicted by the OPE, however in order

to have control on these predictions we should first have control on the spectrum of the

theory: the spectrum of supergravity consists of single particle half-BPS operators Op and

multi-particle operators built out of single particle operators. Multi-particles operators can

be either protected or long, but regardless of this, multi-particle operators labelled by more

than two particles do not have a leading order three-point function with the (normalized)

external operators, therefore cannot appear in the leading order OPE. It follows that in

the strict large N limit, supergravity describes a free theory of single- and two-particles

states of integer twist τ , which we can then classify.

Recall then, that a basis of long two-particle superconformal primary operators of twist

τ , spin ` and su(4) channel [aba], has the schematic form [8],

Opq;~τ = Op∂l�
1
2

(τ−p−q)Oq , (p ≤ q) , (3.9)

where the pairs (p, q) are in the set R~τ

R~τ :=

{
(p, q) :

p = i+ a+ 1 + r

q = i+ a+ 1 + b− r
for

i = 1, . . . , (t− 1)

r = 0, . . . , (µ− 1)

}
(3.10)

There are in total d = µ(t− 1) allowed values, where

t ≡ (τ − b)
2

− a , µ ≡

{⌊
b+2

2

⌋
a+ l even,⌊

b+1
2

⌋
a+ l odd.

(3.11)

Plotting the set R~τ in the (p, q) plane helps visualizing that the pairs fill in a rectangle,

where the +π/4 direction contains (t − 1) pairs and the −π/4 direction contains µ pairs.

For example, we (re)draw here below R24,2N,0,6,

p

q

A

B

C

D

A = (2, 8);

B = (5, 5);

C = (12, 12);

D = (9, 15);

In general the operators Opq,~τ will mix. We will denote the true eigenstates (with well-

defined scaling dimensions) by Kpq.
Considering now a four point function 〈Op1Op2Op3Op4〉, the OPE predicts the following

form of the SCPW coefficients for the indicated ranges of the twist of the exchanged
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operators

τ ≥ τmax : L
(0)
~p;~τ =

∑
(pq)∈R~τ

C
(0)
p1p2KpqC

(0)
p3p4Kpq (3.12)

M
(1)
~p;~τ =

1

2

∑
(pq)∈R~τ

C
(0)
p1p2Kpq ηKpq C

(0)
p3p4Kpq (3.13)

N
(2)
~p;~τ =

1

8

∑
(pq)∈R~τ

C
(0)
p1p2Kpq η

2
Kpq C

(0)
p3p4Kpq (3.14)

τmax>τ ≥ τmin : L
(1)
~p;~τ =

∑
(pq)∈R~τ

C
(1)
p1p2KpqC

(0)
p3p4Kpq+C

(0)
p1p2KpqC

(1)
p3p4Kpq (3.15)

M
(2)
~p;~τ =

1

2

∑
(pq)∈R~τ

C
(1)
p1p2Kpq ηKpq C

(0)
p3p4Kpq+C

(0)
p1p2Kpq ηKpq C

(1)
p3p4Kpq (3.16)

τ < τmin : L
(2)
~p;~τ =

∑
(pq)∈R~τ

C
(1)
p1p2KpqC

(1)
p3p4Kpq (3.17)

where CpipjK ≡ Cpipj (K) denotes the three-point coupling,

CpipjK = C
(0)
pipjK +

1

N2
C

(1)
pipjK + . . . (3.18)

of an exchanged pure (and unit normalised) operator Kpq;~τ w.r.t. to the external operators

OpiOpj , and ηK is its anomalous dimensions,

∆K = τ + `+
1

N2
ηK + . . . . (3.19)

The pure operators Kpq;~τ (i.e. those with well-defined anomalous dimensions) are sim-

ply certain linear combinations of the operators Opq;~τ in (3.9). At leading order the explicit

change of basis is given in terms of the above leading three-point functions as

Kpq =
∑

(p′q′)∈R~τ

Op′q′
C

(0)
p′q′Kpq

C
(0)
p′q′Op′q′

+O(1/N2) . (3.20)

The normalisation of Kpq is fixed (up to a sign) by insisting on unit two-point function.

As before we note that the leading three-point functions with the naive operators are

diagonal, i.e. C
(0)
pqOp′q′

= 0 unless (pq) = (p′q′), as can be easily verified via explicit Wick

contractions.

Our next task is to leverage data mined from tree-level four-point functions, specifically

the CPW coefficients L(0),M (1) and L(1), in order to obtain information about the one-

loop four-point function, in particular the entire double log discontinuity, N (2), but also

pieces of the single log part M (2) and analytic part L(2). The strategy used in our previous

works [3, 4, 7] was to fully solve the mixing problem and obtain complete data for the

leading three-point couplings and anomalous dimensions of long operators in [a, 0, a] and

[a, 1, a], by considering the leading (i.e. disconnected free theory) four-point functions and

the (leading discontinuity of the) 1/N2 correction of Rastelli and Zhou [1, 5]. However,
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for more general correlators, specifically when b > 1, the anomalous dimensions exhibit

degeneracy [8]. This degeneracy means it is not possible to fully repeat this program in the

same way and determine all leading three-point functions. Nevertheless we will now discuss

how to overcome this problem and bootstrap one-loop data from tree-level correlators.

In order to have better control over the various phenomena taking place in (3.12)–

(3.17), we will distinguish between three types of contributions:

• Above threshold, τ ≥ τmax
~p .

We define the threshold twist τmax
~p ≡ max(p1 + p2, p3 + p4). The leading log CPW

coefficients, L(0), M (1), and N (2), have contributions above the threshold only, and

we use L(0) and M (1) (for different correlators) to bootsrap the double discontinuity

N (2). This analysis is similar to our previous works [8]. For general correlators the

leading log discontinuity alone is not sufficient to fully fix the one-loop dynamical

function consistenly. There are also important pieces of the one-loop functions which

will be fully determined by data below threshold.

• The window τmin ≤ τ < τmax.

We define the “window” as the range of twists strictly below τmax
~p = max(p1+p2,

p3+p4) and above τmin
~p = min(p1+p2, p3+p4). Clearly the window is absent when

p1 + p2 = p3 + p4. The significance of this region is that the leading three-point

function is absent on one side but not on the other (see diagram below). This allows

us to use tree-level SCPW coefficients L(1) to predict part of the single discontinuity

of the one-loop correlator, M (2).

• Below window, τ < τmin.

Finally, for each su(4) channel [aba] we define the region “below window”, for which

the twist is strictly below τmin
~p = min(p1+p2, p3+p4). For any su(4) rep we also

require τ ≥ 2 + 2a + b, i.e. the unitarity bound relative to the rep [aba]. In this

range of twists one can predict a piece of the analytic (in small u) part of the one-

loop correlator, L(2), using lower order data, specifically results from L(1) for other

correlators.

The three regions described above are shown pictorially in figure 1.

The precise details about how to obtain these predictions are described in the next

subsections.

3.1 Predicting the leading log

Let us begin from the log2 u discontinuity N (2). We shall use many different correlators

and it is thus useful to package together the CPW coefficients, and three-point functions,

into matrices. Similarly we want to rewrite the equations (3.12)–(3.17) in matrix form. To

this end we view the space of operators with given twist, spin and su(4) labels as a µ(t−1)

dimensional vector space denoted with the (multi-) index (pq) ∈ R~τ .
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Define the µ(t−1)×µ(t−1) square matrix of leading order three-point functions C
(0)
~τ

which has entries (
C

(0)
~τ

)
(rs),(pq)

= C
(0)
rsKpq;~τ with (pq), (rs) ∈ R~τ , (3.21)

and the matrix of leading CPW coefficients L
(0)
~τ which has entries(

L
(0)
~τ

)
(p1p2),(p3p4)

= L
(0)
~p;~τ with (p1p2), (p3p4) ∈ R~τ . (3.22)

As argued in section 1 we only obtain a non-zero result at leading order for twists τ ≥ τmax,

i.e. above threshold.

Then, the equation arising from the OPE and the SCPW expansion in (3.12) is written

in matrix form simply as:

C
(0)
~τ C

(0)T
~τ = L

(0)
~τ (3.23)

(where for notational convenience we have also dropped the subscripts denoting the quan-

tum numbers of interest with ~τ). By construction this matrix is symmetric. Moreover,

it is diagonal, because only correlators on the diagonal have disconnected diagrams. Very

explicitly [8]10

L
(0)
~τ = diag

[
(a+1)(a+2+2r+q−p)(l+1)(l+2+τ)(1+r+q−p)r+1(2+a+r+q−p)2+a+r

(1−δp,q/2)(p−1−r)!(p−2−r−a)!(q+r)!(q+r+1+a)!r!(r+1+a)!
Π τ

2
Πl+1+ τ

2

]
p=2+a+i+r
q=p+b−2r

(3.24)

where (i, r) label the pairs (pq) ∈ Rτ,l,[aba], as explained (3.10), and the function Πs can be

given in the form,

Πs =

(
s− q−p

2

)
!
(
s+ q+p

2

)
!

(2s)!
×

∏b+2a+2+i
k=0

(
s+ p+q

2 −k
)

(s+ 4+2a+b
2 )(s+ 2+b

2 )(s− b
2)
×

i∏
m=1

(
s− p+q

2
+m

)
. (3.25)

The three factors (s+ 4+2a+b
2 )(s+ 2+b

2 )(s− b
2) cancel against the numerator for the values

of k = i, i+ a+ 1, i+ a+ b+ 2 respectively. Then, for fixed ~τ , the spin dependent factors

of the elements of the disconnected free theory matrix L
(0)
~τ are the following

L
(0)
pqpq;~τ ∼


(

2+2l+τ+q−p
2

)
!
(

2+2l+τ−q+p
2

)
!

(2+2l+τ)!

×(l+1)(l+τ+2)

a−1∏
k=0

2l+2+τ−b−2a+2k

2

×
b∏

k=1

2l+2+τ−b+2k

2

a+1∏
k=2

2l+2+τ+b+2k

2

×

1
2

(p+q−(b+2a+4))∏
k=1

(
2l+2+τ−b−2a−2−2k

2

)(
2l+2+τ+b+2a+4+2k

2

)
(3.26)

Aside from the factorials in the square brackets, the dependence is a polynomial in spin

of degree (p + q − 2) which is fully factorised into linear factors. It follows that for fixed

10A similar formula was given in [9].
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~τ , the highest degree polynomial factor in L
(0)
~τ occurs for correlators with p + q = τ . For

fixed ~τ the polynomial depends only on the combination p + q. The factorials in L
(0)
pqpq;~τ

instead depend on both p and q.

Define also the matrix M
(1)
~τ of leading log tree-level CPW coefficients of operators with

given quantum numbers ~τ , at order 1/N2, and the (diagonal) matrix of their anomalous

dimensions ηηη~τ . Then (3.13) becomes

1

2
C

(0)
~τ ηηη~τ C

(0)T
~τ = M

(1)
~τ . (3.27)

In matrix form it is straightforward to see that the CPW coefficients contributing to

the log2 u discontinuity at one-loop are given by

N
(2)
~τ =

1

8
C

(0)
~τ ηηη2

~τ C
(0)T
~τ =

1

2
M

(1)
~τ

(
L

(0)
~τ

)−1
M

(1)
~τ , (3.28)

i.e. purely in terms of tree-level CPW coefficients. The second equality is obtained straight-

forwardly from (3.23) and (3.27).

In order to have M
(1)
~τ explicitly, we first need an expression for the dynamical function

D(1)
~p at O(1/N2). We obtain D(1)

~p by using the Mellin Amplitude of Rastelli and Zhou [1],

together with the normalisation derived in [8]. Then, we use this to read off its partial

wave decomposition and construct M
(1)
~τ . The details of this procedure are discussed in

appendix B.2.

Finally we use (3.28) to obtain the full double log discontinuity at O(1/N4),

D(2)
~p

∣∣∣
log2 u

=
∑

τ≥τmax,l,a,b

(
N

(2)
~τ

)
(p1p2),(p3p4)

L̃~p;~τ , (3.29)

where we recall that the long blocks take the form L = P × I × L̃ as in (2.19).

Note that the above method does not require us to find the leading anomalous dimen-

sions ηηη or 3-point functions C(0) themselves. The anomalous dimensions ηηη~τ are just the

eigenvalues of

1

2
C

(0)
~τ ηηη~τ (C

(0)
~τ )−1 = M

(1)
~τ

(
L

(0)
~τ

)−1
(3.30)

and eigenvalues can always be found unambiguously. The eigenvectors however, are am-

biguous if there are repeated eigenvalues, as turns out to be the case here [8]. This is the

aforementioned degeneracy of anomalous dimensions, which is consequence of a surprising

physical statement about tree-level physics: there is a hidden ten-dimensional conformal

symmetry which prevents the spectrum from being fully unmixed at tree-level [9].

The general solution for the anomalous dimensions is [8]

ηKpq = − 1

N2

δ
(4)
t δ

(4)
t+l+1(

l + 2p− 2− a− 1+(−)a+l

2

)
6

(3.31)

where (. . .)6 is the Pochhammer symbol, t ≡ (τ−b)
2 − a was defined in (3.11), and11

δ
(4)
t ≡ 2(t− 1)(t+ a)(t+ a+ b+ 1)(t+ 2a+ b+ 2) . (3.32)

11Compared to [8] we added a factor of 2 in the definition of δ
(4)
t .
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Since ηpq depends only on p and not q, the anomalous dimensions are in general partially

degenerate. States which all lie on the same vertical line in the figure R~τ have the same

anomalous dimension.

Notice that the r.h.s. of (3.30) is rational in spin because it is obtained from M
(1)
~τ and

L
(0)
~τ which are both rational in spin. Indeed, we emphasise that the original eigenvalue

problem set up in [4] is more sophisticated than (3.30), since it was set up to have a direct

correspondence between eigenvectors and three-point couplings.

3.2 Below threshold predictions

A feature of four-point correlators of half-BPS single-particle operators with generic charges

is that one can bootstrap one-loop pieces of the log u and analytic part, below threshold. As

well as the double log discontinuity, which is entirely above threshold, there is information

from within the window and below the window which further constrains the four-point

function. Remarkably using all of this available lower order data always fixes the one-loop

four-point function up to certain well understood ambiguities which only have finite spin

dependence in the SCPW expansion.

To begin with consider long SCPW coefficients of the analytic part of the tree-level

correlator L(1) arising from operators in the window region, τmin ≤ τ < τmax (see figure 1).

For simplicity assume p1 + p2 ≥ p3 + p4 (the other case is similar), then (3.15) becomes

L
(1)
~p;~τ =

∑
(pq)∈R~τ

C
(1)
p1p2KpqC

(0)
p3p4Kpq τmin ≤ τ < τmax, p1 + p2 ≥ p3 + p4 . (3.33)

The key point here is that there are new, leading three-point functions at O(1/N2) —

C
(1)
p1p2Kpq — with below threshold twist τ < p1 + p2.

Fixing (p1p2) and ~τ , let us consider all values of (p3p4) ∈ R~τ and rewrite (3.33) as a

vector equation

L
(1)
(p1p2);~τ = C

(1)
(p1p2);~τC

(0)T
~τ . (3.34)

Here we have defined the row vector C
(1)
(p1p2);~τ with entries(

C
(1)
(p1p2);~τ

)
(pq)

= C
(1)
p1p2K(pq);~τ

∀(pq) ∈ R~τ (3.35)

and the row vector of no-log O(1/N2) CPW coefficients, L
(1)
(p1p2);~τ , with entries(

L
(1)
(p1p2);~τ

)
(p3p4)

= L
(1)
~p;~τ ∀(p3p4) ∈ R~τ . (3.36)

The other ingredient is the matrix of leading three-point couplings C
(0)
~τ defined

in (3.21).

Consider now the log u part of the one-loop four-point function with SCPW coefficients

M (2) (3.16). In direct analogy to L
(1)
(p1p2);~τ above, define the vector M

(2)
(p1p2);~τ . The OPE in

the window (3.16) (for varying (p3p4) ∈ R~τ ), becomes the vector equation

M
(2)
(p1p2);~τ =

1

2
C

(1)
(p1p2);~τηηη~τC

(0)T
~τ . (3.37)
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If we know C
(0)
~τ we can explicitly solve for C

(1)
(p1p2);~τ using (3.34) and plug in here to

get the one-loop SCPW coefficients M
(2)
(p1p2);~τ . However even if we don’t, because of the

degeneracy of the anomalous dimensions, we see that by using (3.23), (3.27) and (3.34) we

obtain M
(2)
(p1p2);~τ purely in terms of tree-level SCPW data as

M
(2)
(p1p2);~τ = L

(1)
(p1p2);~τ (L

(0)
~τ )−1M

(1)
~τ . (3.38)

We thus bootstrap a piece of the single log coefficient of the one-loop correlator from

tree-level data.

In a very similar way, pieces of the analytic part of the one-loop four-point function,

namely the coefficients L(2) for twists below the window, can be determined purely in terms

of tree-level SCPW coefficients. From (3.17) we find

L
(2)
~p;~τ = C

(1)
(p1p2);~τC

(1)T
(p3p4);~τ = L

(1)
(p1p2);~τ (L

(0)
~τ )−1L

(1)T
(p3p4);~τ 4+2a+b ≤ τ < p3 + p4 . (3.39)

Recall that the SCPW coefficients L(1) appearing in (3.39) are determined by summing

contributions of D(1)
~p , and connected free theory, as in (3.8). A general formula for con-

nected free theory at order 1/N2 can be obtained using results in [8], and was presented

already in [9]. In our notation, it is recorded in appendix B.1.

In the above discussion we suppressed the dependence on the spin l of the exchanged

operator. Let us now be more concrete and describe how the quantities M
(2)
(p1p2);~τ and

L
(2)
~p;~τ , obtained from matrix multiplication, depend on spin. In fact, such a spin dependence

follows from a) the knowledge of the spin dependence of disconnected free theory, b) the spin

dependence of tree-level SCPW coefficients [8], given explicitly in (B.23) appendix B.2.3,

and c) reciprocity symmetry l↔ −l− τ − 3. Proofs of the following formulas are collected

in appendix D.

When b is even we can treat even and odd spins separately. In each of these cases

we find,

M
(2)
~p;τ,l,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
× numM(2)(2l + τ + 3)

denM(2)(2l + τ + 3)
(3.40)

L
(2)
~p;τ,l,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
× numL(2)(2l + τ + 3)

denL(2)(2l + τ + 3)
(3.41)

The polynomials num and den are even in the variable (2l+ τ + 3), with coefficients which

depend on τ . The denominators are fully predicted by the formula (3.26) for p+ q = τ . In

particular they have degree τ − 2. The numerators have degree,

degree numM(2)(l) = (τ − 4) + 2(κ~p − 2) + p21 (3.42)

degree numL(2)(l) = 2(τ − 4)− (p43 − p21) (3.43)
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When b is odd, the symmetry l↔ −l− τ −3 exchanges even and odd spin. By picking

the sector of even spins as representative, we find

M
(2)
~p;τ,even,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
×

(l + τ + 2)2numeven
M(2)(l)

deneven
M(2)(l)

(3.44)

L
(2)
~p;τ,even,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
× (l + τ + 2)2numL(2)(l)

denL(2)(l)
(3.45)

where the denominators are again predicted by the formula (3.26) for p+ q = τ , and

degree numM(2)(l) = (τ − 4) + 2(κ~p − 2) + p21 − 2 (3.46)

degree numL(2)(l) = 2(τ − 4)− (p43 − p21)− 2 (3.47)

Summarizing, from all the results given above we can determine the following pieces

of the O(1/N2) four-point functions.

• log1 u stratum obtained from a finite number of twists, ∀ spin,

D(2)
~p

∣∣∣
log1 u

=
1

2
log1 u

∑
l,a,b

τmax−2∑
τ=τmin

(
M

(2)
(p1p2);~τ

)
(p3p4)

L̃~p;~τ + . . . (3.48)

where M(2) is given in (3.38) and we are omitting here terms contributing to twist

τ ≥ τmax.

• log0 u stratum obtained from a finite number of twist, ∀ spin,

D(2)
~p

∣∣∣
log0 u

= D(2)
bound +

∑
l,a,b

τmin−2∑
τ=4+2a+b

L
(2)
~p;~τ L̃~p;~τ + . . . (3.49)

with L(2) given in (3.39) and we are omitting here terms contributing to twist

τ ≥ τmin. There is an extra subtlety which needs to be tackle in order to deter-

mine fully the log0 u stratum. It enters the contribution called D(2)
bound, and has to do

with multiplet recombination at the unitarity bound, τ = 2 + 2a+ b, in each channel.

We will discuss this in the next section.

Equations (3.38) and (3.39) show how to obtain SCPW coefficients of the one-loop four-

point functions directly in terms of SCPW coefficients of tree-level functions. Unmixing of

the CFT data is not necessary to achieve this.

There are cases in which we can unmix explicitly the three-point couplings C(0). Re-

ferring these cases to rectangle R~τ given in (3.10), they correspond to operators in su(4)

representations [n, 0, n] and [n, 1, n], label by µ = 1 ∀t, and operators K ∈ R4+2a+b,l,[aba],

labeled by t = 2 ∀µ, for which the rectangle R~τ collapses into a line, and therefore the

degeneracy has no space yet to show up. Given the knowledge of C(0) we can proceed to

obtain the subleading three-point couplings. A number of examples is given in appendix C,

where we also comment on the so called derivative relation.
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Despite the fact that the explicit three-point functions and anomalous dimensions are

not needed to produce the one-loop OPE predictions described above, we emphasise that

they do follow a significantly simpler pattern, compared to the partial wave coefficients

they are obtained from. The beauty of the pattern is manifest in the structure of the

anomalous dimension (3.31), but also in the three-point couplings unmixing when possible.

As it was found in [4] and [7], the three-point couplings unmixing always reduces to the

problem of finding unitarity matrices with predicted spin dependence.

3.3 Semi-short sector predictions

As anticipated in section 2.4, we now come back to the delicate point of multiplet recom-

bination at the unitarity bound. In (3.49) we gave the one-loop log0 u predictions which

originate from twists above the unitary bound, i.e 4 + 2a + b ≤ τ < τmin
~p . In addition, we

claim that the dynamical one-loop function must contain a contribution at the unitarity

bound τ = 2 + 2a+ b, which we also predicted. Namely,

L
(2)
~p;~τ = L

(2)f
~p;~τ + L

(2)D
~p;~τ = 0, τ = 2 + 2a+ b (3.50)

L
(2)f
~p;2+2a+b,l,[aba] =

a∑
k=0

(−1)kA[l+2+k,1a−k]

∣∣∣
1
N4

−
a∑
k=0

(−1)kS[l+2+k,1a−k] (3.51)

The coefficient L
(2)f
τ=2+2a+b was obtained in (2.44). Its first term is given by the CPW of

connected free theory A2+2a+b−2k,[l+2+k,1a−k] restricted at order 1/N4. Its second term

is given by summing over the new coefficients S2+2a+b−2k,[l+2+k,1a−k], and it follows non

trivially from the analysis of the semishort sector, which by construction is of order 1/N4.

The contributions to the analytic, log0 u part, of D(2), which come from twists at the

unitarity bound, combine to give the function D(2)
bound in (3.49) in the form

D(2)
bound = −

∑
l,a,b

L
(2)f
~p;~τ L̃~p;~τ . (3.52)

The reason for (3.50) is the following: the OPE of OpiOpj in free theory runs, by

definition, over all operators of N = 4 SYM, but supergravity states correspond only to

operators built from half-BPS operators, i.e. they are either half-BPS operators themselves

or multi-particle operators. Other single-trace operators at the unitarity bound, which are

present in free theory, correspond thus to excited string states, and should be absent from

the OPE in the supergravity regime.

Simple examples of operators which correspond to excited string states are the Konishi

operator tr(φ2) in the [000] representation, and twist 3 superconformal primaries of the form

tr(φ3) in the [010] representation. However, these two cases are special because there are

no other existing operators with such quantum numbers. In particular, there will be no

S-type contribution in (3.51). Beyond twist 3, instead, we have to distinguish carefully

between multi-trace semishort operators, which do remain in the spectrum of supergravity,

and excited string states, as was done in section 2.4.
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It is very instructive to compare the new features of 1/N4 physics with corresponding

tree-level terms. Let us begin from the analogue of equation (3.50) at tree level. It re-

duces to

L
(1)
~p;2+2a+b,l,[aba] =

a∑
k=0

(−1)kA[l+2+k,1a−k]

∣∣∣
1
N2︸ ︷︷ ︸

=L
(1)f
~p;2+2a+b,l,[aba]

+L
(1)D
~p;2+2a+b,l,[aba] = 0 (3.53)

The difference compared to (3.50), is precisely the difference between performing multi-

plet recombination with CPW coefficients of connected free theory — assuming all below

threshold (τ = 2 + 2a + b < τmin) semishort operators are absent — and performing

multiplet recombination with remaining below threshold semishort operators. This is just

because the semishort three-point functions are all of O(1/N2) and so are only visible in

the SCPW decomposition at O(1/N4).

Indeed, the leading three-point function C
(0)
pipjKpq

= 0 whenever pi + pj > τ , thus this

vanishing condition extends to the non-semishort “below window” sector, τ < τmin at tree

level. Thus

L
(1)
~p;~τ = L

(1)f
~τ + L

(1)D
~p;~τ = 0 ∀τ < τmin , (3.54)

with the free theory part, L(1)f given in (2.30) when τ is above the unitary bound

τ ≥ 4 + 2a+ b and (3.53) when at the bound τ = 2 + 2a+ b.

3.4 Back to the bootstrap

In the previous three sections we have explained how to bootstrap, from tree-level results,

predictions about the dynamical one-loop function of 〈Op1Op2Op3Op4〉. Summarizing, we

have obtained the leading log2 u discontinuity (see discussion around (3.28)–(3.29)). Then,

we have obtained pieces of the single log1 u from exchanged operators in the window (see

discussion around (3.38) and (3.48)), and also pieces of the analytic log0 u part of the

correlator from below window data (see discussion around (3.49) and (3.39)). Finally,

we understood how to deal with the SCPW coefficient of long operators at the unitarity

bound in (3.51). We emphasize that even though the leading log discontinuity can be

obtained more elegantly by using the hidden symmetry of [9], our approach here allows us

to go beyond that, and compute M (2) and L(2), which are very important pieces of our

bootstrap program.

The OPE predictions introduced so far were organised according to the log u stratifi-

cation of the correlators given in (3.4)–(3.6). We now point out that the structure of the

O(1/N4) dynamical function admits a further refinement.

Consider first the following observation: looking at below threshold physics at tree

level we found that the analytic sector of the dynamical function D(1) is subject to the

constraints (3.54), i.e

L
(1)D
~p;~τ = −L(1)f

~τ ∀4 + 2a+ b ≤ τ < τmin , (3.55)

augmented by a similar constraint at the unitarity bound, given in (3.53). We claim (and

we will show in section 5) that D(1) is entirely fixed by these constraints, together with the

requirement that its log u discontinuity has threshold twist τmax.
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Consider now the analytic sector at one-loop, we find instead

L
(2)D
~p;~τ = −L(2)f

~τ + L
(2)
~p;~τ 4 + 2a+ b ≤ τ < τmin , (3.56)

where L(2) is the new O(1/N4) prediction (3.39) arising from the tree-level data via the

OPE. It is clear then that the analytic part of D(2) has two separate contributions, one

cancelling free theory contribution, i.e −L(2)f
~τ , and another one linked to predictions from

tree-level data L
(2)
~p;~τ . Furthermore, at the unitarity bound we find a similar split into a piece

depending directly on free theory SCPW coefficients and a non-trivial prediction arising

from correlators of different charges (3.51). Since the log2 and log1 strata of D(2) are

determined uniquely by tree-level data via the OPE (see sections 3.1 and 3.2), and have

no free theory contribution, it is natural to split the one-loop function into

D(2) = T (2) +H(2) , (3.57)

where T (2) and H(2) have a different interplay with connected free theory.

The function T (2) generalises the tree-level function D(1), and it will be defined by

the properties that it has log1 u discontinuity with threshold twist τmax, no log2 u double

discontinuity, and it fully cancels below window long contributions coming from recombined

free theory, hence the name of generalised tree-level function. Indeed, for any 4 + 2a+ b ≤
τ < τmin, i.e. strictly above the unitary bound, we expect

L
(2)T
~p;~τ = −L(2)f

~p;~τ (3.58)

with L(2)f the O(1/N4) part of (2.30), and at the unitarity bound

L
(2)T
~p;2+2a+b,l,[aba] = −

a∑
k=0

(−1)kA[l+2+k,1a−k]

∣∣∣
1
N4

(3.59)

It follows that the one-loop OPE predictions (3.39), below the window, will be encoded

only in the function H(2), i.e.

L
(2)H
~p;~τ = L

(2)
~p;~τ 4 + 2a+ b ≤ τ < τmin , (3.60)

and at the unitarity bound

L
(2)H
~p;2+2a+b,l,[aba] = +

a∑
k=0

(−1)kS[l+2+k,1a−k] (3.61)

Our task now is to construct the one-loop correlator D(2) consistently with the OPE

predictions. We will see that the splitting D(2) = H(2) + T (2) is also strongly motivated by

features of the log2 u discontinuity. In fact, we will discover that H(2) is the minimal one-

loop function which consistently emanates top-down from the leading log2 u discontinuity.

Furthermore, we will find that T can be constructed as an exact function of N . The

interplay of H(2) with the semishort prediction (3.61) is very remarkable. When we think

of it as descending from the double logarithmic discontinuity, it is a tangible triumph of

supergravity within our N = 4 bootstrap program.
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4 One-loop correlators

The discussion throughout section 3 provided us with predictions for the one-loop func-

tion that we now make operative by introducing an ansatz which will suit them all. To

understand this ansatz and impose as many constraints as possible, we will first consider

the consequence of crossing symmetry and those of the OPE on the structure of one-loop

correlators, and secondly we will obtain a (two-variable) resummation of the leading double

log discontinuity. We then go on to assemble this and the information below threshold to

obtain the one-loop correlator.

4.1 Structure of one-loop correlators

From the OPE we expect different parts of the correlator to possess contributions from

operators of different twists (see the previous section). The log2 u discontinuity has contri-

butions only from operators above threshold τ ≥ τmax. The log1 u part can have contribu-

tions from the window, τ ≥ τmin. Finally, the analytic log0 u part, can have contributions

starting from the semishort operators with τ ≥ p43 + 2 (see figure 1).

Because a long operator of twist τ gives a contribution to the correlator which goes

like P × I × u
1
2

(τ−p43) for small u, the OPE then dictates that

D(2)
~p |log2 u = O

(
u

1
2

(τmax−p43)
)

D(2)
~p |log1 u = O

(
u

1
2

(τmin−p43)
)

D(2)
~p |log0 u = O(u) , (4.1)

where

1

2
(τmax − p43) = max

(
p3,

p1 + p2 + p3 − p4

2

)
1

2
(τmin − p43) = min

(
p3,

p1 + p2 + p3 − p4

2

)
= κ~p (4.2)

The latter is precisely the degree of extremality.

Consider now the split D(2) = T (2) +H(2). We claim that only T (2) has a contribution

at O(u) whereas H(2) = O(u2). The reason for this follows again from the detailed under-

standing of the semishort sector: the contributions at O(u) arise from semishort operators

with twist p43 + 2 in the [a = 0, p43, 0] su(4) representation. In this case there is a single

A-type contribution in the sum of (2.44), which is to be dealt with by T (2), and a single S

contribution, to be dealt with by H(2). Recall that we deal with the split D(2) = T (2) +H(2)

by using (3.59) and (3.61). Then notice that the S contribution itself is obtained in (2.43)

in terms of SCPW coefficients Sqr q̃rp3p4 where qr + q̃r = p43 + 2. But these correlators

are next to extremal, and they completely vanish when we use the correct definition of

single-particle operators — as discussed below (2.12) — so the S contribution vanishes at

this twist. Thus

T (2)|log0 u = O(u) H(2)|log0 u = O(u2) . (4.3)
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Under crossing u ↔ v, the analysis of the small u expansion in (4.1) translates into

predictions for the small v expansion, which is then useful to understand how to constrain

the ansatz for the full function.

For the correlator itself crossing symmetry very simply implies that

〈Op1(x1)Op2(x2)Op3(x3)Op4(x4)〉 = 〈Opσ1 (xσ1)Opσ2 (xσ2)Opσ3 (xσ3)Opσ4 (xσ4)〉 , (4.4)

for any permutation σ ∈ S4. The implications of this taking into account the prefactor P
requires a little care. When defining the prefactor we always made the choice 0 ≤ p21 ≤ p43

which should therefore be maintained under the permutation, whilst sending u↔ v. This

requires considering a number of different cases for the relative values of the charges pi. In

all cases however there is a unique permutation σ satisfying the above requirements and

one finds that for this permutation

D(2)
p1p2p3p4(u, v) =

(uτ
v

)κ~p
D(2)
pσ1pσ2pσ3pσ4

(v, u) . (4.5)

The small u behaviour of D
(2)
pσ1pσ2pσ3pσ4

(u, v) given in (4.1) then yields the following small

v behaviour of D(2)
~p (u, v)

D(2)
~p |log2 v = O

(
v

1
2

(p1+p4−p2−p3)
)

D(2)
~p |log1 v = O(v0)

D(2)
~p |log0 v = O(1/vκ~p−1) . (4.6)

Further, the different small u behaviour of T (2) and H(2) in (4.3) implies a different small

v limit, namely

T (2)
~p |log0 v = O(1/vκ~p−1) H(2)

~p |log0 v = O(1/vκ~p−2) . (4.7)

The differences in the v behaviour between H and T are crucial in the determination

of our ansatz.

4.2 Resummation of leading logs

Only H(2) carries the log2 u discontinuity in the splitting D(2) = T (2) +H(2), by definition.

We can then use the arguments of the previous section to infer that in the small u and v

expansion we expect

H(2)
~p

∣∣∣
log2u

=u−
p43
2

+
max(p1+p2,p3+p4)

2

[
O
(
v
p43−p21

2

)
log2 v+O(v0) logv+O(1/vκ~p−2)

]
(4.8)

As explained in section 3.1, the leading log discontinuity is defined by the sum

D(2)
~p

∣∣∣
log2 u

=
∑

~τ :τ≥τmax

(
N

(2)
~τ

)
(p1p2),(p3p4)

L̃~p;~τ (4.9)

where N(2) = 1
2M(1)

(
L(0)

)−1
M(1) is the matrix assembled from tree level data.
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By explicit computation of (4.9) to higher order in τ we obtained the resummation of

the leading log discontinuity in a number of cases, and deduced that, as function of the

external charges, it always has the structure

D(2)
~p

∣∣∣
log2u

=
P2,1(x, x̄,σ,τ)

(x−x̄)d~p+8

[
Li2(x)−Li2(x̄)

]
+
P1,2(x, x̄,σ,τ)

(x−x̄)d~p+8

[
Li21(x)−Li21(x̄)

]
+
P1,−(x, x̄,σ,τ)

(x−x̄)d~p+8

[
Li1(x)−Li1(x̄)

]
+
P1,+(x, x̄,σ,τ)

(x−x̄)d~p+7
log(v)+

P0(x, x̄,σ,τ)

(x−x̄)d~p+7

1

vκ~p−2

(4.10)

where

d~p = p1 + p2 + p3 + p4 − 1, (4.11)

for certain polynomials P depending implicitly on the external charges ~p. These polyno-

mials are obtained by matching the series expansion in x and x̄ of (4.10), with that on

the r.h.s. of (4.9). The latter is obtained by considering that each conformal block, of

twist τ and spin l, has a series representation of the form uτ (1− v)lf(x, x̄) where u = xx̄,

v = (1−x)(1−x̄), and f is an analytic symmetric function in x and x̄. We call an expression

of the form (4.10) a two-variable resummation.

After a case-by-case inspection of (4.10) we indeed verify its consistency with the

general structure (4.8). In particular, we always find an overall u(τmax−p43)/2 factor, which

gives the leading term in the small u expansion. Then, in the small v expansion, the log2 v

behaviour is dictated by P1,2, and goes like v(p43−p21)/2, the log1 v behaviour is given by

the limit of −P1,− + P1,+, and goes like v0, and finally only the log0 v contribution has a

singularity of the form 1/vκ~p−2.

In fact a ten-dimensional conformal structure observed in [9] was found to give a direct

formula for these leading logs. We checked in many cases that our results agree, and we

postpone to section 6 a more detailed description of this ten-dimensional structure.

4.3 Minimal one-loop functions

We now have all the relevant information to write an ansatz for the minimal one-loop

function H(2), which is consistent with crossing symmetry, and matches the two-variable

resummation of the leading log2 u discontinuity.

We consider single-valued transcendental functions up to weight-4 functions antisym-

metric in x ↔ x̄. The weight counting follows from the resummation (4.10) in which we

find an overall log2 u paired at most with weight-2 anti-symmetric transcendental functions.

Therefore we need a basis for weight-4 antisymmetric transcendental functions, and their

lower weight completion. We can make it very explicit, by introducing the series of ladder

integrals,

φ(`) =
∑̀
r=0

(−)r(2`− r)!
l!(l − r)!r!

(log u)r(Li2`−r(x)− Li2`−r(x̄)) (4.12)
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Then, the basis has the following form

W4− = h1 φ
(2)(x′1, x

′
2) + h2 φ

(2)(x, x̄) + h3 φ
(2)(1− x, 1− x̄)

W3− = h4 x∂xφ
(2)(x, x̄) + h5 (x− 1)∂xφ

(2)(1− x, 1− x̄)− (x↔ x̄)

W3+ = (x− x̄)
(

h6 ∂vφ
(2)(x, x̄) + h7 ∂uφ

(2)(1− x, 1− x̄)
)

+ h8 ζ3

W2+ = h9 log(u) log(v) + h10 log2 v + h11 log2 u (4.13)

and

W2− = h� φ
(1)(x, x̄) W0 = h0

W1u = hu log u W1v = hv log v
(4.14)

The weight -4 and -3 basis have been written in terms of the double box function, which

is the ` = 2 integral in the ladder series. The weight-2 anti-symmetric element is instead

the ` = 1 box function. Each coefficient function hi=1,...,11,�,u,v,0 will be polynomial in the

variables x, x̄, σ̂, τ̂ .

From considerations about crossing in (4.7), and the structure of the two-variable

resummations (4.10), we conclude that the ansatz for the minimal one-loop function is

given by

H(2)
~p =

W4− + W3−

(x− x̄)d~p+8
+

1

(x− x̄)d~p+7

[
W3+ +

W2+

vκ~p−2

]
+

1

vκ~p−2

[
W2−

(x− x̄)d~p+8
+

W1v + W1u

(x− x̄)d~p+7
+

W0

(x− x̄)d~p+5

]
(4.15)

where recall

d~p = p1 + p2 + p3 + p4 − 1, κ~p =
min(p1 + p2, p3 + p4)

2
− p43

2
. (4.16)

A smaller basis made of just the box function φ(1), together with its weight one and

weight zero completions will be referred to as tree-like. For example, any D function can

be decomposed in such a basis. However, consistently with our splitting of the one-loop

function as D(2) = T (2) + H(2), we will point out in which way the tree-like coefficient

functions for W2−,W1u,W1v,W0 really encode physics beyond tree level.

In the following we describe our bootstrap algorithm, going through the sequence of

steps that need to be performed in order to obtain H(2)
~p .

Crossing symmetry and leading log matching. For any orientation of the external

charges ~p, we consider the log2 u projection of the ansatz and match with the explicit

two-variable resummation described in 4.2. This fixes combinations of coefficient functions

from W4−,W3±,W2+. Note that the power vκ~p−2 in the denominator of W2+ (4.15) is

consistent with the weight-0 part of the leading log (4.10). Matching all independent

leading log discontinuities actually fixes completely the polynomials h1,2,...,7,9,...11. When

κ~p = 2, the correlators are next-to-next-to extremal, for example 2222, and 2233, and there

is no singular v behavior in the ansatz. In these cases our ansatz (4.15) reduces to the

ansatz considered in our previous works [3, 7].
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Absence of unphysical poles. Any leading log discontinuity has itself no poles at

x = x̄. However, that only counts the log2 u projection of the function H(2). In order

for the ansatz to produce a well defined function we have to ensure that globally there

are no unphysical poles. In this way, lower weight coefficient functions become entangled

with those at weights -4, -3 and -2 symmetric. In particular, both the power of (x− x̄) in

the denominators, and the coefficient functions of W2−,W1u,W1v and W0, have the right

structure such that all x = x̄ poles coming from weight -4, -3 and -2 symmetric coefficient

functions can be cancelled. For this reason the ‘tree-like’ coefficients functions of H(2),

h�, hu, hv, h0, have quite different features compared to their counterparts at tree level. In

this process we can keep vκ~p−2 as the maximum singular power in the denominator.

Matching the OPE prediction in and below window. At this stage of the algorithm

we have found a well defined ansatz with the correct log2 u discontinuities. It differs from

H(2)
~p because we have not yet imposed the remaining predictions in and below window,

which we have to compute explicitly by using the strategy outlined in section 3.2 and 3.3.

Such OPE predictions come as SCPW coefficients at fixed twist, and varying spin, i.e. from

a sum like ∑
l

cτ0l B
τ0,l + . . .+

∑
l

cτkl B
τk,l , (4.17)

where cτl stands for M
(2)
τ,l or L

(2)
τ,l , and k < τmax is finite. Given the analytic representation

of the conformal blocks, we can series expand the sum (4.17) in the form

uτ0
τk−τ0∑
n=0

∞∑
m=0

dnmx
nx̄m (4.18)

and then resum it as

xτ0
τk−τ0∑
n=0

xngn(x̄) , (4.19)

where the functions gn contain transcendetal functions of one-variable. Indeed the ansatz

for these gn descends from the two-variable ansatz (4.15), upon performing the same series

expansion as in (4.19). We call an expression of the form (4.19) a one-variable resummation.

The initial number of free coefficients grows with p1 + p2 + p3 + p4, because of the

denominator factors (x − x̄) in (4.15), and obviously with the number of su(4) channels.

Cancelling x = x̄ poles alone still leaves a large number of free coefficients. Imposing

OPE predictions in and below window is indeed crucial to finally obtain the minimal loop

functions.

Ambiguities. Imposing predictions in and below window fixes the majority of the free

coefficients in the ansatz. A sample of this process is illustrated in table 1. The free

parameters left are associated to a restricted class of tree-like functions, which we call

ambiguities. By construction, these ambiguities do not contribute to the log2 u discontinuity

in any channel, obey the correct crossing transformations by themselves, have no x = x̄

poles, and contribute only above window, i.e for twists τ ≥ τmax
~p . Furthermore, we find

the special feature that their SCPW coefficients have finite spin support, l = 0, 1.
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correlator
initial free coeffs.
in h�, hu, hv, h1

after leading log matching
and pole cancellation

after OPE predictions
in and below window

2222 1× 378 1 1

2233 1× 496 16 2

2244 1× 579 20 2

3333 3× 579 20 2

4444 6× 946 68 4

Table 1. Number of tree-like free coefficients across the three steps of our algorithm.

The Mellin amplitude corresponding to the ambiguities is very simple, since it can be

at most linear in the Mellin variables (s, t), for two reasons. Firstly, it cannot be rational,

as any additional pole would spoil our predictions in and below the window. Therefore it

has to be polynomial. Secondly, this polynomial cannot be higher order than linear, as

it would generate tree-like terms with a higher degree denominator than allowed by our

ansatz (4.15) for the minimal one-loop function H(2)
~p .

For a generic correlator without any crossing symmetries, we can parametrise the full

set of ambiguities by

H(2)
~p

∣∣∣
ambiguity

=
u
p3−p4

2

v
p2+p3

2

∮
u
s
2 v

t
2 Γ~p

κ~p−2∑
i=0

κ~p−2−i∑
j=0

(
α

(1,ij)
~p + α

(s,ij)
~p s+ α

(t,ij)
~p t

)
σ̂iτ̂ j , (4.20)

where κ~p is the degree of extremality (2.14), and Γ~p is the combination of Mack’s Gamma

functions

Γ~p = Γ

[
p1+p2−s

2

]
Γ

[
p3+p4−s

2

]
Γ

[
p1+p4−t

2

]
Γ

[
p2+p3−t

2

]
Γ

[
p1+p3−U

2

]
Γ

[
p2+p4−U

2

]
.

(4.21)

In (4.21) we have introduced an auxiliary Mellin variable U which makes crossing symmetry

manifest, and it is defined as

s+ t+ U = p1 + p2 + p3 + p4 − 4. (4.22)

Thus, for a generic correlator, we find
3(κ~p−1)κ~p

2 undetermined ambiguities. In cases in

which the correlator has some crossing symmetry, we have to count only crossing symmetric

combinations.

Let us construct explicitly the ambiguities for the correlators we will discuss in the

next sections:

• 〈O2O2O2O2〉. The only fully crossing symmetric combination one can build is the

constant Mellin amplitude 1, so there can only be a single ambiguity: α1
2222.12

12The corresponding function in position space is D̄4444 [3]. The value of α
(1)
2222 = 60 (in the conventions

of [3]) was found by using a supersymmetric localisation computation [13]. Such a non-zero value breaks

analyticity in spin for the twist 4 one-loop anomalous dimension at spin zero, in agreement with the

argument from the Lorentzian inversion formula [6].
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• 〈O2O2OpOp〉. This family of correlators is not fully crossing symmetric if p > 2. The

remaining invariance can be understood as invariance under t ↔ U . As a result, we

are left with two out of three ambiguities,

α1
22pp, and α2

22pps. (4.23)

• 〈O3O3O3O3〉. This correlator admits up to linear terms in σ̂, and τ̂ , but crossing

symmetry only allows two (fully symmetric) ambiguities,

α1
3333(1 + σ̂ + τ̂) and α2

3333(s+ Uσ̂ + tτ̂). (4.24)

A correlator with κ = 3 but no crossing symmetries would admit 9 ambiguities.

• 〈O4O4O4O4〉. The full crossing symmetry of this correlator greatly reduces the num-

ber of ambiguities. With at most quadratic terms in σ̂, and τ̂ , one can construct four

independent ambiguities: two ambiguities with constant Mellin amplitudes

α1
4444(1 + σ̂2 + τ̂2) and α2

4444(σ̂ + τ̂ + σ̂τ) (4.25)

and two other ambiguities with linear terms

α3
4444(s+ Uσ̂2 + tτ̂2), and α4

4444(tσ̂ + Uτ̂ + sσ̂τ̂). (4.26)

A correlator with κ = 4 but no crossing symmetries would admit 18 ambiguities.

Notice that our analysis here is already in agreement with the observed number of

ambiguities shown in table 1.

Since our bootstrap algorithm has a built-in position space implementation, it will be

useful to rewrite the Mellin amplitude for the ambiguities in such a way that the comparison

with the position space result is simple. This rewriting follows our organisation of the OPE

into above threshold, in and below window, and it is explained in appendix B.2.

4.4 〈O3O3O3O3〉

We begin illustrating our bootstrap algorithm with H(2)
3333. The solution for the polynomial

coefficients h1, . . . h11, h�, hu, hv, h0 is listed in a Mathematica notebook attached to the

arXiv submission of this article. For simplicity, the ancillary file contains H(2)
3333 with a

particular value of the ambiguities.

The 3333 correlator has degree of extremality 3 and full crossing symmetry. The long

sector decomposes into three representations, [000], [101] and [020], with threshold twist

τmax = 6.

The resummation of the log2 u discontinuity can be obtained from D̂3333 and ∆(8) as

explained in section 6.1. With this data we can then initiate the first step of our algorithm,

by matching and imposing crossing symmetry of the ansatz.

In the second step of the algorithm we impose absence of x = x̄ poles on the ansatz.

Finally, we have to impose OPE predictions in and below window. Here the window is

empty, since all external charges are equals. This implies that upon projecting the ansatz
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onto the log1 u stratum we have to set to zero the one-variable expansion up to order O(x3).

OPE predictions below window are instead non trivial.

In [000] the unitary bound is τ = 2, and no long supergravity states contribute, since

these are all string states. A non trivial prediction comes in at twist 4. Here there is only one

double trace operator K22;4,l,[000]. Using (3.39) we thus get a prediction for L
(2)H
3333;4,l,[000].

13

We have

L
(2)H
3333;2,l,[000] = 0 (4.27)

L
(2)H
3333;4,l,[000] =

9× 4800

(l + 1)(l + 6)

((l + 3)!)2

(2l + 6)!

1 + (−1)l

2
. (4.28)

The one-variable resummation of (4.28) input into (3.49) reads

H(2)
3333

∣∣∣
Υ[000] log0 u

= 9× 6!× x2

x̄4

[
5(x̄− 2)x̄Li1(x̄) +

5

3
(6− 6x̄+ x̄2)Li21(x̄)

]
+O(x3) . (4.29)

In the [101] and [020] sectors, the unitary bound is τ = 4. There are no predictions

descending from the long sectors at tree level. Instead, this is the first case in which we

need to consider the consequences of protected semishort operators at twist 4, through our

formula (3.61) and the results for S4;l+2,[1] and S4;l+2 given in (2.46). More precisely, there

is an S4;l+2,[1] for [101], which implies

L
(2)H
3333;4,l,[101] =

9× 576

(l + 2)(l + 5)

((l + 3)!)2

(2l + 6)!

1− (−1)l

2
(4.30)

with corresponding one-variable resummation,

H(2)
3333

∣∣∣
Υ[101] log0u

= 9×6!×x
2

x̄4

[
3(x̄−2)x̄+

(
6−6x̄+

7

5
x̄2

)
Li1(x̄)+

1

5
(x̄−2)x̄Li21(x̄)

]
+O(x3)

(4.31)

and an S4,l+2,[0] for [020] which gives,

L
(2)H
3333;4,l,[020] =

9× 288

(l + 3)(l + 4)

((l + 3)!)2

(2l + 6)!

1 + (−1)l

2
(4.32)

with one-variable resummation

H(2)
3333

∣∣∣
Υ[020] log0 u

= 9× 6!× x2

x̄4

[
6

5
x̄2 +

3

5
(x̄− 2)x̄Li1(x̄) +

1

10
x̄2Li21(x̄)

]
+O(x3) (4.33)

There is an important logical distinction between L
(2)H
3333;4,l,[101] and L

(2)H
3333;4,l,[020] we

should highlight. The twist 4 of [020] lies at the bottom of multiplet recombination, in

the sense that τ = 2a + b + 2 with b = 2 and a = 0. This means that the corresponding

SCPW does not get shifted by multiplet recombination in another su(4) representation. In

fact, our formula (3.61) makes explicit that there is no extra summation over a that needs

to be taken into account. This is not the case for the twist 4 of [101], where instead the

13The explicit expression for C
(1)

33;4,l,[000] is in appendix, given by (C.8).
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SCPW coefficient receives a contribution due to multiplet recombination of [000] at twist 2.

However, there is no S2;l+2,[0] contribution, therefore L
(2)H
3333;4,l,[101] = S4;l+2,[1] holds exactly.

Coming back to our ansatz, we match (4.29), (4.31) and (4.33). Recall that we had 20

free coefficients, i.e. coefficients not fixed by demanding absence of x = x̄ poles. However

after matching the OPE predictions below window we are left with only 2 free coefficients.

The functions they span are the final ambiguities. They come out in the form

H(2)
3333

∣∣∣
ambiguity

= u3

∮
usvt Γ[−s]2Γ[−t]2Γ

[
s+ t+ 5

]2
×
[
(1 + σ̂ + τ̂)β1

3333 +
(
s+ τ̂ t− σ̂(5 + s+ t)

)
β2

3333

]
(4.34)

By redefining the Mellin variables s, t we obtain a perfect match with our previous discus-

sion in (4.24). Upon inspection, the SCPW of (4.34) only contributes at spin l = 0 for

twist above threshold.

4.5 〈O4O4O4O4〉

The next correlator we study is 4444. The solution of our bootstrap problem, written up in

the basis (4.15), is appended in a Mathematica notebook attached to the arXiv submission

of this article. For simplicity, the ancillary file contains H(2)
4444 with a particular value of

the ambiguities.

The 4444 correlator is fully crossing symmetric and has degree of extremality 4. The

long sector decomposes into six su(4) channels: [000], [101], [020] and [202], [121], [040].

The threshold twist is τmax = 8.

The leading log2 u resummation is obtained by acting with D̂4444 and ∆(8), as explained

in section 6.1. We then initiate the algorithm by matching, imposing crossing symmetry,

and absence of x = x̄ poles.

We finally come to the OPE predictions in and below window. Being the window

empty, we project the ansatz onto the log1 u stratum and we set to zero the one-variable

expansion up to O(x4). Below window we find instead non trivial physics. For the rep-

resentations [000], [101], [020], the discussion is similar to that in 3333 for twist 4, and

continues at twist 6 by including predictions coming from the long sector at tree level. For

[202], [121], [040] we will have to consider non trivial multiplet recombination taking into

account the predictions arising from the semishort sector. We proceed in order.

In the singlet channel [000], there is an empty twist 2 sector, then the 1/N2 subleading

three-point couplings C
(1)
44;4,l,[000] and C

(1)
44;6,l,[000] give non trivial predictions at twist 4 and

twist 6.14 Recall that there are two double trace operators in R6,l,[000], therefore the twist

6 computation yields a vector three-point function. We find, from (3.39),

L
(2)H
4444;2,l,[000] = 0 (4.35)

L
(2)H
4444;4,l,[000] =

16× 4800

(l + 1)(l + 6)

((l + 3)!)2

(2l + 6)!

1 + (−1)l

2
(4.36)

L
(2)H
4444;6,l,[000] =

16× 360(2l + 9)2(119 + (2l + 9)2)

(l + 1)(l + 2)(l + 7)(l + 8)

((l + 4)!)2

(2l + 8)!

1 + (−1)l

2
(4.37)

14Explicit expressions for C
(1)

44;4,l,[000] and C
(1)

44;6,l,[000] are given in (C.8) and (C.12), respectively.
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The corresponding one variable resummation is

H(2)
4444

∣∣∣
Υ[000] log0 u

= 16× 6!

×

(
x2

x̄4

[
5(x̄− 2)x̄Li1(x̄) +

5

3
(6− 6x̄+ x̄2)Li21(x̄)

]
+

x3

x̄5

[
x̄2(x̄− 2)

(
4x̄2

x̄− 1
+ 205

)
+ (3440− 5590x̄+

7484

3
x̄2 − 244x̄3)Li21(x̄)

− 300x̄(6− 6x̄+ x̄2)Li2(x̄)− x̄(1230− 1210x̄+ 211x̄2)Li1(x̄)

])
+O(x4)

(4.38)

In [101] and [020] there are twist 4 predictions coming from semishorts operators at the

unitarity bound, similarly to the case of 3333 discussed previously. In particular, there is an

S4;l+2,[1] for [101] and an S4;l+2,[0] for [020], computed in (2.48) In addition we have 1/N2

three-point couplings C
(1)
44;6,l,[101] and C

(1)
44;6,l,[020] which give predictions at twist 6. Notice

that twist 6 is the first twist available for a long rep [020], but the latter has doubling of

the operators, i.e. µ = 2.

The list of results in [101] is

L
(2)H
4444;4,l,[101] =

16× 1600

(l + 2)(l + 5)

((l + 3)!)2

(2l + 6)!

1− (−1)l

2
(4.39)

L
(2)H
4444;6,l,[101] =

16× 7200(l + 1)(l + 8)

(l + 3)(l + 6)

((l + 4)!)2

(2l + 8)!

1− (−1)l

2
(4.40)

with resummation

H(2)
4444

∣∣∣
Υ[101] log0 u

= 16× 526!

32

×

(
x2

x̄4

[
3(x̄− 2)x̄+

(
6− 6x̄+

7

5
x̄2

)
Li1(x̄) +

1

5
(x̄− 2)x̄Li21(x̄)

]
−

x3

x̄5

[
4

75
(1527x̄− 3014)x̄2 +

9(x̄− 2)x̄4

5(x̄− 1)
+

16

75
(746− 766x̄+ 201x̄2)x̄Li1(x̄)

+
1

10
(4− 176x̄+ 87x̄2)x̄Li21(x̄) +

2

5
(4 + 4x̄− 3x̄2)x̄Li2(x̄)

])
+O(x4)

(4.41)

The list of results in [020] is

L
(2)H
4444;4,l,[020] =

16×1152

(l+3)(l+4)

((l+3)!)2

(2l+6)!

1+(−1)l

2
(4.42)

L
(2)H
4444;6,l,[020] =

16×864(40817+16702(2l+9)2+81(2l+9)4)

80(l+1)(l+4)(l+5)(l+8)

((l+4)!)2

(2l+8)!

1+(−1)l

2
(4.43)
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with resummation

H(2)
4444

∣∣∣
Υ[020] log0 u

= 16× 226!

×

(
x2

x̄4

[
6

5
x̄2 +

3

5
(x̄− 2)x̄Li1(x̄) +

1

10
x̄2Li21(x̄)

]
+

x3

x̄5

[
3

5
(382− 175x̄) +

243(x̄− 2)x̄2

25(x̄− 1)
− 3

5
(11358− 11342x̄+ 1981x̄2)x̄Li1(x̄)

1

52
(164640− 246960x̄+ 98794x̄2 − 8667x̄3)Li21(x̄)− 72x̄3Li2(x̄)

])
+O(x4)

(4.44)

Finally we arrive at the representations [202], [121] and [040]. The unitary bound

for all of them is twist 6, and the semishort predictions were computed in (2.49). In

the 4444 correlator, the twist 6 of [040] lies at the bottom of multiplet recombination

because τ = 2a + b + 2 with b = 4 and a = 0. The prediction for L
(2)H
4444;6,l,[040] is thus

straightforward. The predictions for [121] and [202] involve further shifts, which we now

describe. From (3.61) we find

L
(2)H
4444;6,l,[040] = −S4444;6,l+2;[0] (4.45)

L
(2)H
4444;6,l,[121] = +S4444;6,l+2;[1] − S4444;4,l+3;[0] (4.46)

L
(2)H
4444;6,l,[202] = −S4444;6,l+2;[2] + S4444;4,l+3;[1] (4.47)

where in the last line we already implemented the absence of S4444;2,l+2;[0]. Formulas (4.46)

and (4.47) correctly include shifts to due to multiplet recombination at twist 4 in [020] and

[101], respectively. Let us give the explicit expressions here below.

For [040] we find

L
(2)H
4444;6,l,[040] =

16× 384(29 + 3(2l + 9)2)

(l + 3)(l + 6)

(l + 4)!2

(2l + 8)!

1 + (−)l

2
(4.48)

with resummation

H(2)
4444

∣∣∣
Υ[040] log0u

= 16×6!×x
3

x̄5

×
((

208− 16x̄2

5(x̄−1)
+

112

15
Li21(x̄)

)
(2−x̄)x̄2− 16

3
(78−78x̄+17x̄2)x̄Li1(x̄)

)
+O(x4)

(4.49)

For [202] we find

L
(2)H
4444;6,l,[202] = 16×

[
2400(l + 2)(l + 7)

(l + 3)(l + 6)
−
(

1600

(l + 2)(l + 5)

)
l→l+1

]
(l + 4)!2

(2l + 8)!

1 + (−)l

2

=
16× 200

(
−83 + 3(2l + 9)2

)
(l + 3)(l + 6)

(l + 4)!2

(2l + 8)!

1 + (−)l

2
(4.50)
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with resummation

H(2)
4444

∣∣∣
Υ[202] log0u

= 16×6!×x
3

x̄5

×
((

25

3
+

5x̄2

3(x̄−1)
+

35

9
Li21(x̄)

)
x̄2(x̄−2)+

5

9
(30−30x̄+13x̄2)Li1(x̄)

)
+O(x4)

(4.51)

For [121] we find

L
(2)H
4444;6,l,[121] = 16×

[
72(401+174(2l+9)2+(2l+9)4)

(l+2)(l+4)(l+5)(l+7)
− 1152

(l+4)(l+5)

]
(l+4)!2

(2l+8)!

1−(−)l

2

=
16×72(3+(2l+9)2)(167+(2l+9)2)

(l+2)(l+4)(l+5)(l+7)

(l+4)!2

(2l+8)!

1−(−)l

2
(4.52)

with resummation

H(2)
4444

∣∣∣
Υ[121] log0 u

= 16× 6!× x3

x̄5

((
4x̄3(2− 2x̄+ x̄2)

5(x̄− 1)
− 2184x̄(x̄− 1) +

1874

5
x̄3

)

−
(

2184− 3276x̄+
7104

5
x̄2 − 822

5
x̄3

)
Li1(x̄) +

14

5
(48− 48x̄+ 7x̄2)Li21(x̄)

)
+O(x4)

Incredibly all these predictions are consistent with the minimal ansatz (4.15) and

uniquely fix the remaining coefficients, leaving only 4 ambiguities. These are

H(2)
4444

∣∣∣
ambiguity

= u4

∮
usvt Γ[−s]2Γ[−t]2Γ

[
s+ t+ 6

]2
×
[
(1 + σ̂2 + τ̂2)β1

4444 +
(
s+ τ̂2t− σ̂2(6 + s+ t)

)
β2

4444 (4.53)

+ (τ̂ + σ̂ + τ̂ σ̂)β3
4444 +

(
τ̂(1 + s+ t)− σ̂(5 + t)− σ̂τ̂(5 + s)

)
β4

4444

]
Again, we find perfect match with our previous discussion in (4.25)–(4.26), after the redef-

inition of Mellin variables s and t. The ambiguities have only spin l = 0 support in any

su(4) channel, for twist above threshold.

4.6 Next-to-next-to-extremal correlators

In this section we will consider four point correlators 〈Op1Op2Op3Op4〉 with external charges

〈2244〉, 〈3335〉 and 〈4424〉. These correlators are all N2E.

For N2E correlators there are no OPE predictions below window. In particular, sem-

ishort predictions Sp1p2p3p4 vanish because they are determined through (2.43) in terms of

SCPW coefficients Sp(r)q(r)p3p4 , where p(r) + q(r) = p43 + 2, and these correlators are next

to extremal, thus completely vanishing as a consequence of our definition of external single

particles states. Because of the split T (2) +H(2), it follows L
(2)H
2+p43,[0p430] = 0.

An additional peculiarity of 〈3335〉 and 〈4424〉, which generalises to other N2E corre-

lators as discussed later on in section 5.3, is the fact that the tree level functions D(1)
3335

and D(1)
4424 are proportional. This implies that, after taking into account a normalization,

both correlators have the same one-loop log2 u discontinuity. Therefore, an ansatz having
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the correct crossing symmetries, and constructed by matching the log2 u discontinuity and

imposing absence of x = x̄ poles, cannot distinguish between H(2)
3335 and H(2)

4424. Very in-

terestingly, this type of degeneracy is actually lifted at one-loop, because of the different

OPE predictions in the window. This illustrates another important aspect of the OPE

predictions in and below window. In general, we expect the situation to be as follows:

pairs of correlators which are degenerate at tree level will have instead different minimal

one-loop functions, distinguished by the OPE predictions in and below window.

For 〈3335〉 and 〈4424〉 we have log1 u twist 6 prediction (in the [020] representation).

Making manifest reciprocity symmetry, we write them in the form (3.40),

(τ = 6)


Y

(0)
3335 + Y

(2)
3335(l + 9

2)2

(l + 1)(l + 4)(l + 5)(l + 8)

(l + 4)!(l + 5)!

(2l + 8)!

Y
(0)

4424 + Y
(2)

4424(l + 9
2)2

(l + 1)(l + 4)(l + 5)(l + 8)

(l + 4)!(l + 5)!

(2l + 8)!

(4.54)

The values of the free Y coefficient above, obtained from the OPE predictions, are{
Y

(0)
3335 = −4762800

Y
(2)

3335 = 4
35Y

(0)
3335

;

{
Y

(0)
4424 = −4628736

Y
(2)

4424 = 55
2009Y

(0)
4424

(4.55)

We proceed as in previous sections. We construct an ansatz which matches the leading

logs, has the correct symmetries and no x = x̄ poles. We then impose the OPE predictions

in the window.

The result for 〈3335〉 and 〈4424〉 can be obtained in the following instructive way. We

initially normalize both correlators in a way that the leading logs are the same. Thus we

construct one ansatz. Before imposing OPE predictions, this ansatz has six free coefficients.

We now insist that the SCPW coefficients of the ansatz at τ = 6 have the form (4.54),

where we do not specify the values of Y
(0)
~p and Y

(1)
~p yet. This constraint returns a one-

parameter ansatz with one additional ambiguity. We go back to the correct normalization

for the correlators, and we keep Y
(0)
~p as the free parameter, isolating the tree-like function

it multiplies. Then, we can write the minimal loop functions in the following form

H(2)
~p = N~pH

(2)
+

1

882
Y

(0)
~p u2D4444 ~p = 3335||4424 (4.56)

where N4424 = 128 and N3335 = 135. Because Y
(0)

3335 6= Y
(0)

4424, we find H(2)
3335 6= H

(2)
4424.

Differently from tree level, the minimal one-loop functions are distinct.

The ambiguity has the same functional form for both 〈3335〉 and 〈4424〉. Written in

Mellin space it reads

H(2)
3335||4424

∣∣∣
ambiguity

=u3v

∮
usvtΓ[−s]Γ[−s−1]Γ[−t]Γ[−t−1]Γ[s+t+6]Γ[s+t+7]β~p

(4.57)

Notice the combinations of Mack’s Γ~p is the same for both 〈3335〉 and 〈4424〉.
The result for 〈2244〉 is more straightforward. In the window, we have both twist 4

and 6 predictions (in the [000] representation). Again we write them in the form (3.40),
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namely

(τ = 4)
X

(0)
2244

(l + 1)(l + 6)

((l + 3)!)2

(2l + 6)!
(4.58)

(τ = 6)
Y

(0)
2244 + Y

(2)
2244(l + 9

2)2

(l + 1)(l + 2)(l + 7)(l + 8)

((l + 4)!)2

(2l + 8)!
(4.59)

with predicted values,

X
(0)
2244 = −8× 1920, Y

(0)
2244 = +8× 176400, Y

(2)
2244 =

76

245
Y

(0)
2244. (4.60)

In the orientation 〈2424〉 the window is empty.

The bootstrap algorithm returns H2244 leaving only two ambiguities as we discussed

in (4.23). In Mellin space we find

H(2)
2244

∣∣∣
ambiguity

= u4

∮
usvtΓ[−s]Γ[−s− 2]Γ[−t]2Γ[s+ t+ 6]2

[
β1

2244 + β2
2244 s

]
(4.61)

The minimal one-loop functions corresponding to 〈3335〉 and 〈4424〉, and 〈2244〉, are

given in a Mathematica notebook attached to the arXiv submission of this article. For

〈3335〉 and 〈4424〉 we only included H. In both cases, we have fixed some value of the

ambiguities.

5 Upgraded tree level Mellin amplitudes

In previous sections, we showed that the one-loop function D(2) admits the split D(2) =

T (2) +H(2), where H(2) encodes all the non trivial OPE predictions at O(1/N4) whereas

T (2) is a generalised tree-level function having no log2 contribution. Our final task is to

bootstrap T .

The generalised tree level function T~p is defined as the unique function, within the

ansatz:

T~p =
P� φ

(1)(x, x̄)

(x− x̄)d+2
+

Pv log(v)

(x− x̄)d+1
+

1

vκ~p−1

[
Pu log(u)

(x− x̄)d+1
+

P1

(x− x̄)d−1

]
(5.1)

d~p = p1 + p2 + p3 + p4 − 1, κ~p = min

(
p3,

p1 + p2 + p3 − p4

2

)
(5.2)

such that:

(a) the threshold twist for the log(u) discontinuity is τ = τmax.

(b) the SCPW expansion below window completely cancels free theory contributions as

described in (3.58) and (3.59)

(c) there are no unphysical x = x̄ poles in (5.1).

The coefficient functions denoted by P are polynomials in x, x̄ and σ, τ . As functions of x, x̄

variables, these polynomials have a Taylor expansion of the form xnx̄m with m+n ≤ p1 +
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p2 +p3 +p4. The function T~p is symmetric under x↔ x̄, therefore a given polynomial P has

the same symmetry as the transcendental function it multiplies. The su(4) decomposition

of T~p is obviously the same as for the full dynamical function D~p.
Implementing condition (a) implies

P� = O
(
u−

p43
2

+
max(p1+p2, p3+p4)

2

)
(5.3)

Pu = O
(
u−

p43
2

+
max(p1+p2, p3+p4)

2

)
(5.4)

The above conditions in fact define a generalised tree function T~p for any free N = 4

theory, i.e. for all N . Indeed we can define it in terms of the coefficients Akγ in front of each

propagator structure in (2.8), which we can leave completely arbitrary (other than the rela-

tions between them arising from imposing crossing symmetry). The polynomials P in (5.1)

become function of the free propagator coefficients, P [{Akγ}]. The precise value of these Akγ
does not affect any step of this algorithm. Furthemore, condition (b) is overconstraining,

and therefore the solution we find is unique, i.e. T~p is unique.

Because of this uniqueness, we expect our function T~p to reduce to known results at

tree level when the propagator coefficients Akγ take on their free theory values. Indeed,

when the external charges are equal, our conditions are precisely those imposed in [36],

and for arbitrary charges we expect to recover the tree-level correlators of Rastelli and

Zhou [1]. Notice that in position space the function of [1] is described by the same ansatz

as in (5.1), except for the change d~p → d~p − 2. (Various examples can be found in [4] by

rewriting the corresponding D representation.) Quite non trivially, T~p does reduce to the

function of [1] when the coefficients Akγ are truncated at O(1/N2). In fact, we find that all

polynomials P�,u,v,1[{Akγ}] acquire an extra double zero (x − x̄)2 when we restrict the Akγ
to their tree level value.

At tree level, the free theory coefficients Aγ
∣∣
1/N2 are all proportional to each other,

and thus satisfy linear relations. Therefore, we can understand the tree-level degeneration

as the result of imposing on P�,u,v,1[{Akγ}] these tree-level linear relations. However, the

non-planar values of the Akγ are not as simple, and the corresponding relations become

non-linear.

Similarly to the function of Rastelli and Zhou [1] the most transparent representation of

T~p is given in Mellin space. We thus define the corresponding Mellin amplitude M[T~p](s, t)
of the generalised tree similarly to that of the tree-level function of [1]. Amazingly all the

generalised tree-level functions T~p — defined by the above conditions (a), (b), (c) — can be

written in this form with a simple rational Mellin amplitude with only simple poles.

The specific form of M[T~p](s, t), i.e. finiteness and rationality, translates into the ob-

servation that the entire function T~p is determined uniquely in terms of the coefficient P�

in from of the box function. This can be understood from the fact that the box function

contains a log u log v term, which on the other hand arises only from a double pole in both s

and t in the Mellin transform. More details about this statement are given in appendix B.2.

In the next sections we make our discussion concrete by considering T3333 and T4444.

As a bonus of our definition of single-particle operators, we will also show that T~p for

next-to-next-to extremal correlators coincides with the function of Rastelli and Zhou.
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5.1 〈O3O3O3O3〉

The result for connected free theory was given in (2.6). We rewrite it here below for

convenience,

〈O3O3O3O3〉conn. free =
9(N2 − 4)2(N2 − 1)

N2

×
[
9

(
uσ̂ +

uτ̂

v
+ u2σ̂2 +

u2τ̂2

v2
+
u3σ̂2τ̂

v2
+
u3σ̂τ̂2

v2

)
+

18(N2 − 12)

(N2 − 4)

u2σ̂τ̂

v

]
. (5.5)

Crossing invariance of 〈O3O3O3O3〉 restricts the total number of connected coefficients

{Ak2, Ak4, Ak6}, in the generic sum over propagator structures (2.8), to only two independent

ones. We have indeed

A0
2 = A1

2 = A0
4 = A2

4 = A1
6 = A2

6 =
9

(N2 − 1)
A0

0 (5.6)

A1
4 =

18(N2 − 12)

(N2 − 4)(N2 − 1)
A0

0 (5.7)

where A0
0 = 9(N2−4)2(N2−1)2

N2 .

The generalised tree level function in Mellin space is

T3333 = u3

∮
usvt Γ[−s]2Γ[−t]2Γ

[
s+ t+ 5

]2M[T3333] , (5.8)

with

M[T3333] =
1

(s+ 2)(t+ 1)(s+ t+ 4)

[
−A0

2 +
1

4
(s+ 2)(A1

4 − 2A0
2)

]
+

τ̂

(s+ 1)(t+ 2)(s+ t+ 4)

[
−A0

2 +
1

4
(t+ 2)(A1

4 − 2A0
2)

]
+

σ̂

(s+ 1)(t+ 1)(s+ t+ 3)

[
−A0

2 +
1

4
(s+ t+ 3)(A1

4 − 2A0
2)

]
.

(5.9)

Notice thatM[T3333] = m1
3333(s, t) + σ̂mσ̂

3333(s, t) + τ̂mτ̂
3333(s, t). Exploiting full crossing of

T3333 it also useful to write

T3333 =
1

u2

(
F(u, v) + σ̂u5F(1/v, u/v) +

τ̂u5

v5
F(v, u)

)
, (5.10)

with F such that F(u, v) = F(u/v, 1/v). The amplitude m1
3333(s, t) is indeed the Mellin

transform of F . Then, crossing invariance of F under u → u/v and v → 1/v corresponds

to the identity

m1
3333(s, t) = m1

3333(s,−t− s− 5). (5.11)

The other two identities which follow from (5.10) are

mσ̂
3333(s, t) = m1

3333(−s− t− 5, s), mτ̂
3333(s, t) = m1

3333(t, s). (5.12)

In our notation, the amplitude of Rastelli and Zhou would correspond only to the term

multiplied by A0
2 in (5.9). Indeed, the new contribution, proportional to A1

4−2A0
2, vanishes

when we plug in (5.6) and (5.7), and we expand at order 1/N2. In the next example, i.e.

the generalised tree-level correlator T4444, we will see similar features showing up, and we

will comment more in general about what is the pattern of M[T ].
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5.2 〈O4O4O4O4〉

There are in total 3 + 12 propagator structures in free theory. The first three are discon-

nected and not relevant here. We quote the result for connected free theory,

〈O4O4O4O4〉conn. free =
16(N2−9)2(N2−4)2(N2−1)2

(N2+1)2

×
[

16

N2−1

(
uσ̂+

uτ̂

v
+u3σ̂3+

u3τ̂3

v3
+
u4σ̂3τ̂

v
+
u4σ̂τ̂3

v3

)
+

8

(
27

N2(N2−9)
+

9

N2+1
− 7N2+4

(N2−4)(N2−1)

)(
u2σ̂2+

u2τ̂2

v2
+
u4σ̂2τ̂2

v2

)
+

16

(
54

N2(N2−9)
+

18

N2+1
− 16N2+25

(N2−4)(N2−1)

)(
u2σ̂τ̂

v
+
u3σ̂2τ̂

v
+
u3σ̂τ̂2

v2

)]
. (5.13)

Written as a sum over propagator structures as in (2.8), connected free theory is constrained

by crossing symmetry to three independent classes,

A0
2 = A1

2 = A0
6 = A1

6 = A1
8 = A3

8 =
16

N2 − 1
, (5.14)

A0
4 = A2

4 = A2
8 = 8

(
27

N2(N2 − 9)
+

9

N2 + 1
− 7N2 + 4

(N2 − 4)(N2 − 1)

)
, (5.15)

A1
6 = A2

6 = A1
4 = 16

(
54

N2(N2 − 9)
+

18

N2 + 1
− 16N2 + 25

(N2 − 4)(N2 − 1)

)
. (5.16)

We will consider {A0
2, A

0
4, A

1
6} as independent.

The generalised tree level function T4444 can be written conveniently in terms of just

two independent functions F̃ and F , in the following way,

T4444 =
1

u2

[
F(u, v) + σ̂2u6F(1/v, u/v) +

τ̂2u6

v6
F(v, u)

]
(5.17)

+
1

u2

[
σ̂τ̂ F̃(u, v) +

σ̂u6

v6
F̃(v, u) + τ̂u6F̃(1/v, u/v)

]
, (5.18)

where both F̃ and F are invariant under u→ u/v and v → 1/v. Given the Mellin trasform,

T4444 = u4

∮
usvt Γ[−s]2Γ[−t]2Γ

[
s+ t+ 6

]2M[T4444] , (5.19)

with

M[T4444] = m1
4444 + σ̂2mσ̂2

4444 + τ̂2mτ̂2

4444 + σ̂τ̂mσ̂τ̂
4444 + σ̂mσ̂

4444 + τ̂mτ̂
4444 (5.20)

we will specify m1
4444(s, t) and mσ̂τ̂

4444(s, t), which are the Mellin transforms of F and F̃ ,

respectively, and reconstruct M[T4444] by using symmetries, similarly to (5.17) and (5.18).

The Mellin transforms of F and F̃ are

m1
4444 =− A0

2

(s+3)(t+1)(s+t+5)
− L 1

4444

2(s+2)(t+1)(s+t+5)
− L 1

4444+L 2
4444(s+1)

6(s+1)(t+1)(s+t+5)
,

mσ̂τ̂
4444 =− A0

2

(s+1)(t+2)(s+t+4)
+

L 1
4444

2(s+1)(t+1)(s+t+4)
+

L 1
4444

2(s+1)(t+2)(s+t+5)

− L 1
4444(s+3)

3(s+1)(t+1)(s+t+5)
−L 1

4444−L 2
4444+(2L 1

4444−L 2
4444)(s+1)

3(s+1)(t+2)(s+t+4)
,

(5.21)
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where we defined

L 1
4444 = A0

2 −A0
4 L 2

4444 =
3

2
A0

2 −A0
4 −

1

4
A1

6 (5.22)

Finally,
mσ̂

4444(s, t) = mσ̂τ̂
4444(t, s)

mτ̂2

4444(s, t) = m1
4444(t, s)

mτ̂
4444(s, t) = mσ̂τ̂

4444(−s− t− 6, s)

mσ̂2

4444(s, t) = m1
4444(−s− t− 6, s)

(5.23)

The terms in m1
4444 and mσ̂τ̂

4444, proportional to A0
2, give the amplitude of Rastelli and

Zhou. The combinations L i=1,2
4444 in (5.22) vanish at order 1/N2.

Let us highlight some new features ofM[T4444] beyond tree level. Recall that the result

of Rastelli and Zhou [1] can be obtained by considering an ansatz in Mellin space such that

each monomial σ̂iτ̂ j is accompanied by a single pole in the plane (s, t). In comparison,

the upgraded tree level amplitude has more structure than this. In particular, poles like

(s+2)(t+1) and (s+1)(t+1), corresponding to powers of u2and u3 in the small u expasion,

and therefore corresponding to allowed twists below window, are also turned on. We see

now that their residue is proportional to the linear constraints L i=1,2
4444 , which indeed vanish

at order 1/N2. We also notice that by writing each pole in the form 1
(s+n1)(t+n2)(s+t+n3)

with integers ni=1,2,3, the numerator is at most linear in s and t. Therefore, we infer that

the limit s→ βs and t→ βt with large β scales like O(β−2), i.e. one more power than the

O(β−3) of the tree level function of Rastelli and Zhou.

The case of M[T4444] exemplifies well what is the general pattern of M[T~p] in Mellin

space. In fact we expect M[T~p] to be a rational function in which all allowed poles in

the plane (s, t) are turned on, eventually decorated by a non trivial numerator, which is

nevertheless constrained by the large s and t behavior. Similarly to our position space

algorithm, the free coefficients in this ansatz will be fixed by demanding that the SCPW

expansion below window completely cancels free theory contributions as described in (3.58)

and (3.59).

5.3 Next-to-next-to-extremal correlators

A next-to-next-to-extremal correlator is defined by κ~p = 2, i.e. a vector of external charges

such that p3 = 2 or p1 + p2 + p3 − p4 = 4. There are only six propagator structures

available, and indeed these correlators only contribute to a single su(4) channel, namely

[0, p43, 0]. The definition of single particle states has two non trivial consequences. Firstly,

it was proven in [8] that the number of connected propagator structures actually reduces

to three. Secondly, connected free theory is given by the exact formula,

P F~p(N2)p1p2p3p4

[(
1+

p43+p21

2

)
uτ

v
+

(
1+

p13+p42

2

)
uσ+

(
1+|p23+p14

2
|
)
u2στ

v

]
(5.24)

where F~p asymptotes N (p1+p2+p3+p4−4)/2 in the large N limit. For example,

F2244 = F3324 =

∏3
k=1(N2 − k2)

(N2 + 1)
, F3335 = F3524 =

∏4
k=1(N2 − k2)

N(N2 + 5)
,

F4424 =

∏3
k=1(N2 − k2)(N4 − 20N2 + 9)

N(N2 + 1)2
.
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Thus, for next-to-next-to-extremal correlators, the non-planar result (5.24) is the fac-

torized product of the 1/N2 connected free theory, uplifted to all N by the factor F~p(N
2).

It follows that the all N relative coefficients among the three propapator structures, was

already captured by the 1/N2 result. Notice also that F (N2) manifestly vanishes when

the number of colors N is less than the charge of any of the external operators. Both

these statements would be false if we replace our single particle operator Op with the

corresponding single trace half-BPS operator, thus dropping the admixture of multi-trace

operators.

The particular structure of connected free theory in (5.24) implies the following exact

relation on the SCPW coefficients,

Lf~p,2+p43,[0p430] = F~p(N
2)

[
A[l+2]

∣∣∣
1
N2

]
, Lf~p,τ≥4+p43,[0p430] = F~p(N

2)L
(1)f
~p,τ,[0p430]. (5.25)

Therefore, for the purpose of constructing generalised tree-level functions, the defining

condition (b) becomes

LT~p,2+p43,[0p430] + F~p(N
2)

[
A[l+2]

∣∣∣
1
N2

]
= 0 (5.26)

and by uniqueness we conclude that for next-to-next-to-extremal correlators the generalised

tree level function T~p equals the function of Rastelli and Zhou, properly normalized as in [8],

multiplied by the factor F~p(N
2).

Building on the property that T~p is uniquely defined by the conditions (a), (b), (c)

it is simple to see that next-to-next-to-extremal correlators sometimes have an additional

feature. In fact, there are sets of external charges qi=1,...4 and q′i=1,...4 such that the corre-

sponding 1/N2 free theories will be proportional. For example, the following two families

q1 = p+ 2

q2 = p+ 2

q3 = 2

q4 = 2(q + 1)

q′1 = q + 2

q′2 = q + 2

q′3 = q′4 − 2q

q′4 = q + (p+ 2)

(5.27)

Notice that both have the same value of the exponent d = p1 + p2 + p3 + p4 − 1, and

both have the same threshold twist. This happens because the next-to-next-to extremality

condition, which we can rewrite as p3 + min(0, p1+p2−p3−p4
2 ) = 2, is achieved by the two

different conditions on the minimum. Therefore,

q′3 + max

(
0,
q′1 + q′2 − q′3 − q′4

2

)
= q3 + max

(
0,
q1 + q2 − q3 − q4

2

)
. (5.28)

In the case p = 2 and q = 1, we obtain the correlators 4424 and 3335. Indeed, it is simple

to verify that the corresponding tree level function from [1] are proportional to each other.

This ‘degeneracy’ is lifted at one-loop. As we explicitly showed in section 4.6, the minimal

one-loop functions H(2)
3335 and H(2)

4424 are genuinely distinguished by OPE predictions in the

window.
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The constructions of T in this section, and the one of the minimal one-loop function

in the previous section, conclude our journey through the determination of the dynamical

one-loop function D(2) = T (2) +H(2). The subject of the next section is instead inspired

by the existence of the hidden tree-level symmetry found by [9].

6 Explorations of the 10d symmetry at one-loop

A tree level correlator D(1)
pqrs is obtained by acting with a differential operator D̂pqrs on the

stress-tensor four point correlator D(1)
2222. The existence of these operators is a consequence

of the hidden tree level 10d conformal symmetry, unveiled by Caron-Huot and Trinh in [9].

The structure of the anomalous dimensions (3.31), both numerator and denominator can

also be understood in terms of this hidden symmetry. In particular, the numerator is the

eigenvalue of an 8-th order operator which annihilates protected multiplets, ∆(8), and the

structure of the denominator is in correspondence with that of the partial-wave decom-

position of the 2 → 2 flat space S-matrix of the type IIB axio-dilaton. Then, the hidden

symmetry explains the residual degeneracies of the anomalous dimensions found in [8],

and the proportionality of some the next-to-next-to-extremal tree level correlators, as we

observed in section 5.3.

An interesting question to ask is whether an organising 10d principle persists at one-

loop. We begin investigating this problem by showing that we can recast the expression of

our minimal one-loop functions by using the operators ∆(8) and D̂pqrs. We shall see that

even though it is possible to achieve such a result, the way it happens departs slightly from

the way we understood the physical properties of H(2)
~p in section 4.1 and 4.3.

6.1 Leading logs from ∆(8) and D̂pqrs

We introduce the operators ∆(8) and D̂pqrs by recalling few important facts.

It was noticed in [8] that the computation of the one-loop leading log2 u, i.e (4.9), could

be reorganised and simplified drastically by introducing an 8-th order differential Casimir

operator. It is indeed possible to rewrite the log2 u discontinuity as

D(2)
~p

∣∣∣
log2 u

=
∑
a,b

Υ[aba]

u2

[
u−

p43
2 ∆

(8)
[aba] u

+
p43
2

]
F (2)
~p;[aba] (6.1)

F (2)
~p;[aba] =

∑
τ≥τmax,l

M
(1)
~τ

(
L

(0)
~τ

)−1

δ
(4)
t(τ)δ

(4)
t(τ)+l+1

M
(1)
~τ


(p1p2),(p3p4)

B(2+ τ
2
,l)

u
p43
2

(6.2)

where the Casimir ∆
(8)
[aba] is precisely such that its eigenvalue is the numerator of the

anomalous dimensions in (3.31), i.e.

δ
(4)
t = 2(t− 1)(t+ a)(t+ a+ b+ 1)(t+ 2a+ b+ 2) (6.3)

∆
(8)
[aba] B

2+τ,l = +δ
(4)
t δ

(4)
t+l+1 B

2+τ,l (6.4)

It turned out that the resummation of F (2)
~p;[aba] was remarkably simpler. (Notice that F (2)

~p;[aba]

here has a series expansion in integer powers of u.)
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A further improvement of (6.1) was achieved in [9].

Firstly, it is possible to repackage the action of the su(4) dependent operators ∆
(8)
[aba],

into a single compact operator

∆(8) =
xx̄yȳ

(x− x̄)(y − ȳ)

2∏
i,j=1

(
C[+α,+β,0]
xi −C[−α,−β,0]

yj

) (x− x̄)(y − ȳ)

xx̄yȳ
(6.5)

where α = p21/2, β = p34/2 and C
[α,β,γ]
x is the elementary 2d casimir

C[α,β,γ]
x = x2(1− x)∂2

x + x(γ − (1 + α+ β)x)∂x − αβx . (6.6)

Secondly, this ∆(8) has the property that

(uσ)−
p43
2 ∆(8)(uσ)

p43
2

[
F (2)
~p;[aba] Υa,b

]
= Υ[aba]

[
u−

p43
2 ∆

(8)
[aba] u

+
p43
2

]
F (2)
~p;[aba] , (6.7)

where F (2)
~p;[aba] does not depend on the su(4) cross ratios. We can then commute Υ[aba] and

obtain the log2 u discontinuity from the action of ∆(8) on a prepotential F (2)
~p , namely

u2D(2)
~p

∣∣∣
log2 u

= (uσ)−
p43
2 ∆(8)(uσ)

p43
2

[
F (2)
~p

]
, F (2)

~p ≡
∑
a,b

F (2)
~p;[aba]Υ[aba] (6.8)

Notice that the conjugated operator (uσ)−
p43
2 ∆(8)(uσ)+

p43
2 is invariant under the symme-

try, u→ u/v and v → 1/v, which in our conventions holds when p21 = 0. We remark here

that the expression of ∆(8) depends on the choice of external charges!

The remaining dependence on the external charges ~p, can be absorbed into the action

of the operators D̂~p. These operators are defined at tree level by the relations

D(1)
~p = D̂~p

(
u2D(1)

2222

)
∀ ~p = (p1p2p3p4) (6.9)

and are used at one-loop to compute

F (2)
~p = D̂~p F

(2)
2222 , (6.10)

once F (2)
2222 is known [9]. The latter can be written in the form

F (2)
2222 = 16

(
xx̄

x̄− x

)7 [
F2(x, x̄)−F2(x̄, x)

]
, (6.11)

F2 =

[
1 +

x2

2

[
2∑
i=0

[
x̄− x
xx̄

]i+1 xi∂1x
i

i!(5)i

]](
(x− 2)(1− x)

x3
− (1− x)5

8x5
Li21(x)+

+
(1− (1− x)5)

4x5
Li2(x) +

(1− x)(7− 7x+ 2x2)

8x4
Li1(x)

)
.

In writing (6.11) we have highlighted the max power of (x− x̄) in the denominator. This

has to be the same power of the tree-level function D(1)
2222 by construction.
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In this paper we considered

D̂2233 =
3

4× 2
(4− u∂u)

D̂2323 =
3

4× 2
(u∂u + v∂v)

D̂2244 =
1

4
(5− u∂u)(4− u∂u)

D̂2424 =
1

4
(1 + u∂u + v∂v)(u∂u + v∂v)

D̂3335 =
3
√

15

4× 4
(4− u∂u)v∂v(−u∂u − v∂v)

D̂4424 =
2
√

2

4
(4− u∂u)v∂v(−u∂u − v∂v)

D̂3333 =
9

4× 4

[
(4− u∂u)2 +

uτ

v
(v∂v)

2 + uσ(u∂u + v∂v)
2
]

D̂4444 =
1

4

[
(5− u∂u)2 + 4

[uτ
v

(v∂v)
2 + uσ(u∂u + v∂v)

2
]]

(4− u∂u)2

+
1

4

[
(uτ)2

v2
(1− v∂v)2(v∂v)

2 + (uσ)2(u∂u + v∂v)
2(1 + u∂u + v∂v)

2

]
+
uτ

v
(uσ)(v∂v)

2(v∂v + u∂u)2 (6.12)

For these correlators we have verified explicitly that the prescription (6.10) agrees with

the more standard two variable CPW resummation obtained through (4.9). This amazing

computation shows a very non trivial outcome of the ten-dimensional conformal symmetry.

More generally, the operators D̂~p have the unique form

D̂~p =

min(p1+p2,p3+p4)−4∑
γ=p43

(uσ̂)
γ−p43

2

γ−p43
2∑

k=0

(
g14g23

g13g24

)k
dγk~p

 (6.13)

where dγk~p is a polynomial up to degree 1
2

∑
i(pi − 2) in the letters u∂u and v∂v. The top

degree is fixed by the difference of denominator power, compared to D(1)
2222. Each monomial

σ̂iτ̂ j in the amplitude of Rastelli and Zhou corresponds to a propagator structure in (6.13).

Finally, the sum over γ contains at most propagator structures with (τ̂ /v) to the power

κ~p − 2. As we show in appendix B.2.2, the differential operator D̂~p can be found just by

considering the rational function multiplying the box function φ(1)(x, x̄) in the position

space representation of the tree level correlator D1
~p .

The upgraded tree level functions we constructed in section 5 can be written by gen-

eralising the operators D̂~p given in (6.13). In particular, the polynomials dγk~p become

function of free theory data {Akγ} and have degree bounded by 1 + 1
2

∑
i(pi− 2). We quote
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the example of T3333 for illustration,

T3333 =
1

16
(4− u∂u)2

[
A0

2 −
L3333

4
(3− u∂u)

]
u2D(1)

2222

+
1

16

uτ

v
(v∂v)

2

[
A0

2 +
L3333

4
(1 + v∂v)

]
u2D(1)

2222

+
1

16
uσ(u∂u + v∂v)

2

[
A0

2 −
L3333

4
(1− u∂u − v∂v)

]
u2D(1)

2222.

(6.14)

6.2 A pre-amplitude study

In this section we will explore the question: “Can we pull out of our minimal one-loop

functions the operators D̂pqrs and ∆(8)?”

Consider first the one-loop correlators 〈22pp〉 for p = 2, 3 and 4. (The cases p = 2, 3

have been determined in [3] and [7], respectively.) We have managed to rewrite these in

terms of certain pre-amplitudes L(2)
22pp such that the following equations are satisfied

H(2)
2222 =

1

u2
∆(8)L(2)

2222 + 4u2D2422 (6.15)

H(2)
2233 =

1

u2
∆(8)L(2)

2233 −
2u2

v2
+ 4u2(D1423 +D1432) + 24u2D2422 − 30u3D3522 (6.16)

H(2)
2244 =

1

u2
∆(8)L(2)

2244 −
8u2

v2
+ 24u3(D2523 +D2532) + 40u2D2422 + 48u3(D3522 − uD4622)

(6.17)

The r.h.s. of (6.15)–(6.17) consists of functions L(2)
22pp such that ∆(8)L(2)

22pp reproduces

the minimal one-loop function on the l.h.s. up to some tree level remainders. There is a

single remainder for p = 2, which happens to have the same structure of D(1)
2222. For p = 3, 4,

there is more structure in the remainders than the corresponding tree level correlators. The

origin of these remainders goes together with ∆(8), as we now explain.

The ansatz for the functions L(2)
22pp has the same form the one for H~p in (4.15), with

the substitution d~p → d~p − 8, i.e.

L(2)
22pp =

W4−+W3−

(x−x̄)d~p
+

W3++W2+

(x−x̄)d~p−1
+

[
W2−

(x−x̄)d~p
+

W1v+W1u

(x−x̄)d~p−1
+

W0

(x−x̄)d~p−3

]
(6.18)

The basis of transcendental functions is unchanged

W4− = h1 φ
(2)(x′1, x

′
2) + h2 φ

(2)(x, x̄) + h3 φ
(2)(1− x, 1− x̄)

W3− = h4 x∂xφ
(2)(x, x̄) + h5 (x− 1)∂xφ

(2)(1− x, 1− x̄)− (x↔ x̄)

W3+ = (x− x̄)
(

h6 ∂vφ
(2)(x, x̄) + h7 ∂uφ

(2)(1− x, 1− x̄)
)

+ h8 ζ3

W2+ = h9 log(u) log(v) + h10 log2 v + h11 log2 u (6.19)

and

W2− = h� φ
(1)(x, x̄) W0 = h0

W1u = hu log u W1v = hv log v
(6.20)
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Each coefficient function hi=1,...,11,�,u,v,0 will be polynomial in the variables x, x̄, since we

are studying next-to-next-to-extremal correlators.

By construction, we make manifest the log2 u discontinuity

L(2)
22pp

∣∣∣
log2 u

= D̂22ppF (2)
2222 (6.21)

and impose xi → xi/(xi − 1) crossing symmetry, because this is a symmetry of the 〈22pp〉
correlators, and it is a symmetry of ∆(8). Then, we impose absence of x = x̄ poles.

In our algorithm for the minimal one-loop function H22pp we would cross the ansatz to

the orientation 2p2p and match the corresponding log2 u discontinuity. But ∆(8) depends

on the orientation of the external charges, and we cannot proceed this way. Instead, we

stay within the orientation ~p = 22pp, and apply ∆(8) on L(2)
22pp. The resulting ansatz can

now be understood as the starting point for the construction of our one-loop function, In

particular, after crossing to ~p = 2p2p, and matching the corresponding leading log, the

weight four, three and two-symmetric coefficient functions are fixed.

Moving to the tree-like part, we encounter a major difference compared to our algo-

rithm of section 4.3: the action of ∆(8) brings L(2)
22pp outside the minimality of H(2)

22pp! We

thus expect the presence of extra tree-level contributions with additional singular terms

in v.15 Indeed, looking at the relations (6.15)–(6.17), both ∆(8)L(2)
22pp and the remainders

have additional singular terms compared to our minimal one-loop function (4.15), but these

cancel in the sum, in such a way that the r.h.s. is indeed our minimal one-loop function.

It is important to realise that the free coefficients we can play with, in order to obtain

the remainders on the r.h.s. of (6.15)–(6.17), are the free coefficients in ∆(8)L(2)
22pp, and the

αi=1,... labeling the ambiguities of H22pp. Indeed, for the purpose of this section it is useful

to think of the ambiguities as a sort of ‘gauge’ parameters which we eventually fix to some

particular value. (Of course, the most general form of the ambiguities on the r.h.s. of (6.15)–

(6.17) can be added in afterwards.) Operationally, the idea is to fix free parameters in such

a way that the resulting tree-like part in the difference H(2)
22pp − u−2∆(8)L(2)

22pp has a lower

power of (x− x̄) in the denominator, compared to d~p + 8.16

Being a differential operator, ∆(8) has a kernel, therefore any construction of L22pp is

only unique up to such a kernel. The kernel does not show up in the log2 u discontinuity,

because in that case the use of ∆(8) is specified by the OPE, and in particular by the form

of the anomalous dimensions [8].

So far, the determination of L22pp did not follow strictly the rules of our algorithm,

especially regarding the minimality of our ansatz for H~p. However, it will be very surprising

how the complexity of L22pp is reduced in comparison to H22pp.

15This is because weight four and three contributions in the preamplitude L~p, upon the action of ∆(8),

produce a cascade of tree level contributions with non minimal denominator. Some of these contributions

in L~p are fixed by matching the pre-amplitude log2 u discontinuity.
16In order to achieve this result it is useful to impose as many x = x̄ zeros as possible in the difference

between H(2)
22pp − u−2∆(8)L(2)

22pp. Similarly, we impose as many x = 0 zeros as possible.
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The coefficient functions for L2222, listed here below in the basis (6.19)–(6.20), are

(Y± ≡ 1± v):

h1 = +4u4v2(u−1+v) ,

h2 =−4u4(u+1−v) ,

h3 =−4v(u5−5u4Y+−Y 4
−Y++5u3(2Y 2

+−v)+uY 2
−(5Y 2

+−2v)−u2Y+(10Y 2
+−19v)) ,

h4 =−1

3
u3(u4+Y 4

−−4u3Y++8uY 2
−Y+−2u2(3Y 2

−−2v)) ,

h5 = +
1

2
h4+

1

6
Y−(5u6−39u5Y++3Y 4

−(Y 2
++4v)+u4(73Y 2

+−4v)

−uY 2
−Y+(19Y 2

++32v)−2u3Y+(37Y 2
+−8v)+u2(51Y 4

+−56vY 2
+−88v2)) ,

h6 =−1

3
u3Y−(u2+Y 2

−+10uY+) ,

h7 =− 5

12
h8+

1

6
(−4u5Y 2

−+3Y 4
−(Y 2

++4v)+u4(19+48v+99v2)−4uY 2
−Y+(4Y 2

++11v)+

−4u3(9+39v+45v2+7v3)+2u2(17Y 4
++11vY 2

+−64v2)) ,

h8 =−2

5
u2(u4+Y 4

−−2u(2+7v)(u2+Y 2
−)+u2(6+24v−94v2)) ,

h9 =−1

3
(14u5−2u6−3Y 5

−Y+−14u4(2+v−3v2)+2uY 3
−(8Y 2

+−5v)+

+u3Y−(38Y 2
−+135v)−7u2(5−v+v3−5v4)) ,

h10 =−1

3
v(7u5−3Y 4

−(3+v)−u4(37+35v)+uY 2
−(43+49v+16v2)+

+u3(78+99v+38v2)−u2(82+60v+75v2+35v3)) ,

h11 =−1

3
u4(2u2−7Y 2

−−7uY+) , (6.22)

for weight four, three, and two symmetric, and

h̃� = +
1

180
(572u7−2939u6Y++234Y 6

−Y+−3uY 4
−(379Y 2

+−4v)+u5(5295Y 2
+−2320v)

+9u2Y 2
−Y+(193Y 2

+−64v)−4u4Y+(974Y 2
+−2087v)+2u3(67Y 4

+−1322vY 2
++400v2))

h̃u =−1

5
u(29u5−114u4Y+−10Y 4

−Y++2uY 2
−(31Y 2

+−34v)

+u3(193Y 2
+−174v)−10u2Y+(16Y 2

+−43v))

h̃v =−1

2
h̃u−

1

90
Y−(317u5−1115u4Y+−90Y 4

−Y++uY 2
−(569Y 2

+−656v)

+2u3(879Y 2
+−917v)−u2(1439+451v+451v2+1439v3))

h̃0 =
1

45
u(47u3−79u2Y+−15Y 2

−Y++u(77−4v+77v2)) (6.23)

for the weight two anti-symmetric, weight one and weight zero parts. The full tree-like

function is given by combining h̃i=�,u,v,0, and the following function

A = β2222 u(2− u∂u)2D1111 +K∆(8) (6.24)
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The first term proportional to β2222 will span the ambiguity of H(2)
2222. The function K∆(8)

is the kernel of ∆(8). A restricted choice of K∆(8) which is compatible with the symmetry

u→ u/v, v → 1/v, and the way we construct L(2)
2222, is

K2222 = k1 uD1111 + k2 (1 + u+ v)D1111 + k3ζ3 + k4 log2 v+ k5(2 log u− log v) + k6 (6.25)

We will now present the results for L2233 and L2244, and to do so we will make use of

the operators D̂pqrs. The result for L(2)
2233 is

L(2)
2233−D̂2233L(2)

2222 =

[
1

2
R3 +R5 (x−1)∂x

]
φ(2)(1−x,1−x̄)−(x↔ x̄)+

+(x−x̄)R7∂uφ
(2)(1−x,1−x̄)−32ζ3+R9 log(u) log(v)+R10 log2 v ,

(6.26)

where

R3 = − 2

(x− x̄)3
(u3 + u(7Y 2

+ + 2v)− 5u2Y+ − 3Y 3
+)

R5 = +
1

(x− x̄)3
Y−(7u2 − 15uY+ + 8(Y 2

+ − v))

R7 = +
1

(x− x̄)2
(5u2 − 13uY+ + 8(Y 2

+ − v))

R9 = +
1

(x− x̄)2
Y−(6Y− − 5u)

R10 = +
1

2(x− x̄)2
(5u(5 + 3v) + 60v − 13u2 − 12)

(6.27)

The log2 u discontinuity of L(2)
2233 is captured by D̂2233L(2)

2222, as it should. Indeed the r.h.s.

of (6.26) has no overlap with the log2 u projection. Surprisingly, D̂2233L(2)
2222 also captures

relevant parts of the full L(2)
2233, but for the r.h.s. of (6.26). The latter has no spurious

poles by construction, and it can be shifted by the kernel of ∆(8) without changing H(2)
2233,

or (6.16). Notice that in L(2)
2222 we have included K2222 as given in (6.25), and D̂2233K2222

now produces non-kernel functions proportional to k1 and k2. In particular, the r.h.s.

of (6.26) holds for specific values of ki=1,...6.

The result for L(2)
2244 has the same level of complexity, once we use the property that

D̂2244 and D̂2233 concatenate, i.e D̂2244 = 2
3(5− u∂u)D̂2233, and therefore we use the whole

L(2)
2233 as starting point, rather than L(2)

2222. Then,

L(2)
2244−

2

3
(5−u∂u)L(2)

2233 =

[
1

2
R3 +R5 (x−1)∂x

]
φ(2)(1−x,1−x̄)−(x↔ x̄)+

+(x−x̄)R7∂uφ
(2)(1−x,1−x̄)−88ζ3+R9 log(u) log(v)+R10 log2 v+

+R�φ
(1)(x, x̄)+Ru logu+Rv logv , (6.28)
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where

R3 = − 4

3(x− x̄)3
(u3 + 17u(Y 2

+ + 2v)− 9u2Y+ − 9Y+(Y 2
+ + 6v))

R5 = +
2

(x− x̄)3
Y−(6u2 − 17uY+ + (11Y 2

+ + 16v))

R7 = +
2

3(x− x̄)2
(7u2 − 36uY+ + (33Y 2

+ + 48v)

R9 = +
10

(x− x̄)2
Y−(3Y− − 2u)

R10 = +
5

(x− x̄)2
(u(13 + 9v) + 30v − 7u2 − 6)

R� = +
72

(x− x̄)3
uv

Ru = +
36

(x− x̄)2
(u(Y+ − u))

Rv = +
18

(x− x̄)2
(Y+ − u)(Y− − u))

(6.29)

The use of L(2)
2233 as starting point, instead of L(2)

2222, has the effect of keeping (x − x̄)3

the maximal power of the denominator in the functions R given above. Again, the r.h.s.

of (6.28) holds for specific values of ki=1,...6.

The construction of L(2)
22pp depends on the initial orientation of the external charges we

choose, since the latter goes along with ∆(8) through the values of p21 and p34. In order to

obtain L(2)
2p2p we simply repeat the previous construction with minor modifications.

Consider the case of L(2)
2323 for illustration. We define L2323 by the equation which

extracts ∆(8) out of H2323,

u2H(2)
2323 = (uσ)−1/2∆(8)(uσ)+1/2L(2)

2323 −
u2(1 + v)(3 + u− v)

2v2

+ 4u4(D2431 +D3421) + 24u4D2422 − 30u4D3421 (6.30)

Then we write L(2)
2323 as follows

uL(2)
2323 − uD̂2323L(2)

2222 =

[
1

2
R3 + R5 (x− 1)∂x

]
φ(2)(1− x, 1− x̄)− (x↔ x̄)+

+ (x− x̄)R7 ∂uφ
(2)(1− x, 1− x̄) + R9 log(u) log(v) + R10 log2 v+

+ R� φ
(1)(x, x̄) . (6.31)

Notice a feature of L(2)
2323, which did not show up in L22pp: this is the presence of the relative
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1/u factor between the r.h.s. and the l.h.s. of (6.31). Indeed the l.h.s. is

R3 = +
1

2(x− x̄)3
(u3 − u2(5v + 8) + u(13 + 28v − 5v2) + 3(3v3 + 8v2 − 9v − 2))

R5 = +
1

(x− x̄)
(1− v)R7 +

1

(x− x̄)3
uY−(17− 18v + v2 + u2 − 2u(v + 9))

R7 = − 1

8(x− x̄)2
(41 + 15v − 57v2 + v3 + u2(v + 17)− 2u(29 + 6v + v2))

R9 = − 1

8(x− x̄)2
(2u3 − u2(51 + 5v) + 12u(5 + 11v)− 3Y 3

−)

R10 = − 1

16(x− x̄)2
(Y−(209 + 17v(v − 2)) + 2u3 + u2(197− 13v)− u(408 + 388v − 28v2))

R� = +
1

8(x− x̄)
(3u2 − 3Y 2

− − u(31 + 5v)) (6.32)

and is not possible to use the freedom in the construction of L~p to reabsorb the extra 1/u.

Determining L(2)
pqrs for other N2E correlators can be done in a similar way. For such

correlators, we can also reverse the procedure and bootstrap directly Hpqrs, by making a

simpler ansatz for L(2)
pqrs, apply ∆(8), and complete it with a tree like function, Indeed, for

a large value of p1 + p2 + p3 + p4, i.e. a large denominator power (x− x̄)#, therefore a large

number of initial free coefficients in the polynomial ansatz for hi=1,... in (4.15), the use of

∆(8) in combination with D̂pqrs reduces considerably the complexity of the computation.

As far as we investigated, pulling ∆(8) out of Hpqrs is possible even for multi-channel

correlators. In a first instance, this problem reduces to a collection of single channel

computations, because ∆(8) acts diagonally on the su(4) harmonics Υ[aba]. However, some

extra care is needed in defining the ansatz for L(2)
pqrs, since the latter does not manifestly

obey the rules of Hpqrs. For example, already in the case of L(2)
2323 we have found the need of

1/u terms in the coefficient functions. This behavior is generic in multi-channel correlators.

Despite discrepancies, it would be fascinating to take full advantage of ∆(8) and D̂pqrs
at one-loop. Perhaps, understanding the fate of the hidden 10d symmetry at one-loop for

generic correlators, would provide a major insight on our construction of the preamplitudes

L(2)
pqrs, thus on our bootstrap program. We leave this for a future work.

Before concluding, we mention a special property of 〈2222〉, or “How to bootstrap

H(2)
2222 without really trying!” In fact, only in this case it is possible to carry out the

following procedure on the ansatz (6.19) for L(2)
2222: impose x→ x/(x−1) crossing symmetry,

impose absence of x = x̄ poles, apply ∆(8), and impose the remaining crossing invariance

under x → 1/x. Without any reference to the log2 u discontinuity, the above procedure

returns a function with only three independent coefficients. (A fourth one is proportional

to u2/v2 and can be set to zero.) If we furthermore impose analiticity in spin of the log2 u

discontinuity, we end up with two independent coefficients. One is multiplying a weight four

anti-symmetric function, and the other one is multipling a tree-like function. By looking at

the minimality of the weight four anti-symmetric function, we immediately conclude that

the result is a linear combination of H(2)
2222 − 4u2D2422 and u2D4444.

– 58 –



J
H
E
P
0
3
(
2
0
2
0
)
1
9
0

7 Conclusions

In this paper we have given a general algorithm for computing all one-loop quantum gravity

four-point amplitudes in IIB supergravity on AdS5×S5. It works for arbitrary external

states, i.e. arbitrary KK modes on the five-sphere, and has been tested explicitly for 〈2244〉,
〈3333〉,〈4444〉,〈3335〉 and 〈4424〉. These results are available in a Mathematica notebook

attached to the arXiv submission of this article.

The amplitudes we studied are dual to four-point correlators of single-particle half-BPS

operators, which we have properly identified in N = 4 SYM, in the regime of strong ’t Hooft

coupling, at order 1/N4 in the large N limit of the gauge group SU(N), Our bootstrap

program has its foundations in the detailed understanding of the spectrum of two-particle

operators, and OPE arguments on the CFT side. We first determine well-defined pieces

of the one-loop correlator by extracting all relevant data from many four-point tree-level

correlators. Then we rearrange this data to determine the combination which appear at

one-loop, and sum up the result. These pieces of the result are fed into an ansatz for

the full function, which yields the final result upon demanding no unphysical (euclidean)

singularities, i.e. no poles when x→ x̄.

Our algorithm generalises in a non-trivial way the one developed in our previous

works [3, 7], where the explicit results for 〈2222〉 and 〈2233〉 were obtained. There are

indeed a substantial number of new features which emerge. In fact, the one-loop ampli-

tude for a correlator of KK modes with arbitrary weights, cannot be fixed just by the

knowledge of the log2 u discontinuity, as was the case for 〈2222〉 and 〈2233〉. Fortunately

there are more pieces of the one-loop amplitude which are determined via tree-level data.

These come from window and below window OPE analysis, as illustrated in figure 1, and

explained in section 3. They contribute to the single-log and no-log pieces of the one-loop

amplitude, respectively. With the addition of this information the one-loop correlators are

then completely determined up to well-understood ambiguities with finite spin support.

Two novel and note-worthy features of generic one-loop amplitudes, which originate

from the analysis of CFT data in and below the window, are: 1) the natural splitting of

the one-loop dynamical function into two independent pieces, D(2) = T (2) +H(2), and 2)

the need of a proper understanding of semishort operators contributions at order 1/N4,

and multiplet recombination.

The splitting of D(2) = T (2) + H(2) introduces what we call the “generalised tree-

level amplitude” T . It is uniquely defined in terms of free theory.17 It is tree-like, since

it is built out of polylogarithms with maximal weight 2, and does not contribute to the

log2 u discontinuity of H(2). It has no log u contributions below threshold, and crucially it

completely cancels the contribution of recombined free theory below window. Within the

ansatz (5.1) this generalised tree-level amplitude has a unique solution.

All the novel and interesting OPE dynamics is neatly combined into H(2), which we

call the “minimal one-loop function”. This function has to match the double logarithmic

discontinuity and below threshold predictions (excluding those arising from free theory), as

17Indeed it can be defined in terms of any generalised free theory with arbitrary coefficients in front of

the propagator structure.
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explained in section 4. In a very non-trivial way this is always possible within the minimal

ansatz (4.15). A much wider ansatz would be needed if T was not included in the first place.

The semi-short sector on its own has a completely independent story, which we deter-

mine at order 1/N4 purely from free theory correlators. This is done in section 2, where we

also clarify some important issues about the way the protected sector actually contributes

in the 1/N expansion. Then, through multiplet recombination, we obtain predictions for

H(2) below window at the unitarity bound. What is truly remarkable is the fact that this in-

dependent input is consistent with our construction of H(2), which from the very beginning

descends from the double logarithmic discontinuity. In this sense, it would be interesting

to have a fuller understanding of the meaning of the generalised tree-level amplitude and

the split D(2) = T (2) +H(2).

The remaining ambiguities have a clear description in Mellin space, and simply span

the space of arbitrary linear functions in the Mellin variables s, t, consistent with crossing

symmetry, as described around (4.20). These ambiguities are manifest in our algorithm,

because we have chosen the minimal ansatz. Widening our ansatz would allow in principle

more freedom. However, we expect true stringy ambiguities to be in one-to-one correspon-

dence with polynomial Mellin amplitudes of some degree [48, 49]. Indeed, a polynomial

Mellin amplitude of order r has at most a spin r contribution in its SCPW expansion, and

counts as a contribution in a bulk 10d effective action which involves ∂2rR4. The case

r = 0, i.e. the R4 term, appears at one-loop order with (α′)−1. Dimensional analysis then

implies that the ∂2rR4 term comes with coefficient (α′)−1+r. In summary

M(s, t) = O(sr−ata) ↔ max spin: r ↔ ∂2rR4 ↔ (α′)−1+r . (7.1)

The minimal ansatz naturally gives ambiguities that contribute up to order (α′)0 only.

Widening it would include ambiguities corresponding to higher order α′ corrections (7.1).18

Although within our bootstrap program we cannot fix the value of the ambiguities, it

may be possible that a combination of different techniques will. For example, by using

localisation techniques [13] obtained the value of the 〈2222〉 ambiguity.

Finally we come to the question of ten-dimensional conformal symmetry [9]. This

symmetry implies a beautiful structure for the leading logs at any order. At one-loop

the double logarithmic discontinuity for any correlator can be written as ∆(8) acting on a

much simpler object. Furthermore this object can be simplified further by pulling out the

differential operators D̂pqrs. In section 6 we have examined the extent to which this hidden

structure transfers to the full one-loop function itself. We have found that the one-loop am-

plitudes can be written as ∆(8) acting on a pre-amplitude L(2)
pqrs up to a tree-like remainder.

Although the resulting pre-amplitude cannot be written in the way the double logarith-

mic discontinuity can, i.e. directly as D̂pqrsL(2)
2222, we have found in a number of examples

that the difference L(2)
pqrs − D̂pqrsL(2)

2222 can be put in a very simple form, i.e. (6.26), (6.28)

and (6.31). This pattern may hint at more structure in the result than is currently appar-

ent, and we hope to investigate this possibility in the future. In a similar vein there are hints

18At one-loop there are also stringy corrections which can be obtained from tree-level string corrections.

See [11] for initial work in this direction.
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that the ten-dimensional symmetry also controls the leading order corrections in λ−
1
2 at tree

level [33]. Perhaps it can be used to study these four-point functions much more generally.

Future directions include a more detailed investigation of the Mellin space representa-

tion of our one-loop functions, which would extend the analysis of 〈2222〉 in [11], as well

as the possibility of pushing our bootstrap program to two loops. It would be fascinating

if the results we obtain in the large N expansion could be compared (possibly taking into

account also the α′ corrections) to the results based on integrable methods [53–57]. We

also emphasise that our fresh new look at free N = 4 SYM, especially our understanding

of single particle operators and generalised tree-level functions, suggests a different way

to approach the mysterious six-dimensional (2, 0) theory, which has been recently studied

from a holographic perspective in several papers [58–61].
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A Superblocks

Here we give the explicit definition of the superblocks Sp1p2p3p4γ,λ following [34]. They are

defined by a determinantal formula. Let us introduce first the function

Fαβγλ = (−1)p+1 (x− y)(x− ȳ)(x̄− y)(x̄− ȳ)

(x− x̄)(y − ȳ)
det

(
FXλ R

Kλ F Y

)
, (A.1)

where the determinant is taken on the (p+ 2)× (p+ 2) matrix (where p = min(α, β))

(FXλ )ij =
(

[x
λj−j
i 2F1(λj + 1− j + α, λj + 1− j + β; 2λj + 2− 2j + γ;xi)]

)
1≤i≤2, 1≤j≤p

(F Y )ij =
(

(yj)
i−1

2F1(i− α, i− β; 2i− γ; yj)
)

1≤i≤p, 1≤j≤2

(Kλ)ij =
(
− δi; j−λj

)
1≤i≤p, 1≤j≤p

(R)ij =

(
1

xi − yj

)
1≤i≤2 ,1≤j≤2

. (A.2)

(The brackets in the definition of FXλ mean deletion of the singular terms in the Taylor

expansion in xi around xi = 0 when λj < j and we have defined here xi = (x, x̄) yj = (y, ȳ)
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in the matrix.) Then

Sp1p2p3p4γ,λ = P
(
xx̄

yȳ

) 1
2

(γ−p4+p3)

Fαβγλ ,

{
α = 1

2(γ − p1 + p2),

β = 1
2(γ + p3 − p4).

(A.3)

The prefactor P is that of (2.9).

B Trees and amplitudes

B.1 1/N2 connected free theory

We quote a formula for connected free theory at order 1/N2, of a generic four-point function

〈Op1Op2Op3Op4〉. The same formula is described in a different notation in [9].

Each propagator structure in free theory is labelled by monomials of the form P σ̂i−j τ̂ j

where i, j belong to T = {(i, j) | 0 ≤ i ≤ κ~p, 0 ≤ j ≤ i}, and the bound κ~p is precisely the

degree of extremality. The lattice of points described by T is schematically depicted here

below. We shall distinguish the three edges from the interior.

τ̂
#

︷
︸︸

︷

σ̂#

︸ ︷︷ ︸
(B.1)

Vertices at the intersection of the edges correspond to disconnected diagrams, when

they do not vanish according to our definition of single particle states. In [8] we determined

the value of the following connected propagator structure

〈Op1Op2Op3Op4〉
P

⊃
√
p1p2p3p4

N2

[
1 +

p43 + p21

2

]
uτ̂

v
(B.2)

Looking at the diagram of T , we have determined the coefficient associated to the point

(1, 1) on the diagonal edge of the triangle. From crossing on the other edges we find

〈Op1Op2Op3Op4〉
P

⊃
√
p1p2p3p4

N2

[(
1+

p43+p21

2

) t−1∑
k=1

(
uτ̂

v

)k
+

(
1+

p13+p42

2

) t−1∑
k=1

(uσ̂)k+

(
1+|p23+p14

2
|
) t−1∑
k=1

(uσ̂)k
(
uτ̂

v

)t+1−k
]

(B.3)
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By including propagator structure in the interior of T we finally obtain the general formula

〈Op1Op2Op3Op4〉
P

=

√
p1p2p3p4

N2

[(
1+

p43+p21

2

) t−1∑
k=1

(
uτ̂

v

)k
+

(
1+

p43−p21

2

) t−1∑
k=1

(uσ̂)k+

(
1+|p1+p2−p3−p4

2
|
) t−1∑
k=1

(uσ̂)k
(
uτ̂

v

)t+1−k
+2

∑
T\edges

(uσ̂)#1

(
uτ̂

v

)#2
]

(B.4)

B.2 Generalised tree level amplitudes

The Mellin transform of generalised tree level functions has the same form of the Rastelli

and Zhou integral. By using the conventions of [8] we obtain,

T =
u
p3−p4

2

v
p2+p3

2

∮
u
s
2 v

t
2 Γ~p M[T ](s, t), p43 ≥ p21 ≥ 0. (B.5)

In order to make manifest how the pole structures of Γ~p relates to the OPE expansion

in twists, and the log stratification of the tree level dynamical function, it is convenient to

make manifest the location of the double poles in s and t and extract

Γ

[
max

(
p1 + p2

2
,
p3 + p4

2

)
− s

2

]2

Γ

[
max

(
p1 + p4

2
,
p2 + p3

2

)
− t

2

]2

(B.6)

In our conventions p1 + p4 ≥ p2 + p3, therefore the max of the second Γ in (B.6) is fixed.

By changing variables to

s↔ s

2
−max

(
p1 + p2

2
,
p3 + p4

2

)
, t↔ t

2
− p1 + p4

2
, (B.7)

and introducing

P ≡
∣∣∣p1 + p2

2
− p3 + p4

2

∣∣∣ Q ≡ p4 − p3 + p1 − p2

2
, (B.8)

we rearrange T into the form

T = umax(
p1+p2−p43

2
,p3)v

p43−p21
2

∮
usvt Γ[−s]2Γ[−t]2

[
(−)P

(s+ 1)P

(−)Q

(t+ 1)Q
M[T ](s, t)

]
(B.9)

× Γ
[
2 + s+ t+ max(p1, p3 +Q)

]
Γ
[
2 + s+ t+ max(p2 +Q, p4)

]
The object highlighted in brackets [. . .] in the first line, which includes the amplitude

and two Pochhammer symbols in the denominator, has only simple poles. The sequence of
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double and simple poles splits in three sectors as follows

pole in s power of u# pole in t power of v#

...
...

...
...

0 p3 + max(0, p1+p2−p3−p4
2 ) 0 p43−p21

2

−1
... −1

...

...
...

...
...

−P p3 + min(0, p1+p2−p3−p4
2 ) −Q 0

...
...

...
...

−P ∗ 1 −Q∗ −p3 + 1−min(0, p1+p2−p3−p4
2 )

(B.10)

Notice the symmetric relation

P ∗ − P = Q∗ −Q = p3 − 1 + min

(
0,
p1 + p2 − p3 − p4

2

)
. (B.11)

The first two sectors of the table above contain information only from Γ~p. We have

double poles of the form Γ[−s]2 and Γ[−t]2, which originates from Γ~p in the region where

simple poles of the individual Gamma functions in (4.21) overlap. Then, we have remaining

simple poles of the form (s+ 1)P (t+ 1)Q, in our notation. The third sector instead arises

only from M[T ]. A general subtlety in defining the (rational) Mellin amplitude is due to

the choice of contour of integration. This contour should separate poles in s and t from

those in s+ t, in order to have a well defined residue integration a la’ Mellin-Barnes. This

is achieved by rewriting M[T ] in the form,

M[T ] =
∑
poles

mp,q,r(s, t)

(s+ p)(t+ q)(s+ t+ r)
r > −p− q , (B.12)

and paying attention that when M[T ] is restricted to a single complex variable, let’s say

(−n, t) for example, the only poles in t that count, are those of the form (t+m) in (B.12),

and those of the form (s+ t+ r)
∣∣
s=−n are discarded.

In the special case of equal charges, pi = p, the Mellin integral simplifies to

Tpppp = up
∮
usvt Γ[−s]2Γ[−t]2Γ

[
s+ t+ p+ 2

]2 ×M[Tpppp] (B.13)

Our new Mellin amplitudes (5.9) and (5.21) are presented in this way.

B.2.1 Mellin-Barnes integration

We now perform the residue integration of (B.9) in detail.

The computation will be organised as follows: firstly, we pick double poles in s and

double poles in t. Then, we pick two sequences of poles: we pick double poles in s and
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simple poles in t, and we pick double poles in t and simple poles in s. Finally we pick only

simples poles in both s and t. We will make the symmetry s↔ t visible.

The main input is a well known formula for Gamma function

Γ[−z]2
∣∣∣
z→k
→ 1

(k!)2
∂z

(
1

k − z

)
+

1

(k!)2

ψk+1

(k − z)
(B.14)

Proceeding in the order described above:

Double poles and double poles. The result of contour integration is

(−)P+Q
∑
n,m≥0

un

(n!)2

vm

(m!)2

Γ
[
2+n+m+A

]
Γ
[
2+n+m+B

]
(n+1)P (m+1)Q

M[n,m]

×
([

logu+Ψn[m]+(ψn+1−ψn+1+P )+
∂sM
M

][
logv+Ψm[n]+(ψm+1−ψm+1+Q)+

∂tM
M

]
+

[
Ψ′+

∂t∂sM
M

− ∂sM
M

∂tM
M

])
(B.15)

For convenience we have defined A = max(p1, p3 + Q), B = max(p2 + Q, p4) and the

following two polygamma quantities,

Ψn[t] = ψ2+n+t+A + ψ2+n+t+B − 2ψn+1 (B.16)

Ψm[s] = ψ2+s+m+A + ψ2+s+m+B − 2ψm+1 (B.17)

Notice that Ψ′ = ∂tΨn[t] = ∂sΨm[s] and the terms ∂sM∂tM cancel out.

Simple poles and double poles. The result of contour integration is

(−)P+Q
∑
n≥0

−1∑
m=−Q∗

un

(n!)2

vm

Γ[−m]−2

Γ
[
2 + n+m+A

]
Γ
[
2 + n+m+B

]
(n+ 1)P

×[
log u+ Ψn[m] + (ψn+1 − ψn+1+P ) +

∂sM
M

]
Res

[
M[n, t]

(t+ 1)Q

]
t=m

(B.18)

and

(−)P+Q
∑
m≥0

−1∑
n=−P ∗

un

Γ[−n]−2

vm

(m!)2

Γ
[
2 + n+m+A

]
Γ
[
2 + n+m+B

]
(m+ 1)Q

×[
log v + Ψm[n] + (ψm+1 − ψm+1+Q) +

∂tM
M

]
Res

[
M[s,m]

(s+ 1)P

]
s=n

(B.19)

Notice that the leading log(u) discontinuity is obtained by picking, for each double poles

in s, both double and simple poles in t.

Simple poles and simple poles. The result of contour integration is

(−)P+Q
−1∑

n=−P ∗

−1∑
m=−Q∗

un

Γ[−n]−2

vm

Γ[−m]−2
Γ
[
2 + n+m+A

]
Γ
[
2 + n+m+B

]
×

Res

[
M[n, t]

(s+ 1)P (t+ 1)Q

]
s=n
t=m

(B.20)
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B.2.2 Properties of the tree level Mellin amplitude

We record here an intriguing mathematical observation: the location of the double poles

is encoded in the form of Mack’s Γ~p, and the residue on these poles depends on the Mellin

amplitude M[T~p]. Thus double poles are found to be in one-to-one correspondence with

the polynomial P�, in the position space representation of the function (5.1), because by

residue integration, P� is the numerator of the term log(u) log(v) ⊂ φ(1),

P�(x, x̄, σ̂, τ̂)

(x− x̄)d+1
= umax(

p1+p2−p43
2

,
p3+p4−p43

2
)v

p43−p21
2

[∮
usvt

Γ[−s]Γ[−t]
Γ[s+ 1]Γ[t+ 1]

×

Γ
[
2 + s+ t+A

]
Γ
[
2 + s+ t+B

]
(−)P+s+Q+t(s+ 1)P (t+ 1)Q

M[T~p][s, t]

]
(B.21)

with P , Q, A and B as in the previous section. Equation (B.21) implies that the Mellin

amplitude of T can be obtained from P� upon assuming Γ~p, and viceversa. In particular,

the conversion makes use of the formula (valid for any d),

uavb

(x−x̄)d+1
=

d!

(2d)!

∮
(−u)s(−v)t

Γ[−s]Γ[−t]
Γ[s+1]Γ[t+1]

Γ[s+t+X]2×[
(−)a+b (−s)a(−t)b

(s+1)d−a(t+1)d−b
(s+t+X)d+1−a−b−X(s+t+X)d/2+1−a−b−X

]
(B.22)

applied to each monomial in P�. The value of X can be tuned afterwards by putting the

final result in a canonical form.

Summarizing, there is a bijection M[T ] ↔ P�/(x − x̄)d1−1, which assumes Γ~p. This

bijection also implies that the operators D̂pqrs introduced in [9] and discussed around (6.13),

can be simply obtained from P�, thus reducing a computation about tree-level functions,

to another one involving only rational functions. It would be fascinating to know what is

the uplifit of Γ~p at one-loop.

B.2.3 On tree level SCPW

Having obtained the explicit tree-level four-point functions in position space as detailed in

the previous section we then perform a SCPW decomposition to obtain the corresponding

SCPW coefficients M (1).

As a function of twist and spin, M
(1)
~p;~τ fits the ansatz

M
(1)
~p;~τ =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!

(
τ+max(p1+p2,p3+p4)

2

)
!
(
τ+min(p1+p2,p3+p4)

2

)
!

τ !
×

×
max(p1+p2,p3+p4)/2− p21

2∏
i=1

(
τ − p21

2
− i+ 1

)min(p1+p2,p3+p4)/2− p43
2∏

j=1

(
τ + p43

2
+ j

)−1

×
deg∑
m=0

deg∑
n=m

χm,n l
mτdeg−n (B.23)
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where χm,n are constants, depending only on a, b and ~p. The same ansatz works for L
(1)
~p;~τ

The degree of the polynomial is

deg = −4 + min(p1 + p2, p3 + p4)− p43 + p21 = 2(κ~p − 2) + p21. (B.24)

When b is even, reciprocity symmetry implies that the polynomial in spin, in the last

line (B.23), is even in the variable 2l+τ+3. When b is odd we find the following reduction.

For l ∈ 2Z, the polynomial in spin is of the form

deg∑
m=0

deg∑
n=m

χm,n l
mτdeg−n = (l + τ + 2)×

deg−1∑
m=0

deg−1∑
n=m

χ′m,n l
mτdeg−1−n (B.25)

Consequently, the polynomial for l ∈ 2Z+1 is obtained from the latter upon `→ −`−τ−3.

Notice that the first factor in the second line of (B.23) vanishes for long superblock of

twist τ = p21, . . . , p43, . . . τ
max
~p − 1, where p43 ≥ p21.

As function of spin, the analitic part of the tree level correlator fits into

B(2+τ,l)

[
u2+p43T~p, [aba]

∣∣
1
N2

]
=

(
2+2l+τ−p21

2

)
!
(

2+2l+τ+p43
2

)
!

(2+2l+τ)!

deg∑
m=0

ξ′m(τ,~p,a,b) lm (B.26)

+θ(τ−τmax)
1

2

[
ψ

(
4+2l+τ−p21

2

)
+ψ

(
4+2l+τ+p43

2

)
−2ψ(3+2l+τ)

]
M

(1)
~p,τ,l,a,b

for some coefficients ξ′m. The notation B(2+τ,l) [f ] means the CPW coefficient of B(2+τ,l) in

the expansion of f . If τ < τmax we are in the window and we are computing L
(1)
~p . The

derivative relation holds only for N2E correlators, and it is false otherwise.

C Some subleading three-point couplings

Let us begin from C
(1)
(pp),4,l,[000] and C

(1)
(pp+1),5,l,[010] with p = 3, 4 . . ., In both cases, we are

studying (3.34) in the simplified form,

C
(1)
ppK4

=
(
C

(0)
22K4

)−1
L

(1)
22pp,τ=4,l,[000] (C.1)

C
(1)
pp+1K5

=
(
C

(0)
23K5

)−1
L

(1)
23pp+1,τ=5,l,[010] (C.2)

because only one long operator is exchanged. In [010] we should also distinguish between

even and odd spins. However, the knowledge of the even spin sector determines the odd

sector through the reciprocity symmetry.

Proceeding in the order, we can use results from [4] and [7], to obtain

L
(1)
22pp,τ=4,l,[000]

2p
=

[
(p− 1)︸ ︷︷ ︸
conn. free

+
6p

p− 2

]
((l + 3)!)2

3(2l + 6)!
=

(p+ 1)(p+ 2)

3(p− 2)

((l + 3)!)2

(2l + 6)!
(C.3)

L
(1)
23pp+1,τ=5,l,[010]√

6p(p+ 1)
=

[
(p− 1)︸ ︷︷ ︸
conn. free

+
4(2p+ 1)

p− 2

]
(l + 7)

((l + 4)!)2

5(2l + 8)!

=
(p+ 2)(p+ 3)

5(p− 2)
(l + 7)

((l + 4)!)2

(2l + 8)!
(C.4)
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These same expressions follow from the derivative relation, once analitically continued to

the relevant twist. It is interesting to see how this happens: consider first

M
(1)
22pp,t=τ/2,even,[000] = − 2p

(p− 2)!

[
2

p!
(−)p(t− p+ 1)2p

(t!)2((t+ l + 1)!)2

(2t)!(2t+ 2l + 2)!

]
(C.5)

We should now take a ∂t of (C.5), and evaluate the result at t = 2, which is above the

regime of validity of the formula, i.e. τmax
22pp = 2p. Quite non trivially, the only term that

will contribute comes from (t − p + 1)2p = (t − p + 1)p−3(t − 2)(t − 1)p+2. Indeed one

effect of the derivative is to drop the factor (t− 2), which otherwise would make the result

vanishing. Then, we find precisely (C.3),

∂tM
(1)
22pp,t=τ/2,even,[000]

∣∣∣
t=2

=
2p(p+ 1)(p+ 2)

3(p− 2)

((l + 3)!)2

(2l + 6)!
(C.6)

Similarly,

M
(1)

23pp+1,t= τ−1
2
,even,0,1

= (C.7)

−
√

6p(p+ 1)

(p− 2)!

[
2(−)p

(p+ 1)!
(t− p+ 1)2p+1(l + 2t+ 3)

t!(t+ 1)!((l + t+ 2)!)2

(2t+ 1)!(2l + 2t+ 4)!

]
will have a contribution from (t − p + 1)2p+1 after taking the derivative at t = 2, and the

result will match non trivially (C.4).

The subleading three-point functions we looked for are

C
(1)
ppK4

=
p(p+1)2√

3(p−2)

(l+3)!√
(2l+6)!

1√
(l+1)(l+6)

[
1+(−)l

2

]
(C.8)

C
(1)
pp+1K5

=

√
2p(p+1)(p+2)2√

5(p−2)

(l+3)!√
(2l+7)!

[√
(l+7)

(l+1)

1+(−)l

2
+

√
(l+1)

(l+7)

1−(−)l

2

]
(C.9)

A first example with more than one operator is given by C
(1)
(44),6,l,[000]. In the following,

we refer more directly to the two operators labelled by R6,l,[000], with K̃6,1 and K̃6,2. Then

C
(1)
(44),6,l,[000] is the vector made by C

(1)

44K̃6,i=1,2
. The inputs we need from [4] are

c
(0)
6,even,[000] =

+
√

l+2
2l+9 +

√
l+7
2l+9

−
√

l+7
2l+9 +

√
l+2
2l+9

 (C.10)

L
(0)
6,even,[000] =

(l + 1)(l + 2)(l + 7)(l + 8)

40

[
4

(l+2)(l+7) 0

0 1

]
((l + 4)!)2

(2l + 8)!
(C.11)

Obtaining L
(1)
pp44,τ=6,l,[000] for p = 2, 3, at twist 6, we can finally solve (3.34) in terms of the

3-pt functions and get the result

C
(1)

44K̃6,1
= −6

√
10

(2l + 9)√
(l + 2)

√
(l + 8)

(l + 1)

(l + 4)!√
(2l + 9)!

[
(1 + (−)l)

2

]
(C.12)

C
(1)

44K̃6,2
= +6

√
10

(2l + 9)√
(l + 7)

√
(l + 1)

(l + 8)

(l + 4)!√
(2l + 9)!

[
(1 + (−)l)

2

]
(C.13)
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We finish with our list of examples by computing C
(1)
(44),6,l,[020] and C

(1)
(35),6,l,[020] in [020],

in the even spin sector. We need the results

c
(0)
6,even,[020] =

+
√

l+5
2l+9 +

√
l+4
2l+9

+
√

l+4
2l+9 −

√
l+5
2l+9

 (C.14)

L
(0)
6,even,[020] =

(l + 1)(l + 4)(l + 5)(l + 8)

30

[
2

(l+4) 0

0 9
(l+5)

]
(l + 3)!(l + 4)!

(2l + 8)!
(C.15)

This case has µ = 2. (The odd spin sector in [0, 2, 0] has µ = 1 and can be studied as in our

first example.) The CPW data entering the r.h.s. of (3.34) for V44,8,l,[020] and V35,8,l,[020],

is extracted from different correlators. In the first case we consider the CPW data

L
(1)
4424,6,l,[020]√

128
=

84

5

(l+4)!(l+5)!

(2l+8)!
,

L
(1)
4433,6,l,[020]√

144
=

9(80+3l(l+9))

5

((l+4)!)2

(2l+8)!
. (C.16)

In the second case,

L
(1)
2435,6,l,[020]√

120
=

7(32+l(l+9))

5

(l+3)!(l+5)!

(2l+8)!
,

L
(1)
3335,6,l,[020]√

135
=

52

15

(l+4)!(l+5)!

(2l+8)!
. (C.17)

For convenience we again refer to the operators labelled by R6,even spin,[020] with K6,1 and

K6,2. Then, by using (3.34) we obtain the results

C
(1)
44K6,1

= −6

√
6

5

(9l + 16)√
(l + 5)

√
(l + 8)

(l + 1)

(l + 4)!√
(2l + 9)!

[
(1 + (−)l)

2

]
(C.18)

C
(1)
44K6,2

= +6

√
6

5

(9l + 65)√
(l + 4)

√
(l + 1)

(l + 8)

(l + 4)!√
(2l + 9)!

[
(1 + (−)l)

2

]
(C.19)

and

C
(1)
35K6,1

= 21
√

2
(l + 7)√
(l + 4)

√
(l + 8)

(l + 1)

√
(l + 3)!(l + 5)!

(2l + 9)!

[
(1 + (−)l)

2

]
(C.20)

C
(1)
35K6,2

= 21
√

2
(l + 2)√
(l + 5)

√
(l + 1)

(l + 8)

√
(l + 3)!(l + 5)!

(2l + 9)!

[
(1 + (−)l)

2

]
(C.21)

D Spin structure of M (2) and L(2)

We discuss the spin structure of our predictions in and below window, focussing directly

on the SCPW coefficients. This will provide information on how reciprocity symmetry

(see [50–52]) is realised.

Given a pair of external charges (p1p2)(p3p4) with p43 ≥ p21, consider a twist τ such

that τ belongs to the window or below the window. Then, the SCPW coefficients we

extract from M (2) or L(2) have the form∑
(pq)∈Rτ,[aba]

〈p1p2pq〉conn.〈pqp3p4〉conn
〈pqpq〉disc.

(D.1)
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where 〈. . . 〉conn. refers to M (1) or L(1) depending on the situation. The form of (D.1) is

actually too schematic, because it assumes q − p ≥ p21 and p43 ≥ q − p, in the summation

over pq ∈ Rτ,[aba], and this is not always the case.

In order to have better control over the summation, it is useful to visualize it geomet-

rically. Consider first M (2). In the plane (n,m), draw the two lines p1 + p2 = n + m and

p3 + p4 = n+m, and the rectangle Rτ,[aba]. Since we are considering a τ in the window, a

pair of external charges sits inside Rτ,[aba].

n+m = min(p1 + p2, p3 + p4)

n+m = max(p1 + p2, p3 + p4)

(D.2)

In the figure, Rτ,[aba] is given in red, and each pair (pq) ∈ Rτ,[aba] is represented by a

black dot. The rightmost edge of Rτ,[aba] lies on the line n+m = τ . In fact we can foliate

Rτ,[aba] by the lines n + m = τ ′ for τ ′ = 4 + 2a + b, . . . τ . Running on any such line, the

difference m−n increases in the direction +3π/4 and decreases in the direction −π/4. The

two pairs of external charges p1p2 and p3p4 are represented by a dot encircled.

There are at most three cases to be taken into account. For a pair (pq) ∈ Rτ,[aba]

belonging to the line p+ q = τ ′, we can have

(I) p21 ≤ p43 ≤ q − p (II) p21 ≤ q − p ≤ p43 (III) q − p ≤ p21 ≤ p43 (D.3)

These are the three regions in which the blue rectangle divides Rτ,[aba].

We shall now analyze the spin structure case by case, given that for any correlator

〈q1q2q3q4〉 we know the common factor,(
2+2l+τ+q43

2

)
!
(

2+2l+τ−q21
2

)
!

(2 + 2l + τ)!
(D.4)

and the degrees in spin of all the SCPW involved.

Let’s assume without loss of generality that p1 + p2 ≤ p3 + p4.

Configuration (II) is the simplest, giving a contribution of the form
〈p1p2pq〉conn.〈pqp3p4〉conn

〈pqpq〉disc. , in which the factorials in disconnected free theory cancel with those

in the numerator. The total degree of the numerator is

〈p1p2pq〉︷ ︸︸ ︷
min(p1 + p2, p+ q)− 4− (q − p− p21) +

〈pqp3p4〉︷ ︸︸ ︷
min(p+ q, p3 + p4)− 4− (p43 − q + p)

= min(p1 + p2, p+ q)− 4− (p43 − p21) + (p+ q − 4) ≡ e? (D.5)

We deduce that any configuration of type (II) contributes in the large spin limit as

〈p1p2pq〉conn.〈pqp3p4〉conn
〈pqpq〉disc.

→

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
le
?−(p+q−2)(1 +O(1/l)) (D.6)
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Let’s consider now a contribution from configurations of type (I), i.e.
〈p1p2pq〉conn.〈p3p4pq〉conn

〈pqpq〉disc. . In this case the factorials come out misaligned. In particular we find(
2+2l+τ−p21

2

)
!
(

2+2l+τ+q−p
2

)
!
(

2+2l+τ−p43
2

)
!(

2+2l+τ−p+q
2

)
!(2 + 2l + τ)!

=

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!


(

2+2l+τ+q−p
2

)
!
(

2+2l+τ−p43
2

)
!(

2+2l+τ−p+q
2

)
!
(

2+2l+τ+p43
2

)
!

 (D.7)

Notice that the term between square brackets is polynomial of degree q−p−p43 ≥ 0, which

is positive for type (I) configurations. There are small changes also in the computation of

the degree of the numerator, i.e.

〈p1p2pq〉︷ ︸︸ ︷
min(p1 + p2, p+ q)− 4− (q − p− p21) +

〈p3p4pq〉︷ ︸︸ ︷
min(p+ q, p3 + p4)− 4− (q − p− p43)

= e? + 2(p43 − q + p) (D.8)

The result is that a configuration (I) in the large spin limit contributes as

〈p1p2pq〉conn.〈p3p4pq〉conn
〈pqpq〉disc.

→

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2+2l+τ)!

le
?−(p+q−2)

lq+p−p43
(1+O(1/l)) (D.9)

The case of configurations of type (III) mirrors the case of configurations of type (I).

Repeating the previous derivation with minor modifications we obtain that in the large

spin limit a configurations of type (III) contributes as,

〈pqp1p2〉conn.〈pqp3p4〉conn
〈pqpq〉disc.

→

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2+2l+τ)!

le
?−(p+q−2)

lp21−q+p
(1+O(1/l)) (D.10)

The first conclusion we draw is that when summing over pairs in (pq) ∈ Rτ,[aba] such

that p + q = τ ′, the large spin limit is dominated by configurations of type (II), because

compared to le
?−(p+q−2) both (I) and (III) are further suppressed.

In order to decide which line p + q = τ ′, in the range b + 2a + 4 ≤ τ ′ ≤ τ , gives the

leading power law contribution, we further distinguish the two cases: p1 + p2 ≤ τ ′ and

4 + 2a+ b ≤ τ ′ ≤ p1 + p2. We find

if p1 + p2 ≤ τ ′ then e? − (τ ′ − 2) = (p1 + p2)− (p43 − p21)− 6

if τ ′ ≤ p1 + p2 then e? − (τ ′ − 2) = τ ′ − (p43 − p21)− 6
(D.11)

Thus, in the expression

M
(2)
~p;τ,l,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
× numM(2)(l)

denM(2)(l)
(D.12)

the power law asymptotics of numM(2)/denM(2) , is l−(p43−p21)−6
[
l(p1+p2) + . . . + lτ

′
+ . . .

]
and lp1+p2 gives the leading contribution. Since we know independently that the greatest
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denominator factor in the summation over (pq) ∈ Rτ,[aba] is given by disconnected free

theory for p+ q = τ , we conclude that the degree in spin of numM(2) has to be that of the

greatest denominator, i.e (τ−2), plus (p1+p2)−(p43−p21)−6. This implies the general result

degree numM(2)(l) = (τ − 4) + (min(p1 + p2, p3 + p4)− 4− (p43 + p21))

= (τ − 4) + 2(κ~p − 2) + p21 (D.13)

after using the relation κ~p = min
(

1
2(p1 + p2 + p3 − p4), p3

)
.

The details of the computation of L
(2)
τ,(p1p2);(p3p4) are very similar to those of M (2),

but for an important detail. Since the twist τ belongs to the below window region, the

rectangle Rτ,[aba] over which we are summing, is foliated by lines n + m = τ ′ with τ ′ =

4 + 2a+ b, . . . τ < min(p1 + p2, p3 + p4). Pictorially, the situation is as follows,

n+m = min(p1 + p2, p3 + p4)

n+m = max(p1 + p2, p3 + p4)

(D.14)

Therefore, comparing with (D.11), we now get for

L
(2)
~p;τ,l,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
× numL(2)(l)

denL(2)(l)
(D.15)

that the leading asymptotic of numL(2)/denL(2) only counts twists in the region τ ′ < p1+p2,

as it should, thus it is has the form l−(p43−p21)−6
[
lτ + . . .

]
. We obtain the general result,

degree numL(2)(l) = 2(τ − 4)− (p43 − p21), degree denL(2)(l) = (τ − 2). (D.16)

Formulas (D.13) and (D.16) summarize our proof of the spin structure of the SCPW

coefficients M (2) and L(2).

Finally, we distinguish between even and odd b.

In the even b case, even and odd spin cases go separately. Reciprocity implies that in

both cases num is an even polynomial of the variable 2l + τ + 3,

M
(2)
~p;τ,l,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
× numM(2)(2l + τ + 3)

denM(2)(2l + τ + 3)
(D.17)

L
(2)
~p;τ,l,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
× numL(2)(2l + τ + 3)

denL(2)(2l + τ + 3)
(D.18)
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In this odd b case, the polynomials num and den, for both M (2) and L(2) depend on

the spin, whether it is even or odd. Picking

M
(2)
~p;τ,even,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
×
numeven

M(2)(l)

deneven
M(2)(l)

(D.19)

L
(2)
~p;τ,even,[aba] =

(
2+2l+τ+p43

2

)
!
(

2+2l+τ−p21
2

)
!

(2 + 2l + τ)!
× numL(2)(l)

denL(2)(l)
(D.20)

the SCPW coefficients corresponding to odd spins is then obtained by considering

numodd
M(2)(l) = numeven

M(2)(−l − τ − 3) denodd
M(2)(l) = deneven

M(2)(−l − τ − 3),

numodd
L(2)(l) = numeven

L(2) (−l − τ − 3) denodd
L(2)(l) = deneven

L(2) (−l − τ − 3).

The factorials do not transform.

Because of (B.25) and (3.26) we can say that the ratio numeven(l)/deneven(l) for both

M (2) and L(2) will always have a factor of (l+τ+2), thus reducing the degree of numerator

and denominator. In particular, once (l+ τ + 2) is factored out, the degree of the auxiliary

numerator is down by −2 and that of the denominator is down by −1.

D.1 Refining the one-loop ansatz with reciprocity

We conclude by illustrating the use of reciprocity symmetry in our bootstrap algorithm.

The starting point is the ansatz at the stage in which the leading logs have been

matched, and there are no x = x̄ poles. The idea is that whenever an OPE predictions in

and below window is non trivial, rather than immediately input the prediction, we first im-

pose the correct spin structure of SCPW coefficients on the ansatz, by using (D.17)–(D.20).

Recall that in (D.17)–(D.20) we know the denominators. The corresponding numerators

instead will be parametrized by a polynomial in l, according to the degree and the parity

under l ↔ −l − τ − 3, as we understood in the previous section. We will leave the pa-

rameters in these polynomials free. We expect that imposing the spin structure solves a

number of free parameters in the ansatz, and trade some of them for the new ones in the

various numerators. We shall see in this way how much constraining is the spin structure

of the SCPW alone.

3333. As we saw in section 4.4, there are non trivial OPE predictions below window at

twist 4 in all su(4) channels. We impose twist 4 SCPW of the form (3.41) of the form

X[000]

(l + 1)(l + 6)
,

X[101]

(l + 2)(l + 5)
,

X[020]

(l + 3)(l + 4)
. (D.21)

In the table below we report the results of imposing (D.21) on the ansatz,

rep twist
# free coef. autofit

in the ansazt
# free coeff. left over

in numerator

[000] 4 3 0

[020] 4 3 0

[101] 4 1 0

(D.22)
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What happens here is that the constraint from reciprocity is so strong that at the

same time X[000], X[101], X[020] are fixed to their predicted values, and furthermore, the

ansatz is left with no more free coefficients than the ambiguities, i.e. reciprocity fixes H(2)
3333

completely. However, we should highlight that the case of twist 4, and so 3333, is actually

very special because all numerators entering (D.21) have just zero degree in spin.

We shall see in the next example that reciprocity is still powerful but the ansatz will

not be completely fixed.

4444. This correlator exemplifies well the general story about reciprocity symmetry. For

given rep [aba] there are non trivial OPE predictions below window, either τ = 4 or τ = 6.

We will impose that the ansatz has SCPW coefficients of the form

τ [000] [101] [020]

4
X[000]

(l+1)(l+6)

X[101]

(l+2)(l+5)

X[020]

(l+3)(l+4)

6
Y

(0)
[000]

+Y
(2)
[000]

(l+ 9
2

)2+Y
(4)
[000]

(l+ 9
2

)4

(l+1)(l+2)(l+7)(l+8)

Y
(0)
[101]

+Y
(2)
[101]

(l+ 9
2

)2+Y
(4)
[101]

(l+ 9
2

)4

(l+1)(l+3)(l+6)(l+8)

Y
(0)
[020]

+Y
(2)
[020]

(l+ 9
2

)2+Y
(4)
[020]

(l+ 9
2

)4

(l+1)(l+4)(l+5)(l+8)

(D.23)

and

τ [040] [121] [202]

6
Y

(0)
[040]

+Y
(2)
[040]

(l+ 9
2

)2+Y
(4)
[040]

(l+ 9
2

)4

(l+3)(l+4)(l+5)(l+6)

Y
(0)
[121]

+Y
(2)
[121]

(l+ 9
2

)2+Y
(4)
[121]

(l+ 9
2

)4

(l+2)(l+4)(l+5)(l+7)

Y
(0)
[202]

+Y
(2)
[202]

(l+ 9
2

)2+Y
(4)
[202]

(l+ 9
2

)4

(l+2)(l+3)(l+6)(l+7)

(D.24)

with unknown coefficients in the numerators.

The actual OPE predictions give particular polynomials in the various entries of the

tables (D.23) and (D.24). Comparing with the results in section 4.5, we see that in some

cases the rational functions simplify further. However, according to our discussion about

the spin structure, (D.23) and (D.24) are the most general.

The way the ansatz is refined by imposing reciprocity is reported in the table below.

What happens is quite remarkable.

rep twist
# free coef. autofitted

in the ansazt
# free coeff. left over

in the numerator

[000] 4 4 0

6 4 1

[101] 4 4 0

6 3 1

[020] 4 4 0

6 3 1

[040] 6 3 1

[121] 6 1 0

[202] 6 2 0

(D.25)
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Firstly, at twist 4 reciprocity fixes completely the one variable resummation to its OPE

prediction. Secondly, at twist 6, almost all free coefficients in the ansatz are fixed just by

the symmetry. We can trade the 4 free coefficients left in the ansatz for those in (D.23)

and (D.24). For example, Y
(0)

[000], Y
(0)

[101], Y
(0)

[020], Y
(0)

[040]. Summarizing, there is (only!) a 4 free-

coefficients ansatz (with ambiguities) which can potentially describe H(2)
4444. By matching

the value of these remaining free coefficients in the ansatz to the OPE predictions below

window, we obtain H(2)
4444.
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