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Abstract We show how it is possible to rewrite the BFKL
equation for the unintegrated gluon distribution, in terms of
integrated gluons, similar to that used in DGLAP. We add
to our equation the next-to-leading log terms which provide
exact energy-momentum conservation and account for the
kinematic constraint in real gluon emission. In this way the
equation includes the major part of the higher-order correc-
tions to BFKL evolution. We discuss the possibility to obtain
a unified BFKL–DGLAP evolution equation relevant to pro-
cesses at the LHC where both log(1/x) and logQ2 are large
simultaneously.

1 Introduction

Originally the BFKL equation [1–4] was proposed to
describe the high-energy behaviour of processes involving
hadrons, such as proton–proton scattering or deep inelastic
lepton–proton scattering. The BFKL equation for the ampli-
tude of such processes sums up all the higher-order αs cor-
rections where the small value of QCD coupling αs is com-
pensated by the large logarithm of the energy,

√
s; that is the

amplitude has the form

A(s) =
∑

n

Cn(αs ln s)n . (1)

Recalling that x ∼ Q2/s, where Q2 is the hard scale of the
process, it follows that the BFKL equation may be regarded
as an equation for the ln(1/x) evolution of unintegrated gluon
density of the proton, f (x, kt ), which depends on two argu-
ments: the proton momentum fraction x carried by a gluon
and its transverse momentum, kt . A feature of this evolution
is diffusion of the gluon density in lnkt space.

On the other hand, DGLAP evolution, which sums the
αs ln Q2 terms, has contributions which are strongly ordered

a e-mail: a.d.martin@durham.ac.uk

in kt , and is written in terms of integrated parton densi-
ties which no longer depend on kt . The domains in the
(x, Q2) plot, where pure BFKL and pure DGLAP evolution
are appropriate, are quite distinct. In practice, however, we
really should sum up both the BFKL and the DGLAP log-
arithms. In particular, at the LHC energy of

√
s = 14 TeV

the most interesting kinematical domain corresponds to the
scale Q2 ∼ M2

W ∼ 6400 GeV2 (that is ln(Q2/Q2
0) ∼ 8)

and x ∼ MW /
√

s ∼ 0.005 (that is ln(1/x) ∼ 5). It is a
region where both the BFKL and the DGLAP logarithms are
important.

In order to be able to compare the BFKL and DGLAP
evolutions it would be valuable to express the BFKL equation
in terms of an integrated gluon distribution, as conventionally
used in the DGLAP approach. Moreover, this would open
the way to formulate an expression which accounts for both
the DGLAP and the BFKL logarithms in terms of integrated
densities.1

In this form, it would be easier to study the BFKL effects,
caused by contributions which violate the strong-kt ordering
or by higher-twist contributions (both of which are present
in BFKL, but are absent in DGLAP evolution), and/or to
perform a BFKL-based global analysis analogous to the tra-
ditional global parton analyses made within the DGLAP
approach.

Recall that the BFKL equation describes evolution in the
ln(1/x) direction starting from some input (which depends
on Q2) at fixed x = x0, while DGLAP generates ln Q2 evo-
lution starting from input at fixed Q2 = Q2

0. The power of the
x-dependence in DGLAP evolution is driven mainly by the
input distribution. On the other hand, in the BFKL approach

1 Such a unified BFKL–DGLAP equation was proposed in [5], but
in terms of the unintegrated parton densities. Note that it is not the
same as the resummation of the large, enhanced by ln(1/x), BFKL
contributions to the DGLAP splitting functions, that is, to the anomalous
dimensions, as was done in [6]. Recall that, besides the leading twist, the
BFKL equation includes higher-twist effects which account for gluon
reggeisation.
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the small x behaviour is completely determined by the BFKL
equation.

To discover such a BFKL equation for an ‘integrated’
gluon density is the purpose of this paper.2 Can this be done,
so that the low x dependence of the integrated gluon PDF is
completely generated within the BFKL framework? It will
clearly involve higher-twist effects coming from the reggei-
sation of the gluon, and hence lie outside a pure DGLAP
framework (which is based on leading twist only). However,
if it can be done, then it will open the way to obtaining a
DGLAP-like evolution for an integrated gluon PDF in terms
of a single evolution variable which sums both the BFKL
log(1/x) and DGLAP logQ2 contributions. We comment
further on this attractive possibility in Sect. 5.

Note that, by summing up all the ln(1/x)-enhanced con-
tributions, the BFKL equation deals with kinematics where
the fraction, z, of the parent gluon momentum carried by
the following gluon is small; z � 1. In this situation one
may neglect the momenta of the new gluons in comparison
with the momentum of parent gluon. However, in reality,
the typical values of z are not so small. Therefore the par-
ton distribution, generated by BFKL evolution, violates the
energy-momentum conservation law. Formally this violation
is a next-to-leading Log (NLL) effect, but numerically it may
be important. Moreover, since the majority of available data
comes from Deep Inelastic Scattering where the incoming
photon does not interact with the gluon directly, in the global
parton analyses the normalisation of gluon distribution is
mainly fixed by the energy conservation sum rule. Therefore
it is crucial to have an equation which automatically satisfies
the energy-momentum conservation law. For this reason, in
the equation for integrated gluon density that we propose,
we include the NLL term which restores energy-momentum
conservation.

Besides this, we will take care of the kinematical cutoff
k

′2
t < k2

t /z [8–10] for real gluon emission. Again, formally,
since z � 1, the integral over the intermediate momentum
k′

t may run up to k′
t → ∞. However, in spite of the fact

that this integral is well convergent at k′
t � kt , for too large

k
′2
t > k2

t /z the contribution of the longitudinal component
to the virtuality k

′2 becomes so large that it kills the leading
logarithmic form of dz/z integration, providing, in this way,
an effective cutoff k

′2
t < k2

t /z.
The inclusion of this cutoff (sometimes called the ‘consis-

tency constraint’) explicitly in the BFKL equation was found
to play a crucial role; it accounts for a major part of the NLL
and higher-order corrections. Let us explain the importance

2 At first sight, such a BFKL equation for an ‘integrated’ gluon density
was already presented long ago in [7]. However, the equation proposed
in [7] does not account properly for gluon reggeisation and for the run-
ning of the QCD coupling αs . In Sect. 5 we will discuss these problems
in more detail.

of this statement. The BFKL resummation of the ln(1/x)

contributions shown in Eq. (1) is at Leading Log (LL) level.
It results in a gluon density which behaves as f ∝ x−ω0 as
x → 0, where ω0 = ᾱs4 ln 2, with ᾱs ≡ 3αs/π . Resumming
the next-to-leading logs [11] gives a behaviour of the form
f ∝ x−ω where now

ω = ω0(1 − 6.5ᾱs). (2)

At first it was thought that such a large NLL correction would
mean that no stable small x predictions could be made using
the BFKL procedure. Next, the value of the NLL correction
depends on the choice of renormalisation scheme. Recently,
it was shown, however, [12] that applying the principle of
maximum conformality and using the more physical MOM-
scheme a much more stable value of ω can be obtained. More-
over, it is possible to identify higher-order terms and then to
resum them. Indeed Ciafaloni et al. [13,14] carried out an
all-order ln(1/x) resummation of the following effects: (i)
running αs , (ii) the non-singular DGLAP terms and (iii) the
angular ordering and energy constraints. The result was a
stable x−ω behaviour, which is consistent with observations.
In fact, prior to this, the fit in [5], which was based on a
unified BFKL/DGLAP equation for the unintegrated gluon,
incorporates these all-order ln(1/x) contributions, where the
imposition of the kinematic (or so-called consistency) con-
straint [9] plays a major role.

In Sect. 2 we recall the original BFKL equation for the
unintegrated gluon density, and express it in a form already
including the kinematical cutoff, k

′2
t < k2

t /z. Also, here,
we add the next-to-leading term which restores energy-
momentum conservation. Then, in Sect. 3, we introduce the
integrated gluon distribution F(x, q) and obtain the equa-
tion for F . The final expression is given in Sect. 4, and an
overview presented in Sect. 5.

2 BFKL equation for unintegrated gluons

Recall that the BFKL equation can be written as an integral
equation for the unintegrated gluon distribution f (x, kt ) (as
conventionally used in BFKL evolution) in the form:

f (x, kt ) = f0(x, kt ) + αs

2π

∫ 1

x

dz

z

∫ ∞

k0

d2k′
t

π

×K(kt , k′
t , z) f (x/z, k′

t ), (3)

where the kernel is evaluated as

K(kt , k′
t , z) f (x/z, k′

t ) = 2Nc
k2

t

k
′2
t

×
⎡

⎣�(k2
t /z − k

′2
t ) f (x/z, k′

t ) − f (x/z, kt )

|k ′2
t − k2

t | + f (x/z, kt )√
4k

′4
t + k4

t

⎤

⎦ . (4)
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The first term with the � function in the kernel3 can be
understood as the effect of the emission of a daughter gluon
with momentum (x, kt ) from a parent gluon with momen-
tum (x ′ = x/z, k′

t ). The remaining terms (with f (x/z, kt ))
account for the loop correction originated by the trajectory of
t-channel reggeised gluons. Note that now the BFKL kernel
K contains a third argument z since here we have imple-
mented the important kinematic constraint for real emission
[5,8–10]

k
′2
t <

k2
t

z
, (5)

to guarantee that only the leading logarithm part of the higher-
order corrections is actually taken into account.

To ensure energy conservation, we subtract the term

αs

2π

∫ 1

0
dz
∫ ∞

ko

d2k′
t

π
K(kt , k′

t , z) f (x, k′
t ) (6)

from the right-hand side of Eq. (3). We can check that this
conserves momentum by integrating both Eq. (3) and Eq. (6)
with respect to x , and using the ‘integral’ identity
∫ 1

0
dx
∫ 1

x

dz

z
=
∫ 1

0

dz

z

∫ z

0
dx =

∫ 1

0
dz
∫ 1

0
d

(
x

z

)
(7)

Such a prescription is analogous to the 1/ω → 1/ω − 1
replacement proposed in [15] to achieve the same goal in ω-
representation. Note that the integral over z in Eq. (6) does
not have a logarithmic (dz/z) form, whereas in Eq. (3) the
form (dz/z) generates the factor 1/ω in ω representation.
Recall that f (x, kt ) ∝ x−ω.

3 BFKL equation for integrated gluons

In this section we show how the BFKL equation can be rewrit-
ten in terms of the integrated gluon distribution given by

F(x, q) =
∫ q2

dk2
t

k2
t

f (x, kt ) =
∫ q2

d ln k2
t f (x, kt ). (8)

First, we integrate Eq. (3) over dk2
t /k2

t from k2
0 to q2, and

express it in the form

F(x, q) − F(x, k0) = F0(x, q) − F0(x, k0)

+ Ncαs

π

∫ 1

x

dz

z
(FA + FB + FC ) , (9)

where FA, FB and FC arise from the three terms in [...] of
Eq. (4), but now integrated over both kt and k′

t ; and where

F0(x, q) =
∫ q2

dk2
t

k2
t

f0(x, kt ). (10)

3 Here we have already integrated over the azimuthal angle φ assuming,
similar to DGLAP case, a flat φ dependence of f ; that is, we consider
the zero harmonic, which corresponds to the rightmost intercept.

We first consider FC , which is given by

FC =
∫ q2

k2
0

dk2
t

k2
t

∫ ∞

k2
0

dk′
t
2 k2

t

k
′2
t

⎡

⎣ f (x ′, kt )√
4k

′4
t + k4

t

⎤

⎦ (11)

=
∫ q2

k2
0

dk2
t

k2
t

⎡

⎣ln

⎛

⎝

√
4k4

0 + k4
t + k2

t

2k2
0

⎞

⎠ f (x ′, kt )

⎤

⎦ . (12)

We have carried out one of the integrations, but so far our
goal of having only an integrated distribution has not been
achieved. To do so, we perform an ‘integration by parts’ using
the identity
∫

udv =
∫

d(uv) −
∫

vdu. (13)

Note that on the right-hand side we only have an integrated
v, whereas on the left-hand we have an unintegrated dv. That
is exactly what we need. In particular, to evaluate Eq. (12)
we use

u ≡ ln

⎛

⎝

√
4k4

0 + k4
t + k2

t

2k2
0

⎞

⎠ and dv ≡ dk2
t

k2
t

f (x ′, kt )

(14)

and integrate by parts. We obtain

FC =
⎡

⎣ln

⎛

⎝

√
4k4

0 + k4
t + k2

t

2k2
0

⎞

⎠ F(x ′, kt )

⎤

⎦
∣∣∣∣
k2

t =q2

k2
t =k2

0

−
∫ q2

k2
0

dk2
t

F(x ′, kt )√
4k4

0 + k4
t

= ln

⎛

⎝

√
4k4

0 + q4 + q2

2k2
0

⎞

⎠ F(x ′, q)

− ln

(√
5 + 1

2

)
F(x ′, k0) −

∫ q2

k2
0

dk2
t

F(x ′, kt )√
4k4

0 + k4
t

.

(15)

Now, at least the FC term depends only on the integrated
distribution F(x, kt ) that satisfies

∂

∂ ln k2
t

F(x, kt ) = k2
t

∂

∂k2
t

F(x, kt ) = f (x, kt ). (16)

Next, we proceed to study the second term, FB in Eq. (9),
where

FB = −
∫ q2

k2
0

dk2
t

k2
t

∫ ∞

k2
t /z

dk′
t
2 k2

t

k
′2
t

f (x ′, kt )

|k′
t
2 − k2

t | (17)

= ln(1 − z)
∫ q2

k2
0

dk2
t

k2
t

f (x ′, kt ) (18)

= ln(1 − z)[F(x ′, q) − F(x ′, k0)]. (19)
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Here we have a singularity when z → 1. This singularity will
be removed when we include the momentum conservation
term in Eq. (6). It will result in an expression like

∫
dz

z
ln(1 − z) [F(x/z, q) − zF(x, q)] , (20)

where now the integrand is non-singular at z → 1.
The final contribution, the first term FA in Eq. (9), is the

most dangerous term of the BFKL kernel. It is given by

FA =
∫ q2

k2
0

dk2
t

k2
t

∫ k2
t /z

k2
0

dk′
t
2 k2

t

k
′2
t

[
f (x ′, k′

t ) − f (x ′, kt )

|k ′2
t − k2

t |
]

.

(21)

The integral over k′
t of the first term in the above numer-

ator, containing f (x ′, k′
t ), can be evaluated by parts using

the identity udv = d(uv) − vdu. In order to see explic-
itly the cancellation of the singularity at k′

t = kt , we subtract
F(x, kt )—a constant independent of k′

t —from the integrated
function. That is, we take

v(x, k′
t ) = F(x, k′

t ) − F(x, kt ), (22)

and integrate the first term in the numerator by parts. Omit-
ting, for the moment, the second variable x , for clarity, we
obtain

FA =
∫ q2

k2
0

dk2
t

[
F(k′

t ) − F(kt )

|k′
t
2 − k2

t |

]∣∣∣∣∣

k2
t /z

k2
0

+
∫ q2

k2
0

dk2
t

∫ k2
t /z

k2
0

dk′
t
2

k′
t
2|k′

t
2 − k2

t |

[
k′

t
2 F(k′

t ) − F(kt )

(k′
t
2 − k2

t )
− f (kt )

]
.

(23)

Here the first term is well defined when k′
t
2 = k2

t . The second
one should be as well, as long as we start with a well defined
term in Eq. (21), as is the case. However, we cannot use the
linearity property of integration to split the integrand into
separate integrals. Instead, we use the Taylor series:

F(k′
t ) − F(kt ) = f (kt )

k2
t

(k′
t
2 − k2

t )

+
[

∂

∂k′
t
2

f (k′
t )

k′
t
2

]∣∣∣∣∣
k′

t =kt

(k′
t
2 − k2

t )2 + · · · (24)

to check that the integration is well behaved. Nevertheless,
we still have the unintegrated function f (kt ) in the last term
of Eq. (23). However, this contribution will disappear after we
integrate over k2

t to obtain finally the integrated distribution.
First, we must change the order of integration. We use

∫ q2

k2
0

dk2
t

∫ k2
t /z

k2
0

dk′
t
2 =

∫ q2/z

k2
0

dk′
t
2
∫ q2

zk′
t
2

dk2
t (25)

and again integrate by parts, this time for f (kt ). We obtain

∫
dk2

t
1

|k′
t
2 − k2

t |

[
k′

t
2 F(k′

t ) − F(kt )

(k′
t
2 − k2

t )
− f (kt )

]

= −k2
t

F(kt ) − F(k′
t )

|k′
t
2 − k2

t |

+
∫

dk2
t

1

|k′
t
2 − k2

t |

[
k′

t
2 F(k′

t ) − F(kt )

(k′
t
2 − k2

t )

−k′
t
2 F(kt ) − F(k′

t )

(k2
t − k′

t
2
)

]
. (26)

The above integrand can be simplified. The result is

FA =
∫ q2

k2
0

dk2
t

[
F(x ′, k′

t ) − F(x ′, kt )

|k′
t
2 − k2

t |

]∣∣∣∣∣

k′
t
2=k2

t /z

k′
t
2=k2

0

+
∫ q2/z

k2
0

dk′
t
2

[
k2

t

k′
t
2

F(x ′, k′
t ) − F(x ′, kt )

|k′
t
2 − k2

t |

]∣∣∣∣∣

k2
t =q2

k2
t =zk′

t
2

.

(27)

To simplify further we apply the limits

FA =
∫ q2

k2
0

dk2
t

[
F(kt/

√
z) − F(kt )

|k2
t /z − k2

t | − F(k0) − F(kt )

|k2
0 − k2

t |

]

+
∫ q2/z

k2
0

dk′
t
2

[
q2

k′
t
2

F(k′
t ) − F(q)

|k′
t
2 − q2| − z

F(k′
t ) − F(

√
zk′

t )

|k′
t
2 − zk′

t
2|

]
,

(28)

and regroup terms

FA =
∫ q2

k2
0

dk2
t

F(kt ) − F(k0)

|k2
t − k2

0 | +
∫ q2/z

k2
0

dk2
t

q2

k2
t

F(kt ) − F(q)

|k2
t − q2|

−
∫ k2

0

zk2
0

dk2
t

k2
t

F(kt/
√

z) − F(kt )

|1/z − 1| . (29)

The contribution arising from momentum conservation
can be rewritten in terms of the integrated gluons F in anal-
ogous way.

4 The final result

We gather together the results (29), (19) and (15) for FA, FB

and FC , and then insert them into Eq. (9). The result for the
BFKL evolution in terms of the integrated gluon density, Eq.
(8), is given by
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F(x, q) = F(x, k0) + F0(x, q) − F0(x, k0)

+ Ncαs(q2)

π

∫ 1

x

dz

z

{∫ q2

k2
0

dk2
t

F(x ′, kt ) − F(x ′, k0)

|k2
t − k2

0 |

+
∫ q2/z

k2
0

dk2
t

q2

k2
t

F(x ′, kt ) − F(x ′, q)

|k2
t − q2|

−
∫ k2

0

zk2
0

dk2
t

k2
t

F(x ′, kt/
√

z) − F(x ′, kt )

|1/z − 1|
+ ln(1 − z)[F(x ′, q) − F(x ′, k0)]

+ ln

(
√

4k4
0 + q4 + q2

2k2
0

)
F(x ′, q)

− ln

(√
5 + 1

2

)
F(x ′, k0) −

∫ q2

k2
0

dk2
t

[
F(x ′, kt )√
4k4

0 + k4
t

]}

−energy−momentum conservation term. (30)

To obtain the energy-momentum conservation term we
replace x ′ = x/z with x in first argument of the distribu-
tions F(x, kt ). We use the natural renormalisation scale for
the QCD coupling αs(q2); see e.g. [13,14].

The expression (30) may be further simplified if we
assume that perturbative QCD evolution can be extrapolated
down to k0 = 0 and F(x, k0) vanishes at k0 → 0. Then for
very small k0

F(x, q) = F0(x, q) + Ncαs

π

∫ 1

x

dz

z

×
{∫ q2/z

k2
0

dk2
t

k2
t

[
q2 F(x ′, kt ) − F(x ′, q)

|kt
2 − q2|

]

+ ln(1 − z)F(x ′, q) + ln

(
q2

k2
0

)
F(x ′, q)

}

−energy−momentum conservation term. (31)

We note the apparent k0 → 0 divergences in the integral, and
in ln k0 occurring just before the ‘energy-momentum conser-
vation term’. We may join the two divergences together to
demonstrate their cancellation. In this way we obtain the rel-
atively simple equation

F(x, q) = F0(x, q) + Ncαs

π

∫ 1

x

dz

z

×
{∫ q2/z

0

dk2
t

k2
t

q2 F(x ′, kt ) − (q2 − |q2 − kt
2|)F(x ′, q)

|kt
2 − q2|

+ ln[z(1 − z)]F(x ′, q)

}

−energy−momentum conservation term (32)

Thus we have a BFKL equation for the integrated gluon
distribution, F , which sums up all the leading (αs ln 1/x))n

contributions. Besides this, the equation includes those next-
to-leading terms which provide the energy-momentum con-

servation during the evolution (or the iterations) and which
takes care of the kinematic cutoff (5). These next-to-leading
terms, account for the major part of the NLL and higher-order
corrections to the original BFKL equation.

5 Discussion and outlook

Let us first discuss the equation proposed long ago in [7],
since it demonstrates some of the difficulties in obtain-
ing a BFKL equation for an integrated gluon density. For-
mally Eq. (26) of [7] should be considered as the ln(1/x)

BFKL evolution equation for the integrated gluon density
F(Q2, S2) with S2 = �2/x and with the splitting kernel
P(Q2/k2;αs(S2)) given by Eq. (30) of [7]. This equation
is to be compared with our result (30) or Eq. (32). The
first terms, corresponding to the real gluon emission with
kt < q, or κ < 1 in [7], are the same. However, there is an
important difference due to gluon reggeisation, which is not
properly accounted for in [7]—reggeisation is a higher-twist
effect, which cannot be reproduced by the ‘two-particle irre-
ducible diagrams’ considered in [7]. Besides this, the kine-
matical constraint (5) for real gluon emission is missed in
Eqs. (26, 30) of [7]. Moreover, strictly speaking, Eq. (26)
assumes an infrared cutoff k0 = 0; that is, it corresponds to
the specific limit presented in Eq. (32) at the end of previous
section. This was not emphasised in [7].

Another problem of Eq. (26) is the very strange choice
of the argument, S2 = �2/x , for the QCD coupling αs(S2).
Contrary to the natural choice, αs(q2) as in Eq. (30), S2

is very large at low x scales, and has the effect of com-
pletely killing the power growth (x−ω) of the BFKL ampli-
tude since the value of ω = αs · χ decreases as αs ∝
1/ ln(S2) � 1/ ln(1/x). So from the evolution equation (26),
with coupling αs(S2), we would obtain a cross section which
increases as some power of ln(1/x), but not as a power of
(1/x).

Now we give an overview of the structure of uni-
fied DGLAP and BFKL evolution. As was emphasised in
the introduction, the DGLAP equation sums up all the
leading (αs ln Q2)n terms, while BFKL accounts for the
(αs ln(1/x))m contributions. In general, for many of the inter-
esting processes at the LHC both logarithms are large,4 and
are of the same order, so we need to consider evolution
which takes care of these large logarithms. The DGLAP part
describes the variation of the Parton Distribution Functions

4 Even for processes which depend directly on the gluon only at mod-
erate and large values of x , we need reliable knowledge of the gluon
distribution at very small x , since the normalisation of the gluon PDF
is fixed by the energy-momentum sum rule. Note that a large part of the
total energy of the gluon is hidden in the low x domain where the gluon
density is large and grows with decreasing x .

123



3030 Page 6 of 6 Eur. Phys. J. C (2014) 74:3030

(PDFs) with increasing values of the scale, Q2; while BFKL
evolution provides the correct small x behaviour.

Recall that DGLAP evolution starts from parameterised
input distributions, PDFinput(x, Q2

0) at a fixed scale Q2 =
Q2

0, and it includes the trivial boundary condition, PDF = 0,
at x = 1. On the other hand, BFKL evolution starts from a
gluon distribution at a fixed, but not very small, value x = x0.
Its boundary condition, at relatively low values q2 = Q2, is
driven by confinement. Confinement eliminates the gluon at
large distances. Therefore, it looks natural for the BFKL case
to have an analogous zero boundary condition, F(x, q =
0) = 0, which leads to the simplified form of the evolution
given in Eq. (32).5

Let us accept these, physically motivated, ‘zero’ boundary
conditions. Then for unified BFKL–DGLAP evolution, we
need DGLAP-like input in a limited interval of x only (say,
from x0 = 0.2 to 1). The BFKL input at fixed x = x0 and
q > q0 is obtained now by a straightforward application of
the DGLAP equation. The remaining part is the contribution
from the small non-perturbative domain of q < q0 and x >

x0. Here we may use an extrapolation like

F(x, q < q0) = F(x, q0)
q2

q2
0

, (33)

or, as used in [5], we may introduce a new parameter, qa , to
allow for a better matching of the derivative at q = q0

F(x, q < q0) = F(x, q0)
q2

q2
0

(
q2 + q2

a

q2
0 + q2

a

)
. (34)

In such an approach the phenomenological input distribution
is used to describe the large x behaviour only, while the low
x dependence is completely generated by BFKL.

Following from this development, it looks promising also
to consider unified BFKL–DGLAP evolution for the inte-
grated gluon PDF in terms of the variables (x, θ ), as proposed
in [16], instead of the variables (x, q). The coherence of soft
gluon emission automatically provides strong-ordering in the
opening angle θ = qt/xp (where p is the momentum of the
incoming proton). On the other hand, both the BFKL and
the DGLAP logarithms are actually logarithms coming from
an integration over dθ/θ . Therefore, for evolution written
in terms of θ , we may expect better accuracy already at LO
level, with smaller higher-order corrections. Details of such a
promising approach are given in [16], and a recent numerical
study of evolution in θ can be found in [17].

5 In the more general case, we may use Eq. (30) with some input func-
tion F input(x, q0). In the original BFKL equation for unintegrated gluon
density, the ‘input’ function f0 (see Eq. (3)) reflects the contribution of
the lowest-order (Born) diagram. Correspondingly, we do not expect
the integrated input F input(x, q0) to grow as x → 0. Rather, the growth
of the gluon PDF at small x is generated by BFKL dynamics. Thus,
anyway, the input distribution will be negligible in comparison with the
strongly increasing PDF as we evolve to very low x .
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