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Abstract— The combined heat and power (CHP) microgrid can 

work both effectively and efficiently to provide electric and thermal 

power when an appropriate schedule and control strategy is provided. 

This study proposes a stochastic model predictive control (MPC) 

framework to optimally schedule and control the CHP microgrid with 

large scale renewable energy sources. This CHP microgrid consists of 

fuel cell based CHP, wind turbines, PV generators, battery/thermal 

energy storage system (BESS/TESS), gas fired boilers and various 

types of electrical and thermal loads scheduled according to the 

demand response policy. A mixed integer linear programming based 

energy management model with uncertainty variables represented by 

typical scenarios is developed to coordinate the operation of the 

electrical subsystem and thermal subsystem. This energy management 

model is integrated into an MPC framework so that it can effectively 

utilize both forecasts and newly updated information with a rolling up 

mechanism to reduce the negative impacts introduced by uncertainties. 

Simulation results show that the approach proposed in this paper is 

efficient when compared with an open loop based stochastic 

day-ahead programming (S-DA) strategy. In addition, the impacts of 

fuel cell capacity and TESS capacity on microgrid operations are 

discussed. 

Keywords— stochastic model predictive control (SMPC), 

combined heat and power (CHP) microgrid, demand response, mixed 

integer linear programming (MILP) 

NOMENCLATURE 

Index and Set 

  time step index 

  Typical scenario index 

  index of electrical schedulable appliances 

  index of electrical shiftable appliances 

  set of electrical schedulable appliances  (   ) 

  set of electrical shiftable appliances  (   ) 

Parameters 

  Time length of control horizon 

S Number of selected typical scenarios 

   duration between two successive time intervals ( ) 

   
   ,    

    the maximum electrical power that microgrid can 

purchase/sell (  ) 

   
   ,    

    the minimum electrical power that microgrid can 
purchase/sell (  ) 

     
   ,      

    Maximum and minimum energy of electrical storage 
(   ) 

     
     the initial energy of electrical storage (   ) 

      
   ,       

    the maximum, minimum charging power for 
electrical storage (  ) 

      
   ,       

    the maximum, minimum discharging power for 
electrical storage (  ) 

      ,        Discharging and charging efficiency of electrical 
storage (%)  

      self-discharge of electrical storage (     ) 

     
    operation cost of electrical storage ($) 

     
   ,      

    Maximum and minimum energy of thermal storage 
(   ) 

     
     the initial energy of thermal storage (   ) 

      
   ,       

    the maximum, minimum charging power for thermal 
storage (  ) 

      
   ,       

    the maximum, minimum discharging power for 
thermal storage (  ) 

      ,        Discharging and charging efficiency of thermal 
storage (%)  

      self-discharge of thermal storage (     ) 

     
    operation cost of thermal storage ($) 

  
   ,   

    the minimum, maximum power demand of electrical 
schedulable appliance   (  ) 

  
     ,   

    earliest start time, latest final time of electrical 
schedulable appliance   ( ) 

   total energy demand of appliance   (   ) 

    
    maximum power of the electrical critical loads (  ) 

        power demand of electrical critical loads at time   
(  ) 

   power demand of electrical shiftable appliance   
(  ) 

  
     ,   

    earliest start time, latest final time of electrical 
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shift-able appliance   ( ) 

   total operation time of appliance   needed ( ) 

   
    the maximum power of thermal loads (  ) 

   
    maximum curtailment ratio of thermal loads (%) 

   
    the maximum power of electrical power flexible 

loads (  ) 

   
    maximum curtailment ratio of electrical power 

flexible loads (%) 

   ,     penalty cost efficiencies for electrical and thermal 
power flexible loads ( ) 

   probability of the summation power of renewable 
energy sources (RES) for scenario     

 
  

     electrical energy conversion efficiency for fuel cell 

 
  

     heat-to-power ratio for fuel cell 

   
            

        Minimum and maximum electrical power output for 
fuel cell (  ) 

   
  ,    

     minimum up and down time intervals for fuel cell 
( ) 

    
        rated electrical ramp power for fuel cell (  ) 

   
  ,    

  ,    
   maintenance, cold start and shut-down cost 

efficiency for fuel cell ( ) 

 
   

      electrical energy conversion efficiency for fuel cell 

    
  ,     

  ,     
   maintenance, cold start and shut-down cost 

efficiency for gas fired boiler ( ) 

     
    rated power of wind farm (  ) 

   
    rated power of PV plant (  ) 

        power provided by the natural gas network at time   
(  ) 

      ,        actual power flexible electrical and thermal loads at 
time   (  ) 

     ,       actual buying and selling electricity price at time   
($) 

Forecasts  

      
     power output of the wind generators at time   for 

scenario s (  ) 

    
     power output of the PV generators at time   for 

scenario s (  ) 

         demand of electrical critical loads at time   (  ) 

        demand of electrical flexible loads at time   (  ) 

        demand of thermal loads at time   (  ) 

      ,        forecasted buying/selling electricity price at time 
 ($) 

Decision Variables 

   
    ,    

     microgrid purchased, sold power at time   under  
scenario s (  ) 

   
    ,    

     microgrid purchasing, selling power status at time   
(0/1).  

      
    ,      

     charging, discharging power of electrical storage at 
time   (  ) 

      
    ,      

     charging, discharging status of electrical storage at 
time   (0/1) 

     
     energy level of electrical storage at time   (   ) 

      
    ,      

     Charging and discharging power of thermal storage 
at time   (  ) 

      
    ,      

     charging, discharging status of thermal storage at 
time   (0/1) 

     
     energy level of thermal storage at time   (   ) 

       
      electrical power output of fuel cell at time   (  ) 

       
      imported gas power for fuel cell at time   (  ) 

        
      thermal power output of fuel cell at time   (  ) 

   
      operation status of fuel cell at time   (0/1) 

      
    ,       

     start-up and shut-down statuses of fuel cell at time    
(0/1) 

         
      thermal power output of gas fired boiler at time   

(  ) 

        
      imported gas power for boiler at time   (  ) 

    
      operation status of gas boiler at time   (0/1) 

       
    ,        

     start-up, shut-down statuses of boiler at time  (0/1) 

   
     curtailment ratio of electrical flexible loads at time   

(%) 

   
     curtailment ratio of thermal loads at time   (%) 

  
     load demand of schedulable appliance   at time   

(  ) 

  
     operation status of schedulable appliance   at time   

(0/1) 

  
     operation status of shiftable appliance   at time   

(0/1) 

 

1. Introduction 

Currently, different types of energy infrastructures, such as 

electricity, natural gas and heating systems are planned and 

operated independently [1]. On the other hand, the combined 

heat and power (CHP) cogeneration system can significantly 

improve the energy efficiency. For instance, the CHP 

cogeneration system efficiency is as high as 90% compared 

with a less than 60% efficiency for traditional electricity 

generation systems [2]. Among the available fuel cells (FC), 

internal combustion engines (ICE), and micro turbine (MT) 

technologies, FC-CHP and MT-CHP are preferred technologies 

by considering the economic profit and environmental emission 
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costs [3]. The 80℃to 100 ℃ working temperature of proton 

exchange membrane (PEM)-FC power plants, and their fast 

startup are best suited for building applications [4]. Therefore, a 

microgrid integrated with distributed energy resources (DERs), 

CHP systems and energy storage system will be a promising 

way to achieve an environment-friendly grid with low 

operation cost and high system reliability.  

Along this line, a detailed mixed integer linear programming 

(MILP) model was proposed to minimize the short-term 

operation costs of a CHP microgrid in [5] where the operation 

cost equals to the total Operation & Maintenance (O&M) costs 

minus the revenue for selling electricity back to the external 

grid. A stochastic day-ahead scheduling strategy for a CHP 

microgrid with electric storage system and thermal storage 

system considering security constraints was proposed in [6]. In 

[7], a multi-objective self-scheduling optimization problem for 

a CHP microgrid optimal operation was studied. The 

considered CHP microgrid comprises energy storage systems 

and different types of thermal power generation units. A 

short-term scheduling approach of a grid-connected industrial 

heat and power microgrid that comprises fuel cell units, CHP 

generators, boiler, battery energy storage system (BESS) and 

heat buffer tank was studied in [8] where a probabilistic 

framework based on a scenario method was used to represent 

the uncertainties of load and price. In [9], a scenario-based 

mixed non-linear integer programming (MNIP) stochastic 

programming model was proposed to economically and 

optimally operate a CHP microgrid with PEMFC-CHP power 

plants, RESs and storages. It is worth mentioning that the above 

literatures are all open-loop based energy management 

strategies, and their performances deteriorate rapidly under a 

high penetration of renewable generations.  

More recently, MPC has drawn much attention of the energy 

management community of microgrid [10][11] and 

multi-microgrids [12] due to that it can incorporate both 

forecasts and newly updated information to decide the future 

behaviors of system and handle different kinds of system 

constraints efficiently. Regarding its applications in CHP 

microgrid, the authors in [13] proposed an MPC based operator 

for heating power plant with considering fluctuating loads. The 

proposed approach was tested using the data obtained from a 

DH system. In [14], an online optimal operation approach for 

CCHP microgrids based on MPC with feedback correction to 

compensate for prediction error was investigated. In [15], an 

MPC based optimal control method that considers demand 

response was proposed to minimize the operation cost of a 

residential CHP microgrid. In [16], an MPC based optimal 

control strategy which accounts for both electrical and thermal 

processes in multi-building energy networks was proposed. 

Although MPC based approaches highly depend on the 

accuracy of expected forecast data, the forecast uncertainties of 

single-point prediction are not considered in the 

aforementioned studies. Therefore, a two-stage MPC based 

coordinated control approach for CCHP microgrid is proposed 

in [17]. 

It is reported in [18] that stochastic approaches is able to 

deal with fluctuations and uncertainties with typical scenarios. 

In[19], an economic dispatch problem of a building Heating, 

Ventilation and Air Conditioning (HVAC) system was tackled 

with a SMPC approach. In [20], a two-layer stochastic model 

predictive control scheme was proposed for a microgrid to 

ensure probabilistic constraints satisfaction when the 

penetration level of renewable energy resources is high. 

However, many CHP microgrid key features, such as demand 

side programs, electrical and thermal storages, coordination of 

electrical and thermal networks, and ON/OFF generators status 

are not considered. 

Therefore, a stochastic model predictive control (SMPC) 

based two-stage optimal scheduling strategy which combines 

advantages of both MPC and stochastic programming is 

proposed to minimize the overall operation cost of the CHP 

microgrid subject to relevant operation and energy balance 

constraints. The forecast uncertainties of wind and PV 

generation, load demand and electricity price are represented 

via typical scenarios [21]. The main contributions of this study 

are summarized as follows: 

 A scenario-based energy management model is developed 

for a CHP microgrid consisting of electrical and thermal 

subsystems, which is formulated as a MILP problem.  

 A SMPC based two-stage microgrid control framework is 

proposed, which includes the prescheduling stage and the 

power compensation stage. In the prescheduling stage, an 

optimal control sequence is obtained by solving the MILP 

based microgrid energy optimization problem, and in the 

power compensation stage, dispatchable units are 

coordinated to compensate the forecasting errors by 

solving a real-time economic dispatch model (REDM). 

The above two stages are implemented within a receding 

horizon control framework to consider the newly updated 

system and forecast information.  

 A comprehensive simulation study is implemented to 

compare the proposed SMPC approach with the 

state-of-the-art methods.  

The rest of this paper is organized as follows. Section 2 
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Fig. 1 Scheme of a fuel cell based CHP microgrid.

describes the problem which is to be solved. Section 3 presents 

the problem formulation for the CHP microgrid energy 

management model. Section 4 presents the SMPC based CHP 

microgrid control framework. Simulations are set up in Section 

5. Simulation results are presented and analyzed in Section 6. 

Section 7 concludes this paper. 

2. Problem Description  

We consider a CHP microgrid, which is shown in Fig. 1. It 

consists of wind and PV generators, electrical and thermal 

storage units, power flexible, shiftable and schedulable 

electrical loads, fuel cells which can produce both electrical and 

thermal power, boilers and power flexible thermal loads. 

The renewable generators can provide environment-friendly 

electricity power, but their power outputs are random and 

intermittent. Four types of electrical loads are considered in the 

microgrid that are shiftable loads, critical loads, power flexible 

loads and schedulable loads. Microgrid can purchase electrical 

energy from the external grid or sell electrical energy back to 

the external grid according to the local generation and time 

varying electricity prices. The fuel cell based CHP generator 

fires gas and provides electricity power and surplus heat power 

which is utilized by the heat recovery device to satisfy thermal 

loads. The gas fired boiler converts natural gas to thermal 

power. It is reckoned that the gas network can provide 

sufficient fuel to the fuel cell and boiler. The thermal subsystem 

is connected indirectly with the electrical subsystem via the fuel 

cell based CHP generator. The control inputs of each time 

period (i.e. one hour considered in this study) are obtained by 

solving an MILP based microgrid operation optimization 

problem to be presented in Section 3.  

The decision variables include the electrical/thermal power 

output of the CHP and boiler, the charge/discharge power of 

electrical and thermal storages, the operation power of flexible 

thermal and electrical loads, the operation time of shiftable and 

schedulable loads, the power exchange between the microgrid 

and external grid, and the gas inputs for boiler and CHP.   

3. Microgrid Energy Management 

The forecast errors of load demand, wind production, PV 

generation and electricity price are all considered to follow 

Gaussian distribution [22] [23]. In order to account for the 

forecast uncertainties, a large number of primary scenarios are 

firstly generated using the Lattice Monte Carlo Simulation 

method (LMCS) [24]. To improve the computational 

tractability, a scenario reduction technique based on the 

simultaneous backward scenario reduction (SBSR) method 

[25] is utilized to select several representative scenarios from 

those primary scenarios. 

Note that in this study we are focusing on the scenario-based 

microgrid energy management and SMPC framework rather 

than developing new methods for scenario generation and 

scenario reduction. The details of the scenario generation and 

scenario reduction procedures adopted in this study can be 

found in the above referenced literatures.   

The energy management problem for the microgrid within 

the control horizon can be modeled as an MILP problem. The 

control horizon is divided into   time intervals (           ) 
where the time duration of each time interval is defined as   . 

3.1 Objective function 

The objective function (1) of microgrid energy management 

system (EMS) is to minimize the operation cost of all typical 

power scenarios and all dispatchable units over the control 

horizon. Specifically, the overall cost consists of the cost of 

purchasing electricity and natural gas, and the selling electricity 

revenue; the O&M cost for fuel cell generator and boiler 

(including the maintenance cost, cold start cost, and shut-down 

cost); the deregulation cost for electrical and thermal storages 

due to frequent discharging and charging; penalty cost of 

comfort loss due to curtailment of power flexible electrical and 

thermal loads. 
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( 1 ) 

3.2 CHP operation constraints 

Fuel cell-based CHP generator converts natural gas into a 

hydrogen-rich feed stream and provides both heat and 

electricity to the microgrid [26]. Since the heat generated by the 

fuel cell is collected and output by heat recovery devices, the 

fuel cell must operate coordinately with them [9]. This study 

assumes the fuel cell and heat recovery devices are integrated in 

the CHP unit and therefore are considered as one single unit.   
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        ( 5 ) 

   
        

          
        ( 6 ) 

   
          

          
        ( 7 ) 

   
        

             
     ( 8 ) 

   
          

           
     ( 9 ) 

The electrical and thermal power outputs of fuel cell for each 

time period and scenario are denoted in (2) and (3), respectively. 

The technical constraint of fuel cell on electrical output 

modulation is shown in (4). The ramp power constraints are 

described in (5). The minimum up and down time constraints 

are expressed in (6) and (7), respectively where        

             
        and                   

    
         . The fuel cell cold starts and shuts down actions 

are considered in (8) and (9), respectively.  

3.3 Boiler operation constraints 

Boiler’s thermal output equals to the imported natural gas 

power multiplied by the conversion efficiency     
    , as shown 

in (10). Power output constraints of boiler are shown in (11). 

The starting up and shutting down actions are tracked in (6) and 

(7), respectively. 

         
         

            
     ( 10 ) 

    
                

         
       ( 11 ) 

    
         

              
     ( 12 ) 

    
           

            
     ( 13 ) 

3.4 BESS operation constraints 

Among all storage technologies, the battery energy storage 

system (BESS) is shown as a suitable choice for integrating 

DERs. The battery dynamics is modelled in (8), which 

considers both conversion efficiency and self-discharging rate. 

The battery storage energy level, charging power and 

discharging power should be bounded in its technical 

specifications, which are reflected in (9), (10) and (11), 

respectively. To avoid simultaneously charge and discharge 

actions of the battery storage units, (12) is enforced. 

     
            

                 
                     

      

       
( 14 ) 

     
         

            
    ( 15 ) 

      
       

          
           

             
    ( 16 ) 

      
          

          
           

          
    ( 17 ) 

      
           

       ( 18 ) 

In addition, the energy level of BESS at the beginning of each 

day is reset to its initial level, which enables the energy storage 

system has enough energy stored to deal with unforeseen 

emergency conditions and is commonly adopted in relevant 

studies 

3.5 TESS operation constraints 

Like the BESS, the thermal energy storage system (TESS) 

dynamics is expressed in (139). Its energy level, charging 

power and discharging power constraints are given in (20), (21), 

and (22). The TESS unit cannot charge and discharge 

simultaneously as defined in (14). For the same reason as 

BESS, the energy level of TESS at the beginning of each day is 

reset to the initial state. 

     
            

                 
                     

      

       
( 19 ) 

     
         

            
    ( 20 ) 

      
       

          
           

             
    ( 21 ) 

      
          

          
           

          
    ( 22 ) 

      
           

       ( 23 ) 

3.6 Loads and RES limits 

According to the classification of loads in the smart grid [15], 

there are four types of electrical loads: critical loads, power 

flexible loads, shiftable loads and schedulable loads. All 

thermal loads in microgrid are considered as power flexible 

loads. 

The forecast and actual demand of electrical critical loads 

must be bounded within its technical specifications, as shown 

in (15). 

               
    ( 24 ) 

Demand of the electrical and thermal power flexible loads 

can be curtailed by users. Similar to critical loads, their 
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forecasted and actual demand is bounded within their technical 

specifications [10]. Furthermore, their curtailments should also 

be bounded, as shown in (165) and (17).  

     
        

    ( 25 ) 

     
        

    ( 26 ) 

Shiftable loads are flexible within the time window but their 

demands cannot be adjusted, as shown in (187), and they 

cannot work earlier than the earliest start time or later than the 

latest finish time, as shown in (198). In addition, once their 

work is started, they cannot be stopped until the completion, as 

shown in (209). 

   
    

  
   

  
         ,     ( 27 ) 

   
    

  
       

       
     

    
     

   ,     ( 28 ) 

   
    

    

         
       

       ,      
        

       ,     ( 29 ) 

Schedulable loads can not only adjust the operation time, as 

shown in (30) and (31), but also can adjust the operation power 

(21). However, the total power demand must be satisfied before 

completing the task (22). 

   
    

  
   

  
        ,     ( 30 ) 

   
    

    
         

       
       ,      

        
    ,     ( 31 ) 

  
     

       
       

     
    ,     ( 32 ) 

   
      

  
   

    
        

 ,     ( 33 ) 

Therefore, the total electrical load demand at time   for 

scenario   can be expressed as     
     in (23). 

    
        

     
       

   
     

                 
                ( 34 ) 

Similar to the critical loads, constraints of the forecast and 

actual power outputs of RES are shown in (24) and (25). 

      
     is the summation of power generated by RES, as 

shown in (26). 

      
        

    ( 35 ) 

        
          

    ( 36 ) 

      
           

         
      ( 37 ) 

3.7 Microgrid exchange limits 

In deregulated electricity market, buying and selling price for 

the same time slot may be different. Meanwhile, the external 

grid may limit the minimum and maximum buying/selling 

power of the microgrid. To better express such 

purchasing/selling electricity behaviors of the microgrid, the 

following power exchange model is adopted.  

   
      

        
        

      
     ( 38 ) 

   
      

        
        

      
     ( 39 ) 

   
        

       ( 40 ) 

Eqs. (27) and (28) indicate that the power bought/sold by the  

microgrid must be bounded by its technical specifications. Eq. 

(40) is imposed to ensure that the microgrid cannot buy and sell 

power, simultaneously.  

 

Fig. 2  Framework of SMPC control strategy for microgrid.

3.8 Power balance limits 

For each time interval and scenario, the power balance 

constraints for thermal subsystem (41), electrical subsystem 

(29) and gas subsystem (30) must be satisfied. In addition, the 

gas demand of the microgrid is assumed to be met by the gas 

subsystem.  

   
        

         
            

           
             

           
       ( 41 ) 

   
          

              
           

             ( 42 ) 

       
             

         
     ( 43 ) 

4. SMPC Control Framework  
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Traditional open-loop based energy control strategy 

deteriorates rapidly when the penetration level of RESs in 

microgrid grows high [27]. Although MPC based closed-loop 

strategies operate based on expected RESs forecast, they cannot 

handle forecast uncertainties effectively. Therefore, this paper 

proposes a stochastic model predictive control (SMPC) [28] 

based strategy to optimally schedule and control the CHP 

microgrid with RESs. The SMPC combines advantages of both 

stochastic programming and MPC, which therefore is more 

suitable to our problem.  

To ensure reliable and efficient microgrid operations, a 

two-stage SMPC based microgrid energy management model 

consisting of the prescheduling stage and the power 

compensation stage is proposed as illustrated in Fig. 2. 

The scenario based microgrid energy management model in 

Section 3 can be seen as a base model, which will be used to 

define the pre-scheduling stage optimization model. In the 

following, the problem formulations of the prescheduling stage 

and the power compensation stage are firstly given. Second, a 

formal SMPC algorithm which links together both the 

prescheduling stage and power compensation optimizations 

within a rolling horizon framework.  

4.1 Prescheduling stage  

Define the current time period  , the prescheduling stage 

optimization aims to obtain a control sequence for a future 

horizon of   time periods by solving Eq. (1) over time periods 

from     to     (inclusive) with relevant constraints. 

The constraints include Eqs. (2)-(43) defined in Section 3. 

Since the control action in the next time period (     under 

different scenarios must be the same to be actually operated 

[28], the following additional non-anticipation constraints Eqs. 

(44)–(55) for time period    must be included in the 

prescheduling stage optimization model. 
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        ,     ( 50 ) 

  
         

        ,     ( 51 ) 

   
          

           ( 52 ) 

      
             

         ( 53 ) 

      
             

         ( 54 ) 

         
                

         ( 55 ) 

Finally, the prescheduling stage optimization problem is 

defined by minimizing objective in Eq. (1) with constraints Eqs. 

(2)-(55).  

4.2 Power compensation stage   

As aforementioned, at time period t, a prescheduling stage 

optimization problem is solved over time periods from     to 

   .  Since the forecasts and actual system states are usually 

mismatching, when time comes to    , the control action 

obtained for     based on forecasts information in the 

pre-scheduling stage is likely to result in a mismatch between 

demand and supply when the actual load demand and RESs 

data become available. As a result, real-time adjustments are 

needed to guarantee the power balance in the system. To this 

end, in this paper a real-time economic dispatch model 

(REDM) model is developed as an optimal power 

compensation solution to obtain optimal adjustment control 

actions of dispatchable units to match demand and supply in 

real-time. The REDM is given by Eq. (56). 

          
             

            
     

        
      

       
            

     

       
               

       
               

         
                 

    
                   

      
                        

( 56 ) 

The optimization variables of Eq. (56) include: 

       
             

      : adjusted charge/discharge 

power of BESS; 

       
             

      : adjusted charge/discharge 

power of TESS; 

          
       :  adjusted power outputs of boiler; 

        
             

      : adjusted purchasing and 

selling power of the microgrid 

    
             

      : adjusted power curtailment ratio 

of power flexible electrical and thermal loads. 

Eq. (56) aims to compensate the power supply/demand forecast 

error with the minimum cost. Since the optimal control 

adjustments of Eq. (56) are obtained based on the optimization 

results (control sequence) in the prescheduling stage, no 

significant power adjustment greater than forecast errors is 

implemented. Therefore, if the forecast error is not very large, 

the CHP generator will not take part in the power compensation 

stage operation due to that its adjustment could affect both 

electrical and thermal subsystems. Finally, the resulted control 

actions after adjustment for     are applied to the system. 

4.3 SMPC algorithm 

Based on the optimization models defined for the 
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prescheduling stage and the power compensation stage, the 

detailed operation steps of our proposed SMPC framework are 

given below where Steps 2 – 5 will be repeated till the end of 

the simulation horizon. 

1) Initialize simulation starting time    . 

2) The prescheduling stage: by the end of time period  , a 

control sequence between time period     and      is 

obtained by solving the prescheduling stage optimization 

problem defined in subsection 4.1. 

3)  The power compensation stage: at the beginning of 

period     , the optimal adjustment control actions of 

dispatchable units are obtained by solving the real-time 

economic dispatch model (REDM) Eq. (56) defined in 

subsection 4.2. Finally, the resulted control actions after 

adjustment for time period     are applied to the system. 

4) The final microgrid operation state updates: actual 

RES outputs data, electrical and thermal load data, and 

electricity price data in time period     are sent to the 

microgrid EMS to update the forecast model and energy 

management optimization model.  

5)      , go to Step 2. 

5. Case setup  

The proposed approach is applied to a hypothetical CHP 

microgrid as shown in Fig.1. This microgrid is worked in 

grid-connected mode, and comprises PV panels, wind turbines, 

a BESS unit, a TESS unit, a fuel cell based CHP generator, a 

boiler and various types of thermal and electrical loads.  

Related details of the microgrid are summarized as follows. 

 The rated capacity of the PV and wind turbines are 500 

kW and 700 kW, and the history data of PV and wind 

are collected and modified from ELIA [29].  

 The rated capacity of BESS is 800 kWh with the depth 

of charge of 0.75, and the maximum and minimum 

operation power of 300 kW and 5 kW, respectively. The 

rated capacity of TESS is 400 kWh with the depth of 

charge of 0.85, and the maximum and minimum 

operation power of 200 kW and 0 kW, respectively. 

Other BESS and TESS parameters are adopted from 

[30]. 

 The rated electrical power of CHP is 600kW with the 

minimum power output of 40kW. The rated ramp power 

is 300 kW, and the electrical output efficiency is 0.38. 

The heat-to-power rate is considered to be 1.2. In 

addition, the minimum up time is 3 hours, and the 

maximum down time is 2 hours. The natural gas price is 

considered at 0.06$/kWh.  

 The rated power of boiler is 440kW with the minimum 

power output of 20 kW and the output efficiency of 0.76. 

The ramp power is 300 kW, and the natural gas price is 

0.15$/kWh.  

 The critical and power flexible loads data are collected 

and modified from ELIA [29]. Thermal load demand 

data are generated by the versatile energy resource 

allocation (VERA) software [33]. The maximum 

curtailment ratio for the thermal and electrical loads are 

0.4 and 0.3 respectively, and the penalty coefficients for 

curtailing thermal/electrical flexible loads are 1.8. In 

addition, the shiftable and schedulable loads parameters 

are shown in Tables I and II , respectively.  

 Electricity price data are collected and modified from 

[32]. In order to incentivize the use of RESs locally, the 

electricity purchasing price in the power compensation 

stage is higher than the prescheduling stage whereas the 

selling price is the opposite case [31]. The maximum 

purchasing and selling power for the microgrid are 1000 

kW and -1000 kW respectively. The history data of RES 

power generation (PV and wind), planned electricity 

net-load (RES power minus all electrical loads), 

thermal loads and electricity price are shown in Fig.3.  

Note that the net-load data in Fig.3 indicate that the planned 

microgrid net-load demand exceeds the power exchange limit 

(i.e. greater than 1000kW) in some time slots whilst in some 

other time slots the RES generation is larger than the microgrid 

electrical load demand. As a result, it is important for the 

microgrid to have enough flexibility in order to guarantee the 

system’s safety and reliability. In the next section, we will 

demonstrate how our proposed CHP microgrid energy 

management model could provide such system flexibilities.  

 

Fig. 3 History data of the microgrid. 

Table 1.  Parameter of shiftable loads 

Shift-able load Power (kW) Time 

window (h) 

Duration (h) 

SF-Task 1 28 10-20 4 

SF-Task 2 45 6-18 6 
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SF-Task 3 35 12-23 5 

SF-Task 4 16 4-22 9 

Table 2. Parameter of schedulable loads 

Schedulable 
load 

Base 

power  

Max, Min 

power  

Time 

window  

Duration  

SC-Task 1 80 25, 150 2-18 5 

SC-Task 2 25 5, 50 2-20 8 

SC-Task 3 55 20, 80 5-22 6 

SC-Task 4 40 10, 60 3-21 12 

The proposed SMPC approach is compared with an open 

loop based stochastic day-ahead programming (SDA) strategy 

[34] which also consists of two stages. In the prescheduling 

stage, the energy storage operation schedule, shiftable loads 

and schedulable loads operation schedules, and operation 

statuses of CHP units are determined at the beginning of each 

day with forecasting uncertainties represented by typical 

scenarios. In the power compensation stage, a REDM will be 

constructed and solved to dispatch relevant units.  

6. Results and Analysis 

In this section, simulation results are presented to 

demonstrate the superiority of our proposed SMPC over the 

frequently often used S-DA approach and the single-stage MPC 

approach. In addition, as two important components in the CHP 

microgrid, the impacts of the fuel cell capacity and TESS 

capacity on the microgrid operations and costs are investigated.  

6.1 Microgrid operation comparison  

Fig.4 shows the results of microgrid exchange powers for 

SMPC strategy, MPC strategy and SDA strategy in 

prescheduling stage and real-time operation stage. The green 

line is the microgrid purchasing/selling power when no 

optimization strategy is implemented, which serves as the 

benchmark. It indicates that no matter which optimization 

strategy is implemented, the prescheduled and actual power 

exchanges between the microgrid and the external grid do not 

exceed the maximum power exchange capacity, in contrast to 

the benchmark. In addition, compared with the SDA strategy, 

better optimization schedules are planned in the prescheduling 

stage and less power compensation adjustments are 

implemented in the real-time power compensation stage for 

both the SMPC and MPC strategies. Since the SDA strategy is 

an open-loop based optimization strategy, its REDM only 

considers the current time-step system data rather than a 

look-ahead and rolling horizon mechanism as in the SMPC and 

MPC strategies. The total power mismatch between the 

prescheduling stage and real-time compensation stage for the 

SDA strategy is 1019.9kWh, which is much larger than the 

143.45kWh for the SMPC strategy and the 307.38kWh for the 

MPC strategy. In addition, compared with the MPC strategy, 

the optimization in the prescheduling stage for the SMPC 

strategy considers more uncertainty factors, which results in 

that the SMPC strategy purchases more power from the 

external grid than the MPC strategy. Fig.5 shows the operation 

routines of schedulable loads and shiftable loads for these three 

strategies. Note that due to the operational constraints, shiftable 

loads and schedulable loads do not take part into the real-time 

power compensation stage operation. Even though, these 

controllable loads can still improve the microgrid flexibility by 

adjusting their operation time /operation power compared with 

the benchmark. As can be seen in Fig.5, the operation schedules 

of these three strategies are also different: 1) the SMPC strategy 

is a little conservative; 2) schedulable loads are more flexible 

than the shiftable loads since they can be adjusted in terms of 

both the operation power and operation time.  

Fig. 4 Microgrid purchasing/selling power for SMPC, MPC 

and SDA strategy 

 

Fig. 5 Operation schedule of schedulable loads and shift-able 

loads SMPC and SDA strategy 

Fig.6 shows that the electrical power outputs of fuel cell 

generator in prescheduling stage and real-time power 

compensation stage for the SMPC strategy and the MPC 

strategy respectively as well as electric power outputs of fuel 

cell generator in real-time power compensation stage for the 
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SDA strategy. Note that for the SDA strategy, only the on/off 

status variables are determined in the prescheduling stage 

whereas the final power outputs are determined by taking into 

consideration of the actual RESs generation data, load demand 

data and the selling/buying electricity price data (i.e., in the 

real-time power compensation stage). As we all know, the fuel 

cell generator not only can produce heat to satisfy the heat 

demand but also can supply electrical energy to satisfy 

electrical demand, therefore the surplus electrical or/and 

thermal energy can be stored by BESS or/and TESS systems. In 

Fig.6, the total power output difference between the SMPC 

strategy and the MPC strategy is 1174.6kWh whereas the total 

power output difference between the SMPC strategy and the 

SDA strategy is 5121.8kWh. The mismatch between the actual 

power production and scheduled power production in the 

prescheduling stage for the SMPC strategy is greater than 

21.54kWh. However, this power production difference is 

84.9kWh. 

 

Fig. 6 Operation schedule of CHP generator 

Fig.7 shows the BESS and TESS operation routines for the 

SMPC strategy, the MPC strategy and the SDA strategy. The 

positive value represents the discharge power while the 

negative value represents the charge power. The coordination 

of energy storage devices and thermal or/and electrical 

generators can not only improve the flexibility of microgrid 

system but also the microgrid economics. However, comparing 

to the rolling horizon based SMPC strategy and MPC strategy, 

the SDA strategy does not full play the advantages of the 

storage devices due to the near-sight of real-time operation of 

the SDA strategy. Over the simulation horizon, the BESS 

charges and discharges in total around 4744.2kWh, 4601.8kWh 

and 210.53kWh for the SMPC strategy, the MPC strategy and 

the SDA strategy, respectively; the TESS charges and 

discharges around 5067.8kWh, 4808.6kWh and 63.83kWh for 

the SMPC strategy, the MPC strategy and the SDA strategy, 

respectively. 

Fig.8 shows the boiler operation routines for the SMPC 

strategy, the MPC strategy and the SDA strategy. Since the 

thermal load demand cannot be perfect forecasted and the 

power shift advantages of the TESS is not fully displayed under 

the SDA strategy. This results in that the boiler generates much 

more thermal energy under SDA strategy than its counterparts. 

To be specific, the boiler generates 3401.7kWh, 3601.9kWh 

and 7849.6kWh for the SMPC strategy, the MPC strategy and 

the SDA strategy, respectively. 

Thanks to the fact that the considered microgrid has 

sufficient capability to produce electrical and thermal power to 

meet the demand and deal with forecast uncertainties, there are 

no curtailments of electrical and thermal power flexible loads. 

However, in situations that there is insufficient generation due 

to e.g., generator failures, these power flexible loads can still be 

curtailed to maintain the system stability. 

Fig. 7 Operation of BESS and TESS 

 

Fig. 8 Operation of boiler 

The microgrid operation costs for the SMPC strategy, the 

MPC strategy and the SDA strategy are shown in Table 3. It 

shows that the SMPC strategy is the most robust control 

strategy: the total cost increment from the perfect forecast 

situation to the imperfect forecast situation for the SMPC 

strategy is lower than those for the MPC strategy and the 

SDA strategy. The microgrid total costs under perfect 

forecast situation for the SMPC strategy and the MPC 

1 2 3 4 5
0

200

400

days (d)

p
o

w
e
r 

(k
W

)

fuel cell for SMPC

 

 

prescheduled actual

1 2 3 4 5
0

200

400

days (d)

p
o

w
e
r 

(k
W

)

fuel cell for single-stage MPC

 

 

1 2 3 4 5
0

200

400

days (d)

p
o

w
e
r 

(k
W

)

fuel cell for SDA

 

 

1 2 3 4 5
-200

-100

0

100

days (d)

p
o

w
e
r 

(k
W

)

TESS power for 

single-stage MPC strategy

 

 

1 2 3 4 5

-60

-50

-40

-30

-20

-10

0

days (d)

p
o

w
e
r 

(k
W

)

TESS power for SDA strategy

 

 

1 2 3 4 5
-300

-200

-100

0

100

200

300

days (d)

p
o

w
e
r 

(k
W

)
BESS power for 

SMPC strategy

 

 

1 2 3 4 5
-300

-200

-100

0

100

200

days (d)

p
o

w
e
r 

(k
W

)

BESS power for 

single-stage MPC strategy

 

 

1 2 3 4 5

-200

-150

-100

-50

0

days (d)

p
o

w
e
r 

(k
W

)

BESS power for SDA strategy

 

 

1 2 3 4 5

-150

-100

-50

0

50

100

150

days (d)

TESS power for 

SMPC strategy

 

 

p
o

w
e
r 

(k
W

)

prescheduling stage real-time stage

1 2 3 4 5
0

100

200

300

days (d)

p
o

w
e
r 

(k
W

)

boiler power for SMPC

 

 

prescheduled actual

1 2 3 4 5
0

100

200

300

days (d)

p
o

w
e
r 

(k
W

)

boiler power for MPC

 

 

1 2 3 4 5
0

200

400

days (d)

p
o

w
e
r 

(k
W

) boiler power for SDA

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 11 

strategy are slightly lower than the SDA strategy, which is 

accounted for by the rolling horizon mechanism of the SMPC 

and the MPC strategies.  In addition, the reason that the total 

cost of the SMPC strategy while taking into account of 

uncertainties (16474 $) is also lower than the MPC strategy 

(17184 $) lies in the fact that the SMPC strategy considers 

uncertainty conditions within the scenario based stochastic 

optimization model systematically in the prescheduling stage 

whereas the MPC strategy tackles the prescheduling stage 

problem only based on the point forecasts.  

Table 3. Microgrid operation costs with SMPC strategy, MPC strategy and 

SDA strategy 

 SMPC strategy MPC strategy SDA strategy 

Cost when considering 
forecast error 

16474 $ 17184 $ 18431 $ 

Cost when not 
considering forecast 
error 

16108 $ 16108 $ 16195 $ 

 

6.2 Complexity and feasibility evaluation   

The optimization problem in prescheduling operation stage 

is an NP problem, and its computational complexity mainly 

depends on the number of variables. We investigated the 

computational burden of the proposed optimization approach to 

be solved in each time interval, as shown in Table 4, in order to 

assess the feasibility of the proposed approach.  

ILOG’s CPLEX v.12 optimization solver is utilized to solve 

the optimization model given in Eq. (1) for the prescheduling 

optimization and also Eq. (56) for the real-time power 

compensation optimization. MATLAB 2013a and YALMIP 

toolbox are used for linking the CPLEX solver. All the 

computations are done on a PC with an Intel Core i5-640, 2.7 

GHz CPU and 8 GB of RAM. 

Table 4. Model statistics and computation times 

Approaches Scenario 
reduction time 
(s) 

Number of 
variables 

Mean solving 
time (s) 

SMPC strategy 9.72s 39942 23.53 

MPC strategy 0 631 2.23 

SDA strategy 9.72s  1684 3.41 

There are 5000 initial (primary) scenarios generated by the 

Lattice Monte Carlo Simulation method (LMCS) to choose the 

typical scenarios. 20 typical scenarios are selected by the 

scenario selection method for the prescheduling stage 

optimization. The number of targeted typical scenarios are 

determined using stopping rules proposed in [35]. The number 

of variables in Table 4 is counted for both the prescheduling 

stage optimization and the real-time power stage optimization. 

The mean solving time represent the average solving time of 

each approach. 

As Table 4 shows, the solution time of the SMPC strategy is 

relatively greater than other two strategies. However, it should 

be noted that such a solution time is negligible compared with 

normal sampling times (e.g., 1 hour in this study). 

6.3 Impacts of fuel cell capacity 

As the only device which connects the electrical subsystem 

and thermal subsystem, the fuel cell-based CHP generator plays 

an important role in the proposed CHP microgrid. In order to 

analyze the impacts of the fuel cell capacity on the microgrid 

operations, we consider four levels of CHP capacity, i.e. 

300kW, 400kW, 500kW and 600kW, respectively. In addition, 

we assume perfect forecast in this subsection to focus on the 

impacts of different capacity levels of fuel cell. The operation 

schedules of boiler, TESS unit and fuel cell generator under 

each rated fuel cell capacity level (from 300 kW to 600kW) are 

shown in each column from left to right of Fig. 9.  

It can be found that when the rated power capacity is 

300kW, the fuel cell is operated frequently at its maximum 

power. The boiler and TESS also act as important roles to 

supply heat when the CHP generation is not enough.  

When the fuel cell rate power becomes 400kW, it not only 

can supply heat to meet the thermal load in the microgrid but 

also take part in the energy trading in the electrical subsystem 

with the external power grid where the extra thermal energy is 

stored into the TESS.  

When the fuel cell rate capacity becomes as high as 500kW 

or 600kW, no significant improvement (overall cost reduction) 

is observed, as shown in Table 5. This is mainly because the 

limited TESS capability limits the thermal power output of the 

CHP and therefore limits the electrical power production as 

well. This is also confirmed in Fig. 9.  

Table5. Microgrid operation costs under different fuel cell rate power  

Fuel cell rate 
power (kW) 

300 400 500 600 

Cost ($) 18274 16575 16295 16108 

 

Fig. 9 Operation routines for boiler, TESS and fuel cell 

generator with different rated power of fuel cell.  
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6.4 Impacts of TESS capacity 

As shown in Fig. 10, when the rated power of fuel cell is 

greater than 400kW, TESS usually charges and discharges at its 

maximum capability. As a result, the impacts of TESS capacity 

on microgrid operation are worth further investigation. In this 

subsection, three TESS power/energy capacity levels, i.e. 

200kW/400kWh, 300kW/600kWh, and 400kW/800kWh are 

considered. Same as in the previous subsection, we assume 

perfect forecasts. The operation schedules of microgrid 

buying/selling, TESS and fuel cell are shown in Fig. 10.  

It is observed from Fig. 10 that when the rated power and 

energy capacity of TESS increase, the maximum charge power 

of TESS increases at the same time.  In addition, it is interesting 

to find out that the TESS always charges during time periods of 

high electricity prices, which indicates that the CHP is working 

in such time periods to produce extra electrical energy to sell 

back to the external grid to maximize the microgrid revenue. 

The surplus thermal energy generated by the CHP during these 

high price time periods is therefore stored into the TESS.   The 

above can be seen in the microgrid buying/selling power 

routines in Fig. 10. In addition, the microgrid cost at different 

TESS capacity levels are shown in Table 6.  

 

Fig. 10  Operation routines of microgrid buying/selling, TESS 

and fuel cell generator under different TESS capacity 

Table 6. Microgrid operation cost with different rated fuel cell rated power  

TESS capacity 

(kW/kWh) 

200kW/ 

400kWh 

300kW/ 

600kWh 

400kW/ 

800kWh 

Cost ($) 16108 16049 15843 

7. Conclusion 

In this study, a SMPC-based operation strategy to optimal 

control of a CHP microgrid is proposed. The microgrid consists 

of wind and PV environment-friendly generators, fuel cell 

based CHP generator and gas fired boiler units, energy storage 

devices (BESS and TESS) and many types of electrical and 

thermal loads. A two-stage microgrid control framework is 

proposed. The prescheduling stage is constructed by a scenario 

based MILP model to minimize microgrid operation cost over 

the control horizon. The power compensation stage is 

constructed by solving a real-time economic dispatch model to 

coordinate dispatchable units which take part in the real-time 

operation. These two stages are implemented within a receding 

horizon control framework. Simulation results show that the 

SMPC-based microgrid operation strategy is more economic 

and robust compared to the traditional SDA-based microgrid 

operation strategy. In addition, the impacts of fuel cell and 

TESS rated capacities on system operations are discussed.  

With respect to future studies, there are two directions that 

the present work can be further developed.  First, the proposed 

model can be further developed in the view of a multi-objective 

optimization manner such as considering the carbon emissions 

as one of the optimization objectives. Second, we would like to 

extend the model to account for very large-scale problem cases 

and investigate an efficient, robust and scalable solution 

framework for such challenging problems.   
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