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Abstract

The isogeometric boundary element method (IGABEM) has great potential for the simulation of elasticity
problems because of its exact geometric representation and good approximation properties. These advan-
tages can be extended to thin structures, including coatings, but the development of an accurate and efficient
method to deal with the large number of nearly singular integrals existing in the IGABEM presents a great
challenge for very thin sections. In this paper, we propose a new sinh+ scheme for weakly, strongly and
hyper near-singular integrals arising in 3D IGABEM for thermoelastic problems, based on the sinh trans-
formation method and adaptive integral method. The presented scheme is efficient, since it combines the
advantages of both methods: (1) when the thickness δ of coatings/thin structures is moderately small, an
accurate and efficient integral result will be obtained by the adaptive integral method; (2) when δ is very
small, the nearly singular integrals are computed by the sinh+ scheme efficiently. With the introduction of
NURBS in IGABEM, truncation errors arising in the Taylor expansion cannot be ignored. Based on the
values of these errors, the computed knot spans are further divided into several sub-knot spans and different
methods will be used to evaluate the integral over each sub-knot span in the new scheme. In addition,
based on the analytical extension of the NURBS surface, an adaptation of the sinh transformation method
is proposed which can evaluate the near-singular integrals accurately for cases in which the projection point
lies outside of the considered knot span. Several numerical examples are presented to validate the accuracy
and efficiency of the 3D IGABEM based on the sinh+ scheme in the analysis of thermoelastic problems.

Keywords: Boundary element method, Isogeometric analysis, Surface nearly singular integrals,
Thermoelastic problem, Coatings/thin structure.

1. Introduction

Coatings or other thin structures have been widely used to protect a variety of structural engineering
materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation [1, 2]. The
great difference in the thermo-mechanical properties of substrate and coatings presents challenges to their
use in composite structures subjected to large changes in temperature. In the past two decades, significant5

research effort has been devoted to the analysis and development of thermal barrier coatings (TBCs) on
engineering problems since more traditional coating materials have reached the limits of their temperature
capabilities [3].
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Many experimental, analytical and numerical methods are available to study the mechanics of coatings
or thin structures. For example, Evans and Hutchinson presented the mechanics of delamination in coatings10

that experience thermal gradients [4]. Based on the higher-order theory for functionally graded materials
(FGMs), Pindera et al. [5] analysed the spalling mechanism in TBCs with graded bond coats. The Finite
Element Method (FEM) is a powerful method for the analysis of many engineering problems and has been
applied to study coatings by many researchers, including Białas [6] who studied the stress distribution in
TBCs, and Skalka et al. [7] who studied the effect of the waviness of the bond coat and the thickness of15

the thermally grown oxide layer on the stability of plasma-sprayed thermal barrier coatings through a large
number of 3D finite element calculations. Through commercial software (ABAQUS and CATIA), Yang
et al. [8] developed finite element approximations to investigate the failure behavior of TBCs under cyclic
thermal loading. However, as the aspect ratio reduces, the number of elements required in the FEM increases
dramatically, and the procedure becomes time-consuming for coatings having small thickness. Although shell20

elements can be used to analyse some thin sections, it is desirable to have a better description of the solution
variation through the thickness direction.

Since the geometric representations in traditional finite element analysis and Computer Aided Design
(CAD) are different, a computational burden is involved in providing an interface between these technologies
in the process of Computer Aided Engineering (CAE). In 2005, Hughes et al. proposed the “Isogeometric25

Analysis” (IGA) paradigm [9] as a means to perform finite element analysis directly from CAD data, for
three-dimensional regions. Actually, the first paper known to the authors to propose approximations that
are today called “isogeometric” dates back to 1982 [10], although this was significantly different from the
approach presented by Hughes et al. [9]. Isogeometric schemes involve the substitution of the classical
piecewise polynomial description of the geometry and solution by an expansion in Non-Uniform Rational30

B-Splines (NURBS). This brings three key advantages that have been widely discussed in the literature.
Firstly, it allows more direct integration with CAD systems that use this geometric description and therefore
allows exact geometric representations of conic sections. Secondly, the process of meshing is replaced by
simple knot-insertion and/or degree elevation algorithms. And thirdly, it is found that the smoothness
of the NURBS basis functions offers the improved approximation properties in comparison with piecewise35

polynomial descriptions.
However, due to the use of NURBS, some difficulties exist in the original version of IGA. These difficulties

are: (i) the performance of local refinement [11], (ii) an automatic parameterisation to build the approxi-
mation, (iii) enforcement of multi-patch constraints, and (iv) the need for an interior parameterisation to
be constructed from the CAD data, which only provides boundary information [12]. Several methods were40

later devised in order to alleviate the difficulties faced by IGA [13–15]. And more details about IGA can be
found in review papers [16–19]. Finally, researchers realised that Isogeometric Boundary Element Methods
(IGABEM) [20, 21] are probably the best suited candidates to overcome the interior discretisation obstacle,
since only boundary data is required for analysis without any mesh generation [22]. Afterwards, IGABEM
was widely used for many applications, such as damage tolerance assessment of complex structures [23],45

acoustic problems [24] and fracture simulations [25].
The Boundary Element Method (BEM) is a powerful and efficient method for solving many engineering

problems, offering an alternative to the FEM for a range of engineering simulations, with particular strengths
in fracture mechanics, acoustic problems and infinite domain problems [26]. The main advantages of the
BEM derive from the fact that its approximations (and mesh) only occur on the boundary, the dimension of50

the numerical model therefore being one less than that of the physical problem being modelled, and from the
high accuracy of its solutions on comparatively coarse meshes. These advantages suggest the BEM should
become an efficient tool in the analysis of coatings and thin structures [27–32]. However, the BEM analysis
of solids has classically been restricted to problems without thin sections because such geometries impose
a requirement to evaluate a large number of nearly-singular integrals accurately and efficiently. With the55

development of suitable integration schemes, the BEM has become an attractive method for coated structures
and other thin sections, as demonstrated by [33] for the classical (piecewise polynomial) BEM in 2D and
extended to isogeometric BEM by Gong et al. [2].

The advantages of isogeometric methods found in the FEM extend readily to elastic analysis with the
BEM, and this was first demonstrated by Simpson et al. [20]. The resulting analysis method is called IGA-60
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BEM (isogeometric analysis boundary element method). The properties of exact geometric description and
accurate computation of quantities along the thickness direction inside coatings or thin structures, suggest
that IGABEM is a highly promising approach to study the coatings/thin structures [2, 20, 34]. However,
schemes for the efficient and accurate evaluation of the near-singular integrals that arise in IGABEM need
to be developed to realise this promise.65

For the computation of near-singular integrals existing in standard BEM, significant progress has been
achieved, including analytical methods [35–38], semi-analytical integration schemes [39, 40], cubic trans-
formation [41], radial variable transformation [42], line integral approaches [43, 44], implemented method
[45], parameterized Gaussian quadrature [46], the particular solution method [47, 48], adaptive integration
schemes [49, 50], regularisation techniques [51, 52], domain supplemental approach [53], distance transfor-70

mation method [54, 55], spherical element subdivision method [56], sinh transformation method [57–60], and
the exponential transformation method [61, 62]. A more detailed review of these methods can be found in
Gong et al. [2]. With the adoption of NURBS in IGABEM to replace simple polynomials, some of these
methods cannot be applied directly; moreover, the balance between accuracy and efficiency of these methods
when applied within a 3D IGABEM context is not yet clear.75

In this work, we develop a scheme for 3D integrals based on the sinh+ scheme presented for 2D simulations
in [2]; this combines the benefits of the sinh transformation [57–60] and adaptive integration scheme [49, 50].
An essential feature of the method is its ability to produce accurate and efficient integral evaluations for
general, industrially relevant IGABEM models of thin sections or components with coatings. The resulting
3D sinh+ scheme is developed based on 3D thermoelastic integral equations, which involves weakly, strongly80

and hyper near-singular kernels (with orders 1/r, 1/r2 and 1/r3, where r is the distance between the
source/internal point and the field point). In the present sinh+ scheme, the parametric representation
of the field point is expressed as a Taylor expansion (with two parameters ξ and η used in the NURBS
definitions in the two coordinate directions of the element or knot-span), this expansion being taken around
projection point of the source/internal point. In the new sinh+ scheme, the isogeometric element (knot span85

over which the integral is taken) will be divided into several sub-elements (sub-knot spans) according to
the truncation errors of the Taylor series, and different integration methods will be adopted for different
sub-elements. For the knot spans for which truncation errors exceed a prescribed tolerance, the adaptive
integral method will provide the best balance between accuracy and efficiency. Conversely, for knot spans
over which truncation errors are smaller than that tolerance, the sinh transformation method will be used to90

reduce the computation time of nearly singular integrals. To evaluate the near-singular integrals for cases in
which the projection point of the collocation/internal point lies outside the considered isogeometric element,
an extended sinh transformation on the field element is proposed.

The content of the paper is outlined as follows. In Section 2, a brief review of the BEM and IGABEM
for thermoelastic problems is given. Section 3 introduces several numerical integration methods commonly95

used for nearly singular integrals and presents an analysis of the errors and efficiency of these methods.
Based on the analytical extension of the bi-variable NURBS, Section 4 presents a new adaptation of the
sinh transformation for isogeometric surface elements, including the case when the projection of the colloca-
tion/internal point lies outside the interval of integration. Section 5 presents the hybrid integration scheme,
called the sinh+ scheme, for all the nearly singular integrals arising in 3D IGABEM for thermoelastic prob-100

lems. Section 7 shows several numerical examples verifying the effectiveness of the present method. The
paper is concluded with some discussions and closing remarks.

2. Boundary element method and isogeometric boundary element method

2.1. Boundary integral equations in thermoelasticity
In this section, we will outline the fundamentals of the BEM and IGABEM for 3D steady-state thermoe-

lastic problems. For these problems, the structure occupies a continuous physical domain, Ω ⊂ R3, with
closed boundary Γ. It is assumed for simplicity in this paper that the domain is free of thermal sources/sinks
in the heat transfer problem and inertial loads in the elasticity problem. It should not be interpreted from
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this assumption that the methods cannot be used for cases in which body forces apply; it is simply a matter
of presenting the material concisely. The governing equations for isotropic materials are [63]:{

µui,jj +
µ

(1−2ν)uj,ji −
2µ(1+ν)
1−2ν α∆θ,i = 0

kθ,ii = 0
(1)

where µ is the shear modulus, E and ν are Young’s modulus and Poisson’s ratio, respectively, k is the
thermal conductivity, and α is the thermal expansion coefficient. Parameters u and θ denote displacement
and temperature, respectively. Subscripts i, j = 1, 2, 3 denote the coordinate directions in 3D problems. For
heat transfer problems, the flux density in a direction xi, denoted qi, is defined as qi = k∂θ/∂xi, and the
normal flux density at a boundary, usually represented by q (without a subscript), and which is used in the
definition of Neumann boundary conditions, is defined as

q = −k ∂θ
∂n

(2)

where n is the outward pointing normal. The negative sign is required so that the direction of the flux105

corresponds to flow of heat from regions of higher temperature to lower temperature.
Equation (1) is solved subject to a set of boundary conditions taken from the following:

ui = ūi on Γūi
⊂ Γ (3)

ti = t̄i on Γt̄i ⊂ Γ (4)
θ = θ̄ on Γθ̄ ⊂ Γ (5)
q = q̄ on Γq̄ ⊂ Γ (6)

where the quantities ūi, t̄i, θ̄ and q̄ are known displacement, traction, temperature and flux density; ti denotes
the traction component in direction i; Γūi , Γt̄i , Γθ̄ and Γq̄ denote the parts of Γ over which displacement,
traction, temperature and flux density are prescribed in each specific direction with Γūi∪Γt̄j = Γ (Γūi∩Γt̄j =
⊘, i ̸= j) and Γθ̄ ∪ Γq̄ = Γ (Γθ̄ ∩ Γq̄ = ⊘).110

For a 3D thermoelastic problem, the corresponding boundary integral equation (BIE) can be written as
[64]

Cij(y)ui(y) +

∫
Γ

Tij(y,x)uj(x)dΓ(x) =

∫
Γ

Uij(y,x)tj(x)dΓ(x) +
αE

1− 2v

∫
V

∂Uij(y,x
′)

∂xj
θ(x′)dV (x′) (7)

where x′ ∈ Ω. Boundary points y ∈ Γ and x ∈ Γ are called the source point and field point, respectively,
with y playing the role of a collocation point. We note that the algorithms presented herein are not designed
for Galerkin BEM formulations, but a scheme could be derived using the same principles. Tij and Uij are
the displacement and traction fundamental solutions (or kernels). Cij is the jump term which is commonly
calculated indirectly by using a simple physical consideration [64, 65]. The displacement and traction
fundamental solutions in 3D for isotropic materials are given as [64]

Uij =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,ir,j ] (8)

Tij =
−1

8π(1− ν)r2

{
∂r

∂n [(1− 2ν)δij + 3r,ir,j ] + (1− 2ν)(r,jni − r,inj)

}
(9)

where r = r(y,x) = ∥y − x∥ is the distance between the source point and the field point, given by

r(y,x) =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2, (10)

r,i =
∂r
∂xi

, and ni is the ith component of the unit outward normal vector n to the boundary surface at the
field point x.
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The existence of a volume integral term in an integral equation causes the BEM to lose its advantage of
having only boundary integrals, but there are several methods available to transform domain integrals (in
Eq. (7)) into equivalent boundary integrals [64, 66–69]. The resulting BIE for the thermoelastic problem
can be expressed as follows:

Cij(y)ui(y)+

∫
Γ

Tij(y,x)uj(x)dΓ(x) =

∫
Γ

Uij(y,x)tj(x)dΓ(x)+

∫
Γ

Mi(y,x)θ(x)dΓ(x)+

∫
Γ

Ni(y,x)
∂θ(x)

∂n dΓ(x)

(11)
where the kernels Mi and Ni, derived from the volume integral, can be expressed as

Mi(y,x) =
α(1 + ν)

8π(1− ν)

1

r(y,x)

[
ni(x)−

∂r(y,x)

∂xi

∂r(y,x)

∂n

]
(12)

Ni(y,x) = − α(1 + ν)

8π(1− ν)

∂r(y,x)

∂xi
(13)

Eq. (11) is a displacement BIE one might use to solve a thermoelastic problem given a known distribution
of temperature θ and flux density q. These quantities can be used directly if they are known, but the more
usual situation is that they need to be computed from a heat transfer analysis in which the governing partial
differential equation is solved subject to certain boundary conditions. For the current work this is most
sensibly done using another boundary element model. The following BIE is standard for the steady state
thermal problem,

C(y)θ(y) +

∫
Γ

Q(y,x)θ(x)dΓ(x) =

∫
Γ

Θ(y,x)q(x)dΓ(x) (14)

where x ∈ Γ and y ∈ Γ are the field point and source point, respectively. Θ(y,x) and Q(y,x) represent the
temperature and flux fundamental solution kernels, and C(y) is the jump term. The temperature and flux
fundamental solutions in 3D for isotropic materials are given as

Θ(y,x) = − 1

4πr
(15)

Q(y,x) =
∂Θ(y,x)

∂n(x)
(16)

2.2. Description of boundary geometry
The BEM in 3D simulations requires a surface description of the boundary, and this is conveniently

achieved using patches as illustrated in Figure 1. On the basis of the description of NURBS surface in
[70, 71], mapping from the local parameter space (ξ, η) to physical space (global coordinate system, x ∈ R3)
can be expressed as

x(ξ, η) =

n∑
a=1

m∑
b=1

Rab(ξ, η)Pab (17)

where Pab (a = 1, 2, . . . , n, b = 1, 2, . . . ,m) denotes the set of control net coordinates. Rab(ξ, η) are NURBS
basis functions defined by [70, 71]

Rab(ξ, η) =
Na,p(ξ)Nb,q(η)wab

W (ξ, η)
(18)

with
W (ξ, η) =

n∑
a=1

m∑
b=1

Na,p(ξ)Nb,q(η)wab (19)

where Na,p(ξ) and Nb,q(η) are univariate B-spline basis functions of orders p and q, corresponding to knot
vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1}, respectively. wab denotes a weight associated115

with control point Pab.
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Figure 1: Example of a patch for 3D simulation with control net (numbered red squares). Left: in the global coordinate system
(R3), Right: in the local coordinate system (R2).

2.3. Approximation of physical quantities
The fundamental concept behind isogeometric analysis methods is that the same basis functions (NURBS)

are used to approximate the solution variables as well as describing the geometry. As with the geometri-
cal mapping in Eq. (17), the physical quantities uh within a patch can be interpolated through NURBS
approximation as follows [9, 71]:

uh(ξ, η) =

n∑
a=1

m∑
b=1

Rab(ξ, η)dab (20)

Due to the non-interpolatory property of the NURBS, the terms dab cannot be considered to be nodal values,
indeed we no longer have nodes as would be used in classical BEM techniques. Instead the terms dab, which
will be found in the main solution vector, are coefficients from which the solution quantity can be recovered120

from Eq. (20).

2.4. Implementation of 3D IGABEM for thermoelastic problem
There are several differences between conventional BEM and IGABEM, such as the type of basis func-

tions, location of collocation points, and application of boundary conditions. Since we no longer have
elements defined by nodal positions and connectivity, it is convenient to think of an isogeometric ‘element’
as being that portion of the boundary enclosed within a knot span, and this is useful in practice for imple-
mentation of schemes for the evaluation of the boundary integrals required. Such a knot span is defined
parametrically as [ξi, ξi+1]× [ηj , ηj+1], where ξi, ξi+1 ∈ Ξ and ηj , ηj+1 ∈ H. Through knot spans, the bound-
ary surface of computation models can be discretized into several elements (Γe, e = 1, 2, ..., Ne). Making
use of the general expression (20), the displacement u = (u1, u2, u3)

T , traction t = (t1, t2, t3)
T , temperature

θ and flux density q fields in an isogeometric element can be expressed using a NURBS expansion, i.e.

u(ξ, η) =
p+1∑
a=1

q+1∑
b=1

Rab(ξ, η)ũab (21)

t(ξ, η) =
p+1∑
a=1

q+1∑
b=1

Rab(ξ, η)t̃ab (22)

θ(ξ, η) =

p+1∑
a=1

q+1∑
b=1

Rab(ξ, η)θ̃ab (23)
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q(ξ, η) =

p+1∑
a=1

q+1∑
b=1

Rab(ξ, η)q̃ab (24)

where ũab = (ũ1, ũ2, ũ3)
T , t̃ab = (t̃1, t̃2, t̃3)

T , θ̃ab and q̃ab are the local displacement, traction, temperature
and flux density coefficients associated with the control point with indices a and b. When control points
are shared between adjacent elements, physical quantities ũab, t̃ab, θ̃ab and q̃ab will apply to all isogeometric125

elements to which the control point with indices a, b belongs, providing a continuous BEM formulation.
Based on these NURBS expansions, the boundary integral equation (11) can be written in a discretized

form

C(sc)

p+1∑
a0=1

q+1∑
b0=1

Re0
a0b0

(sc)ũ
e0
a0b0

+

Ne∑
e=1

p+1∑
a=1

q+1∑
b=1

Te
ab(sc, se)ũ

e
ab =

Ne∑
e=1

p+1∑
a=1

q+1∑
b=1

Ue
ab(sc, se)t̃

e
ab (25)

+

Ne∑
e=1

p+1∑
a=1

q+1∑
b=1

Me
ab(sc, se)θ̃

e
ab +

Ne∑
e=1

p+1∑
a=1

q+1∑
b=1

Ne
ab(sc, se)q̃

e
ab

where
Te
ab(sc, se) =

∫ 1

−1

∫ 1

−1

T(sc, se)R
e
ab(se)Je(se)dξ̃edη̃e (26)

Ue
ab(sc, se) =

∫ 1

−1

∫ 1

−1

U(sc, se)R
e
ab(se)Je(se)dξ̃edη̃e (27)

Me
ab(sc, se) =

∫ 1

−1

∫ 1

−1

M(sc, se)R
e
ab(se)Je(se)dξ̃edη̃e (28)

Ne
ab(sc, se) =

∫ 1

−1

∫ 1

−1

N(sc, se)R
e
ab(se)Je(se)dξ̃edη̃e (29)

c indicates the collocation point index, sc = (ξ̃c, η̃c) the parametric coordinate of the collocation point, e0
the element in which the collocation point is located, and a0, b0 are the local indices of the collocation point
in element e0. e indicates the element index, se = (ξ̃e, η̃e) the parametric coordinate of the field point in
its parent element with (ξ̃e, η̃e) ∈ [−1, 1] × [−1, 1], and a, b are local indices of a basis function (or control
point) in element e. U and T denote the displacement and traction fundamental solution kernels shown in
Eqs. (8) and (9), respectively; kernels M and N are given in Eqs. (12) and (13). Re

ab denotes the local basis
function in element e, and Je is the Jacobian of transformation from the isogeometric element Γe (with knot
span [ξi, ξi+1]× [ηj , ηj+1]) to the parent element, this Jacobian being obtained using [72, 73]

Je(se) =
∣∣Je

ξe,ηe

∣∣ · ∣∣∣Je
ξ̃e,η̃e

∣∣∣ (30)

where Je
ξe,ηe

is the Jacobian matrix of the geometry mapping defined in Eq. (17), its determinant
∣∣∣Je

ξe,ηe

∣∣∣,
being given by ∣∣Je

ξe,ηe

∣∣ = ∣∣∣∣(∂x1∂ξe
,
∂x2
∂ξe

,
∂x3
∂ξe

)
×
(
∂x1
∂ηe

,
∂x2
∂ηe

,
∂x3
∂ηe

)∣∣∣∣ (31)

The determinant
∣∣∣Je

ξ̃e,η̃e

∣∣∣ of the Jacobian transformation from the parent domain to parametric domain may
be calculated as ∣∣∣Je

ξ̃e,η̃e

∣∣∣ = 1

4
(ξi+1 − ξi) (ηj+1 − ηj) (32)

If the discretized BIE in Eq. (26) is applied consecutively for all the collocation points located at the
points on Γ corresponding to the Greville abscissae [74] of the knot vectors, a system of linear algebraic130
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equations for IGABEM can be obtained. Application of the boundary conditions then yields the final
form of the linear system through which the unknown displacement, traction, temperature and flux density
coefficients can be obtained.

In this work, multizone BEM [64, 72] is adopted to deal with models containing two or more materials
(such as a substrate and coating). For a substrate with coatings, control points on the interface (between the135

substrate and coating) do not have known displacement, traction, temperature and flux density coefficients.
Instead, we must impose: (i) continuity of displacements and temperatures on the interface; (ii) equilibrium
conditions.

The main novel contribution of this paper is the development of new schemes for the evaluation of near-
singular integrals. The weakly singular and strongly singular integrals will be computed by the power series140

expansion method [75, 76]. Since the thickness of TBCs is typically 1 to 5µm [1], the implementation of 3D
IGABEM for such structures is complicated by the distance r (contained in the fundamental solutions Eqs.
(8) and (9)) becoming very small, which will lead to a challenging near-singularity in the boundary integrals
(26)-(29). Based on the 2D scheme presented in [2], we present a novel 3D scheme capable of producing
accurate and efficient solutions for such cases.145

3. Accuracy and efficiency of methods of evaluating nearly singular integrals on isogeometric
elements

3.1. Adaptive integral method on a surface isogeometric element
A classical 2D Gaussian quadrature formula can be expressed as [49]

I =

∫ 1

−1

∫ 1

−1

F (ξ̃, η̃)dξ̃dη̃ =

m1∑
i=1

m2∑
j=1

wi
1w

j
2F (ξ̃

i, η̃j) + E1 + E2. (33)

where ξ̃i, η̃j are the Gauss coordinates, wi
1, w

j
2 the weights, m1,m2 Gauss orders, and E1, E2 are integration

errors corresponding to the two directions. When this is used for BEM integrals, Mustoe [77] showed that
the upper bound of relative error Ei/I in the ith direction may be expressed using

Ei

I
≤ 2

(
Li

4d

)2mi (2mi + β − 1)!

(2mi)!(β − 1)!
(34)

where β is the order of singularity (i.e. the integrand behaves like r−β), d is the minimum distance from
the source point to the element, and Li is the length of the curve in the ith direction through the element
center (ξ0, η0) = ( ξi+1+ξi

2 ,
ηj+1+ηj

2 ). For an isogeometric surface element Γe (contained in the knot span
[ξi, ξi+1]× [ηj , ηj+1]), the lengths L1 and L2 can be evaluated simply by using

L1 =

∫ ξi+1

ξi

∣∣Je
ξe,ηe

(ξ, η0)
∣∣ dξ = ∫ ξi+1

ξi

√√√√p+1∑
l=1

(
∂xl
∂ξ

)2

dξ (35)

and

L2 =

∫ ηj+1

ηj

∣∣Je
ξe,ηe

(ξ0, η)
∣∣ dη =

∫ ηj+1

ηj

√√√√q+1∑
l=1

(
∂xl
∂η

)2

dη, (36)

respectively.
According to [50, 78], the number of Gauss points required to keep the integration error below a target

error ēi can be determined from the relationship

mi =

√
2

3
β +

2

5

[
− 1

10
ln(

ēi
2
)

][(
8Li

3d

)3/4

+ 1

]
(37)
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which can be further rearranged to yield

Li =
3

8
d

(
−10mi√

2β/3 + 2/5 ln(ēi/2)
− 1

)4/3

(38)

The adaptive integration method is based on the above formulae in conjunction with an element sub-150

division algorithm [49]. A full discussion of the method is beyond this paper, but a good introduction for
conventional BEM can be found in [50] and its implementation in IGABEM in [2, 79, 80]. The key idea
is the reduction of the ratios Li

d by progressive subdivision of the element. However, to achieve acceptable
results for large number of near-singular integrals arising in the analysis of 3D coatings or thin sections, the
number of subdivisions can grow excessively and the computing time will increase dramatically, rendering155

the method prohibitively inefficient for 3D IGABEM analysis of this type of problem.

3.2. Sinh transformation method on a surface isogeometric element

y

xp

x

n

r=|x−
y|

|xp − y|= d

Control point

Source point

Projection point

Field point

Figure 2: Minimum distance d to the element when xp ∈ Γe

Consider a general isogeometric surface element Γe described by the knot span [ξi, ξi+1) × [ηj , ηj+1) as
shown in Fig. 2. Similar to the curve case in [2], the minimum distance d from the source point y to the
surface is defined as |xp − y|, where xp(ξp, ηp) is the projection point of y onto the integration element Γe

and ξp, ηp (with ξi ≤ ξp ≤ ξi+1 and ηj ≤ ηp ≤ ηj+1) are the local intrinsic coordinates of xp, i.e.

xp(ξp, ηp) = (x1(ξp, ηp), x2(ξp, ηp), x3(ξp, ηp)) =

p+1∑
a=1

q+1∑
b=1

Rab(ξp, ηp)P
k
ab (39)

where Pk
ab is the k (k = 1, 2, 3) coordinate of the control point with indices a and b for the considered

element.
As shown in Fig. 2, the minimum distance d is the perpendicular distance from the source point y (which

could be a collocation point or internal point) to the projection point xp, and the following relation holds

xpk − yk = d · nk(ξp, ηp) (40)

where k = 1, 2, 3 and nk(ξp, ηp) is the component of the unit outward normal n of the surface at xp. The160

values of distance d and local intrinsic coordinates ξp and ηp can be obtained by a Newton-Raphson iterative
scheme as presented in [49], and more details for IGABEM implementations can be found in [79, 80].

From Eq. (17), the field point x ∈ Γe can be expressed in terms of a rational polynomial with respect to
ξ and η. After using the Taylor expansion of x(ξ, η) around the projection point xp(ξp, ηp) in the parameter

9



space, the expression xk − yk can be written as:165

xk − yk = xk − xpk + xpk − yk (41)

= d · nk +

(
g
∂

∂ξ
+ h

∂

∂η

)
xk(ξp, ηp) +

1

2

(
g
∂

∂ξ
+ h

∂

∂η

)2

xk(ξp, ηp) + · · ·

+
1

n!

(
g
∂

∂ξ
+ h

∂

∂η

)n

xk(ξp, ηp) + HOT

where k = 1, 2, 3, x = (x1, x2, x3), y = (y1, y2, y3), xp = (xp1, x
p
2, x

p
3), g = ξ − ξp, h = η − ηp,(

g
∂

∂ξ
+ h

∂

∂η

)n

xk(ξp, ηp) =

n∑
l=0

Cl
n

∂n

∂ξl∂ηn−l
xk(ξp, ηp)g

lhn−l (42)

n is the order of Taylor expansion and HOT abbreviates Higher Order Terms. The partial derivatives in the
above equation can be obtained by

∂n

∂ξl∂ηn−l
xk(ξ, η) =

p+1∑
a=1

q+1∑
b=1

∂n

∂ξl∂ηn−l
Rab(ξ, η)P

k
ab (43)

The high-order derivatives of NURBS are given by [70]

R
(l,m)
ab = 1

W (0,0)

(
A

(l,m)
ab −

l∑
i=1

(
l
i

)
W (i,0)R

(l−i,m)
ab −

m∑
j=1

(
m
j

)
W (0,j)R

(l,m−j)
ab

−
l∑

i=1

(
l
i

)
m∑
j=1

(
m
j

)
W (i,j)R

(l−i,m−j)
ab

) (44)

where (
l
i

)
=

l!

i!(l − i)!
, (45)

A
(l,m)
ab =

dlNa,p(ξ)

dξl
dmNb,q(η)

dηm
, (46)

and

W (i,j) =
di+jW (ξ, η)

dξidηj
=

p+1∑
a=1

q+1∑
b=1

diNa,p(ξ)

dξi
djNb,q(η)

dηj
wab (47)

Introducing the term

Dn
k =

1

2

(
g
∂

∂ξ
+ h

∂

∂η

)2

xk(ξp, ηp) + · · ·+ 1

n!

(
g
∂

∂ξ
+ h

∂

∂η

)n

xk(ξp, ηp) (48)

where n is the order of the Taylor expansion in Eq. (41), allows (41) to be compactly rewritten as

xk − yk = d · nk + h
∂xk
∂ξ

+ g
∂xk
∂η

+Dn
k + HOT (49)

Further, the geometric relationship between the unit outward normal n and the tangential plane at xp,
implies

nk · ∂xk
∂ξ

= nk · ∂xk
∂η

= 0 (50)
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By means of Eqs. (49) and (50), r2 can be expressed as

r2(ξ, η) = (xk − yk)(xk − yk) (51)

= d2 +

(
(ξ − ξp)

∂xk
∂ξ

+ (η − ηp)
∂xk
∂η

)(
(ξ − ξp)

∂xk
∂ξ

+ (η − ηp)
∂xk
∂η

)
+ 2

(
d · nk + (ξ − ξp)

∂xk
∂ξ

+ (η − ηp)
∂xk
∂η

)
Dn

k +Dn
kD

n
k + Etrun

where the summation rule is applied with respect to the index k = 1, 2, 3 and Etrun is the truncation error
arising from neglecting the higher order terms in the Taylor expansion (49).

As is well known in BEM, a near-singularity arises when the point y is very close to the boundary; this
occurs frequently in the analysis of thin sections and coatings. Let us consider the following near-singular
boundary integral Ie on a surface isogeometric element Γe contained in knot span [ξi, ξi+1]× [ηj , ηj+1]:

Ie =

∫
Γe

f̄(y,x)

rβ
dΓ(x) (52)

Here, β is a real constant, and f̄ is a well-behaved function.
In order to simplify the kernels, the taking of a square root in the computation of distance r (in Eq. (10))

is avoided by writing (52) in terms of r2, i.e.

Ie =

∫
Γe

f(y,x)

(r2)β
dΓ(x) (53)

where f(y,x) = rβ f̄(y,x).170

The knot span will be split into four sub-knot spans [ξi, ξp]× [ηj , ηp], [ξp, ξi+1]× [ηj , ηp], [ξi, ξp]× [ηp, ηj+1]
and [ξp, ξi+1]× [ηp, ηj+1] at the projection point xp, so that Ie = Ie1 + Ie2 + Ie3 + Ie4 , where

Ie1 =

∫ ξp

ξi

∫ ηp

ηj

f(ξ, η)

(r2)β
dξdη (54)

Ie2 =

∫ ξi+1

ξp

∫ ηp

ηj

f(ξ, η)

(r2)β
dξdη (55)

Ie3 =

∫ ξp

ξi

∫ ηj+1

ηp

f(ξ, η)

(r2)β
dξdη (56)

Ie4 =

∫ ξi+1

ξp

∫ ηj+1

ηp

f(ξ, η)

(r2)β
dξdη (57)

To deal with the near-singularity in the integral Ie1 , a 2D nonlinear coordinate transformation mapping
(s, t) ∈ [−1, 1]× [−1, 1] to the parametric coordinate (ξ, η) ∈ [ξi, ξp]× [ηj , ηp] may be defined as

ξ = ξp + d · sinh[a(s− 1)] (58)
η = ηp + d · sinh[b(t− 1)] (59)

where

a =
1

2
arcsinh

(
ξp − ξi
d

)
(60)

b =
1

2
arcsinh

(
ηp − ηj
d

)
(61)
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The Jacobian of this transformation becomes

J = d · a · b · cosh[a(s− 1)]cosh[b(t− 1)] (62)

Applying the transformation in Eqs. (58) and (59), the squared distance r2 can be expressed as

r2 = d2 [1 + Fk(s, t)Fk(s, t) + 2Fk(s, t)Gn
k (s, t) + Gn

k (s, t)Gn
k (s, t)] + Etrun (63)

with Fk(s, t) =
(

sinh[a(s− 1)]∂xk

∂ξ + sinh[b(t− 1)]∂xk

∂η

)
and Gn

k (s, t) = Dn
k (s, t)/d.

Substituting (58), (59) and (63) into (54), Ie1 becomes

Ie1 =
1

d2β

∫ 1

−1

∫ 1

−1

d · a · b · cosh[a(s− 1)]cosh[b(t− 1)]f(s, t)

(1 + Fk(s, t)Fk(s, t) + 2Fk(s, t)Gn
k (s, t) + Gn

k (s, t)Gn
k (s, t))

β
dsdt (64)

Through the above procedure, the denominator has been transformed into an expression that is guar-
anteed to exceed 1.0, so the integral Ie1 (shown in (64)) has been fully regularized and can be evaluated
directly using Gauss-Legendre quadrature. The evaluation of the remaining integrals Ie2 , Ie3 and Ie4 requires
different values a and b, expressions for which are given in Table 1, and the expressions corresponding to
(64) become

Ie2 =
1

d2β

∫ −1

1

∫ 1

−1

d · a · b · cosh[a(s− 1)]cosh[b(t− 1)]f(s, t)

(1 + Fk(s, t)Fk(s, t) + 2Fk(s, t)Gn
k (s, t) + Gn

k (s, t)Gn
k (s, t))

β
dsdt (65)

Ie3 =
1

d2β

∫ 1

−1

∫ −1

1

d · a · b · cosh[a(s− 1)]cosh[b(t− 1)]f(s, t)

(1 + Fk(s, t)Fk(s, t) + 2Fk(s, t)Gn
k (s, t) + Gn

k (s, t)Gn
k (s, t))

β
dsdt (66)

Ie3 =
1

d2β

∫ −1

1

∫ −1

1

d · a · b · cosh[a(s− 1)]cosh[b(t− 1)]f(s, t)

(1 + Fk(s, t)Fk(s, t) + 2Fk(s, t)Gn
k (s, t) + Gn

k (s, t)Gn
k (s, t))

β
dsdt (67)

Table 1: The parameters a and b in the sinh transformation

sub-element a b parameter space (ξ, η) parameter space (s, t)

1 1
2arcsinh( ξp−ξi

d ) 1
2arcsinh(ηp−ηj

d ) [ξi, ξp]× [ηj , ηp] [−1, 1]× [−1, 1]

2 1
2arcsinh( ξp−ξi+1

d ) 1
2arcsinh(ηp−ηj

d ) [ξp, ξi+1]× [ηj , ηp] [1,−1]× [−1, 1]

3 1
2arcsinh( ξp−ξi

d ) 1
2arcsinh(ηp−ηj+1

d ) [ξi, ξp]× [ηp, ηj+1] [−1, 1]× [1,−1]

4 1
2arcsinh( ξp−ξi+1

d ) 1
2arcsinh(ηp−ηj+1

d ) [ξp, ξi+1]× [ηp, ηj+1] [1,−1]× [1,−1]

3.3. Error analysis
3.3.1. Isogeometric cylindrical surface element

This section is devoted to an error analysis of several existing methods for the evaluation of near-singular
integrals over an isogeometric element. The element takes the form of a cylindrical surface subtending a 90◦175

arc, with R = 1, l = 2, as shown in Figs. 3a and 3b. The quadratic bivariate NURBS surface definition is
based on knot vectors Ξ = {0, 0, 0, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1}. The control point locations and weights
are listed in Table 2. Reference solutions for integrals considered in this section are found numerically using
the Matlab function ‘int(int(I, v1, a1, b1), v2, a2, b2)’ to convergence, where I is an integral with respect to
v1 (from a1 to b1) and v2 (from a2 to b2).180
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(b) Sectional view of the cylindrical element

Figure 3: Considered isogeometric cylindrical surface element

Table 2: Control points and weights of the isogeometric cylindrical surface element

Control points (x, y, z) weights
1 (1,0,0) 1.0
2 (1,1,0) 1.0
3 (1,2,0) 1.0
4 (1,0,1)

√
2/2

5 (1,1,1)
√
2/2

6 (1,2,1)
√
2/2

7 (0,0,1) 1.0
8 (0,1,1) 1.0
9 (0,2,1) 1.0

The coordinate of the source point y is chosen as ((R− d) cos(π/4), 1.0, (R− d) sin(π/4)), in which d is
the distance from the source point to the boundary (see Fig. 3b). We define a non-dimensional aspect ratio
d∗ to describe the proximity of the source point to a curve or surface element, as

d∗ =
d

max (L1, L2)
(68)

where L1 and L2 are the element lengths defined in Eqs. (35) and (36). The order of near-singularity of
integrals Ie, as seen in Eq. (52), is defined as: (i) β = 0, Ie will be a regular integral; (ii) β = 1, Ie will be
a weakly near-singular integral, i.e. (27) and (28); (iii) β = 2, Ie will be a strongly near-singular integral,
i.e. (26). The relative error εr is used to describe the numerical solution accuracy at a computed point, i.e.

εr =

∣∣∣∣Inum − Iref
Iref

∣∣∣∣ (69)

where Inum and Iref are, respectively, the numerical and reference results of the integral evaluation at a
single point.

In the following, we will choose one of each of two different levels of near-singular integrals (weakly and
strongly near-singular integral), and the kernels can be obtained from the fundamental solutions in Eqs. (8)
and (9) with i = j = 1, i.e. ∫

Γe

1

16πµ(1− ν)r
[(3− 4ν) + (r,1)

2]dΓ(x) (70)
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and ∫
Γe

−1

8πµ(1− ν)r2

{
∂r

∂n
[(1− 2ν) + 3(r,1)

2]

}
dΓ(x) (71)

We take the material properties µ = 1 and ν = 0.3. In this section, the Telles scheme presented in [41], which
strictly should be used only for weakly singular cases, is included. We acknowledge this scheme will fail for
fully singular integrals containing strongly singular kernels, but the aim is to test whether the transformation185

might be helpful for higher order singularities when dealing with a near-singular integral. Actually, the Telles
method used here had been updated by Telles and Oliveira in 1994 [81], in which improved near singular
behaviour, treated separately, was proposed for ln(1/r), 1/r, 1/r2 and 1/r3.

10−6 10−5 10−4 10−3 10−2 10−1

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Aspect ratio d∗

ε r

Gauss-Legendre
Adaptive integral method
Sinh tranformation
Telles method

cpu time ≈5903s

Figure 4: Error analysis for different methods focusing on the weakly near-singular integral

The relative error εr in evaluating the weakly near-singular integral in (70) for different methods is
presented in Fig. 4. An 8× 8 Gauss-Legendre scheme was used for all methods, and the threshold ē = 10−8190

was taken for the adaptive integral method. When d∗ exceeds about 0.4, all the considered methods can
provide acceptable results with εr < 10−3. However, when d∗ < 0.4, the Gauss-Legendre and Telles
methods become less satisfactory with relative errors εr stabilizing at about 10% and 6% respectively. It
is noted that through introducing a third degree polynomial transformation the Telles scheme outperforms
standard Gauss-Legendre quadrature, though the results are still unsatisfactory when using 8 × 8 Gauss195

points. In addition, with same number of Gauss points the relative error of the sinh transformation method
remains below 10−3 (< 1%) even when the aspect ratio d∗ decreases to 10−6. The relative error of the sinh
transformation could be decreased further by using more Gauss points in the computation. The relationships
between relative error and the number of Gauss points will be discussed in the following. It should be pointed
out that, due to neglecting the truncation error Etrun in equation (63), when the computed point is not very200

close to the boundary the relative error of the sinh transformation method is larger than that of conventional
Gaussian quadrature and Telles method. By using the scheme of element subdivision, it is clearly seen that
the adaptive integral method can achieve very accurate results with relative errors below 10−5 (< 0.001%).
However, since the computation time increases rapidly, only the results for cases having d∗ ≥ 5× 10−5 are
shown in Fig. 4.205
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Figure 5: Error analysis for different methods focusing on the strongly near-singular integral

With the increase of the order of near-singularity, corresponding changes are made to the integration
schemes tested. We study here the accuracy for the different methods focusing on the strongly near-singular
integral given in Eq. (71). Fig. 5 shows the relative error in the evaluation of this integral as a function of the
ratio d∗. With the increase in the order of singularity in the kernel, many more Gauss points are required
to produce the required accuracy, and for this case a 20 × 20 Gauss scheme is adopted. From Fig. 5 it is210

seen that all the considered methods can produce accurate results when the aspect ratio d∗ > 0.3. However,
when d∗ < 0.3, the results obtained by the Gauss-Legendre quadrature and Telles methods exhibit large
errors. Conversely, the sinh transformation method remains capable of delivering high accuracy results with
εr < 10−3 even for d∗ as low as 10−6 (indeed, one might say arbitrarily low d∗). It is also evident that the
adaptive integral method is still the most accurate approach, with its relative error εr remaining around215

10−5 and one or two orders of magnitude smaller than εr found from the sinh transformation method. As
shown in Fig. 5, the CPU time for the strongly near-singular integral when d∗ = 5 × 10−5 is about 7658s
(about 30% more than that required for the weakly near-singular case), and therefore only the relative errors
with d∗ ≥ 5× 10−5 are shown.
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(a) Relative errors of weakly near-singular integral
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15× 15
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(b) Relative errors of strongly near-singular integral

Figure 6: The influence of the number of Gauss points on accuracy of the sinh transformation scheme

The number of Gauss points used in the computation strongly influences the accuracy of the sinh trans-220

formation method. This is demonstrated in Figs. 6a and 6b for both weakly and strongly near-singular
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integral evaluations. It can be seen from Fig. 6a that the relative errors exhibit marked fluctuations when
the number of Gauss points is less than 6 × 6. However, with the number of Gauss points increasing to
10 × 10, relative errors reach about 4 × 10−4 and remain stable. For the strongly near-singular integral in
Fig. 6b, relative errors stabilize at around 5× 10−4 when the number of Gauss points reaches 25× 25.225

From the above accuracy comparisons, we can draw the following conclusions: (i) the adaptive integral
method can consistently deliver very high accuracy (εr < 1.0 × 10−5) for both weakly and strongly near-
singular integrals, but the computation time can increase with the order of singularity in the kernel; and
(ii) the sinh transformation method can achieve satisfactory results (εr < 1.0× 10−3) with a fixed number
of Gauss points in the computation of weakly and strongly near-singular integrals.230

3.4. Efficiency analysis for integral method on surface element
In a typical 3D IGABEM analysis of a coated structure, there will be a large number of near-singular

integrals that arise, and the development of a scheme to evaluate them efficiently with acceptable accuracy
is of great importance.

The error analysis in Section 3.3 suggests that both the adaptive method and the sinh transformation235

method are promising schemes that can deliver the required accuracy. In this section, the two schemes
will be further studied from the perspective of computational efficiency. The weakly near-singular integral
in Eq. (70) and strongly near-singular integral in Eq. (71) on the surface element shown in Fig. 3a are
considered. Taking our lead from the conclusions of the error analysis, 8 × 8 and 20 × 20 Gauss point
distributions are used for the computation of integrals containing the weakly singular and strongly singular240

kernels, respectively, and it is for this reason that the evaluation of the strongly near-singular integral using
the sinh transformation takes much more time than that of the weakly near-singular integral in Figs. 7a and
7b. Since a fixed number of Gauss points has been used in the sinh transformation method, the CPU time of
the scheme is displayed as a horizontal line. For the adaptive integral method, the CPU time of the scheme
with three different error tolerances ē = 10−6, 10−8 and 10−10 is compared in Figs. 7a and 7b. It should245

be pointed out that the same error tolerances are used on both integration directions, i.e. ē1 = ē2 = ē.
From Figs. 7a and 7b, the effect of reducing the error tolerance on increasing the run time can clearly be
seen. The CPU time and aspect ratio d∗ are broadly linearly related for both weakly and strongly near-
singular integrals with a fixed error tolerance. An obvious feature of these performance graphs is that there
is an intersection where the CPU times for the sinh transformation and adaptive integral methods coincide,250

suggesting a break-even point.
The total number of sub-elements and Gauss points used in the adaptive method for weakly near-singular

integrals is given in Table 3. As shown in the Table, when d∗ = 0.5, the element subdivision algorithm will
not be required. However, when d∗ reduces to 0.0005 a large number of sub-elements will be produced,
significantly increasing the computation time. We can also observe that each reduction of two orders of255

magnitude in ē results in an increase of about 26% in the number of sub-elements and Gauss points.
The Gauss point distributions over the parametric domain in the adaptive integral method are shown in
Figs. 8(a),(b),(c) and (d). When a near-singularity occurs (Figs. 8 (b), (c) and (d)), a very refined grid is
produced as the scheme controls the aspect ratio Li/d.
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Figure 7: CPU time comparison between adaptive integral method and sinh transformation method on isogeometric cylindrical
element

Table 3: Total number of sub-elements and Gauss points used in the adaptive method for weakly near-singular integrals on
cylindrical element

Error tolerance ē 10−6 10−8 10−10

Aspect ratio d∗ No. SE No. GP No. SE No. GP No. SE No. GP
5.0×10−1 1 60 1 112 1 170
3.5×10−1 1 180 2 143 2 229
2.0×10−1 4 210 4 359 6 419
5.0×10−2 40 391 54 873 60 1654
3.5×10−2 77 482 96 1416 126 2149
2.0×10−2 228 1194 294 2147 360 4166
5.0×10−3 3431 13888 4346 18238 5580 26054
3.5×10−3 6968 28054 8892 36502 11220 48522
2.0×10−3 21294 85358 27060 109166 34419 141268
5.0×10−4 340704 1363329 431613 1727300 548262 2196730
Note: ‘No. SE’ stands ‘number of sub-elements’; ‘No. GP’ indicates ‘number of Gauss points’.
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Figure 8: Gauss points distribution in computed domain by adaptive integral method (projection point lies in center of the
considered element)

4. Extended sinh transformation on surface element260

Depending on the location of the source point or internal point being considered, near-singular integrals
can be divided into two types: (i) those for which the projection point lies inside the element (i.e. xp ∈ Γe,
shown in Fig. 2), (ii) those for which the projection point lies outside the element (i.e. xp /∈ Γe; a case is
illustrated in Fig. 3b). As discussed in Section 3.2, the conventional sinh transformation method can easily
deal with the case when the projection point lies inside the considered element. However, for coatings or265

thin sections, it will quite commonly occur that a projection point lies outside the element in a near-singular
integral. In this section, based on the analytical extension of the NURBS surface, a new adaptation of the
sinh transformation for an isogeometric surface element is presented to deal with these cases. To distinguish
between projection points inside and outside the knot span, we denote a projection point that is outside the
knot span by xp′ .270

Let us take the biquadratic isogeometric cylindrical surface element shown in Figs. 3a and 3b as an
example. Without loss of generality, let the knot span of the isogeometric element be [0, 1]× [0, 1]. For this
element, the B-spline basis functions Ni(ξ) and Nj(η) for NURBS basis functions Rij(ξ, η) can be obtained
easily. Since the basis functions Ni(ξ) and Nj(η) are a set of continuous functions of (ξ, η) ∈ R2, they
can be evaluated for values of (ξ, η) /∈ [0, 1]2 to consider points outside the element. Fig. 9 shows the basis
functions Ni(ξ) and Nj(η) evaluated over the interval (ξ, η) ∈ [0, 1.2]2; the element is shown in white and the
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extended domain is shown shaded. In the extended sinh transformation method, when the projection point
(ξp′, ηp′) is located outside of the knot span, the analytical extension of the basis functions in the extended
span (shaded region in Fig. 9) will be used. Then the expanded isogeometric element can be expressed by

x(ξ, η) =

p+1∑
a=1

q+1∑
b=1

Rab(ξ, η)Pab (72)

where ξ ∈ [0, ξp′], η ∈ [0, ηp′]. For the cases in which the projection point is just outside the other side of
the knot span, a similar expression can be used with ξp′, ηp′ < 0.
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Figure 9: Basis functions of the considered isogeometric element

For the extended isogeometric element, the definition of minimum distance d = |y−xp′| will not change
but the locations of the projection points move to the analytically extended part of the considered element.
Thus, equations (50) and (51) can also be used here, but the expressions for the near-singular integral (53)
will be modified. For an isogeometric element with knot span [ξi, ξi+1] × [ηj , ηj+1], when ξp′ > ξi+1 and
ηp′ > ηj+1 (Case 1 in Fig. 10(a)), the integral will become Ie = Ie1 − Ie2 − Ie3 + Ie4 , where

Ie1 =

∫ ξp′

ξi

∫ ηp′

ηj

f(ξ, η)

(r2)α
dξdη, Ie2 =

∫ ξp′

ξi+1

∫ ηp′

ηj

f(ξ, η)

(r2)α
dξdη (73)

Ie3 =

∫ ξp′

ξi

∫ ηp′

ηj+1

f(ξ, η)

(r2)α
dξdη, Ie4 =

∫ ξp′

ξi+1

∫ ηp′

ηj+1

f(ξ, η)

(r2)α
dξdη (74)

For Case 2 with ξp′ > ξi+1 and ηi < ηp′ < ηj+1 (in Fig. 10(b)) and Case 3 with ξi < ξp′ < ξi+1 and
ξj+1 < ηp′ (in Fig. 10(c)), the integral (53) can also be expressed as Ie = Ie1 − Ie2 − Ie3 + Ie4 , but with
appropriate changes to the limits of integrals Ie1 , Ie2 , Ie3 and Ie4 .275
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Figure 10: Different locations of projection point in an knot span

5. Implementation of hybrid integration scheme on surface element

From the above discussion it is clear that both the sinh transformation and adaptive approaches have
some appealing features for evaluating near-singular integrals in IGABEM, but they also have disadvantages.
Since a fixed number of Gauss points is used in the sinh transformation method, the computational efficiency
is consistently good, especially for the case where d∗ is very small. But neglecting the truncation error Etrun280

will result in some loss of accuracy in numerical computation as the distance from the projection point grows.
For the adaptive integral method, the element subdivision means the accuracy of this method is consistently
good, but the CPU time requirements present a considerable barrier for its efficient implementation for
coatings and other very thin sections. A satisfactory balance between accuracy and efficiency cannot be
achieved simultaneously by using only one of the considered methods, but a hybrid scheme is strongly285

suggested by the fact that the sinh transformation performs well for small d∗ and the adaptive scheme
performs well for larger d∗. We develop the scheme, named sinh+, in the following section.

5.1. Sinh+ scheme
The hybrid sinh+ scheme involves integrating some regions of the element using the sinh transformation

and other regions with the adaptive method. The element partitioning into these subregions is decided by290

monitoring of the truncation error term Etrun that appears in Eqs. (51) and (63).
From Eq. (63), the term Etrun can be written

Etrun = |r2exact − d2 [1 + Fk(s, t)Fk(s, t) + 2Fk(s, t)Gn
k (s, t) + Gn

k (s, t)Gn
k (s, t)] | (75)

where r2exact is the square distance between the source point and field point; this can be easily evaluated
since the coordinates of the source point and the field (Gauss) point are known. This provides the possibility
of defining a relative error norm Retrun, as follows, to describe the accuracy of predicting the square distance
r2 in Eq. (63).

Relative error(Retrun) =

∣∣∣∣r2exact − d2 [1 + Fk(s, t)Fk(s, t) + 2Fk(s, t)Gn
k (s, t) + Gn

k (s, t)Gn
k (s, t)]

r2exact

∣∣∣∣ (76)
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Figure 11: Relative error of predicting r2 when the projection point lies in the center of an element
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Figure 12: Relative error of predicting r2 when the projection point lies in the corner of an element

For a surface element, there are two parameters ξ and η in the Taylor expansion as shown in Eq. (41).
In our analysis in the current section, the cylindrical element shown in Fig. 3a will be used to study the
relationship between the parametric location ξ, η and the relative error in predicting the square distance r2.
For the case where the projection point is located at the center of the element (ξp = ηp = 0.5), Figs. 11a295

and 11b show the relative error (Retrun) comparisons when the Taylor expansion is taken along the ξ and
η directions, respectively. From the two figures, we can observe that both the odd and even terms of the
Taylor expansion can be obtained with similar relative errors. Figs. 12a and 12b present the relative errors
when the projection point lies at a corner (ξp = 0, ηp = 1) of the element, and the relative errors when
the projection point lies on the element boundary (ξp = 0.5, ηp = 0) are shown in Figs. 13a and 13b. The300

growth of the truncation error with increasing distance between the field point and the projection point can
be seen clearly. The order referred to in these figures relates to the number of terms (n) used in the Taylor
series approximation in Eqs. (41), (51) and (63).
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Figure 13: Relative error of predicting r2 when the projection point lies at a boundary of an element

The above quantification of relative errors in r2 allows us to propose the sinh+ scheme in detail. In
the computation of near-singular surface integrals over an isogeometric element (with knot span [ξi, ξi+1]×305

[ηj , ηj+1]), we first evaluate the relative errors defined by Eq. (76) at each Gauss point along the ξ and η
directions independently. If a relative error exceeds a predefined tolerance eps at the locations ξ = ξ′1 and
ξ = ξ′2 or (η = η′1 and η = η′2), the element will be subdivided based on the values of these coordinates.

The scheme is most easily described graphically. Fig. 14 shows an example in which the projection point
lies centrally in the element. The element is divided into two parts (each color representing a part), such310

that in the central region ([ξ′1, ξ′2]× [η′1, η
′
2]), the sinh transformation method will be used as the truncation
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error is below the threshold eps, so the method will be both accurate and computationally efficient in this
region. For the remaining region, shown shaded grey in the Figure, the adaptive integral method will be
used, and this scheme will be efficient here since the domain of integration is not too close to the projection
point. For practical implementation, the (grey) region should be further divided into eight subregions as315

shown in Fig. 15. It should be noted that both Figs. 14 and 15 show the case when the projection point lies
in the center of the element. However, when the projection point lies close to an edge of the element, some
of the grey-shaded subdivisions will vanish.

ξi ξ′1 ξ′2 ξi+1

ηj

η′1

η′2

ηj+1

Figure 15: Subdivision scheme for region [ξi, ξi+1]× [ηj , ηj+1]− [ξ′1, ξ
′
2]× [η′1, η

′
2]

5.2. Summary of the recommended integration schemes for 3D IGABEM
Since several different integration schemes have been presented, we take the opportunity here to sum-320

marize the recommended methods in an implementation of 3D IGABEM:

• Singular integrals: all the singular integrals are computed by the power series expansion method
[75, 76].

• Non-singular integrals: These are divided into two categories: regular integrals and near-singular
integrals, as defined by the aspect ratio d∗ and its relation to a critical value, d∗crit. The critical value325

may vary in order to allow engineers to achieve a different balance between accuracy and computational
efficiency as may be required for different applications. Such a decision might be informed by Figs. 7a
and 7b), for example. A larger value will improve computational efficiency by favouring the sinh
transformation, while a smaller value will improve accuracy by favouring the adaptive method. In
this work, d∗crit = 0.6 is adopted for both weakly and strongly near-singular integrals in the numerical330

examples. This value has been found by numerical testing to provide a reasonable balance between
accuracy and efficiency for the problems tested.

(i) If d∗ ≥ d∗crit, the integral will be evaluated by the adaptive integral method. The majority of
cases in a typical analysis will be regular and will not require any subdivision. Some near-singular
integrals will be computed in this way, i.e. when the central region in Fig. 14 shrinks to zero.335

(ii) If d∗ < d∗crit, the sinh transformation will be used to evaluate the near-singular integral.
Here, the element will be subdivided as suggested by the truncation error Etrun and truncation error
threshold eps. If the projection point is inside the element, the traditional sinh transformation will be
used. If the projection point is outside the element, the extended sinh transformation will be adopted.

For the subregion in which Etrun ≥ eps, the adaptive scheme will be used.340

For the subregion in which Etrun < eps, the sinh transformation method will be used.

6. Numerical examples

In order to demonstrate the accuracy and effectiveness of the 3D IGABEM based on the new sinh+

scheme, we examine several numerical examples including the evaluation of individual near-singular integrals
and the full IGABEM analysis of engineering problems requiring solutions evaluated near the boundary, as
well as problems involving coating structures and thin sections. The material properties for thermal barrier
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coatings are taken from Padture [1]. The stress-free reference temperature is taken as zero for all cases. Two
error metrics are considered: a relative error defined in Eq. (69) and an L2 relative error norm with respect
to a reference solution fref (here f is any quantity of interest such as displacement, stress, temperature and
flux), this norm E2 being defined by

E2(fnum; Γ) =
∥fnum − fref∥L2(Γ)

∥fref∥L2(Γ)
(77)

where Γ is the surface over which the norm is taken, and fnum is the physical quantity (displacement, stress,
temperature or flux) as predicted by the numerical scheme. For completeness, we provide a definition of the
L2 norm || · ||L2(Γ) as

∥g∥L2(Γ) =

√∫
Γ

g2dΓ (78)

6.1. Sinh+ scheme over an isogeometric cylindrical surface
To test the proposed sinh+ scheme, the weakly and strongly near-singular integrals shown in Eqs. (70)

and (71) are evaluated over an isogeometric cylindrical surface element (see Fig. 3a). The control points of
the element are given in Table 2. The position of the source point is described by

x = (1− d) sin(π/4), y = 1, z = (1− d) cos(π/4). (79)

Here, we consider d varying from 1 to 0.000001 (the cylinder has unit radius).
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Figure 16: Relative errors comparison among sinh+ scheme, sinh scheme, Gauss-Legendre and adaptive integral method

Figs. 16a and 16b show a comparison of the relative errors produced by the sinh+ scheme, sinh scheme,345

Gauss-Legendre and adaptive integral method. In the computation, a set of 20× 20 Gauss points are used
to evaluate the weakly near-singular integral. For the strongly near-singular integral, 25× 25 Gauss points
are used. An error threshold ē = 10−8 is taken for the adaptive integral method. It can be clearly seen that
the proposed sinh+ can produce accurate results with a relative error εr remaining below 10−5 and being
one to four orders of magnitude smaller than εr found with the conventional sinh transformation methods.350

As shown in Fig. 14, the truncation error threshold eps is a key factor defining the performance of the
sinh+ scheme. Figs. 17a and 17b show the impact of the choice of eps on the accuracy of weakly and
strongly near-singular integrations. It is noted that by reducing eps the accuracy of the sinh+ scheme will
be significantly improved.
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Figure 17: The impact of eps on the accuracy of near-singular integration
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Figure 18: CPU time comparison of near-singular integral evaluations

Figs. 18a and 18b show the CPU time comparison of near-singular integral evaluations with different355

methods (adaptive integral method, sinh+ scheme and the conventional sinh transformation method). When
d∗ > d∗×, the sinh+ scheme can be seen to require a little more time than the adaptive method due to the
overhead in computing the parameters ξ′1, ξ′2, η′1 and η′2. For d∗ < d∗× the CPU time of the adaptive integral
method increases dramatically, while the CPU time of the sinh+ scheme remains fixed at around 0.5s.

6.2. Extended sinh+ scheme over an isogeometric cylindrical surface360

Here, we take the cylindrical element (with knot span [0, 1]× [0, 1]) in Fig. 3a as an example, and consider
cases illustrated in Fig. 19, in which the source point is located outside the subtended arc of the element,
yet remains close to the element. The position of the source point is described by

x = (1− d) cos(θ + θ0), y = 1.0, z = (1− d) sin(θ + θ0) (80)

where θ = π/2 and θ0 = π/180, π/1800, π/18000 are small angles as shown in Fig 19. The distance d varies
between 0.9 and 0.000001 (the cylinder has unit radius). Since the projection point lies outside the element,
the extended sinh transformation is required. As shown in Fig. 20, the knot span [ξi, ξi+1] × [ηj , ηj+1] is
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divided into two parts. In the pink region ([ξ′1, ξ′2] × [η′1, ηp]), where Retrun < eps, the sinh transformation
method will be used and the scheme can benefit from its computational efficiency. The adaptive integral365

method will be used to evaluate the integrals on the remaining grey region where Retrun > eps.
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Figure 19: Lateral view of the expanded cylindrical element
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Figure 20: Subdivision scheme for extended sinh+ scheme

Fig. 21 shows the relative errors obtained by the extended sinh transformation for the weakly near-
singular integral evaluation over the element. The relative errors εr obtained by the extended sinh transfor-
mation are very small, generally remaining far below 10−5, even for d∗ as low as 10−6.
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Figure 21: Relative errors obtained by extended sinh transformation for weakly near-singular integral

6.3. Thermoelastic analysis of a cube370

In this section we consider the thermal stress analysis of a 2m× 2m× 2m cube. All six faces of the cube
are constrained against displacement in the normal direction (i.e. roller conditions). Young’s modulus is
taken as E = 4.0 GPa, Poisson’s ratio as ν = 0.34 and the coefficient of thermal expansion as α = 1.0×10−5
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Figure 23: Comparison of CPU time for different methods

◦C−1. A uniform temperature change ∆T = 100◦C is applied to the cube, and these conditions cause the
analytical solution for thermal stresses in the cube to become

σx = σy = σz = −Eα∆T
1− 2ν

= −12.5 MPa (81)

In this model, the cube is discretized using only six isogeometric elements, one on each face. The stresses
are evaluated at a set of internal points uniformly distributed on a smaller cube inside the boundary. As the
size of this smaller cube increases towards 2m× 2m× 2m, the internal point evaluations involve increasingly
challenging near-singular integrals. The distance from the internal point to the boundary surface is denoted
δ. In order to illustrate the accuracy of the sinh+ scheme against the competing methods, an average relative
error (εare) is defined as

εare =
1

N

N∑
i=1

∣∣∣∣σi
num − σi

ref
σi

ref

∣∣∣∣ (82)

where N is the number of internal points, and σi
num (or σi

ref) represents the numerical (or reference) result
at the ith internal point. In this example, the errors are compared to analytical solutions for stress. For
stresses at an interior point, a BIE for the stresses (see Appendix B) will be used. Let us remark that hyper
near-singular integrals (kernels of order 1/r3 ) arises in the computation.

We consider the distance δ to vary from 0.5 to 1.0 × 10−6m, so that the aspect ratio d∗ varies from375

0.25 to 0.5 × 10−6. The average relative errors (εare) in the normal stress σx for the internal point set are
shown in Fig. 22, comparing the sinh+, sinh transformation and adaptive schemes. It is evident that for
d∗ > 10−3 all methods can deliver highly accurate results. It is evident that the sinh+ and conventional
sinh transformation can produce very accurate results using only six isogeometric elements with d∗ as low as
1.0×10−7. For this example containing only planar surfaces, the NURBS geometric description degenerates380

to become a B-spline and the truncation error in Eqs. (41) and (51) vanishes. It is for this reason that the
sinh+ scheme and conventional sinh transformation method offer the same accuracy.

In Fig. 23, the CPU time requirements of the different schemes are presented. For large d∗ the adaptive
integral method is adopted for all the computations of what is a regular integral, and this results in the CPU
time of the three methods being very similar. As d∗ reduces to 0.1 and below, the CPU time requirement385

for the adaptive scheme increases sharply, to the extent that the method was not used in the tests for
d∗ < 0.005. The CPU time of the sinh+ scheme remains fixed at around 130s. Owing to the overhead
in selecting the appropriate integration scheme, computing the minimum distance and finding the element
divide point (shown in Fig. 14), sinh+ requires approximately 15% more CPU time than the classical sinh
transformation in the small d∗ regime.390
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6.4. Thick-walled pipeline
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Figure 24: Thin-walled quarter cylinder model

To illustrate the accuracy and effectiveness of the 3D IGABEM using the new sinh+ scheme for a problem
including a curved boundary, a thermoelastic problem in a thick-walled pipeline as shown in Fig. 24a is
studied. The pipeline is made of a superalloy (GH4033) with material properties are as follows: Young’s
modulus E = 220GPa, Possion’s ratio ν = 0.3, thermal conductivity k = 10.9W/m · K and thermal-
expansion coefficient α = 11.56× 10−6 ◦C−1. The inner surface is maintained at a temperature θi, and the
outer surface is maintained at a temperature θe. The flat ends of the cylinder are taken to be thermally
insulated, i.e. ∇θ · n = 0, so that the heat conduction becomes purely radial. Geometric dimensions of the
model are R(0) = 2.0m, R(1) = 4.0m and h = 6.0m. The original parametric definition of the model is
given in Appendix A. An internal point set is uniformly distributed on an interior surface (the dashed line
in Fig. 24b), a distance δ from the inner surface of the cylinder so that the coordinates of the internal points
are

x = (R(0) + δ) cos(ψ); y = (R(0) + δ) sin(ψ); z = t (83)

where we take 0 < ψ < π/2, 0 < t < 6m, and the distance δ varying from 0.5m to 10−7m. The temperatures
on the inner and outer cylinder surfaces are prescribed as θi = 100◦C and θe = 70◦C, respectively.

We exploit the planes of symmetry of the problem to restrict the analysis domain to a quarter cylinder
(the orange part in Fig. 24a); the boundary conditions are shown in Fig. 24b. Six isogeometric elements are395

used to discretize the model, one on each surface. The end caps are constrained against axial displacement,
so plane strain conditions prevail allowing the use of an analytical solution [82, 83] as the reference solution
for temperature and displacement (see Appendix C). Here, the errors are compared to analytical solutions
for displacement.

In Fig. 25, we present the average relative error εare in the radial displacement as the internal point400

set approaches the inner surface; the errors are shown as a function of δ. The corresponding CPU time
requirements are compared in Fig. 26. Due to the use of a NURBS geometric description, the truncation
error in Eqs. (41) and (51) is no longer zero, and some different conclusions from Section 6.1 are drawn.
As expected, the new sinh+ scheme, sinh transformation and adaptive method can all deliver accurate
results for larger values of δ, though the range of practical applicability of the adaptive method is limited to405

δ > 10−2 because of the growth in its CPU time requirements. The sinh+ scheme can still deliver accurate
results, with relative errors around 10−3 for distance δ as small as 10−7m. The truncation error causes the
sinh transformation to lose some accuracy, its relative errors stabilizing around 10−2 for small δ. The CPU
time requirements of the new sinh+ and sinh transformation schemes remain stable down to δ = 10−7. We
conclude that for this problem the sinh+ scheme provides consistently good results, with approximately one410

order of magnitude reduction in error, in comparison with the sinh transformation, but with a somewhat
increased run time.
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Figure 25: εare of radial displacement ur at the internal points
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6.5. Thermoelastic problem for cylinder model with multilayered coating structures
In this example, we consider a multilayered cylinder model under radial temperature variation in plane

strain. As shown in Fig. 27, the model involves a superalloy substrate with inner and outer radii r1, r2 =415

2, 5m. At the inner and outer radii the substrate is covered by a thermal barrier coating (TBC) of thickness
δm. The TBC is made of YSZ (Y2O3-stabilized ZrO2), a widely used TBC material for high-temperature
applications such as diesel engines and gas turbines [1, 3]. The substrate is made of superalloy GH4033
having a Young’s modulus E = 220GPa, a Possion’s ratio ν = 0.3, a thermal conductivity k = 10.9 W/m ·K
and a thermal-expansion coefficient α = 11.56 × 10−6 ◦C−1. The material constants for the YSZ coating420

are taken as: Young’s modulus E = 48GPa, Poisson’s ratio ν = 0.25, thermal conductivity k = 2.3 W/m ·K
and thermal-expansion coefficient α = 11 × 10−6 ◦C−1. Once again, a quarter-symmetrical model of the
cylinder is used (as shown in Fig. 27a) and the boundary conditions are given in Fig. 27b. The flat ends
of the cylinder model are assumed thermally insulated, i.e. ∇θ · n = 0, and are constrained against axial
displacement.425

In the computation, the coating thickness δ varies from 0.5 to 10−7m. The temperatures on the inner
and outer surfaces are prescribed as boundary conditions, with θ1 = 120◦C and θ4 = 80◦C. The plane
strain conditions allow the reference solution to be taken from an analytical solution for displacement and
temperature [82, 83] using the formulations given in Appendix C with three layers. In this example, the
errors are compared to analytical solutions for displacement and temperature.430
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(b) Cross section of the multilayered coatings model

Figure 27: Multilayered coatings model

Figs. 28a and 28b show the L2 relative error norms, E2(ur; Γint1) and E2(θ; Γint2), of the radial dis-
placements, ur, and temperatures respectively, for coating thicknesses down to 10−7m. Here, the interface
between TBC1 and substrate is denoted Γint1 and the interface between substrate and TBC2 is denoted
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Γint2. Once again, the new sinh+ scheme outperforms the conventional sinh scheme, being able to deliver
accurate results from coating models containing as few as six isogeometric elements, and being stable at435

very small coating thicknesses. Fig. 29 presents the effect of eps on the same error norms when 6 Taylor
series terms are used in Eq. (41). The influence of the tolerance eps can be clearly seen for 6 isogeometric
elements, with both E2(ur; Γint1) and E2(θ; Γint2) stabilising as eps reduces. It should be noted that when
the values of eps≫ 10−1, the sinh+ scheme will become the conventional sinh scheme.
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Figure 28: L2 relative error norm of radial displacement and temperature on the interface
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Finally, using the initial parameters (6 isogeometric elements), the temperature distribution inside the440

substrate (surface on z = 4) and its relative error for coating thickness δ = 10−6 are given in Figs. 30a and
30b respectively.
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Figure 30: Temperature distribution and its relative error with δ = 10−6

6.6. Nozzle structure
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Figure 31: The computed nozzle model

In the final example, we present a quarter-symmetric analysis of a nozzle formed from a truncated cone
with an axial cylindrical drilling, as illustrated in Figs. 31a and 31b. The inner and outer radii of the445

fixed base are R(0) = 2mm and R(1) = 6mm, respectively and the height L = 6mm. The inner radius of
the top surface remains R(0), and the radial thickness of the top surface, δ, is allowed to vary from 0.5
to 10−7mm. These are simple and widely used geometries, and present significant challenges to engineers
using the conventional BEM and FEM as well as isogeometric fomulations. The temperature distribution
θ = 106(x+ y), with x and y measured in m, is prescribed as a boundary condition on the inner and outer450

surfaces.
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In Fig. 32 we present the temperature distribution over the contour S1 for the case δ = 8.0× 10−5mm.
Three different model refinements are shown, and the contour S1, which is illustrated in the Figure, is
defined by

S1 =

{
(x, y, z) : x =

(
R(0) +

δ

2

)
cosϕ, y =

(
R(0) +

δ

2

)
sinϕ, z = 0.6mm, ϕ ∈

(
0,
π

2

)}
(84)

From Fig. 32, we can see that a model containing only 26 degrees of freedom is too coarse to provide a
good solution for the temperature, but the results are much improved with 98 degrees of freedom. The
convergence can be clearly seen even though the thickness of the the top surface is only 0.08µm and the
distance from internal points on S1 to the inner surface is 0.04µm.455

Fig. 33 shows the computed temperature at points lying on the contour S2, which has the same x and
y parameters as S1, but with a coordinate z = 5.4mm the contour is close to the top surface, where the
thickness of the section is very small. Here, the temperature distribution obtained from the 98 degree of
freedom model shows more significant errors, but with model refinement the results converge well to a stable
solution.460
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Figure 33: Temperature distribution along curve S2 for different mesh refinements
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7. Conclusion

In this paper, some 3D thermoelastic problems in engineering systems with thermal barrier coatings
and thin structures have been studied using the 3D Isogeometric Boundary Element Method (IGABEM).
With its boundary-only analysis model aligning well with CAD descriptions and its attractive convergence
properties, IGABEM is a very promising method for a fully integrated CAD/CAE environment. However,465

the existence of large numbers of near-singular integrals poses challenges for the numerical implementation
with standard quadrature schemes for problems containing coated structures or other thin sections.

Existing methods for evaluating near-singular integrals over a surface isogeometric element have been
evaluated, and it has been shown that it is impossible to achieve a satisfactory balance between accuracy
and efficiency simultaneously by using only one of the these existing approaches. We propose a new sinh+470

scheme which is a hybrid of sinh transformation and adaptive integration methods. The analytical extension
of the NURBS surface is used to extend the sinh transformation in order to cope with cases in which the
projections of source points or internal points lie outside the domain of the element over which the integration
is taken. This enhances the robustness of the scheme.

The new scheme is able to deliver results of good accuracy and with good computational efficiency. One475

feature of the scheme is that it allows engineers to balance the computation accuracy and efficiency by
changing the tolerance eps or choosing a values of d∗crit as may be required for different cases. The numerical
results show that the scheme has been successfully developed for weakly, strongly and hyper near-singular
kernels.

This work focuses on the implementation and error analysis of the presented integral scheme. In the480

future work, the authors will discuss the mesh convergence coupled with the integration convergence. The
Geometry‐Independent Field approximaTion (GIFT) method [11], which will be a possible way to perform
local refinement using NURBS for the geometry and other splines for the field variables may be adopted.
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A. Appendix: Parameter definition of quarter cylinder

As shown in Fig.34, the quarter cylinder is constructed by 6 patches. The original parametric definition
of each patch is given by Ξ = {0, 0, 0, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1}. The control points and weights of all
patches are listed in Table 4. The model studied in this work can be obtained by changing coordinates of660

control points of several patches.

patch 1

patch 2

patch 3

patch 4

patch 5

patch 6

Figure 34: Model Construction of quarter cylinder

Table 4: Control points and weights of each patch (x1, x2, x3, weight)

control ponts 1 2 3 4 5 6 7 8 9

patch 1 (5,0,6,1) (5,0,3,1) (5,0,0,1) (5,5,6,
√
2

2
) (5,5,3,

√
2

2
) (5,5,0,

√
2
2

) (0,5,6,1) (0,5,3,1) (0,5,0,1)
patch 2 (0,5,6,1) (0,5,3,1) (0,5,0,1) (0, 7

2
,6,1) (0, 7

2
,3,1) (0, 7

2
,0,1) (0,2,6,1) (0,2,3,1) (0,2,0,1)

patch 3 (0,2,6,1) (0,2,3,1) (0,2,0,1) (2,2,6,
√

2
2

) (2,2,3,
√
2

2
) (2,2,0,

√
2
2

) (2,0,6,1) (2,0,3,1) (2,0,0,1)
patch 4 (2,0,6,1) (2,0,3,1) (2,0,0,1) ( 7

2
,0,6,1) ( 7

2
,0,3,1) ( 7

2
,0,0,1) (5,0,6,1) (5,0,3,1) (5,0,0,1)

patch 5 (0,5,0,1) (5,5,0,
√
2
2

) (5,0,0,1) (0, 7
2

,0,1) ( 7
2

, 7
2

,0,
√
2
2

) ( 7
2

,0,0,1) (0,2,0,1) (2,2,0,
√

2
2

) (2,0,0,1)
patch 6 (0,2,6,1) (2,2,6,

√
2
2

) (2,0,6,1) (0, 7
2

,6,1) ( 7
2

, 7
2

,6,
√
2
2

) ( 7
2

,0,6,1) (0,5,6,1) (5,5,6,
√

2
2

) (5,0,6,1)
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B. Appendix: boundary integral equation for thermal stresses

The BIE for thermal stresses at an interior point y can be obtained by differentiating the BIE for
displacement at point y and substituting in Hooke’s law as follows:

σij(y) =

∫
Γ

Dkij(y,x)tk(x)dΓ(x)−
∫
Γ

Skij(y,x)uk(x)dΓ(x) (85)

+

∫
Γ

Eα

1− 2v
Dkij(y,x)nk(x)θ(x)dΓ(x)

−
∫
V

Eα

1− 2v
Dkij(y,x

′)θ,k(x
′)dV (x′)− Eα

1− 2v
θ(y)δij

where the third-order tensors Skij and Dkij can be defined as follows:

Skij(y,x) =
E

4π(1−v)r3

{
3 ∂r
∂n [(1− 2v)δijr,k + v(δikr,j + δjkr,i)− 5r,ir,jr,k]

+3v(r,ir,knj + r,jr,kni) + (1− 2v)(δiknj + δjkni + 3r,ir,jnk)− (1− 4v)δijnk}

and
Dkij(y,x) =

1

4π(1− v)r2
[(1− 2v)(δikr,j + δjkr,i − δijr,k + 3r,ir,jr,k)]

C. Appendix: analytical thermo-elastic solutions for multilayered hollow cylinder665

Let us consider a multilayered hollow cylinder composed of n different materials. The internal radius
and external radii are denoted R(0) and R(n), respectively. The radius at the interface between the phase i
and the phase (i+ 1) is denotedR(i). The model is subjected to a temperature gradient varying between θi
at the inner radius and θe at the outer radius.

C.1. Temperature in the multilayered hollow cylinder670

The general solution of temperature in each phase can be given by
θ(r) = A1 ln r +B1, R(0) ≤ r ≤ R(1)

θ(r) = A2 ln r +B2, R(1) ≤ r ≤ R(2)

...
θ(r) = An ln r +Bn, R(n−1) ≤ r ≤ R(n)

The values of Ai and Bi can be computed by

Ai =
θi+1 − θi
ln ρ∗i

, Bi =
θi lnR

(i) − θi+1 lnR
(i−1)

ln ρ∗i
, i = 1, 2, · · · , n

where ρ∗i = R(i)

R(i−1) and the unknown interface temperatures θ2, θ3, . . . , θn can be obtained by the following
system 

− (β1 + 1) θ2 + β1θ3 = −θ1
θ2 − (β2 + 1) θ3 + β2θ4 = 0

...
θi − (βi + 1) θi+1 + βiθi+2 = 0

...
θn−1 − (βn−1 + 1) θn+1 = −βn−1θn+1

where i = 1, 2, . . . , n; θ1 = θi and θn+1 = θe are known temperatures at the inner and outer surfaces; and

βi =
k(i+1)

k(i)
ln ρ∗i
ln ρ∗i+1

, i = 1, 2, . . . , n− 1;n > 1

k(i) is the thermal conductivity in the ith layer.
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C.2. Displacement in the multilayered hollow cylinder
The general solution of displacement in each phase can be described by

ur1 = ϕ1
1
r1

∫ r1
R(0) θ(r)rdr + C1r1 +

C2

r1
; R(0) ≤ r1 ≤ R(1)

ur2 = ϕ2
1
r2

∫ r2
R(1) θ(r)rdr + C3r2 +

C4

r2
; R(1) ≤ r2 ≤ R(2)

...
urn = ϕn

1
rn

∫ rn
R(n−1) θ(r)rdr + C2n−1rn + C2n

rn
; R(n−1) ≤ rn ≤ R(n)

(86)

where
ϕi =

1 + vi
1− vi

αi (87)

and∫ ri

R(i−1)

θ(r)rdr =
1

4
Ai

(
2(ri)

2 ln ri − (ri)
2 − 2(R(i−1))2 lnR(i−1) + (R(i−1))2

)
+

1

2
Bi

(
(ri)

2 − (R(i−1))2
)

(88)

According to the boundary conditions and following continuity relationships, the unknown coefficients675

C1, C2, . . . , C2n−1, C2n in Eq. (86) can be determined by Eq. (91).
Boundary condition :

σr1 |r1=R(0) = 0; σr1 |rn=R(n) = 0

Stress continuity condition: 

σr1 |r1=R(1) = σr2 |r2=R(1)

...
σri |ri=R(i) = σri+1

∣∣
ri+1=R(i)

...
σrn−1

∣∣
rn−1=R(n−1) = σrn |rn=R(n−1)

(89)

Displacement continuity condition:

ur1 |r1=R(1) = ur2 |r2=R(1)

...
uri |ri=R(i) = uri+1

∣∣
ri+1=R(i)

...
urn−1

∣∣
rn−1=R(n−1) = urn |rn=R(n−1)

(90)



λ1 − η1

(R(0))
2 0

λ1 − η1

(R(1))
2 −λ2 η2

(R(1))
2

R(1) 1

(R(1))
2 −R(1) − 1

R(1)

. . . . . . . . . . . . . . .
λn−1 − ηn−1

(R(n−1))
2 −λn ηn

(R(n−1))
2

R(n−1) 1
R(n−1) −R(n−1) − 1

R(n−1)

0 λn − ηn

(R(n))
2





C1

C2

C3

...
C2n−2

C2n−1

C2n


=



0
PT1

−uT1

...
PTn−1

−uTn−1

PTn


(91)

where

PTi
=

θ

(R(i))2

∫ R(i)

R(i−1)

θ(r)rdr;uTi
=

ϕi
(R(i))2

∫ R(i)

R(i−1)

θ(r)rdr (92)
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